Two Tableau-Based Decision Procedures for
Hybrid Logic

Thomas Bolander

Dep. Informatics and Mathematical Modelling
Building 322
Technical University of Denmark
DK-2800 Lyngby, Denmark
tb@imm. dtu. dk

Torben Bratuner

Department of Computer Science
Roskilde University
P.O. Boz 260
DK-4000 Roskilde, Denmark
torben@ruc.dk

Abstract

It is well-known that various hybrid logics without binders are decidable, but de-
cision procedures are usually not based on tableau systems. In this paper we give
two tableau-based decision procedures for a very expressive hybrid logic including
the universal modality. The decision procedures make use of so-called loop-checks
which is a technique standardly used in connection with tableau systems for other
logics, namely prefixed tableau systems for transitive modal logics, as well as pre-
fixed tableau systems for certain description logics.

Keywords: Hybrid logic, modal logic, universal modality, tableau systems, de-
cision procedures.

1 Introduction

The hybrid logic we consider in the present paper is obtained by adding to
ordinary modal logic further expressive power in the form of a second sort
of propositional symbols called nominals, and moreover, by adding so-called
satisfaction operators as well as the universal modality. A nominal is assumed
to be true at exactly one world, so in this sense a nominal refers to a world.
If a is a nominal and ¢ is an arbitrary formula, then a new formula a : ¢
called a satisfaction statement can be formed. The part a: of a: ¢ is called a

satisfaction operator (some authors often use the notation @, instead of a:).
The satisfaction statement a:¢ is true (at any world) if and only if the formula
¢ is true at one particular world, namely the world at which the nominal a is
true. The truth-condition of the universal modality E is that E¢ is true (at
any world) if and only if there exists a world at which the formula ¢ is true.

It is well-known that the hybrid logic described above is decidable, see
[1], but decision procedures are usually not tableau-based. In fact, we are
only aware of one published tableau-based decision procedure for hybrid logic,
namely the one given in Miroslava Tzakova’s paper [11]. However, a number of
crucial details are missing in Tzakova’s termination proof, and we did not find
any way to fill out these details. In the present paper we give a tableau system
along the lines of Tzakova’s system extended with the universal modality, and
give a terminating systematic tableau construction algorithm for the system.
Our tableau construction algorithm is very different from Tzakova’s algorithm.
An essential feature of our algorithm is that it makes use of loop-checks.
Besides Tzakova’s tableau system, we also consider a tableau system given by
Patrick Blackburn in the paper [2]. Decision procedures are not considered
in Blackburn’s paper. We give a terminating systematic tableau construction
algorithm for Blackburn’s system extended with the universal modality, again
with the essential feature that it makes use of loop-checks. Analogous results
follows for the weaker hybrid logic obtained by ignoring the universal modality.

The paper is structured as follows. In the second section we recapitulate
the basics of hybrid logic, in the third section we give the decision procedure
for our version of Tzakova’s tableau system, and in the fourth section we give
the decision procedure for Blackburn’s tableau system. In the final section we
discuss some related work.

2 The basics of hybrid logic

We shall in many cases adopt the terminology of [3] and [1]. The hybrid logic
we consider is obtained by adding a second sort of propositional symbols called
nominals to ordinary modal logic. It is assumed that a set of ordinary propo-
sitional symbols and a countably infinite set of nominals are given. The sets
are assumed to be disjoint. The metavariables p, q,r, ... range over ordinary
propositional symbols and a, b, c, ... range over nominals. Besides nominals,
an operator a: called a satisfaction operator is added for each nominal a, and
furthermore, the universal modality £ is added. The formulas of hybrid modal
logic are defined by the grammar

S :u=pla|-S|SAS|OS|a:S|ES

where p is an ordinary propositional symbol and @ is a nominal. In what
follows, the metavariables ¢, v, x, ...range over formulas. Formulas of the
form a: ¢ are called satisfaction statements, cf. a similar notion in [2]. The
operator [1and the propositional connectives not taken as primitive are defined
as usual.

We now define models.

Definition 2.1 A model for hybrid logic is a tuple (W, R, V') where
(i) W is a non-empty set;
(ii) R is a binary relation on W; and

(iii) V is a function that to each pair consisting of an element of W and an
ordinary propositional symbol assigns an element of {0,1}.

The elements of W are called worlds and the relation R is called an ac-
cessibility relation. An assignment for a model M = (W, R, V) is a function
g that to each nominal assigns an element of W. Given assignments ¢’ and
g, ¢’ ~ g means that ¢’ agrees with ¢ on all nominals save possibly a. The
relation M, g, w |= ¢ is defined inductively, where g is an assignment, w is an
element of W, and ¢ is a formula.

M, g,wE=piff V(w,p) =1
M, g, w = aiff w=g(a)
M, g, w = ¢ iff not M, g,w = ¢
M, ggwEOINYIF M, g,wkE ¢ and M, g,w = ¢
M, g,wEa:¢iff M,g,9(a) E ¢
M, g, w | Q¢ iff for some v € W, wRv and M, g,v = ¢
M. g,w = E¢ iff for some v € W, M, g,v = ¢

By convention M, g = ¢ means M, g, w = ¢ for every element w of W and
M E ¢ means M, g |= ¢ for every assignment g. A formula ¢ is valid if and
only if M = ¢ for any model M.

