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Abstract
This paper concerns the technical issues raised when humans are replaced by arti-
ficial intelligence (AI) in organisational decision making, or decision making in 
general. Such automation of human tasks and decision making can of course be 
beneficial through saving human resources, and through (ideally) leading to better 
solutions and decisions. However, to guarantee better decisions, the current AI tech-
niques still have some way to go in most areas, and many of the techniques also 
suffer from weaknesses such as lack of transparency and explainability. The goal 
of the paper is not to argue against using any kind of AI in organisational decision 
making. AI techniques have a lot to offer, and can for instance assess a lot more 
possible decisions—and much faster—than any human can. The purpose is just to 
point to the weaknesses that AI techniques still have, and that one should be aware 
of when considering to implement AI to automate human decisions. Significant cur-
rent AI research goes into reducing its limitations and weaknesses, but this is likely 
to become a fairly long-term effort. People and organisations might be tempted to 
fully automate certain crucial aspects of decision making without waiting for these 
limitations and weaknesses to be reduced—or, even worse, not even being aware of 
those weaknesses and what is lost in the automatisation process.

Keywords Artificial intelligence (AI) · Connectionist AI · Symbolic AI · 
Explainability · Trust · Algorithmic bias · Algorithmic decision making · Human 
decision making

The last few years have seen an explosive increase in industrial-scale applications 
of artificial intelligence (AI), and an even higher increase in the expectations of the 
problems and tasks that AI will be able to solve in the near future. There is no doubt 
that AI will have a profound impact on many aspects of our lives, jobs, and society 
as a whole. However, it is much less clear exactly what the impact will be. Many 
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human cognitive tasks can seemingly be automated by AI, but we risk a loss in pre-
dictability and explainability when doing so.

The title of the paper, “What do we loose when machines take the decisions?”, 
might seem a bit loaded. Why should we expect to loose anything at all? Why is it 
about loss and not gain? First of all, let me emphasise that when I talk about loss or 
gain, it is exclusively about the quality of the decision making, not about e.g. finan-
cial aspects. Automating human tasks through AI and robotics can potentially lead 
to significant financial gains. I will not try to assess these potential financial gains, 
but simply point to how and where automated decision making might be different 
from human decision making—in particular where it might still not be on par with 
the human decision making it is sought to replace.

The reason we potentially might loose something by automation through AI is 
that—despite the goal of AI being to simulate aspects of human cognition—human 
and machine intelligence are still fundamentally different. We can not yet com-
municate with AI systems the way we communicate with fellow humans, and AI 
systems cannot explain their own reasoning and behaviour the way humans can. 
Human intelligence and machine intelligence have a rather distinct set of strengths 
of weaknesses. Some tasks that are easy for humans to solve have turned out to be 
exceedingly difficult for machines, and vice versa. To understand what we poten-
tially loose by automating decision making, it is necessary to first understand these 
differences between human and machine intelligence. The paper will first give a 
brief overview of what AI is and the main paradigms it consists of, and then turn 
to address specifically the potential weaknesses of AI decision making compared to 
human decision making.

1  What is artificial intelligence (AI)?

More than 60 years ago John McCarthy, the father of artificial intelligence (AI), 
defined the field as “the science and engineering of making intelligent machines, 
especially intelligent computer programs.” The complication of this definition is that 
we do not know exactly what intelligence is, and hence even less what it means for 
a computer program to be intelligent. In the 1950s and 1960s, AI was expected to 
develop very rapidly into computers and robots with human-level cognitive capabili-
ties. This however did not happen, at least not yet.

Lacking a precise definition of AI, we can still give an approximate characteri-
sation. It is almost always about building machines—computers or robots—that 
can perform tasks that otherwise only humans have been able to, e.g. play chess, 
drive a car, do medical diagnosis, or engage in a dialogue. Furthermore, when 
such machines are built, AI researchers are almost always directly inspired by how 
humans solve the same task. It can be in terms of the machine directly trying to 
mimic some of the neurological processes of the human brain (see connectionist AI 
in Sect. 4 below) or it can be via a more abstract model of human problem solving, 
e.g. an approximate model of the reasoning steps involved in a human deciding the 
next move in a game of chess (see symbolic AI in Sect. 4 below).
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AI today is a wide range of different techniques for simulating different aspects 
of human cognition. Computers can play chess, drive cars, recognise skin diseases 
and engage in dialogues, but all these applications are based on different techniques 
within AI—and require individual programming tailored for the specific application 
at hand. This makes current AI very different from human beings solving similar 
tasks. Human beings can learn to master all of these different tasks during their life-
time without having to be preprogrammed specifically to solve them.

2  Characteristics of current AI

AI systems tend to be tailored to specific types of applications, and often new types 
of applications requires new methods to be developed (or existing methods to be 
combined in a novel way). Developing a robust driverless car is not just about tak-
ing an existing AI system from the shelf, plug it into the car and then let itself figure 
out how to drive. Given that AI systems need to be tailored to specific applications, 
the complexity of building such systems depend crucially on how well-defined and 
clearly delimited the problem to be solved is. As a rather robust rule of thumb, the 
more well-defined and clearly delimited a problem is, the easier it is to make AI that 
can solve it. With this in mind, it is not too surprising that already in 1997 it was 
possible to build a computer program, IBM Deep Blue, that was able to become 
world chess champion. Chess is extremely well-defined and clearly delimited: there 
is only a very few and strict rules to obey, and there is a very precisely formulated 
goal to achieve. For a human being, chess has an overwhelming combinatorial com-
plexity in terms of possible move sequences, but modern computers are not easily 
overwhelmed by the need to consider an enormous number of options. Deep Blue 
could compute 200 million chess moves per second.

