
Better Eager Than Lazy? How Agent Types Impact the Successfulness of Implicit
Coordination

Thomas Bolander
DTU Compute

Technical University of Denmark
tobo@dtu.dk

Thorsten Engesser and
Robert Mattmüller and Bernhard Nebel

Faculty of Engineering, University of Freiburg, Germany
{engesser,mattmuel,nebel}@cs.uni-freiburg.de

Abstract

Epistemic planning can be used for decision making in multi-
agent situations with distributed knowledge and capabilities.
Recent work proposed a new notion of strong policies with
implicit coordination. With this it is possible to solve plan-
ning tasks with joint goals from a single-agent perspective
without the agents having to negotiate about and commit to
a joint policy at plan time. We study how and under which
circumstances the decentralized application of those policies
leads to the desired outcome.

Introduction
One important task in multi-agent systems is to collabora-
tively reach a joint goal with multiple autonomous agents
(e.g. robots and humans). For instance, if there is a group of
robots that are supposed to reach target locations, they have
to develop a plan that enables each robot to accomplish its
goal. Taking, for instance the situation in Figure 1, where
the circular robot C wants to go to the cell marked by the
solid circle and the square robot S wants to reach the place
with the solid square (the empty circle and square will only
become important later). One could come up with the fol-
lowing plan: (i) C moves to 2 and then to 4, (ii) S moves to
2 and then to target location 3, and (iii) C finally moves to
target location 2.

This plan could be generated centrally by an external ob-
server and then communicated to the two agents, which will
execute it. We will assume, however, that all plans are de-
veloped by the agents in a distributed fashion. Assuming
that the two agents can observe everything in the world, have
full knowledge of their goals, and execution is deterministic,
they both can come up with the same plan as above and exe-
cute this plan in a distributed way. If they came up with dif-
ferent plans but have anticipated that the other agents might
deviate, then the joint execution might still be successful. We
have to make strong assumptions about the planning agent
types, though, as we will demonstrate.

The problem of planning and executing in a distributed
fashion becomes significantly more difficult if we drop the
assumption about full observability. In order to illustrate this
point, let us again consider the situation in Figure 1, but

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unlike before, let us assume that each robot knows about
their own target positions with certainty (the solid circle and
square), but there is uncertainty about the target position of
the other robot (the empty circle and square are considered
as possible target positions for C and S, respectively). This
means that we still assume a common goal, namely each
robot wants that in the end all the robots have reached their
target positions. However, these target positions are not com-
mon knowledge. In such a situation, we will consider poli-
cies instead of plans, which can branch on observations and
sensing actions. As it turns out, an agent can still come up
with a successful policy which is implicitly coordinated, i.e.,
contains only steps such that the acting agent knows that her
step contributes to reaching the goal. The key for generating
such policies is to take perspective shifts, i.e., picturing one-
self in the shoes of the other agent. Giving general success
guarantees for the joint execution of policy profiles in a par-
tially observable setting appears to be much more difficult
than in the former case of full observability, though.

1 2 3

4

Figure 1: Multi-robot coordination example

Although taking into account the plans of other agents
to achieve cooperation has been identified as an interest-
ing topic of artificial intelligence research for a consider-
able amount of time (Konolige and Nilsson 1980), the ap-
plication of implicit coordination has been limited almost
exclusively to the fields of probabilistic robotics (Stulp,
Isik, and Beetz 2006; Anderson and Papanikolopoulos 2008;
Hollinger et al. 2009) and Dec-POMDPs (Spaan, Gor-
don, and Vlassis 2006). While existing classical planning
approaches rely on continual (re-)planning (Brenner and
Nebel 2009), the work we present in this paper is situated
in the context of (multi-agent) epistemic planning, which
can be approached algorithmically either by compilation
to classical planning (Albore, Palacios, and Geffner 2009;
Kominis and Geffner 2015; Muise et al. 2015) or by search
in the space of “nested” (Bolander and Andersen 2011;

Engesser et al. 2017) or “shallow” knowledge states (Pet-
rick and Bacchus 2002; 2004; Petrick and Foster 2013).
Our concepts can be considered related to recent work
in temporal epistemic logics (Bulling and Jamroga 2014;
Jamroga and Ågotnes 2007; Jamroga and van der Hoek
2004), which addresses a question similar to ours, namely
what groups of agents can jointly achieve under imperfect
information. These approaches are based on concurrent epis-
temic game structures. Our approach is different in a number
of ways, including: 1) As in classical planning, our actions
and their effects are explicitly and compactly represented in
an action description language (using the event models of
Dynamic Epistemic Logic (van Ditmarsch, van der Hoek,
and Kooi 2007)); 2) Instead of joint actions we have sequen-
tial action execution, where the order in which the agents act
is not predefined; 3) None of the existing solution concepts
considered in temporal epistemic logics capture the stepwise
shifting of perspective underlying our notion of implicitly
coordinated policies.