3 Tzakova’s system extended with the universal
modality

Tzakova’s system [11] is a prefixed tableau calculus (see the book [4] for the
basics of tableau systems). This means that the formulas occurring in the
tableau rules are prefized formulas on the form o¢, where ¢ is a formula
of hybrid modal logic and ¢ belongs to some fixed countably infinite set of
symbols called prefizes. In addition, the tableau rules contain accessibility
formulas on the form o < o' where o and o’ are prefixes. The rules of the
tableau system are given in Figure 1. Actually, the given tableau system is a
modified version of Tzakova’s calculus. The calculus is simplified by replacing
Tzakova’s rules (S-Identifying) and (L-Identifying) by (Id). Furthermore, the
rule (Labeling) has been deleted. Our calculus also differs from Tzakova’s by
including the rules for the universal modality. However, we will still refer to
this calculus as Tzakova’s system. A tableau in Tzakova’s system is a well-

g
oo ™)
o(¢Ay) o= (@A Y)
— (A — (=)
09,01 o-¢ | oy
oc:¢ oc: ¢ .
o'c,o'd ®) o'c,o'—¢)
oQd o—=0p, 0 < o
' /(<>)>i< / B)
o¢,0<0 (ol
E -F
2 @y 2 By
0_I¢ O_II_|¢
op,0c, TC
T}
x The prefix o’ is new to the tableau.
T The prefix ¢ is on the branch.

Fig. 1. Modified version of Tzakova’s tableau rules

founded tree in which each node is either a prefixed formula or an accessibility
formula, and the edges represent applications of tableau rules in the usual way.
We impose the following conventions on the application of the rules in tableau
constructions.

* In constructing a tableau, the rules (:), (—:), (¢) and (£) are never applied
to the same premise twice on the same branch.

* A formula is never added to a tableau branch where it already occurs.

3.1 Some properties of the system
Tzakova’s system satisfies the following basic properties.

Lemma 3.1 (Quasi-subformula property) If a formula o¢ occurs in a
tableau with root ogpq then either ¢ or —¢ is a subformula of ¢g.

Proof. Follows immediately from the rules in Figure 1. O

Note the following consequence of Lemma 3.1: For any given tableau 7T,
the set {¢ | ¢ occurs in T} is finite. We will use this fact a number of times
in the proofs below.

The only way new prefixes can be introduced to a tableau is by using one
of the rules (:), (—:), () or (E). These introduce a new prefix ¢’ from a given
prefix 0. Let © be a branch of a tableau. If a new prefix ¢’ is introduced by
applying one of the rules (:), (—:), (¢) or (E) to a prefixed formula o¢ then
we say that o' is generated by o with respect to ©, and we write 0 <g o'.
This gives us a binary relation <g on the prefixes occurring on ©.

Proposition 3.2 Let © be a branch of a tableau. Let N® be the set of prefizes
occurring on ©. The graph (N®,<e) is a finitely branching tree.

Proof. That the graph is a tree follows from the fact that each prefix in N®
can be generated by at most one other prefix, and that all prefixes in N©
must have the prefix of the root formula as an ancestor. That the graph
is finitely branching follows from the fact that for any given prefix o the set
{¢ | 0¢ occurs on O} is finite (cf. Lemma 3.1), and each of these finitely many
formulas o¢ can generate at most one new successor prefix ¢’ (by applying
one of the rules (), (—:), (¢) or (E) to g¢). O

3.2 Systematic tableau construction

Before giving the systematic tableau construction algorithm we need a defini-
tion.

Definition 3.3 Let o and 7 be prefixes occurring at a branch © of a tableau.
The prefix ¢ is included in the prefix 7 with respect to © if for any hybrid
formula ¢, if 0¢ occurs on © then 7¢ also occurs on ©. If ¢ is included in 7
and 7 has its first occurrence on © no later than o, then we write o0 Cg 7.

We are now ready to define the systematic tableau construction algorithm.
The algorithm we present is non-deterministic, but can easily be made deter-
ministic by introducing suitable well-orderings.

Definition 3.4 (Tableau construction algorithm) Let ¢ be the for-
mula whose validity we have to decide. By induction we define a sequence
To, T1, T, - . . of finite tableaus, where each tableau is obtained from the pre-
vious by applying one of the tableau rules. Define 7, to be the tableau con-
stituted by the single prefixed formula 0—¢, where o is any prefix. Given a
tableau 7;, we then define 7;;; to be the tableau obtained by applying some
rule to 7; subject to the following restriction:

(R) The rules (:), (—:), (¢) and (E) are not applied to a formula occurrence
o¢ at a branch © of 7; if there exists a prefix 7 such that o Cg 7.

If no rule applies satisfying restriction R, the algorithm is terminated.
Theorem 3.5 The systematic tableau construction algorithm terminates.