Modern computers are however much more easily overwhelmed by problems in 
which the rules or the goal—or both—are less clearly formulated and delimited. 
One such example is driverless cars. As in chess, there are also rules to obey in traf-
fic, but there are many more rules than in chess, and they are much less formally 
specifiable. It is even more complicated for computers to successfully small talk 
with a human for a few minutes over a cup of coffee. Chatbots are computer systems 
for engaging in dialogue with humans, and the dialogue can either be in writing or 
through a voice interface. Building a chatbot that can engage successfully in small 
talk with humans is exceptionally difficult, as the rules of such dialogues are even 
much less clear than the rules in traffic. This is also why a lot of the chatbot technol-
ogy that was in the early 2010s implemented on web pages to help customers, e.g. 
by IKEA, Scandinavian Airlines and Deutsche Post, has now been taken out of use. 
There seems to be a new wave of chatbots arising here on the edge to the 2020s, and 
they are probably better, but it does not change the fact that general natural language 
dialogue is everything but well-defined and clearly delimited, and hence extremely 
hard to bring to human level on a computer.

It is interesting to compare the difficulty for computers on the three task men-
tioned above, playing chess, driving cars, and chatting, with the difficulty for 
humans. For most humans, the relative difficulty of the three tasks is opposite the 
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one for computers: It is easier for most humans to engage in small talk for a few 
minutes than it is to drive a car safely through downtown Rome on a Friday after-
noon, which again is easier than becoming world chess champion. Figure 1 illus-
trates this. The fact that the two axes of difficulty are opposite one another illustrates 
that intelligence is not just one thing, and that different types of intelligence cannot 
always be compared along the same axis.

Many people seem to have the view that computers are becoming more and more 
intelligent, and that it is just a matter of time before they become more intelligent 
than us humans. But that view assumes that we can directly compare human and 
machine intelligence on a single axis of intelligence. The figure illustrates that it 
might not be as simple as that. Humans and machines currently have very different 
strengths and weaknesses, and there is no simple way of comparing their “level of 
intelligence”. Computers will forever be better than humans at board games with 
high combinatorial complexity, but no matter how explosive the development of AI 
is going to be, it is conceivable that we humans will forever be better natural lan-
guage users [not the least since natural language was invented by us, and developed 
in a way that is to a large extend dependent on our culture, brains and bodies (Lakoff 
2008)].

3  Human‑machine dualism

The difference between human intelligence and current level machine intelligence 
is so large that it is probably more relevant to talk about a duality. We humans have 
a very flexible intelligence, are good at abstract thinking and conceptualising the 
world. Often we are good at solving problems that are not very clearly delimited 
and well-structured (but where the solutions do not have to be either). Conversely, 
machines are primarily good at clearly delimited and well-structured problems, but 
can then also provide solutions that are very precise and well-structured. They are 
much less competent at abstract thinking and conceptualising the world, though a 
lot of research is invested in developing AI systems that have these competences as 
well.

difficulty machines

difficulty humans

Fig. 1  For many classes of tasks, their relative complexity is opposite when seen from a machine per-
spective and when seen from a human perspective
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The human-machine duality can be illustrated by the case of the IBM Watson 
system that was originally developed for playing the game of Jeopardy (Ferrucci 
2012). Jeopardy is about answering questions concerning trivia knowledge, which 
is not a particularly well-defined and clearly delimited problem, but still much more 
well-defined than general dialogues. In 2011, IBM Watson became (unofficial) 
world-champion in Jeopardy. It didn’t do so by being better at understanding the 
questions, but by compensating somewhere else: The system had 200 million pages 
of text in memory and could read through most of that text in a single second. This 
is of course far beyond what any human can do. The point here is that humans are 
actually much better at understanding questions and finding answers from relatively 
small amounts of data (the small amounts we can keep in our brains), but computers 
can in some cases compensate by having access to enormous amounts of data and 
being able to process that data with exceptional speed. And in some cases, as with 
Watson, they can compensate so well that they actually outperform humans on cer-
tain tasks.

If the answer to a question is well hidden in a piece of text, Watson is likely not to 
find it. However, it compensates by having access to an enormous text library that it 
can browse through in seconds, and then it will probably find another source, where 
it is more trivial to extract the answer. When humans look for answers in texts, we 
can only read extremely slow compared to computers, but we have a much deeper 
understanding of what we read, and are very good at finding the deeper meanings 
and the well hidden answers.

One of the important conclusions of the Watson example is that even when we 
succeed in constructing a computer program that achieve above human level on a 
certain task, it doesn’t at all imply that it solves it in the same way as humans, and 
therefore we cannot really use it to conclude anything about the relative intelligence 
between humans and machines. In contrast to Watson, humans can also answer 
questions that nobody has asked before, e.g. whether a crocodile can run a steeple-
chase (Levesque 2014). In order to answer such a question, we need our human abil-
ity to create mental models of the content of the question, that is, to picture the poor 
crocodile with its extremely short legs trying to jump a high barrier. We use our rich 
existing models of the world to answer questions, whereas Watson simply tries to 
look the question up in its enormous library, and if the answer is not there because 
nobody considered that question before, it has no chance of answering.