We expect implicit coordination to be helpful in settings
of human robot collaboration, particularly when explicit co-
ordination (i.e., through detailed instructions by the human)
is inconvenient. In this regard, we consider our paper a first
important step towards a general theory of implicit coordina-
tion in terms of identifying basic concepts and proving first
results.

The rest of the paper is structured as follows. In Section
2, we describe the formal framework for representing states
as the one in Figure 1, and how actions can change these
states. Section 3 formalizes the notions of policies, policy
profiles and their executions. In Section 4, we analyze the
conditions under which the execution of policy profiles can
be successful.

Theoretical Background: DEL
Epistemic States and Perspective Shifts
To represent planning problems as the one described above
we need a formal framework where: (1) agents can reason
about the first- and higher-order knowledge and ignorance
of other agents; (2) both fully and partially observable ac-
tions can be described in a compact way. Dynamic Epis-
temic Logic (DEL) satisfies these conditions. We first very
briefly recapitulate the foundations of DEL, following the
conventions of Bolander and Andersen (Bolander and An-
dersen 2011).

In the following we will define epistemic languages, epis-
temic states and epistemic actions. All of these are defined
relative to a given finite set of agent names (or simply
agents)A and a given finite set of atomic propositions P . To
keep the exposition simple, we will not mention the depen-
dency onA and P in the following. The epistemic language
LKC is

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ

As usual, we read Kiϕ as “agent i knows ϕ” and Cϕ as
“it is common knowledge that ϕ”. Formulas are evaluated
in epistemic models M = 〈W, (∼i)i∈A, V 〉 where the do-
main W is a non-empty finite set of worlds; ∼i ⊆ W 2 is

an equivalence relation called the indistinguishability rela-
tion for agent i; and V : P → P(W) assigns a valua-
tion to each atomic proposition. For Wd ⊆ W , the pair
(M,Wd) is called an epistemic state (or simply a state),
and the worlds of Wd are called the designated worlds. A
state is called global if Wd = {w} for some world w (called
the actual world), and we then often write (M, w) instead
of (M, {w}). We use Sgl to denote the set of global states.
For any state s = (M,Wd) we let Globals(s) = {(M, w) |
w ∈ Wd}. We define truth in states as follows, where the
propositional cases are standard and hence left out:

(M,Wd) |= ϕ iff (M, w) |= ϕ for all w ∈Wd

(M, w) |= Kiϕ iff (M, w′) |= ϕ for all w′ ∼i w
(M, w) |= Cϕ iff (M, w′) |= ϕ for all w′ ∼ w

where ∼ is the transitive closure of
⋃
i∈A∼i.

A state (M,Wd) is called a local state for agent i if Wd

is closed under ∼i. Given a state s = (M,Wd), the asso-
ciated local state of agent i, denoted si, is (M, {v | v ∼i
w and w ∈Wd}). Going from s to si amounts to a perspec-
tive shift to the local perspective of agent i.
Example 1. Consider the global state s = (M, w1) given
as follows, where the nodes represent worlds, the edges rep-
resent the indistinguishability relations (reflexive edges left
out), and is used for designated worlds:

s =
w1 : p w2 :

1, 2

Each node is labeled with the name of the world, and the
list of atomic propositions true at the world. In the state s,
the proposition p is true but agent 1 does not know this:
s |= p∧¬K1p. Hence from the local perspective of agent 1,
p cannot be verified, and we correspondingly have s1 6|= p
and s1 6|= ¬p.

Epistemic Actions and Product Update
To model actions, we use the event models of DEL. An
event model is E = 〈E, (∼i)i∈A,pre,post〉 where the do-
main E is a non-empty finite set of events; ∼i ⊆ E2 is an
equivalence relation called the indistinguishability relation
for agent i; pre : E → LKC assigns a precondition to each
event; and post : E → LKC assigns a postcondition to each
event. For all e ∈ E, post(e) is a conjunction of literals
(atomic propositions and their negations, including > and
⊥). For Ed ⊆ E, the pair (E , Ed) is called an epistemic ac-
tion (or simply action), and the events in Ed are called the
designated events. Similar to states, (E , Ed) is called a local
action for agent i when Ed is closed under ∼i.

Each event of an action represents a different possible
outcome. By using multiple events e, e′ ∈ E that are in-
distinguishable (i.e. e ∼i e′), it is possible to obfuscate the
outcomes for some agent i ∈ A, i.e. modeling partially ob-
servable actions. Using event models with |Ed| > 1, it is
also possible to model sensing actions and nondeterministic
actions (Bolander and Andersen 2011).

The product update is used to specify the successor state
resulting from the application of an action in a state. Let a
state s = (M,Wd) and an action a = (E , Ed) be given with
M = 〈W, (∼i)i∈A, V 〉 and E = 〈E, (∼i)i∈A,pre,post〉.

