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Introduction

What our paper is about:

• Formal learning theory applied to dynamic epistemic logic (DEL).

• First paper to study the problem of learnability of action models in
DEL.

• The goal is build agents that can learn to plan.

Our results are only the first few unsteady baby
steps in action model learning. The really
interesting stuff is all the future work...
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DEL by example: A hidden coin toss

We use the action models of DEL [Baltag et al., 1998] with added
postconditions (ontic actions) as in [Ditmarsch et al., 2008].

Let b mean “the coin faces the black side up”.

b

epistemic model

〈>, b〉 〈>,¬b〉

precond. postcond.

event

action model

=

epistemic model

⊗

product update

b ¬b

indistinguishability relation

• Action model: Represent the action of the hidden coin toss.

• Product update: The updated model represents the situation after
the action has taken place.
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Learning facts vs. learning actions

Learning facts by eliminating nodes in epistemic models:

b ¬b

Learning actions by eliminating nodes in action models:

〈>, l〉
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Observations, streams and identifiability

• Agents learn actions (action models) by a stream (infinite
sequence) of observations (s, s ′) for that action: when executing
the action in state s, state s ′ will result.

• Finite identifiability: after a finite sequence of observations, the
agent says “stop” and identifies the correct action model.

• Identifiability in the limit: after a finite sequence of observations,
the agent settles on a particular action model and never changes her
mind (but is never able to say “stop”).

Example. Possible stream on language with a single proposition p:

(∅, {p}), ({p}, ∅), (∅, {p}), ({p}, ∅), (∅, {p}), ({p}, ∅), . . .
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Basic results on learnability

Restrictions on action models (actions) imposed in all of the following
(including all results):

• Only fully observable actions: partially observable are not learnable
in the strict sense.

• Only propositional actions: all preconditions of all events are
formulas of propositional logic (not epistemic formulas).

Theorem 1. The set of deterministic actions is finitely identifiable.

Theorem 2. The set of (possibly non-deterministic) actions is not
finitely identifiable, only identifiable in the limit.
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Learning actions via update: precondition-free
atomic actions

p∧q

p

>

q

¬p∧qp∧¬q

¬q ¬p

¬p∧¬q

p∧q

p

Left: Initial action model containing all possible postconditions. The
blue and red sets correspond to possible observations.

Right: The action model after receiving the observation ({q}, {p, q}).
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Learning actions via update: (non-atomic)
deterministic actions with maximal preconditions

Maximal preconditions: all preconditions are maximally consistent
conjunctions of propositional literals (e.g. p ∧ ¬q in the language over
{p, q}).

Examples in the language over a single proposition {p}.

〈p,>〉 〈¬p,>〉
〈p,¬p〉 〈¬p, p〉

〈p,>〉 ����〈¬p,>〉
〈p,¬p〉 〈¬p, p〉

〈p,>〉 ����〈¬p,>〉
〈p,¬p〉 〈¬p, p〉

observation:
(∅, {p})

���〈p,>〉 ����〈¬p,>〉
〈p,¬p〉 〈¬p, p〉
���〈p,>〉 ����〈¬p,>〉
〈p,¬p〉 〈¬p, p〉

observation:
({p}, ∅)

〈p,>〉 〈¬p,>〉
〈p,¬p〉 〈¬p, p〉

observation:
(∅, {p})

〈p,>〉 ����〈¬p,>〉
〈p,¬p〉 〈¬p, p〉

observation:
({p}, {p})

〈p,>〉 ����〈¬p,>〉
����〈p,¬p〉 〈¬p, p〉
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Learning actions via update: deterministic actions
with minimal preconditions

A simple update is no longer sufficient. But sufficient to always
conjecture the set of minimal events using the following order:

e ≤ e ′ := pre(e ′) |= pre(e) and post(e ′) |= post(e)

Example. 〈p, r〉 ≤ 〈p ∧ q, r ∧ s〉. (Ockham’s razor, cf. Kevin’s talk!)

Important: All non-minimal events are preserved “in the background”.

Example. Learning the functioning of an n-bit counter. Case n = 2:

Current action model:

〈>,>〉
〈¬b1, b2〉, 〈b1,>〉, 〈¬b2, b2〉, 〈b2,>〉
〈¬b1 ∧ b2, b1 ∧ ¬b2〉

Current state of counter:

b1 b2
0 0

Resulting action model: n + 1 events (instead of 2n as in the case of
maximal preconditions).
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Example. 〈p, r〉 ≤ 〈p ∧ q, r ∧ s〉. (Ockham’s razor, cf. Kevin’s talk!)

Important: All non-minimal events are preserved “in the background”.

Example. Learning the functioning of an n-bit counter. Case n = 2:

Current action model:

����〈>,>〉,
�����〈¬b1, b2〉, 〈b1,>〉, 〈¬b2, b2〉,����〈b2,>〉,
〈¬b1 ∧ b2, b1 ∧ ¬b2〉

Current state of counter:

b1 b2
1 0

Resulting action model: n + 1 events (instead of 2n as in the case of
maximal preconditions).
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Also in the paper:
• Action library learning: Simultaneous learning of several different

actions. Most relevant case for planning.

Related work in the automated planning literature:
• Walsh and Littman [2008] study qualitative learning of STRIPS

action schemas. We are more general in successfully treating also:
negative preconditions, negative postconditions, conditional effects.

Future work:

• Extended classes of actions: arbitrary
pre- and post-conditions, partial
observability, multiple agents (joint
learning).

• Computational complexity.

• Proactive learning (using consecutive
streams).

• Ultimate goal: general
learning-and-planning agents.
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