Proof. Assume to obtain a contradiction that this is not the case. Then the
tableau U;c,,7; must be infinite. Thus it contains an infinite path ©. By the

tableau conventions, all prefixed formulas along this path are distinct. Using
Lemma 3.1, it follows that © must contain infinitely many different prefixes.
Therefore the graph (N®, <g) must be infinite. Since by Proposition 3.2 the
graph is a finitely branching tree, it must contain an infinite path o1 <g 02 <g
03 <@ ---. For each 7 > 0, let ©; be the initial segment of © up to, but not
including, the formula containing the first occurrence of ;1. Let ['; be the
set T'; = {¢ | 0;¢ occurs at ©;}. All T'; contain only formulas that are either
subformulas of the root formula or negations of such formulas (Lemma 3.1).
Since there are only finitely many such formulas, not all I'; can be distinct.
In other words, there exists 7, j with 7+ < j such that ['; = I';. We will now
prove that o; Ce, 0;. Since i is less than j, the first occurrence of o; on ©;
must come before the first occurrence of o;. Let ¢ be an arbitrary formula
for which o;¢ occurs on Oj, that is, ¢ € I';. Since I'; = I';, we have that o;¢
occurs on ©;, and since ©; is an initial segment of ©;, we get that ;¢ occurs
on ©;. This proves that o; Ce, 0;. Now consider the first formula containing
an occurrence of ;1. By definition, this is the first formula not on ©;, so
it must be introduced by applying some rule to a formula occurrence at ©;.
The prefix 0,4, is generated by o, so 0,4, is introduced by applying one of
the rules (:), (—:), (¢) or (EF) to a formula ;¢ at ©;. However, this is in
contradiction with restriction R by which none of the rules (:), (—:), (¢) or
(E) can be applied to the formula o;¢ at ©; since o; Ce, 0;. O

3.3 Soundness and completeness

Soundness of the tableau calculus in Figure 1 can be proved by showing that
each rule preserves satisfiability [11]. The only rules in our calculus which are
not already covered by Tzakova’s system are (Id), (E) and (—FE). It is simple
to prove that these rules preserve satisfiability in hybrid models. We now turn
to the completeness proof. To prove completeness of the systematic tableau
construction algorithm it is sufficient to prove that if a tableau with root gy
has an open branch © then there exists a model Mg, an assignment g and
a world w such that Mg, g, w = ¢o holds. We will now describe how Mg is
constructed from an open tableau branch ©. First a little extra machinery.

Definition 3.6 (Urfathers) Let © be a branch of a tableau and let o be a
prefix occurring on ©. We define the urfather of o with respect to © to be
the earliest occurring prefix on © which ¢ is included in.? The urfather of o
with respect to © is denoted ug(0). Prefixes o on O for which ug(c) = o are
called urfathers on ©.

Lemma 3.7 Let T be a tableau obtained from the tableau construction algo-
rithm. T is closed under each of the rules (——), (A), (5A), (=0), (=F) and
(Id) of Figure 1. Furthermore, T is closed under the rules (:), (—:), () and

L That is, the urfather of o wrt. © is the unique prefix ¢’ satisfying: (i) ¢ Ceo o'; (ii) there
isno ¢” st. o' Ce o".

(E) whenever the premise is a formula occurrence of the form o¢ where o is
an urfather on the branch containing the occurrence.

Proof. Consider the sequence of tableaus constructed by the tableau algo-
rithm leading to 7. Since the algorithm terminates, this must be a finite
sequence Ty, T1,...,7T, where T = 7T,. By definition, no rule applies to 7,
that satisfies restriction R. Since R only concerns the rules (:), (—:), (0)
and (E) we immediately get that the tableau is closed under all rules except
possibly these. Now consider the rule (¢). Assume a branch © of 7, contains
o0{Q¢ where o is an urfather on ©. By definition of 7, no rule applies to c0¢
that satisfies R. However, since ¢ is an urfather on © there is no prefix 7
such that 0 Cg 7. Thus the rule (¢) is not blocked by restriction R. The
only possible reason that the rule (¢) can not be applied to Q¢ on 7T, is
therefore that it has already been applied earlier in the tableau construction
(cf. the tableau convention introduced in the beginning of Section 3). This
proves closure under the rule (¢). Closure under the rules (:), (—:) and (E)
are proved similarly. O

Lemma 3.8 Let © be a branch of a tableau and let o and T be prefizes occur-
ring on ©. If there exists a nominal ¢ such that both oc and Tc occurs on ©
then o s included wn T with respect to ©.

Proof. Let 0¢ be a formula occurring on ©. We have to prove that 7¢ occurs
on O as well. This follows immediately from Lemma 3.7, since © contains all
of 0, oc and 7c and is closed under the rule (Id). O

Given a tableau branch ©, we define the model Mg by
Mo = (We, Re, Vo), where
Weo = {ug(0o) | 0 occurs on ©}
Re = {(0,ue(7)) € W& | 0 < T occurs on ©}
Veo(o,p) = 1 iff op occurs on ©.

Furthermore, we define an assignment go for Mg in the following way. We
let go(c) be the prefix of the root formula of © if there is no prefix ¢ on O
such that oc occurs on © (note that the prefix of the root formula is always an
urfather). Otherwise we let gg(c) be the urfather of the prefixes o for which
oc occurs on ©. This defines gg(c) uniquely, since if o and o’ are prefixes such
that both oc and o’c occurs on ©, then it follows from Lemma 3.8 that o will
be included in ¢’ and they must thus have the same urfather. We are now
ready to prove the completeness theorem. As mentioned above, it suffices to
prove that if a tableau with root oy¢y has an open branch © then there is a
world w such that Mg, g, w = ¢o. What we will prove is slightly stronger.

Theorem 3.9 (Completeness) Let © be an open branch of a tableau con-
structed using the tableau algorithm of Section 3.2. For any prefized formula
oo on © where o is an urfather on © we have Mg, go, 0 E ¢.

