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Epistemic planning =
automated planning + (dynamic) epistemic logic

Goal: To compute plans that can take the mental states of other agents
into account.
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Goal

Automated planning

+

Logical reasoning about the
mental states of other agents
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Epistemic states: Multi-pointed, finite epistemic models of multi-agent S5.
Designated states: (those considered possible by planning agent).
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The coordinated attack problem in dynamic
epistemic logic (DEL)

Two generals (agents), a and b. They want to coordinate an attack, and
only win if they attack simultaneously.

d : “general a will attack at dawn”.

mi : the messenger is at general i (for i = a, b).

Initial epistemic state:

s0 = d ,ma

w1

ma

w2

a, b
a, b

b

Nodes are worlds, edges are indistinguishability edges (as long as we’re
on S5).
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The coordinated attack problem in dynamic
epistemic logic (DEL)

Recall: d means “a attacks at dawn”; mi means messenger is at general
i .

Available epistemic actions (aka action models aka event models):

sendab =

pre : d ∧ma

post :
ma:=⊥
mb:=⊤

e1

pre : ⊤

post :
ma:=⊥
mb:=⊥

e2

a

a, b a, b

And symmetrically an epistemic action sendba.

Nodes are events, and each event has a precondition (epistemic
formula) and postconditions for all atoms (also epistemic formulas).
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The product update in dynamic epistemic logic

s0 = d ,ma

w0
1

ma

w0
2

a, b
a, b

b
s0 |= ¬Kbd

sendab =

pre : d ∧ma

post :
ma:=⊥
mb:=⊤

e1

pre : ⊤

post :
ma:=⊥
mb:=⊥

e2

a

a, b a, b

s0 ⊗ sendab = d

w1
3w1

2

a, b a, b

b
d ,mb

w1
1

a

s0 ⊗ sendab |= Kad ∧ Kbd ∧ ¬KaKbd
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s0 = d ,ma ma
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1

w0
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a, b

b

s1 = d ,mb d
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w1
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a, b
a, b a, b
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sendab

s2 = d ,ma d d

w2
1

w2
2 w2

3 w2
4

a, b
a, b a, b a, b

b a b

sendba

s3 = d ,ma d d d

w3
1

w3
2 w3

3 w3
4 w3

5
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a, b a, b a, b a, b

a b a b

sendab
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Epistemic planning tasks
Definition. An epistemic planning task (or simply a planning task)
T = (s0,A, ϕg ) consists of an epistemic state s0 called the initial state;
a finite set of epistemic actions A; and a goal formula ϕg of the
epistemic language.

Definition. A solution to a planning task T = (s0,A, ϕg ) is a sequence
of actions α1, α2, . . . , αn from A such that for all 1 ≤ i ≤ n, αi is
applicable in s0 ⊗ α1 ⊗ · · · ⊗ αi−1 and

s0 ⊗ α1 ⊗ α2 ⊗ · · · ⊗ αn |= ϕg .

Example. Let s0 be the initial state of the coordinated attack problem.
Let A = {sendab, sendba}. Then the following are planning tasks:

1. T = (s0,A,Cd), where C denotes common knowledge. It has no
solution.

2. T = (s0,A,E
nd), where E denotes “everybody knows” and n ≥ 1.

It has a solution of length n.

This formalisation of the coordinated attack problem is from
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Shortening the chain

Consider a chain of the form produced by the message-passing domain
above:

d ,ma d d d
w1 w2 w3 w4 w5

a, b
a, b a, b a, b a, b

a b a b

Using preconditions of modal depth 1 we can also shorten the chain by 1:

shorten =
pre : Kbd

post :
e1

pre : d ∧ K̂b¬d

post : d :=⊥
e2

a, b

a, b a, b

Then it is only a short step to have multiple chains that can grow and
shrink and then to encode two-counter machines ⇒ undecidability!
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Two-counter machines

Undecidability of the plan existence problem in epistemic planning
(whether a solution exists) can be done by a reduction of the halting
problem for two-counter machines:

Configurations: k l m , where k , l ,m ∈ N.

I R0 R1

instruction register 0 register 1

Instruction set: inc(0), inc(1), jump(j), jzdec(0, j), jzdec(1, j), halt.

Computation step example:

k l m k+1 l+1 m
inc(0)

I R0 R1 I R0 R1

The halting problem for two-counter machines is undecidable

[Minsky, 1967].
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Proof idea for undecidability of epistemic planning

For each two-counter machine, construct a corresponding planning task
where:

• The initial state encodes the initial configuration of the machine.

• The epistemic actions encode the instructions of the machine.

• The goal formula is true of all epistemic states representing halting
configurations of the machine.