4  Symbolic AI

Since the 1960s, AI research has essentially been divided into two competing para-
digms, the symbolic paradigm and the connectionist paradigm (Hoffmann 1998). 
These two paradigms have completely opposite approaches to simulating aspects of 
human cognition. The symbolic paradigm follows a top–down approach by trying 
to directly simulate the highest levels of human cognition, our linguistic (symbolic), 
conscious reasoning. In this paradigm, one tries to build AI systems that have an 
explicitly represented language to reason about the world, and for instance use this 
to do logical inference or plan a sequence of actions to achieve a certain goal. AI 
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within the symbolic paradigm is behind systems such as chess computers like IBM 
Deep Blue, the 200,000 robots working in the warehouses of Amazon around the 
globe, and intelligent personal assistants such as Apple Siri, Google Assistant and 
Amazon Alexa. The advantage of symbolic AI is that the systems constructed can 
be made robust, predictable and explainable. If Siri always misunderstands spe-
cific types of questions, Apple can inspect the code and understand why, and hence 
improve it. The drawback of symbolic AI is, though, that systems within this para-
digm tend to have strictly delimited abilities, and they normally do not learn from 
experience.

5  Connectionist AI

Arguably, one of the main landmarks of human intelligence is our flexible intelli-
gence and our ability to learn. We are not born with the ability to play chess or drive 
a car, but learn it during our lifetime. If we want artificial intelligence systems to 
share these abilities with humans, we have to consider the area of machine learning 
within AI. Machine learning is a very broad term that covers any AI algorithm that 
does not have a static behaviour, but can learn from experience. It could e.g. be an 
algorithm with the ability to learn to distinguish objects in the physical world, with 
the ability to learn better strategies in chess, or with the ability to learn the rules of 
new games. Some of the techniques of machine learning belong to the symbolic par-
adigm, but the currently most prominent ones belong to the connectionist paradigm. 
The connectionist paradigm is essentially constituted by AI techniques based on 
(artificial) neural networks (ANNs), including deep neural networks (deep learning).

In artificial neural networks, one tries to simulate the atomic processes of the 
human brain: the functioning of the individual neurons and neuron connections. 
Hence opposite the top–down approach of symbolic AI, connectionist AI has a 
bottom-up approach to simulating aspects of human cognition. The connectionist 
approach is behind image recognition software, e.g. for recognising skin diseases 
or as used by Instagram to decide whether a picture contains unacceptable nudity. 
The advantage of the connectionist approach is that it is possible to construct sys-
tems that have a more flexible intelligence and can learn from experience. The neu-
ral network employed at Instagram has not been programmed with a model of what 
unacceptable nudity is, but has simply been trained on a very large set of pictures 
that has in advance been manually labelled as either “acceptable” or “unacceptable”. 
Eventually, the system itself has learned to recognise the patterns of unacceptable 
content. It would never be possible to do the same with symbolic AI: There is no 
way to give a sufficiently precise linguistic or symbolic definition of what “unac-
ceptable nudity” is.

The drawback of the connectionist approach is, however, that it can never be 100% 
predictable, error-free or explainable. The systems build according to this approach 
are based on statistical learning from experience. When you do statistical learning 
from experience, your ability to correctly categorise new objects, for instance recog-
nise certain types of pictures, gradually improves but can never become 100% pre-
cise. An example of this is illustrated by the two pictures in Fig. 2. They don’t seem 
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to bear many similarities, and they seem to be fairly acceptable pictures from eve-
ryday situations. However, they were both blocked by the image recognition system 
of Instagram (in 2015 and 2019, respectively), and both were claimed by the system 
to contain unacceptable nudity. There is currently no way of knowing exactly why 
these pictures were labelled as unacceptable, as the neural networks train an implicit 
model with millions (or even hundreds of millions) of neuron weights, and it is the 
combination of all these neuron weights that decide the classification the network 
makes. There is also no simple way of telling the neural network that easter simnel 
cakes like the one on the left of Fig. 2 are not examples of human nudity. The only 
way to try avoiding such misclassifications in the future is to provide the algorithm 
with more labelled pictures that it can train on—and then hope for the best. This is 
clearly very different than the situation in symbolic AI, where models are explicit 
rather than implicit, and can hence easily be inspected and modified.

6  Symbolic versus connectionist AI

An essential difference between the paradigms is that symbolic AI is based on cre-
ating explicit (symbolic) models, whereas the connectionist approach is based on 
learning implicit models. This difference roughly corresponds to the difference 
between trying to predict a ballistic trajectory using the laws of mechanics and 
aerodynamics (explicit model) versus simply trying to learn from observing a high 
number of such trajectories (implicit model). When humans throw snowballs, there 
is no doubt that we use some kind of learned implicit model to predict where the 
snowball will land, which is consistent with the connectionist approach. However, 
when we play a game of chess or plan a dinner party, there is equally no doubt that 
we also use explicit symbolic (linguistic) models to reason about our possible action 
sequences, which is consistent with the symbolic approach. So it seems that human 
problem solving combines implicit and explicit models, and that certain aspects of 
problem solving are closest to the connectionist approach, whereas others are clos-
est to the symbolic approach. For this reason, the last few years have seen a high 
increase in attempts at constructing AI systems that combine the symbolic and the 

Fig. 2  Two pictures that were blocked by the image recognition system of Instagram
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connectionist approaches, with some of the notable examples being Google Deep-
Mind building a system that taught itself to play old Atari arcade games (Mnih 
et  al. 2015), and building another system achieving world-class level in the game 
of Go (Silver et al. 2016). Connectionist AI is mainly about simulating aspects of 
our perception system, whereas symbolic AI is mainly about simulating aspects of 
our higher cognition. Fully autonomous AI systems like driverless cars or household 
robots of course need both.