Then the product update of s with a is defined as s ⊗ a =
(〈W ′, (∼′i)i∈A, V ′〉 ,W ′d) where

• W ′ = {(w, e) ∈W × E | M, w |= pre(e)};
• ∼′i =

{
((w, e), (w′, e′)) ∈ (W ′)2 | w ∼i w′ & e ∼i e′

}
;

• V ′(p) = {(w, e) ∈W ′ | post(e) |= p or
(M, w |= p and post(e) 6|= ¬p)};

• W ′d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}.
We say that a = (E , Ed) is applicable in s = (M,Wd)

if for all w ∈ Wd there is an event e ∈ Ed s.t. (M, w) |=
pre(e).

Example 2. Consider the following epistemic action a =
(E , {e1, e2}), using the same conventions as for epistemic
states, except each event is labeled with 〈pre(e),post(e)〉:

a =
e1 : 〈p,>〉 e2 : 〈¬p,>〉

2

It is a private sensing action for agent 1, where agent 1 pri-
vately gets to know the truth value of p, since e1 and e2 are
distinguishable to agent 1 (and indistinguishable to agent 2).
Letting s be the state from Example 1, we get:

s⊗ a =
(w1, e1) : p (w2, e2) :

2

After the private sensing of p by agent 1, agent 1 will know
that p is true, but agent 2 will still not: s⊗a |= K1p∧¬K2p.

In the following, we will systematically identify isomorphic
states.

Tasks, Policies and Executions
In this paper we consider cooperative planning tasks, that is,
planning tasks in which the agents plan towards a joint goal
(Engesser et al. 2017). Each action in a planning task is as-
sumed to be executable by a unique agent, called the owner
of the action. More precisely, given a set of actions A, an
owner function is a mapping ω : A → A from actions to
their owners. Mapping each action to a unique agent can be
done without loss of generality, since semantically equiva-
lent duplicates can always be added to the action set.

Definition 1. A planning task Π = 〈s0, A, ω, γ〉 consists of
a global state s0 called the initial state; a finite set of actions
A; an owner function ω : A → A; and a goal formula γ ∈
LKC. We require that each a ∈ A is local for ω(a).

Example 3. Consider the planning task 〈s0, {a1, a2}, ω, p〉
with initial state s0 = and two semantically equivalent
actions a1 = e1 : 〈>, p〉 and a2 = e′1 : 〈>, p〉 for the
owners ω(a1) = 1 and ω(a2) = 2 (both actions making the
goal p true unconditionally). Both the initial state s0 and the
effects of the actions a1 and a2 are fully observable for both
agents. Intuitively, a solution should prescribe the action a1
for agent 1 or the action a2 for agent 2.

Policies and Executions
Instead of working with sequential plans, our plans are go-
ing to be policies, representing instructions that can be in-
dividually followed by each of the agents. We impose some
requirements on these policies to be reasonable.

First, we require actions to be applicable in all states they
are assigned to (APP). Since the policies are required to be
applicable from the agent perspective, we also require uni-
formity (UNIF). I.e., if the policy π prescribes some action
a to agent i in state s and agent i cannot distinguish s from
some other state t, then π has to prescribe the same action a
for i in t as well. Finally, we require π to be unambiguous
for all agents in the sense that in each state s where an agent
i is supposed to act according to π, π is deterministic for
agent i (DET). More formally:
Definition 2. Let Π = 〈s0, A, ω, γ〉 be a planning task. Then
a policy π for Π is a partial mapping π : Sgl ↪→ P(A), s. t.

(APP) f. a. s ∈ Sgl, a ∈ π(s): a is applicable in s,
(UNIF) f. a. s, t ∈Sgl s. t. sω(a) = tω(a), a ∈ π(s): a ∈ π(t),
(DET) f. a. s ∈ Sgl, a, a′ ∈ π(s) s. t. ω(a) = ω(a′): a = a′

The properties (UNIF) and (APP) together imply knowl-
edge of preconditions, i.e., the property that in each state, an
agent who is supposed to perform a particular action must
also know that the action is applicable in that state. Note also
that we must allow policies to sometimes prescribe multi-
ple actions of different owners to the same state. This is be-
cause the set of indistinguishable states can differ between
the agents. In some indistinguishable state for agent 1, ac-
tion a might be a necessary step towards the goal, while in
some indistinguishable state for agent 2, action b might be a
necessary step towards the goal. Thus, by uniformity, both a
and b have to be prescribed to the original state.

To characterize the different outcomes of agents acting
according to a common policy, we define the notion of pol-
icy executions. As in more classical non-epistemic settings,
relevant questions are whether the execution process termi-
nates or not, and if it does, whether a goal state is reached.
Definition 3. An execution of a policy π from a global state
s0 is a maximal (finite or infinite) sequence of alternating
global states and actions (s0, a1, s1, a2, s2, . . .), such that
for all m ≥ 0,
(1) am+1 ∈ π(sm), and
(2) sm+1 ∈ Globals(sm ⊗ am+1).
An execution is called successful for a planning
task Π = 〈s0, A, ω, γ〉, if it is a finite execution
(s0, a1, s1, . . . , an, sn) such that sn |= γ.