Proof. The proof is by induction on the structure of ¢. First assume op
occurs on © where p is a propositional symbol and ¢ is an urfather. Then
Vo(o,p) =1 and thus Mg, ge,0 = p as needed. Now assume oc occurs on O
where ¢ is a nominal and o is an urfather. Then gg(c) = o, by definition of
ge, and thus Mg, geo,0 = ¢, as needed. This covers the base case. We now
turn to the induction step.

Consider the case where 0——1 occurs on © and o is an urfather. By closure
under the rule (——) (Lemma 3.7) it follows that o) occurs on © as well. From
the induction hypothesis we get Mg, go,0 = 9, and thus Mg, ge,0 = 1)
immediately follows. The other propositional cases o A x and o— () A) are
treated similarly.

Consider the case where oc : ¢ occurs on © and o is an urfather. By
closure under the rule (:) (Lemma 3.7), there exists a prefix ¢’ such that o’c
and o'y also occurs on ©. Let 0” = go(c). Then ¢” is the urfather of ¢’ on ©.
From this it follows that ¢t occurs on © as well. By induction hypothesis it
follows that Mg, ge,0” = 1. Since 0” = ge(c) this proves Mg, go, 0 = c: 1),
as needed. The case o—c: 9 is proved similarly.

Consider the case where o) occurs on © and o is an urfather. By closure
under the rule (¢) (Lemma 3.7), there exists a prefix ¢’ such that both o'y
and o < ¢’ occurs on ©. Let ¢” = ug(o’). The induction hypothesis gives
Ma, go, 0" = 1. Since 0 < ¢ occurs on © we have that Rg contains the pair
(o,ug(c’)) = (0,0"). Thus we get Mg, go,0 = 0.

Consider the case where 0—01 occurs on © and ¢ is an urfather. We have
to prove Mg, go,0 = Q1. If there is no prefix 7 such that o Rg7 then this
trivially holds. Otherwise, let 7 be any prefix with 0 Rg7. We have to prove
Mae, go, 7 E —tp. By definition of Rg, 7 is the urfather of a prefix 7' such
that o < 7" occurs on ©. Since both 0—0v and o < 7' occurs on ©, we get by
closure under the rule (=¢) (Lemma 3.7) that 7'—) occurs on © as well. Since
7 is the urfather of 7/, the formula 7— must also occur on ©. By induction
hypothesis we then have Mg, go, 7 = —1, as needed.

Consider the case where 0 E1 occurs on © and o is an urfather. By closure
under the rule (F) (Lemma 3.7) there exists a prefix ¢’ such that ¢’y occurs
on O. Let ¢” be the urfather of ¢’ on ©. Then ¢"1 also occurs on © and by
induction hypothesis we get Mg, go, 0" |= 1. This proves Mg, go,0 = E1.

Finally consider the case where c—F1 occurs on © and o is an urfather. We
have to prove Mg, go,0 = ~FE, that is, for all o' € Wy, Mo, ge,0’ = 1.
To prove this, let an arbitrary element ¢’ in Wg be chosen. The element ¢’
is an urfather occurring on the branch ©. By closure under the rule (—FE)
(Lemma 3.7), o'—1) occurs on ©. Thus the induction hypothesis gives us
Mae, go, 0’ = —1) as needed.

O

a:—o —a ¢

¢ o
“ORD T
2 by gl
abb f () ﬁibbqf ()
" ey =% by
2:a) Z—a (Sym)
%(Noml)t %(Nom?) %(Bm'dge)

* The nominal c is new.

* The formula ¢ is not a nominal.

T The nominal d is on the branch.

I ¢ is a propositional symbol (ordinary or a nominal).

Fig. 2. Blackburn’s tableau rules and rules for the universal modality

4 Blackburn’s system extended with the universal
modality

The tableau system considered in the present section is a slightly modified,
and also extended, version of a system originally given in the paper [2] by
Patrick Blackburn. The rules are given in Figure 2. The rules are identical
to the rules given in [2] except that in his system the rules for the universal
modality are not included, and moreover, in his system the rule (Noml) is
not restricted to propositional symbols, and consequently, the rule (Nom?2) is
omitted. It turns out that we do not need the more general version of (Nom1)
given in [2] and restricting it as we have done here simplifies later technical
considerations. We have taken the connectives V and [] to be defined, not
primitive, so they do not need separate rules. All formulas in the rules are
satisfaction statements. A tableau in the system is a well-founded tree in which

each node is a satisfaction statement and the edges represent applications of
tableau rules in the usual way. When it is appropriate, we shall often blur the
distinction between a formula and an occurrence of the formula in a tableau.

We shall make use of some important conventions about the rules of Fig-
ure 2. The rules (=), (=), (A), (=A), (2), (=), (©), and (E) will be called
destructive rules and the remaining rules will be called non-destructive. Note
that a destructive rule has exactly one formula in the premise. The destruc-
tive rules (¢) and (E) will also be called ezistential. Thus, we have three
categories of rules: Destructive rules which are not existential, existential de-
structive rules, and non-destructive rules. The rules of these three categories
are applied in different ways.