It seems to be hard in AI to get what we could otherwise reasonably have 
expected. We would like AI systems to be robust, predictable and explainable, which 
would push us towards symbolic AI. However, we would also like AI systems to be 
flexible and learn from experience, which would push us towards connectionist AI 
instead. There seems to be a fundamental and unavoidable trade-off involved: the 
more intelligent, flexible and easily trained we want a system to be, the less we have 
control over the system and the less we can guarantee it to behave in the intended 
way. It implies that not all demands for computer software and robots can be met by 
simply turning up the level of intelligence and flexibility of those systems. For many 
types of system, for instance database systems and e-voting systems, we still want 
to be able to prove that they have and will always maintain the intended behavioural 
properties.

7  Classifying the weaknesses of AI relative to human decision 
making

Many of the examples provided above illustrate that AI still has weaknesses com-
pared to human intelligence. This doesn’t imply that we should generally just try 
to minimise the use of AI. In Denmark, the company Corti developed an algorithm 
that listens to calls to the emergency central and uses pattern recognition to try to 
determine whether it is a case of cardiac arrest. If the algorithm assesses it to be so, 
it shows a warning on the screen of the medical professional taking the call. The 
algorithm has quite a number of false positives (warning when there is no cardiac 
arrest) and false negatives (not warning when there is a cardiac arrest), however the 
net effect is a higher number of detected cardiac arrests, and the price paid is only 
to send out a few more ambulances than one would otherwise have done (Blomberg 
et al. 2019). Here, the combination of an AI system and a human expert provides 
better problem solving than the human alone.

Detecting cardiac arrest only based on the voice and breath of a human is clearly a 
perception task, and we would not even expect humans to be able to explain exactly 
what patterns made them suspect that one case is cardiac arrest and another is not. 
So adding AI doesn’t seem to give any loss, neither in quality of decisions, nor in 
explainability and transparency of the decisions. The only immediate threat to such 
use of AI is if humans start having blind faith in the algorithmic predictions and stop 
using their own cognitive resources to detect cardiac arrests and critically evaluate 
the algorithmic warnings. The two fatal Tesla crashes in autopilot mode that will 
be discussed further below happened exactly due to the drivers having achieved so 
much faith in the robustness of the autopilot that they stopped having their hands on 
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the steering wheel and eyes on the road, even though the instructions for the autopi-
lot specifically asked them to.

A rather demanding, but still reasonable, principle for the deployment of AI is to 
say that it can and should only be employed for partial or full automatisation when 
we can guarantee that it is better than what it replaces on all parameters. That is:

1. When a task is (partly) automatised by AI, we should require at least the same 
quality of problem solving as before automatisation—on all parameters.

2. AI should always enhance transparency, fairness and explainability, not diminish 
them.

For instance, you can’t necessarily say that an autopilot or driverless car is better 
than a human driver even if it is involved in fewer crashes. If these crashes are com-
pletely incomprehensible from a human perspective and we have no way of explain-
ing why they happened, we have a significant loss of transparency and explainability.

To get a clearer view of where AI might have weaknesses compared to human 
agents, let us look at the different stages of algorithmic problem solving. An algo-
rithm takes an input that is then processed to provide an output, see Fig. 3. Humans 
also process inputs through our senses and turn them into outputs: actions. If what a 
human does is different from what a machine does in a particular situation, it must 
be due to differences in  one of the following: 1) the input,   2) the processing of 
data—the “algorithm”, or 3) the output. We will consider these different sources of 
discrepancy one by one below.

8  Input problems

Input problems is to a large extend about data. An algorithm is fed with data, often 
both during the learning phase and when later used for decision making. The perfor-
mance of the algorithm can never be better than the data it is fed with (“garbage in, 
garbage out” as they say in machine learning). We can identify at least three possible 
problems related to input data:

1. Missing data points.
2. Missing data dimensions.
3. Errors or bias in data.

1. input problems 2. algorithm problems 3. output problems

Fig. 3  Illustration of an algorithm and the potential sources of shortcomings
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8.1  Missing data points

Algorithms like neural networks build implicit models representing patterns in the 
data they are trained on. If we want a neural network to be able to distinguish pic-
tures of cats and dogs, it is not enough to feed it with a couple of pictures of dogs 
and a couple of pictures of cats, as it will not be enough to learn the general patterns 
distinguishing the two types of animal. However, if we have too little training data 
(too few pictures) to distinguish cats and dogs, we will soon realise this when we 
start testing or employing the neural network. So this type of lack of data is not the 
most problematic.