In the following, we will restrict our attention to policies
that are guaranteed to achieve the goal after a finite number
of steps. More formally, this means that all of their execu-
tions must be successful. As in nondeterministic planning,
we call such policies strong (Cimatti et al. 2003).
Definition 4. For a planning task Π = 〈s0, A, ω, γ〉, a pol-
icy π is called strong if s0 ∈ Dom(π)∪{s ∈ Sgl | s |= γ}
and for each s ∈ Dom(π), any execution of π from s is suc-
cessful for Π. A planning task Π is called solvable if a strong
policy for Π exists. For i ∈ A, we call a policy π i-strong if
it is strong and Globals(si0) ⊆ Dom(π)∪{s ∈ Sgl | s |= γ}.

When a policy is i-strong it means that the policy is strong
and defined on all the global states that agent i cannot ini-
tially distinguish between. It follows directly from the def-
inition that any execution of an i-strong policy from any of

those initially indistinguishable states will be successful. So
if agent i comes up with an i-strong policy, it means that
agent i knows the policy to be successful.

We introduce the notion of reachability to talk about states
that can occur during executions.
Definition 5. Given global states s0 and s, we call s reach-
able from s0 if there are sequences of actions a1, . . . , an and
states s1, . . . , sn = s such that am+1 is applicable in sm and
sm+1 ∈ Globals(sm⊗ am+1) for all m = 0, . . . , n− 1. We
call s reachable from s0 by following a policy π if it is part
of an execution (s0, a1, . . . , s, . . .) of π.

A strong policy π is implicitly coordinated in the sense
that at any point during its execution, at least one agent
knows that it can execute a particular action as part of the
strong policy π. This is formalized by the following propo-
sition, that follows straightforwardly from Def. 4 and the
uniformity condition in Def. 2.
Proposition 1. Let π be a strong policy for 〈s0, A, ω, γ〉 and
let s be a non-goal state reachable from s0 by following π.
Then for some i ∈ A: π(s) ∩ {a | ω(a) = i} 6= ∅ and π is
an i-strong policy for 〈s,A, ω, γ〉.

Note that there are planning tasks where i-strong policies
exist only for some of the agents. If these policies require
other agents to act in some future states, Proposition 1 im-
plies that these agents are able to find their own i-strong
policies when re-planning from these states. However, to
simplify our analysis, we will mostly consider tasks where
there is an i-strong policy for all of the agents right away.
Furthermore, we assume that the agents try to plan for all
contingencies (as seen from their local perspective), so that
it never becomes necessary to change policy due to unex-
pected actions by other agents. The relevant notion of “plan-
ning for all contingencies” in this setting is captured by what
we call maximality of strong policies.
Definition 6. We call an i-strong policy π for planning task
Π a maximal i-strong policy for Π if π is a strong policy for
〈s,A, ω, γ〉 for all states s such that: (1) s is reachable from
some s′0 ∈ Globals(si0), and (2) 〈s,A, ω, ϕ〉 is solvable.

Policy Profiles
Besides the centralized scenario in which one agent plans
centrally for all agents, or equivalently, in which the in-
volved agents can already coordinate on a common plan at
plan time, we especially want to study the scenario in which
the agents cannot coordinate their plans, but rather have to
come up with plans individually. Those plans can easily dif-
fer, not only because of different reasoning capabilities of
the different agents, but also because of their non-uniform
knowledge of the initial state and of action outcomes. For
our formal analysis, we define a policy profile for a planning
task Π to be a family (πi)i∈A, where each πi is a policy
for Π. We assume actions to be instantaneous and executed
asynchronously. This leads us to the following generaliza-
tion of executions to policy profiles.
Definition 7. An execution of a policy profile (πi)i∈A is
a maximal (finite or infinite) sequence of alternating global
states and actions (s0, a1, s1, . . .), such that for all m ≥ 0,

(1) am+1 ∈ πi(sm) where i = ω(am+1), and

(2) sm+1 ∈ Globals(sm ⊗ am+1).

We call such an execution successful if it is a finite execution
(s0, a1, s1, . . . , an, sn) such that sn |= γ.