* A destructive rule which is not existential is applied to a formula occurrence
¢ in a tableau by extending all branches through ¢ in accordance with the
rule. After the application, it is recorded that the rule was applied to ¢ and
the rule will not again be applied to ¢.

e An existential destructive rule is applied to a formula occurrence ¢ on a
branch © by extending © in accordance with the rule. After the application,
it is recorded that the rule was applied to ¢ with respect to © and the rule
will not again be applied to ¢ with respect to © or any extension of O.

* A non-destructive rule is applied to a set of formula occurrences (note that
a non-destructive rule has zero, one, or two formulas in the premise) on a
branch © by extending © in accordance with the rule. No information is
recorded about applications of non-destructive rules.

Both destructive and non-destructive rules are subject to the exception that if
a formula to be added to a branch is already present on the branch, then the
addition of the formula is simply omitted. It follows that a formula cannot
occur more than once at a branch.

Note that non-destructive rules are only applicable to formulas of the forms
a:p,a:c a:Qc, 1a:QP, and —a: F¢ and conversely, destructive rules are
only applicable to formulas not of these forms (in fact, exactly one destructive
rule is applicable to any formula which is not of one of these forms). So
the classification of rules as destructive and non-destructive corresponds to
a classification of formulas. Also note that when applying a destructive rule
which is not existential, it is applied to a formula occurrence with respect to all
branches through it, but when applying an existential rule, the rule is applied
with respect to one particular branch. This more fine-grained applicability
of existential rules is a prerequisite for being able to incorporate so-called
loop-checks, cf. Definition 4.11.

4.1 Some properties of the system

The tableau system satisfies the following important property, which is similar
to the well-known subformula property of the standard propositional tableau

system.

Lemma 4.1 (Quasi-subformula property) If a formula a:¢ occurs in a tableau
where ¢ is not a nominal and ¢ is not of the form Ob, then ¢ is a positively
occurring subformula of the root formula. If a formula —a : ¢ occurs in a
tableau, then ¢ is a negatively occurring subformula of the root formula.

Proof. A simultaneous induction where each rule is checked. O

Below we shall give some further results which shows some interesting
features of the tableau system. First two definitions.

Definition 4.2 Let © be a branch of a tableau and let N® be the set of
nominals occurring in the formulas of ©. Define a binary relation ~g on N©
by a ~¢ b if and only if the formula a: b occurs at ©. Let ~§ be the reflexive,
symmetric, and transitive closure of ~g.

Definition 4.3 An occurrence of a nominal in a formula is equational if the
occurrence is a formula (that is, if it is not part of a satisfaction operator).

For example, the occurrence of the nominal ¢ in the formula ¢ A ¢ is equa-
tional but the occurrence of ¢ in ¥ A ¢: x is not. The justification for this
terminology is that a nominal in the first-order correspondence language (and
thereby also in the semantics) gives rise to an equality statement if and only
if the nominal occurrence in question occurs equationally. The theorem below
will be used later in the completeness theorem, Theorem 4.17.

Theorem 4.4 Let a:b be a formula occurrence on a branch © of a tableau.
If the nominals a and b are different, then each of them has the property that
it 1s tdentical to, or related by ~g to, a nominal with a positive and equational
occurrence in the root formula.

Proof. Check each rule. Lemma 4.1 is needed in a number of the cases. In
the case with the rule (), we make use of the restriction that the rule cannot
be applied to formulas of the form a : Q¢ where ¢ is a nominal. O

Corollary 4.5 Let © be a branch of a tableau. Any non-singleton equivalence
class wrt. the equivalence relation ~g contains a nominal which occurs positive
and equational in the root formula.

Proof. Follows directly from Theorem 4.4. O

We think the corollary above is of independent interest. It says that non-
trivial equational reasoning, that is, reasoning involving non-singleton equiv-
alence classes, only takes place in connection with certain nominals in the
root formula, namely those that occur positive and equational. Note that
this implies that pure modal input to the tableau only gives rise to reasoning
involving singleton equivalence classes.

Definition 4.6 A formula occurrence on a branch of a tableau is an accessi-
bility formula occurrence if it is an occurrence of the formula a : {c generated
by the rule (0).

Note that if the rule (Q) is applied to a formula occurrence a:O0b, resulting
in the branch being extended with a : Oc and c¢: {b, then the occurrence of
a:{cis an accessibility formula occurrence, but the occurrence of ¢: ¢b is not.
The theorem below will be used later in the completeness theorem, Theorem
4.17.

Theorem 4.7 Let a: Qb be a formula occurrence on a branch © of a tableau.
Either there is a positively occurring subformula Qb of the root formula such
that b ~§ V' or there is an accessibility formula occurrence a': Qb at © such
that a ~§ @' and b ~§ b'.

Proof. Check each rule. Lemma 4.1 is needed in some of the cases. O

The only way new nominals can be introduced to a tableau is by using one
of the rules (¢) or (E) which we called existential rules. This motivates the
following definition.

Definition 4.8 Let © be a branch of a tableau. If a new nominal c is gener-
ated by applying an existential rule to a satisfaction statement a : ¢, then we
write a <g c.

The definition above gives us a binary relation <g on the set N©.

Proposition 4.9 Let © be a branch of a tableau. The graph (N®,<g) is the
disjoint union of a finite set of finitely branching trees.