Then show that the two-counter machine halts iff the corresponding
planning task has a solution. (Execution paths of the planning task
encodes computations of the machine).
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Encodings

Encoding configurations as epistemic states:

k l m y

p1

p1

p1

p1

p1

k + 1
states

p2

p2

p2

p2

p2

l + 1
states

p3

p3

p3

p3

p3

m + 1
states

Encoding instructions as epistemic actions (note: only
preconditions!):

inc(0) y

¬(p1 ∨ p2 ∨ p3)

p1 ∧ ♦⊤

p1 ∧ ♦�⊥

p1 ∧�⊥

p2 ∧ ♦⊤

p2 ∧ ♦�⊥

p2 ∧�⊥

p3
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The computation step k l m k + 1 l + 1 m
inc(0)

is
mimicked by:

encoding( k l m )⊗ encoding(inc(0)) =

p1

p1

p1

p1

k
+
1

p2

p2

p2

p2

l
+
1

p3

p3

p3

p3

m
+
1
⊗

¬(p1 ∨ p2 ∨ p3)

p1∧♦⊤

p1∧♦�⊥

p1∧�⊥

p2∧♦⊤

p2∧♦�⊥

p2∧�⊥

p3 =

p1

p1

p1

p1

p1

k
+
1

p2

p2

p2

l
+
1

p2

p2

p3

p3

p3

p3

m
+
1

= encoding( k + 1 l + 1 m )
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Plan existence and classes of planning tasks

Definition. Let T be a class of planning tasks. By PlanEx-T we denote
the following decision problem, called the plan existence problem on T :
Given a planning task T ∈ T , does T have a solution?

We here only consider the following classes:

• T (m, n) with m, n ∈ N ∪ {∞}: Class of planning tasks where the
preconditions are of modal depth ≤ m and the postconditions are of
modal depth ≤ n.

• T (m,−1) with m ∈ N ∪ {∞}: Class of planning tasks where the
preconditions are of modal depth ≤ m and there are no
postconditions (purely epistemic).

Example. The coordinated attack problem is in T (0, 0). As we will later
see, PlanEx-T (0, 0) is decidable.
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Reductions between plan existence problems

[Bolander et al., 2019] (under submission) proves the following
polynomial-time reductions for all m, n:

1. PlanEx-T (m, n) ≤P PlanEx-T (m + k , n + l) for all k , l ≥ 0.

2. PlanEx-T (m, n) ≤P PlanEx-T (0, 1).

: proved decidable

: decidable by reduction

: proved undecidable

: undecidable by reduction

Decidability theorem.
PlanEx-T (0, 0) is decidable.

Undecidability theorem 1.
PlanEx-T (2,−1) is undecidable.

Undecidability theorem 2.
PlanEx-T (1, 0) is undecidable.

m

n

-1

0

1

2

3

1 2 3
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Decidability theorem
Theorem. PlanEx-T (0, 0) is decidable.

Proof idea: Originally proved in [Yu et al., 2013], exploiting that
k-bisimilarity is preserved when doing product update with epistemic
actions having propositional pre- and post-conditions. Intuitively because
the events of such actions can not look deeper into the model (they can
only relate locally to the worlds in which they apply). The proof was
generalised in [Aucher et al., 2014], using automatic structures.

p

↔1

¬p

⊗

action from T (0, 0)

=

?

↔1

?
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Undecidability theorem 1

Theorem ([Aucher and Bolander, 2013])

PlanEx-T (∞,−1) is undecidable.

Proof idea: This is the two-counter machine reduction shown earlier.
Preconditions of arbitrary modal depth was used to refer to—and
modify—the value in the instruction counter, e.g. for jumping to another
instruction.

Theorem ([Charrier et al., 2016])

PlanEx-T (2,−1) is undecidable.

Proof idea: Strengthening of the proof above to avoid preconditions of
arbitrary modal depth.
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Undecidability theorem 2

Theorem ([Bolander and Andersen, 2011])

PlanEx-T (1, 0) is undecidable.

Proof idea: Reduction of Halting problem for Turing machines. @fix
formulation: States (epistemic models) encode IDs of the Turing
machine, actions (event models) encode transitions of the Turing
machine.

x1 · · · xn−2 xn−1 xn xn+1 · · · xm
△
qs

x1 xn−2 xn−1

i
qs ∧ xn ∧ ri
j

xn+1

i

xn+2

j
xm

[Cong et al., 2018] strengthen the result, by showing that it still holds
with only 2 agents and 6 propositions. The proof uses cellular automata
instead of Turing machines, but otherwise uses a similar reduction.
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Epistemic planning for human-robot collaboration

Epistemic planning for knowing when when to interfere: Only provides
information to the human when she has a wrong belief, and when the
information is required in order for the human to be able solve the task.

• Sub-symbolic AI (mainly deep learning): face/object recognition,
skeleton tracking, speech-to-text.

• Symbolic AI (epistemic logic, epistemic planning): logical
reasoning, planning, perspective-taking.
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