Note that there are two sources of nondeterminism for
executions. One as a result from the possibility of multiple
policies prescribing actions for their respective agents (item
1 in Def. 7). The other one results from the possibility of
nondeterministic action outcomes (item 2 in Def. 7). Defi-
nition 4 implies that strong policies are closed in the usual
sense that following a strong policy cannot lead to an “off-
policy” non-goal state where the policy is undefined (Cimatti
et al. 2003). As a first positive result, we can now show that
policy profiles consisting of maximal strong policies are also
closed in the sense that they do not produce dead-end execu-
tions, i. e. executions ending in a non-goal state where some
of the policies in the profile are undefined. By inductive ap-
plication of Proposition 1, we can show that in each execu-
tion step from s via a = πi(s) to a non-goal state s′, the
policy πi must be defined for s′, and by maximality of the
other policies πj , j 6= i, the policies of all other agents have
to be defined in s′ as well. Hence:

Proposition 2. Let (πi)i∈A be a policy profile where each πi
is a maximal i-strong policy for task Π. Then s ∈ Dom(πi)
for all agents i ∈ A and non-goal states s ∈ Sgl occurring
in arbitrary executions (s0, a1, . . . , s, . . .) of (πi)i∈A.

If all agents have one strong policy in common which all
of them follow, then at execution time, the goal is guaran-
teed to be eventually reached. If, however, each agent acts
on its individual strong policy, then the incompatibility of
the individual policies may prevent the agents from reach-
ing the goal, even though each individual policy is strong.
The following example illustrates what may go wrong.

Example 4. Let Π = 〈s0, {a1, a2}, ω, p〉 be the planning
task described in Example 3, and let (π1, π2) be the policy
profile consisting of the maximal 1-strong policy π1 assign-
ing only a2 to s0, and the maximal 2-strong policy π2 assign-
ing only a1 to s0. Here each agent expects the other agent to
do the work, since the policy π1 for agent 1 specifies the ac-
tion a2 belonging to agent 2 and vice versa. This profile has
only one execution, the empty one, which is unsuccessful.

This shows that agents following maximal i-strong poli-
cies may still not reach the goal. The issue we see here is
that the agents run into a “deadlock”, and the underlying rea-
son is that both agents are “lazy”, expecting the other agent
to act. In the following, we will discuss for which types of
agents (lazy, eager, . . .) and for which combinations of them
success can or cannot be guaranteed.

Agent Types
We distinguish between different agent types by distinguish-
ing between the types of policies they produce. To that end,
we identify agents with mappings from planning tasks to
policies. Additionally, the agent mapping must be associ-
ated with the part the agent plays in the planning task, since

a policy that is lazy from one agent’s perspective may be ea-
ger from another agent’s perspective; e.g. the policy π1 in
Example 4 is lazy for agent 1, but eager for agent 2.
Definition 8. A planning agent (or simply agent) is a pair
(i, T), where i is an agent name and T is a mapping from
planning tasks to policies, such that T (Π) is an i-strong pol-
icy for Π, whenever such a policy exists.

The requirement of T (Π) being i-strong, whenever such
a policy exists, comes from the fact that each agent should
produce a policy that it knows will be successful, whenever
it is possible to form such a policy. We can now extend the
definition of executions to groups of agents (i, Ti)i∈A.
Definition 9. Let (i, Ti)i∈A be a group of agents and let Π
be a planning task. Then the executions by (i, Ti)i∈A of Π
are the executions of the policy profile (Ti(Π))i∈A.

Lazy and Naively Eager Agents
We already saw that agents being lazy can be problem-
atic. To formally capture laziness (and its dual, eagerness),
we note that laziness essentially means having a preference
against using one’s own actions, and planning with someone
else’s actions instead. Similarly, eagerness means preferring
one’s own actions over someone else’s. Intuitively, an agent
has a preference for (or against) a set of actions if whenever
a policy produced by that agent is defined, it prescribes at
least one preferred action (or no unpreferred action), unless
violating the preference is unavoidable in that state.
Definition 10. For a state s, a policy π, and a set of actions
A′, we say that π uses A′ in s if π(s)∩A′ 6= ∅. Then we say
that agent (i, T) has preference

(1) for (the actions in) A′ if for all Π and all s ∈
Dom(T (Π)), policy T (Π) uses A′ in s unless no i-
strong policy for Π uses A′ in s, and

(2) against (the actions in) A′ if for all Π and all s ∈
Dom(T (Π)), policy T (Π) does not use A′ in s unless
every i-strong policy for Π uses A′ in s.

Unfortunately, preference against a set of actions is not
the same as preference for its complement, which is why
we need both notions. We can now define laziness as
preference against one’s own actions, that is, we call an
agent (i, T) lazy if it has preference against the actions in
{a ∈ A | ω(a) = i}.

To formalize in which sense Example 4 is problematic,
we still have to define deadlocks, which intuitively are states
where (1) something still needs to be done, where (2) it is
known that something can be done, but where (3) nothing
will be done because of incompatible individual policies.
Definition 11. A deadlock for a policy profile (πi)i∈A is
a global state s such that (1) s is not a goal state, (2) s ∈
Dom(πi) for some i ∈ A, and (3) ω(a) 6= i for all i ∈ A
and a ∈ πi(s).