It becomes more problematic when we are potentially not even aware that we are 
missing data, for instance if we are missing training data for certain types of objects 
or patterns that are required for our AI system to safely make the required decisions. 
A relevant example of this problem is seen in car autopilots. In June 2016, a Tesla 
in autopilot mode made a fatal crash into the side of a semi-trailer. The Tesla drove 
at high speed and didn’t even slow down when it was approaching the semi-trailer 
(Lambert 2016). The problem was that the autopilot didn’t even know that it was 
approaching a semi-trailer, even though it had seen that there was a huge rectangular 
object in front of it. Semi-trailers are big rectangular surfaces with text on, and so 
are highway signs. So from the perspective of a pattern recognising neural network 
they are very much alike, and the autopilot mistook the semi-trailer for a highway 
sign that it would have been possible to drive under. Indeed even humans might in 
some cases only be able to tell the difference between highway signs and semi-trail-
ers from observing the context the pattern appears in. Consider the picture in Fig. 4. 
With this picture I was able to fool a deep neural network to think that it is seeing a 
semi-trailer, but the sign itself also looks very much like a semi-trailer seen from the 
side except it is located high in the air and have some unexpected text on it. Not the 
pattern itself, but the context it appears in, makes it clear what we are seeing in this 
case. The importance of context will be addressed further in Sect. 9 below.

Fig. 4  What is it?
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The Tesla autopilot has only been designed to be used on highways, and hence 
probably not trained specifically to recognise semi-trailer trucks turning out in front 
of it—and not tested on such scenarios either. The Tesla driver was not using the 
autopilot as intended, but the example is still interesting, since we can never guar-
antee the behaviour of an algorithm when it is being faced with inputs of a type that 
it hasn’t been trained on. If we use algorithms for detecting whether a picture of 
skin change is cancer or whether a call to the emergency central is a case of cardiac 
arrest, then we know in advance exactly what we want to be able to categorise. This 
is however not true for autopilots and driverless cars. There can be many unexpected 
situations in traffic, and even human drivers can experience situations in traffic that 
don’t look like situations we have been in before, situations that we haven’t been 
“trained on”. However, in such cases most humans are still are able to assess the sit-
uation and make some kind of sensible decision, because we have very rich general 
models of the physics of the world (how things move) and of other agents (inferring 
their intentions).

Algorithms so far only have rather limited models of rather limited parts of the 
world, and as soon as we step outside the border of what the algorithms have been 
trained on, they are likely to fail miserably. Even though neural networks are learn-
ing algorithms, it doesn’t mean that an autopilot with a perception system based on a 
neural network automatically learns from its mistakes. In March 2019, another Tesla 
in autopilot mode was involved in exactly the same type of fatal crash, driving into a 
semi-trailer at high speed.

The main point to be aware of here is that the less well-defined and predictable the 
environment of an AI system is, the less we can be guaranteed its sensible behaviour. 
Unless an environment is very well-defined and predictable (like, say, chess or pictures 
of skin changes), even humans can rarely completely define all the relevant situations 
that can occur in the environment. Hence even the AI programmers can not make sure 
that the system will act sensibly in all situations.

8.2  Missing data dimensions

I have provided examples concerning missing data points, that is, relevant situations 
or patterns that the algorithm has not been trained on. Another type of lack of data is 
when the data points are there, but are lacking relevant dimensions. A simple exam-
ple could be to attempt to fully automate the diagnosing of skin diseases by training 
an algorithm on pictures of skin changes. A human dermatologist might however 
also need to touch the skin and ask questions about how it feels in order to correctly 
diagnose the condition. In that case, the algorithm only trained on pictures has a 
much worse chance of correctly diagnosing the condition, since there are impor-
tant dimensions that the algorithm simply doesn’t have access to. Another example 
could be driverless cars using camera sensors with significantly lower resolution, 
higher latency and much more noise than the human eye has (imagine to attempt to 
drive a car remotely over a poor Skype connection). It might seem that it ought to be 
obvious whenever the data we feed into our algorithms are lacking dimensions com-
pared to humans solving the same problems. In the examples just given, it indeed 
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seems straightforward. However, we humans are not always aware of the relevant 
dimensions.

One of the impressive recent breakthroughs in natural-language processing are 
so-called language models. These are neural networks trained on massive amounts 
of text in order to be able to recognise patterns in text and hence also be able to gen-
erate new text. I can for instance feed the beginning of this section of my paper into 
one of these language models [the public version of GPT-2 (Radford et al. 2019)], 
and ask it to continue the text:

As a result, it is not surprising that algorithms fail in many situations where 
humans are likely to perform the right decision. If we use such algorithms, it 
is not only possible for them to make mistakes, but also for them to be able 
to make mistakes that are completely unexpected to be made by humans. It is 
also possible that these mistakes will be missed by the user, and thus be used 
to make the wrong decision and make the crash. Therefore it is important to 
be aware of this potential problem and to design our algorithms as carefully as 
possible, to avoid this issue in the first place [11,12].
The second kind of problem with input data is related to the fact that if data 
does not exist, and we want to know an object is there, we need to look at the 
images again and search for objects we have not seen before. This is not the 
easiest task, especially if we are using the object for example as a target for a 
laser, but if we are not, then it will be far worse. Let me first explain how it can 
be more difficult to perform this task. In one of the famous movie “Star Wars” 
scenes, the Rebel Alliance uses the laser to shoot down a rebel ships in a space 
battleship. The Rebel, in the movie, at first shoot the Rebel and then uses the 
laser to shoot down a ship…