Proof. That the relation is the disjoint union of a set of trees follows from
the observation that if a <g ¢, then the nominal ¢ is new. That the set of
trees is finite follows the observation that for any new nominal ¢ there is a
nominal a such that a <g ¢, thus, the nominal ¢ cannot be the root of a tree.
The following argument shows that the trees are finitely branching. Assume

conversely that there exists an infinite sequence a <g ¢, a <g ¢a, ... of edges.
For each i, the edge a <g c¢; is generated by applying an existential rule to
some formula occurrence y;. Consider the sequence xi, X2,... of formula

occurrences. The existential rules are destructive, so the formula occurrences
in this sequence are distinct, and moreover, a formula cannot occur more than
once at a branch. It follows that the formula occurrences in the sequence xi,
X2, - - - are occurrences of infinitely many different formulas. Now, if the edge
a <g ¢; is generated by applying the existential rule () to x;, then x; is of
the form a : Q¢¢; where ¢; is not a nominal, and hence, ¢¢; is a subformula
of the root formula by Lemma 4.1, and if a <g c¢; is generated by applying
the other existential rule (E) to x;, then x; is of the form a : E¢;, and hence,
FE¢; is a subformula of the root formula, again by Lemma 4.1. But there are
only finitely many subformulas of the root formula, which contradicts that
infinitely many different formulas occur in the the sequence x1, x2, O

Note that in the above results we have not made any assumptions on which
rules are applied at the branch ©, but if we assume that © is closed under the
rules (Ref), (Sym), and (Nom1), then ~§ coincides with ~g.

4.2 Systematic tableau construction

Before giving the systematic tableau construction algorithm, we need a defi-
nition.

Definition 4.10 Let b and a be nominals occurring at a branch © of a
tableau. The nominal a is included in the nominal b with respect to © if
for any subformula ¢ of the root formula, if the formula a : ¢ occurs on O,
then b: ¢ also occurs on ©, and similarly, if —a: ¢ occurs on ©, then —b: ¢ also
occurs on O. If @ is included in b with respect to ©, and the first occurrence
of b on O is before the first occurrence of a, then we write a Cg b.

We are now ready to give the systematic tableau construction algorithm.

Definition 4.11 Let a:¢ be the formula whose validity we have to decide. We
define by induction a sequence 7y, 71, Ta, ... of finite tableaus, each of which is
embedded in all its successors. Let 7Ty be the finite tableau constituted by the
single unmarked formula —a : ¢. Assume that the finite tableau 7, is defined.
If possible, apply an arbitrary rule with the following restrictions:

(i) The rule (0) is not applied to a formula occurrence a : ¢¢ at a branch ©
if there exists a nominal b such that a Cg b.

(ii) The rule (F) is not applied to a formula occurrence a: F¢ at a branch ©
if there exists a nominal b such that a Cg b.

Let 7,11 be the resulting tableau.

The conditions on applications of rules are so-called loop-check conditions.
The intuition behind loop-checks is that an existential rule is not applied in
a world if the information in that world can be found already in an ancestor
world. Hence, the generation of a new world by the existential rule is blocked.

We shall now prove that the algorithm always terminates in the sense that
there always exists an n such that 7, = 7,.1-

Theorem 4.12 The systematic tableau construction algorithm terminates.

Proof. Assume conversely that the algorithm does not terminate. Then the
resulting tableau is infinite, and hence, has an infinite branch ©. The graph
(N®,<g) is the disjoint union of a finite set of finitely branching trees cf.
Proposition 4.9, so it has an infinite branch a; <g ay <g as, ... (otherwise
N® would be finite, and hence, by Lemma 4.1 there would only be finitely
many formulas occurring at the branch ©, contradicting that it is infinite).
Now, for each ¢, let ©; be the initial segment of © up to, but not including,
the first formula containing an occurrence of the nominal a;;;. Thus, an
existential rule was applied to a formula occurrence at the branch ©; resulting

in the generation of a;;. Let I'; be the set of formulas which contains any
subformula ¢ of the root formula such that a;: ¢ occurs at the branch ©;, and
similarly, let A; be the set of formulas which contains any subformula ¢ of the
root formula such that —a; : ¢ occurs at the branch ©;. Since there are only
finitely many sets of subformulas of the root formula, there exists j and k£ such
that j <k and I'; = I'y as well as A; = A. Clearly, the first occurrence of a;
on O is before the first occurrence of a;. Moreover, for any subformula ¢ of
the root formula, if a; : ¢ occurs on Oy, then ¢ € I'y, and hence, ¢ € I';, but
then a;: ¢ occurs on ©; which is an initial segment of ©,. A similar argument
shows that if —ay : ¢ occurs on Oy, then —a; : ¢ also occurs on ©,. Hence,
ay is included in a; with respect to ©;. We conclude that a; Ceo, a;. But
this contradicts that an existential rule was applied to a formula occurrence
at the branch Oy resulting in the addition of the first formula containing an
occurrence of the nominal ay;. Thus, the algorithm terminates. O

We have thus given a systematic tableau construction algorithm which
gradually builds up a tableau and which terminates with a tableau having the
property that no rules are applicable to it except for applications of existential
rules blocked by the loop-check conditions.

4.8 Soundness and completeness

Soundness is straightforwardly obtained by extending the soundness proof of
[2] with the universal modality. To prove completeness, we prove a model
existence theorem. Throughout this subsection, we shall assume that © is a
given branch of a tableau generated by the systematic tableau construction
algorithm. Where no confusion can occur, we shall often omit reference to the
branch ©. First some machinery.