Requirement (2) is included to distinguish deadlocks from
dead ends, where none of the agents’ policies prescribe an
action, not even for another agent. From the above defini-
tions and Example 4 we immediately get the following re-
sult.

p
1 2 3 4 5

Figure 2: Planning task—move chess piece left or right.

Proposition 3. There are solvable planning tasks for
which all executions by lazy agents result in a deadlock.

To avoid deadlocks, we define (naively) eager agents as
agents who have a preference for their own actions. That
is, we call an agent (i, T) naively eager if it has a prefer-
ence for the actions in {a ∈ A | ω(a) = i}. They are called
naively eager since it will turn out that in their eagerness
they can interfere with other agents’ plans and executions
in a harmful way. But still, we first get the positive result
that eagerness prevents the deadlocks we observed for lazy
agents.
Proposition 4. Let Π be a planning task and (i, Ti)i∈A be
a group of naively eager agents. If each πi = Ti(Π) is a
maximal i-strong policy, then all executions of (πi)i∈A are
deadlock-free.

Proof sketch. Assume for contradiction that s is a
deadlock for (πi)i∈A. Then there has to exist an agent
name i ∈ A and an action a such that a ∈ πi(s) with
ω(a) = j and j 6= i. Because πj is a maximal j-strong
policy, we have s ∈ Dom(πj). Then there also has to exist
an a′ ∈ πj(s) with ω(a′) = j, since (j, Tj) is naively eager
and has preference for its own actions. This contradicts item
(3) of Definition 11.

Example 5. Consider the scenario in Fig. 2. The chess piece
can be moved left by agent 1 and right by agent 2 (one cell at
a time). Everything is fully observable. The goal is to move
the piece to one of the highlighted target cells. Every pos-
sible naively eager policy π1 of agent 1 must assign action
left to every non-goal state, and similarly, every naively ea-
ger policy π2 of agent 2 must assign right to every non-
goal state. Using si to denote that the piece is in cell i,
one possible execution of any such policy profile (π1, π2) is
the infinite sequence (s3, left , s2, right , s3, left , . . .), which
is clearly not successful.

This shows that naively eager agents may also not reach
the goal since they can potentially produce infinite execu-
tions.
Proposition 5. There are solvable planning tasks for
which some executions by naively eager agents are infinite.

Optimally Eager Agents
In order to address the stated problem, we will now consider
agents who always try to simplify the problem by reaching
states closer to the goal. This means that the agents should
come up with optimal policies, policies that reach the goal in
the fewest number of steps. In order to formally define opti-
mal policies, we need the notion of cost. The cost of a policy
can be defined as its worst-case execution length, that is, the
number of actions in its longest possible execution. An op-
timal policy is then one of minimal cost. However, due to

partial observability, different agents might assign different
costs to the same policy, and hence disagree on which poli-
cies have minimal cost.

For instance, in a variant of Example 5, agent 1 might
not know whether the chess piece is initially in cell 3 or 4,
and agent 2 might not know whether it is initially in cell
2 or 3. Then agent 1 would assign cost 2 to the “go right”
strategy, but cost 3 to the “go left” strategy (according to the
knowledge of agent 1, the chess piece might initially be in
cell 4, and hence 3 cells away from cell 1). Conversely, agent
2 would assign cost 2 to the “go left” strategy and cost 3 to
the “go right” strategy. If both agents choose strategies of
minimal cost, they would choose opposing strategies: agent
1 would want agent 2 to go right, and agent 2 would want
agent 1 to go left. Clearly this will result in a deadlock.

To remedy this, we need the agents to measure cost in a
“perspective-sensitive” way: the assigned cost takes the dif-
ferent perspectives of the involved agents into account.
Definition 12. Let π be a strong policy for a planning task
Π. The perspective-sensitive cost (or simply cost) of π from
a state s ∈ Dom(π), denoted κπ(s), is defined as:

κπ(s) =

{
0 if there exists no a ∈ π(s)

1 + maxa∈π(s),s′∈Globals(sω(a)⊗a) κπ(s′) else.

We extend this to local states s with Globals(s) ⊆ Dom(π)
by letting κπ(s) := maxs′∈Globals(s) κπ(s′).

The following proposition captures the intuition that per-
spective-sensitive costs can only increase with additional un-
certainty (by shifting perspective), and that in each global
state s with π(s) 6= ∅, one or more actions can be identified
as the ones maximizing the perspective-sensitive cost for the
successor state and thus defining the value of κπ(s). We will
need this to prove deadlock-freedom in Proposition 7.
Proposition 6. For any policy π, epistemic state s and
agent i ∈ A, it holds that κπ(s) ≤ κπ(si). Moreover, if
κπ(s) > 0, then there is an action a ∈ π(s) such that
κπ(s) = κπ(sω(a)).