The text is, at first, impressive in the sense of being grammatically correct and ini-
tially matching the style and overall content of my paper. However, it soon starts to 
diverge significantly and, as a whole, it is hard to grasp the overall message of the 
text. The problem here is that the model is missing several crucial things in order to 
create texts with a clear and meaningful message. First of all, the training input for 
the language model has been text only, not giving the algorithm any chance of get-
ting to understand the connection between words and their meanings in the physical 
world. It corresponds to trying to teach a non-Japanese speaking person to become 
proficient in Japanese by only being exposed to transcripts of dialogues in Japanese, 
and not being explained what any of the words mean or have any idea about the 
original context of those dialogues. This could potentially be sufficient to learn to 
form grammatically correct sentences, to say hello and goodbye, and it might even 
fool Japanese people for a short while to think that the speaker understands what 
is being said. But it would not be enough for the person to figure out how to con-
vey a specific message in Japanese. Every word uttered in a dialogue would simply 
be based on a statistical estimate of the likelihood of seeing that specific word in 
that specific position in a dialogue, based on the training data. In order to convey 
a specific message, an algorithm of course additionally needs to be able to reason 
in terms of intended messages, and have the ability to take the perspective of the 
receiver in order to figure out how to best formulate it. Language models as GPT-2 
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does not have any explicit representation of intentions or other agents. The problem 
here is that the data we humans receive when learning language are far richer and 
contain far more dimensions than what has been fed into the language model. As 
children we learn language in the context of observing the objects and situations that 
the language refers to. The crucial importance of those additional dimensions is not 
necessarily obvious until one sees the consequence of training an algorithm without 
them.   

Another example of missing data dimensions comes from a small research pro-
ject in 2017 between Nordisk Film A/S (the leading cinema chain in Denmark and 
Norway) and the IT University of Copenhagen, Denmark. The goal was to train a 
neural network to predict movie success in cinemas on a scale from 1 to 9. Nordisk 
Film was already making such predictions using human experts in order to decide 
where to show which movies and for how long. The input to the neural network was 
essentially all the textual information that could be found about each movie, includ-
ing genre, budget, country, prequels, rating, cast, length, Google Trends posts, Twit-
ter posts, Wikipedia entries, prerelease, competition, year, reviews, source material, 
amount of marketing, preorders. Even with all this data, the neural network was not 
even close to match the precision of the human experts. But this is to be expected. 
After all, the number of tickets sold is also about humans being able to watch the 
movie and subjectively assess its quality and target audience. The movie itself was 
of course not part of the input to the algorithm, and even if it had been, the algo-
rithm would not be able to make sense of it. A similar project attempted to predict 
the next winner of the Eurovision Song Contest by feeding an algorithm with online 
data about each song. Again, it is hard to judge who will win a song contest without 
hearing the song, and without having any ideas about human taste. For an algorithm 
to learn human cultural and aesthetic norms is insanely difficult if not impossible.

8.3  Errors or bias in data

As mentioned earlier, a machine learning algorithm is never better than the data 
it is trained on. When the Danish company LEO Innovation Lab recently tried to 
build an algorithm to recognise psoriasis from pictures of skin changes and wanted 
to train it on pictures correctly labelled by human experts, they found that even the 
human experts had significant internal disagreement on the correct classification 
[even sometimes disagreeing with themselves when seeing the same picture several 
times (Jensen et al. 2019)]. If an algorithm is trained on erroneously labelled data, it 
will of course learn the errors and forever replicate the errors in its decision making.

Training data can also be biased, hence leading to biased algorithmic decisions. 
A famous example is the system for assessing the risk of criminals committing new 
crime during parole that turned out to highly overrate the risk of black people and 
highly underestimate the risk of white people (Angwin et al. 2016). The most likely 
reason for this is that the training data already had a racial bias based on the histori-
cal data it was trained on.
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9  Algorithm problems

Algorithm problems concern the limitations or weaknesses that AI algorithms might 
have in processing their input. We can identify at least the following three potential 
types of problems:

1. Oversimplification: Ignoring context or reducing dimensions.
2. Missing dimensions in the model.
3. Identifying correlations with causal relations.

9.1  Oversimplification: Ignoring context or reducing dimensions

Cases of context insensitivity in classification algorithms has been illustrated in 
Figs. 2 and 4. For an algorithm to believe it most plausible that the image in Fig. 4 
is a semi-trailer, it must  be very ignorant of the fact that semi-trailers rarely are 
attached to gantries high above the ground. In fact the algorithm I asked to classify 
the picture also suggested that it could be a road sign, it just assigned much lower 
probability to that option. When an algorithm only tries to recognise the geometrical 
pattern of the main object in the picture and ignores the context, it can easily be mis-
taken, as also humans can be. So why doesn’t it take the context into account? The 
issue is that the more sensitive to context we want an algorithm to be, the harder it 
naturally is for it to learn any generalisable patterns. Often the ability to learn gen-
eral patterns is about ignoring the context, e.g. being able to recognise the same cat 
independent of which background we see it on.

The tendency of the current generation of neural networks to be somewhat insen-
sitive to context can be problematic in the employment of such methods e.g. in 
organisational decision making. Fair and valid assessments often require detailed 
data, preserving contextual information. The former Danish government in March 
2019 released a National Danish AI Strategy (Regeringen 2019). It included a so-
called signature project concerning targeted employment efforts. It stated: “With 
the help of artificial intelligence, it will potentially be possible to reduce the period 
of unemployment. By analysing patterns in historical data on successful efforts, the 
caseworker will have a better opportunity to target employment efforts to the indi-
vidual citizen”. A potential issue with such a project is that in order to be able to find 
any generalisable patterns at all, it could be necessary to severely reduce the dimen-
sions of the data or ignore significant parts of the context of each data point. Then 
one might exactly end up generalising beyond what is reasonable, and take decisions 
on patterns identified in isolation from their context.