Definition 4.13 Let W be the subset of N© containing any nominal a having
the property that there is no nominal b such that a Cg b. Let = be the
restriction of ~g to W.

Note that W contains all nominals of the root formula since the root for-
mula is the first formula of the branch ©. Observe that © is closed under
the rules (Ref), (Sym), and (Nom1l), so the relation ~¢ and hence also the
relation ~ are equivalence relations. Given a nominal a in W, we let [a],
denote the equivalence class of a with respect to ~ and we let W/~ denote
the set of equivalence classes.

Definition 4.14 Let R be the binary relation on W defined by aRc if and
only if there exists nominals @’ ~ a and ¢’ = ¢, satisfying one of the following
three conditions.

(i) The formula o' : ¢’ occurs at © is an accessibility formula occurrence.

(ii) There exists a nominal d in N© such that the formula a' : {d occurs at
© as an accessibility formula occurrence and d Cg .

(iii) The formula a': ¢’ occurs at © and o’ or ¢’ occurs in the root formula.

Note that the nominal d referred to in the second item in the definition is
not an element of W. It is trivial that the relation R is compatible with ~.
We let R be the binary relation on W/~ defined by [a]R|c|, if and only if
aRec.

Definition 4.15 Let V be the function that to each pair consisting of an
element of W and an ordinary propositional symbol assigns an element of
{0,1} such that V(a,p) = 1if a: p occurs at © and V(a,p) = 0 otherwise.

It follows from © being closed under the rule (Nom1) that V' is compatible
with =, so we let V' be defined by V([a],p) = V(a,p). We are now ready to
define a model.

Definition 4.16 Let M be the model (W/~, R, V) and let the assignment g
for M be defined by g(a) = [a]..

The model above is in some respects similar to the model defined in [2].
One crucial difference, however, is that the model above necessarily is finite.

Theorem 4.17 Assume that the branch © 1is open, that s, if some formula
b:x occurs at ©, then the formula —b:x does not. For any formula a:¢ which
only contains nominals from W, the following two statements hold.

* Ifa:¢ occurs at ©, then it is the case that M, g, [al].. = ¢.
o If na: ¢ occurs at ©, then it is not the case that M, g, [al, = ¢.

Proof. Induction in the structure of ¢. We only cover the most interesting
case, namely where ¢ is of the form (.

Assume that a: Q1) occurs at ©. We then have to prove that M, g, [a], =
O, that is, for some equivalence class [c], such that [a] R]c]., it is the case
that M, g, [c|]., = ¥. We have two cases, according to whether the formula
1 is a nominal or not. We first consider the case where 9 is a nominal, say
b. So we just have to prove that [a] R[b] .. By Theorem 4.7, either there is
a nominal &' of the root formula such that ' ~g b or there is an accessibility
formula occurrence a’ : Qb at © such that a’ ~g a and b’ ~g b. If the first is
the case, then also a: Qb occurs at ©, and &' € W, so [a] R[V]., and trivially,
[b'], = [b].- If the second is the case, and moreover, ' = ¢ and b’ = b, then
clearly [a] R[b].. If o’ = a and b/ # b, then by Theorem 4.4, there is a nominal
¢ of the root formula such that ' ~g c¢. But then also a : {c occurs at ©, and
c € W, so [c] R|c], and trivially, [c], = [b].. If ' # a and b’ = b, then by
Theorem 4.4, there is a nominal ¢ of the root formula such that a’ ~¢ ¢. But
then also c¢: Qb occurs at ©, and ¢ € W, so [a] (R[b].., and trivially, [c], = [a]
If ' # a and b' # b, then by Theorem 4.4, there are nominals ¢ and d of the
root formula such that o’ ~g ¢ and ' ~g d. But then also ¢: {d occurs at
O, and ¢,d € W, so [c] R[d]., and trivially, [c], = [a], and [d], = [b].. We

now consider the case where ¢ is a not nominal. By the rule ({) also some

formulas a : Oc and ¢ : ¢ occur at © where the nominal ¢ is new (note that
a € W, so the application of the rule is not blocked by a loop-check condition).
If c € W, then clearly [a] R|c]., and by induction M, g,[c], = . If c ¢ W,
then by definition of W there exists a nominal d such that ¢ Cg d. Without
loss of generality we assume that there does not exist a nominal e such that
d Ce e. But this implies that d € W. Moreover, by Lemma 4.1, the formula
1 is a subformula of the root formula, so d : i occurs at ©. By induction,
M, g,[d], = v, and clearly, [a] R|[d]..

Assume that —a: Q1) occurs at ©. We then have to prove that M, g, [a] . =
01 does not hold, that is, for any equivalence class [c], such that [a] R|c].,
it is not the case that M, g,[c], E 9. From [a] R|c], it follows that there
exists nominals o' &~ a and ¢ = ¢, satisfying one of the three conditions in the
definition of the relation R. In the first and third condition in this definition,
the formula o' : Oc’ occurs at ©. Then a : Qc also occurs at ©, and by the
rule (—¢) also —¢: 1. By induction we conclude that M, g, [c], = ¥ does not
hold. In the second condition in the definition, there exists a nominal d in
N® such that the formula o : {d occurs at © and d Cg ¢’. Then a: {d also
occurs at ©, and by the rule (—¢) also —d:%. But by Lemma 4.1, the formula
Y is a subformula of the root formula, and d Cg ¢, so = : 9 occurs at ©.
By induction we conclude that M, g, [¢'], = ¢ does not hold and trivially,