It can be verified that in the variant of Example 5 with
partial observability about the initial state of the chess piece,
both the “go left” and the “go right” strategy will have the
same (perspective-sensitive) cost 3. The point is that the cost
assigned to the “go left” strategy will be measured from the
local state of the owner of the “go left” action, and similarly
for “right”, as seen from the Def. 12.
Definition 13. A policy π for a planning task
Π = 〈s0, A, ω, γ〉 is called subjectively optimal if for
all s ∈ Dom(π), all a ∈ π(s) and all ω(a)-strong policies
π′ for 〈s,A, ω, γ〉 we have κπ′(sω(a)) ≥ κπ(sω(a)).
Definition 14. Given a set of actions A′, we say that agent
(i, T) is subjectively optimal with preference for the actions
in A′, if for all Π: (1) T (Π) is an i-strong subjectively opti-
mal policy if such a policy exists, and (2) T (Π) uses A′ in
each s ∈ Dom(π) unless no i-strong subjectively optimal
policy for Π uses A′ in s.

We call an agent that is subjectively optimal with prefer-
ence for its own actions optimally eager. That is, a planning

agent (i, T) is called optimally eager if it is subjectively op-
timal with preference for the actions in {a ∈ A | ω(a) = i}.

In the variant of Example 5 with partial observability
about the initial state, optimally eager agents will always be
successful. They assign the same cost to both the “go left”
and “go right” strategies, but are eager, and will hence prefer
the policy where they act themselves. So initially they spec-
ify conflicting actions. Assume agent 1 gets to act first and
moves one cell left. In the resulting state, agent 2 assigns
cost 3 to the “move right” strategy and only cost 2 to the
“move left” strategy. Hence agent 2 will not try to prevent
agent 1 from moving the chess piece to the far left.

On the other hand, an optimally lazy agent (which we
could define analogously, by first defining subjective opti-
mality with preference against own actions) would exhibit
the same deadlock potential as naively lazy agents. We can
also see this in Example 4, where both policies are in fact
subjectively optimal ones. Our focus will thus be on opti-
mally eager agents. We can indeed show that optimally ea-
ger agents do not produce deadlocks.

Proposition 7. Let Π be a planning task and (i, Ti)i∈A be
a group of optimally eager agents. If each πi = Ti(Π) is a
maximal i-strong policy, then all executions of (πi)i∈A are
deadlock-free.

Proof sketch. Let s be a reachable non-goal state. We ana-
lyze waiting chains, i. e., sequences of agents i1, . . . , in+1,
such that (abbreviating πij as πj , and κπj as κj), for all
j = 1, . . . , n, (1) there is no a ∈ πj(s) with ω(a) = ij ,
and (2) there is an a ∈ πj(s) with κj(sω(a)) = κj(s)
and ω(a) = ij+1. By Proposition 6 and the definition of
subjective optimality, we have κj+1(s) ≤ κj+1(sω(a)) ≤
κj(sω(a)) = κj(s) for all j = 1, . . . , n. This implies that
no agent can occur more than once in a waiting chain,
since that would directly contradict its eagerness. Thus, if
s ∈ Dom(π1) and π1(s) 6= ∅ for some agent i1 ∈ A,
then there has to exist a maximal waiting chain i1, . . . , in,
where the last agent in has an action a ∈ πn(s) such that
ω(a) = in.

We can also show that all agents being optimally eager
prevents infinite executions in the simple setting with uni-
form observability. We call a planning task 〈s0, A, ω, γ〉
uniformly observable if all agents share the same indistin-
guishability relations, both in the initial state s0 and in all
actions a ∈ A, which is tantamount to assuming that there
is a single agent planning in the belief space of a partially
observable nondeterministic (POND) problem (Bonet and
Geffner 2000).

Proposition 8. Let Π be a uniformly observable and
solvable planning task and let (i, Ti)i∈A be a group of op-
timally eager agents. Then all executions by (i, Ti)i∈A of Π
are finite.

Proof sketch. Let πi = Ti(Π) for each agent i ∈ A. Then
for any transition (. . . , s, a, s′, . . .) occurring in an execu-
tion, we have κπi

(s′) ≤ κπi
(s) − 1 for the acting agent

i = ω(a). Due to uniform observability and optimality,
κπi

(s′) = κπj
(s′) for any j ∈ A with s′ ∈ Dom(πj). Thus,

by monotonicity, the execution ends after at most κπi(s
′)

more actions.

This means that in the uniformly observable setting, we
can guarantee each execution to be successful, given all
agents are optimally eager and act with respect to a maximal
strong policy. Our result follows directly from Propositions
7 and 8.

Proposition 9. Let Π be a uniformly observable planning
task and (i, Ti)i∈A be a group of optimally eager agents.
If each πi = Ti(Π) is a maximal i-strong policy, then all
executions of (πi)i∈A are successful.

Unfortunately, if there is non-uniform observability, op-
timally eager agents cannot always prevent infinite execu-
tions, as we see in the following example.