Earlier I argued that missing dimensions in the input data could be a problem 
for machine learning algorithms. Now I suggest that, conversely, too many dimen-
sions can also be a problem. The problem with too many dimensions is however 
not a problem with the input itself, but a problem with the algorithm that has to 
learn from it. Just as algorithms can have a hard time learning generalisable pat-
terns if they have to be sensitive to the context of each data point, they can struggle 
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to learn generalisable patterns if the input has too many dimensions. To solve the 
earlier mentioned problem  with language models being limited by never having 
been exposed to the relation between words and their meaning in the real world, one 
might suggest to simply add pictures or video or robot sensor input to the training 
data, to make it more comparable to human language learning. However, this would 
clearly make the learning algorithm struggle even more, and require even more data, 
an even bigger model and even more computational resources to train it. The GPT-2 
language model is a model with 1.5 billion parameters trained on 8 million web 
pages for several weeks with an estimated computation cost of 50.000$ when using 
cloud computation services (Simonite 2019). Adding other dimensions than text to 
the language model would most likely make it out of reach in terms of getting suf-
ficient amounts of data, in terms of the resulting model size and in terms of the 
required computational resources. At least with the current available AI techniques. 

The more dimensions the input data has, the more complex the algorithm handling it 
has to be. For machine learning algorithms like neural networks this means a significant 
increase in trainable parameters, and the more trainable parameters, the more training 
data is needed. For algorithms predicting human behaviour, the training data will of 
course always be limited by the number of humans we have existing data on, and for 
very high-dimensional data this means it will be impossible for the algorithm to learn 
patterns in the input. The solution to these problems is then often to reduce the dimen-
sions of the data, that is, include fewer attributes of each person. Fewer dimensions of 
data means smaller models, and also models that have an easier time generalising the 
patterns observed (which is the crucial aspect of algorithmic learning). However, this 
might obstruct fairness in algorithms used for assessing humans like the considered 
examples of predicting recidivism and predicting the effect of employment efforts.

9.2  Missing dimensions in the model

Missing dimensions in the model concern algorithms that are blind to certain aspects of 
the world they are trying to model—dimensions that might be required for the decisions 
they are supposed to make. To be able to model the mental states of other agents—
their intentions and beliefs—some kind of Theory of Mind is necessary (Premack and 
Woodruff 1978; Baron-Cohen 1997). Not everything humans do depend on the ability 
of creating mental models of other agents, but many thing do. A general practitioner 
has to be able to take the perspective of the patient and explain his diagnosis in a way 
that the patient understands, providing the right amount and level of information. This 
is impossible to do without any representation of the mental model of the patient, with-
out knowing what the patient already knows and how the patient understand things. 
Even a driverless car probably needs some basic abilities in social perspective-taking 
in order to decipher social situations in traffic, including the possible intentions of other 
road users.

A lot of research effort goes into providing AI systems with Theory of Mind abili-
ties, but so far the success is limited. One could have hoped that Theory of Mind and 
other advanced cognitive abilities would emerge from artificial neural networks when 
they became sufficiently large, but this is not what has happened. So if we want to have 
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algorithms that can think logically, form plans, reason about other agents, etc., we need 
to specifically program them to have these abilities. Most of the AI systems equipped 
with such abilities are still based on symbolic AI, even though there is an increased 
focus on trying to achieve the same with connectionist AI, or with combining the two 
paradigms.

If a neural network is excellent at performing perception tasks, but doesn’t have any-
thing that remotely resembles a Theory of Mind, we should of course be cautious as to 
what we use such an algorithm for. We should not naively believe that neural networks 
can be used for decision making in situations where we have already established that 
some  level of Theory of Mind reasoning is required to make optimal decisions. For 
instance, consider the use of AI in performance management. In performance manage-
ment it is important that the management understand how the employees perceive the 
world, and it is important to align the overall organisational goals with the employee 
goals. Performance management decisions can then of course not be taken by agents 
that do not have the ability to understand how the employees perceive the world and 
what goals they might have, i.e., agents with no Theory of Mind.

9.3  Identifying correlations with causal relations

Another potential issue with machine learning algorithms is that they are trained 
to find statistical correlations. Such correlations might or might not be caused by 
causal relationships. If there is no causal relationship, we often would not like the 
algorithm to make a connection. One example is the company Lenddo doing credit 
scoring based on the users’ smart phone usage including messaging, browsing activ-
ity, activity on social media, battery level, etc. (King 2016). Their trained algorithm 
found a strong correlation between average battery level and creditworthiness. The 
natural interpretation is that people who most of the time have a low battery level 
are in general more risk seeking, and hence also less creditworthy. However, one can 
discuss whether it is fair to reject a loan to a person just because that person is bad at 
charging her phone. Even if low battery level might statistically speaking be corre-
lated with low chance of repayment, there certainly isn’t a strict causal relationship.

It is quite easy to find spurious correlations that do not signify causal relation-
ships. An entire web page, tyler vigen .com, is devoted to point out such spurious cor-
relations and hence bring light to the issue. For instance, according to the web page, 
there is a correlation of 0.99 between the divorce rate in Maine and the per capita 
consumption of margarine in the US in the period 2000–2009. We wouldn’t like 
an algorithm to make predictions concerning the margarine consumption in the US 
based on the divorce rate in Maine, but if an algorithm had access to those figures, it 
might very well make the connection. The issue is that the pattern of correlation is 
indeed present in the data. Humans might frown upon such correlations and dismiss 
them for not representing causal relationships, but how do we know? We only know 
because we already have a very rich model of the world where such causal relation-
ships seem unlikely. Machine learning algorithms don’t have such rich models of 
the world, and for them any strong statistical correlation could as well be a causal 
relationship.

http://tylervigen.com


1 3

What do we loose when machines take the decisions?  