(] = [e]+- O

5 Related work

In ordinary modal logic, loop-checks are used in connection with standard
Fitting-style prefixed tableau systems for transitive logics such as K4, see [6]
and [10]. Early applications of loop-checks can be found in [9] and [5]. Now, a
simple prefixed tableau system can be formulated for the modal logic K such
that a systematic tableau construction always terminates. The systematic
tableau construction algorithm for K does not involve loop-checks. However,
a systematic tableau construction may not terminate if the tableau system for
K is extended with the standard prefixed tableau rule
s:p,s <t
t: 0o

for transitivity (the notation should be self-explanatory), whereby a tableau
system for K4 is obtained. Intuitively, the problem is that the rule allows
information to be moved forward from a world to any accessible world. The
standard way to fix this problem is to incorporate loop-check conditions on
the applications of existential rules. The intuitive reason why this technique
works in the context of hybrid logic too, is that the problem here also is
that information can be moved between worlds, namely in connection with
applications of the rule (Id) in the Tzakova-style system and similarly, in
connection with the rules (Nom1) and (Nom2) in the Blackburn-style system.
Intuitively, these rules allow information to be moved between worlds that are

identical.

Nominals are often used in description logics, and certain tableau-based
decision procedures for such logics also make use of loop-checks. This is for
example the case with the decision procedure given in [7] which is based on
a prefixed tableau system in line with our Tzakova-style system.? The logic
given in that paper, and other similar logics, do not involve satisfaction op-
erators or the universal modality, but it is well-known that if a description
logic has transitive roles together with role hierarchies, which is the case with
the logic in [7], then general concept inclusion axioms can be internalised into
concepts, as described in [8], pages 164 and 165. This technique can also
be used to define an “approximation” of the universal modality: Given roles
Rq,..., R, occurring in a formula ¢ and a new role U, a set of role axioms

{Trans(U),R, C U,...,R, C U}

is defined ensuring that the relation for the role U is transitive and contains
the relations for all the other roles. It follows that ¢ is satisfiable wrt. arbi-
trary models if and only if the formula ¢' obtained by replacing any universal
modality Ev in ¢ by) AVU.%) is satisfiable wrt. models satisfying the axioms.
In the terminology of modal logic, this is the case since the axioms ensures
that Y AVU.4 is true at a world w if and only if 1) is true at a set of worlds con-
taining the submodel generated by w. In case nominals are involved, further
axioms have to be added such that 1) A VU.4) is true at a world w if and only
if 1 is true at a set of worlds containing the submodel generated by the set of
worlds consisting of w together with the denotations of all nominals in . In
this sense, the universal modality can be approximated if further machinery
is present, namely axioms involving transitive roles and role hierarchies.

However, we think that the universal modality and satisfaction operators
are so important and widely used that it justifies independent and direct
tableau-based decision procedures, as given in the present paper. Also, it
seems unnecessarily complicated to obtain a decision procedure encompassing
the universal modality (which is first-order definable) by a reduction to a
decision procedure involving axioms for a new role (which amounts to imposing
a second-order condition on models, namely the condition that there exists a
relation satisfying the axioms).

Acknowledgements: Thanks to Patrick Blackburn for comments on the
work presented here, in particular for suggesting to incorporate the univer-
sal modality. Also thanks to Jgrgen Villadsen for comments. The authors
are partially supported by the Danish Natural Science Research Council in
connection with the HyLoMOL project.

2 We thank one of the anonymous referees for pointing this out.

References

[1] Areces, C., P. Blackburn and M. Marx, Hybrid logics: Characterization,
interpolation and complezity, Journal of Symbolic Logic 66 (2001), pp. 977
1010.

[2] Blackburn, P., Internalizing labelled deduction, Journal of Logic and
Computation 10 (2000), pp. 137-168.

[3] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge Tracts
in Theoretical Computer Science 53, Cambridge University Press, 2001.

[4] D’Agostino, M., D. Gabbay, R. Hahnle and J. Posegga, editors, “Handbook of
Tableau Methods,” Springer, 1999.

[5] Fitting, M., “Proof Methods for Modal and Intuitionistic Logic,” Reidel, 1983.

[6] Goré, R., Chapter 6: Tableau methods for modal and temporal logics, in:
Handbook of Tableau Methods, Kluwer Academic Publishers, 1999 pp. 297-396.

[7] Horrocks, I. and U. Sattler, Ontology reasoning in the SHOQ(D) description
logic, in: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAT 2001), 2001, pp. 199-204.

[8] Horrocks, I., U. Sattler and S. Tobies, Practical reasoning for ezpressive
description logics, in: Proceedings of LPAR’99, Lecture Notes in Artificial
Intelligence 1705 (1999), pp. 161-180.

[9] Hughes, G. and M. Cresswell, “An Introduction to Modal Logic,” Methuen,
1968.

[10] Massacci, F., Single step tableauz for modal logics, Journal of Automated
Reasoning 24 (2000), pp. 319-364.

[11] Tzakova, M., Tableauzx calculi for hybrid logics, in: N. V. Murray,
editor, Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX 1999, Lecture Notes in Artificial Intelligence 1617 (1999), pp.
278-292.