10  Output problems

A main output problem of AI algorithms is that many of those algorithms make a 
binary classification (is the picture appropriate or not?) with no additional explana-
tion provided and no ability to have a dialogue with the algorithm about the reason-
ing underlying the classification. A specific output problem can also be that some 
relevant categories or classifications are simply not represented as possible outputs 
of the algorithm. In the case of neural networks, the AI programmer designing the 
network will manually have to make sure to include an output neuron for each rel-
evant class. For instance, one might design an algorithm for categorising employees 
or customers, but where some people simply fall out of all of the categories repre-
sented in the output and can then never be correctly categorised. This is of course 
related to the earlier discussion of missing data points, e.g. a neural network in a car 
autopilot with no output neuron representing the category “semi-trailer”.

If we would like an AI system to decide whether to grant parole to an inmate, or 
decide what employment effort to offer a citizen, it is problematic if we only get a 
decision but no explanation—even if the decision is almost always correct. The citi-
zen offered a particular employment effort might reasonably ask for an explanation, 
and might also reasonably request to engage in a dialogue concerning the choice. 
If the algorithms themselves are expected to become able to explain their reason-
ing and engage in dialogues with humans, they most likely will need a high level of 
linguistic and social intelligence, including Theory of Mind. In some cases, it might 
be enough that a human expert can explain the algorithmic decision, possibly using 
some additional algorithmic tools. This leads me to introduce two different types of 
explainability, explainability of vs explainability by.

Explainability  of  vs explainability  by What does it require to deem a decision 
explainable? Explainability of means that we have some external means to explain 
what led an agent to a particular decision. Explainability by means that the agent 
itself can explain its decision, and we could possibly also engage in further discus-
sion with the agent to get a deeper understanding of what lies behind the decision.

Imagine a hedgehog taking a risky decision to cross a busy street. This decision 
can at best be explainable of. Through our research in animal behaviour we might be 
able to develop sufficiently rich models that we can use to explain and interpret such 
behaviour. However, the decision can never be explainably by, since the hedgehog 
can not itself provide us with an explanation. If a human took the same risky deci-
sion, we would expect it to be explainable by that human. Humans can of course in 
general not give precise, full descriptions of all the reasoning leading to a particu-
lar decision, but at least we can in most cases point to central decisive factors that 
are usually sufficient for others to understand why a particular decision was made. 
This is partly because language is an integral part of our decision making. When 
reflecting consciously about whether to do A or B, we use language to reason about 
the possible consequences of the two decisions.

In AI, we can also distinguish between explainability of and explainability by. 
We might achieve explainability of a neural network if we can add algorithms that 
can point to the decisive factors in the classification made by the network. This for 
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instance takes place in tools like LIME that can point to the parts of a picture that 
were decisive in choosing a particular classification of it (Ribeiro et  al. 2016). If 
applied to the picture in Fig 2 left, we might expect the marzipan balls to be high-
lighted as the reason to label the picture as inappropriate. This at least gives us a hint 
to why the wrong classification was made.

Explainability of can be helpful, but to achieve the same level of explainabil-
ity—and hence trust—in AI that we can have in fellow humans, we probably need 
explainability by. The AI should itself be able to explain its decisions in a human-
friendly way, and ideally we should also be able to have a dialogue with the sys-
tem about the underlying reasoning (such dialogues could also, as in the world of 
humans, become central in teaching the AI to become a better decision maker). To 
achieve such AI systems seems exceptionally hard unless we have an AI system that 
integrates language, planning and (logical) reasoning with learning and perception.

11  What are the solutions—if any?

The paper has pointed to numerous potential weaknesses related to the automation 
of human decision making. Based on these insights, I can make two recommenda-
tions. The first recommendation is to reflect carefully on what we use AI for, and 
whether the current level of the technology is sufficient for a full automation. If not, 
possibly a partial automation is possible involving some collaboration between algo-
rithmic advice giving and human decision making. And for some types of tasks, 
automation is simply still not viable, e.g. in many cases where social or linguistic 
intelligence plays a crucial role.

The second recommendation is to invest significant research resources in address-
ing the most serious of the above-mentioned weaknesses of AI decision making. 
This includes significant efforts in increasing the level of explainability of AI, and 
increasing the level of social and linguistic intelligence in AI. As mentioned already 
in the abstract, these are not easy problems, and are likely to require rather long-term 
efforts. Fortunately, we are not completely at loss at where to start attacking these 
problems. Symbolic AI scores high on explainability and transparency whereas con-
nectionist AI scores high on the  ability to learn from experience. Symbolic AI is 
excellent for planning, logical reasoning and Theory of Mind, whereas connectionist 
AI is excellent for perception tasks. We need the best of both worlds and in particu-
lar we need to combine the strengths of both paradigms. If we succeed in a deep 
integration of symbolic and connectionist approaches, we might have a hope to get 
future AI systems that can both learn, reason about others, use language to explain 
themselves in human-comprehensible ways, and engage in dialogues with humans 
about their reasoning and decisions. That would make algorithmic decision making 
much more trustworthy and have a much larger general potential.
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