Example 6. Consider another variant of Example 5,
where the initial position of the chess piece is again fully
observable, but where the information about possible target
cells is non-uniformly distributed. The initial state is given

as s3 =
at3, t1 at3, t1, t5 at3, t5

1 2 with ati meaning that the

piece is in cell i, and ti meaning that cell i is a target posi-
tion. The joint goal is γ = (t1 → at1) ∧ (t5 → at5). Since
agent 1 only knows that cell 1 is a target while agent 2 only
knows that cell 5 is one, optimally eager agents would pro-
duce policies where they move the piece always in their own
direction. Similar to Example 5, an infinite execution would
then be (s3, left , s2, right , s3, left , . . .).

We can see from Example 6 that it is generally not pos-
sible to solve the problem of infinite executions just by im-
posing restrictions on the types of agents. Since, in this ex-
ample, for each state s and agent i there is only one possible
choice of action as part of an i-strong policy (left for agent
1, right for agent 2), every conceivable combination of plan-
ning agents produces infinite executions. Hence we get the
following:

Proposition 10. For every group of at least two agents
(i, Ti)i∈A there exists a partially observable and solvable
planning task Π that has unsuccessful executions by
(i, Ti)i∈A of Π.

It is important to note that planning tasks with non-
uniform knowledge do exist in which implicit coordination
by optimally eager agents is guaranteed to be successful, i.e.,
without the potential occurrence of infinite executions. In
particular, by allowing communication between the agents
to be modeled directly as part of the planning task (using an-
nouncement actions), it is possible to solve more problems.
One example in this class of planning tasks is the robots ex-
ample from the introduction. To guarantee the existence of
strong policies, we enable a robot that has reached its tar-
get position to publicly announce that fact as its final action
(e.g., by visibly powering down).

A subjectively optimal policy for the square robot (that
can be easily extended to a maximal, optimally eager one) is
depicted in Figure 3. Solid edges denote actions and dashed
edges denote indistinguishability. For clarity, only such in-
distinguishability edges are shown that refer to the agent

designated to act and that, via uniformity, enforce inclusion
of some action in the policy. Here, the square robot starts
by moving out of the way of the circular robot, in order to
allow the circular robot to move to the leftmost cell. This
is because only from this position, the circular robot can
make sure that the square robot will be able to reach its
goal cell. Independently of the actual goal cell of the square
robot, the square robot will then be able to move there and
power down, after which the circular robot can finish the
task. Note that this strategy will succeed for the given global
initial state no matter which strong policy the circular robot
chooses, just provided it is subjectively optimal. If the ac-
tual goal cell for the circular robot was the leftmost one, an
optimally eager circular robot would already try to announce
and power down earlier when having reached its destination.
This contingency is covered by the maximal version of the
policy (or with re-planning).

right

down

left

left

up

right

announce

right

right

down

left

left

up

right

announce

left

left

announce

right

left

left

announce

Figure 3: Depiction of a strong policy for the robots example

Conclusion and Discussion
We investigated how agent types impact the successful-
ness of implicit coordination in cooperative multi-agent
planning with distributed knowledge and capabilities. We
distinguished between lazy and eager agents and saw that
lazy agents may produce deadlocks (waiting for one another
to move), a problem that does not show up with eager agents.
However, it turned out that over-eager agents can produce
infinite executions instead (unintentionally working against
each other), which can only be avoided under rather strong
assumptions, namely if the agents optimize what we termed
perspective-sensitive costs and if they have uniform observ-
ability. Under non-uniform observability, even optimally ea-
ger agents may unintentionally sabotage each other.

This means that there is no general positive result for non-
uniformly observable settings such as the motivating multi-
robot coordination example with uncertain target positions
(Fig. 1). Still, in that particular example, implicit coordina-
tion does work and we can guarantee a successful execution
taking both robots to their targets, if we allow the first robot
that reaches its target to publicly announce that fact. How-
ever, to ensure successful implicit coordination, the square
robot has to move first, and the total number of moves (ex-
cluding the announcement) will be 7 instead of 5 as in the
full observability case.

For future work, we plan to investigate whether uninten-
tional sabotage (like the infinite executions we observed in
Example 6) can be avoided if we change our assumptions
about the type of reasoning performed by the agents. E.g.,
one assumption we made in this paper is that policies are
history-independent functions of the current state. In con-
trast, we could allow agents to infer additional knowledge
based on previous states and the assumption of optimality
of the other agents’ past actions. In our example, the move
of the chess piece in one direction should act implicitly as
announcement that there is a target cell on that side (since
otherwise, the action would complicate the problem). Sim-
ilarly, in the robots example, it should be possible for the
square robot to signal to the circle agent that the bottom cell
is the target cell just by performing a noop action on that cell.
Moving upwards would signal that the target cell is the one
on the right. Thus, having explicit noop actions would ren-
der the additional announcement actions unnecessary. We
believe that by extending our solution concept to include this
kind of reasoning, we will be able to solve a wider range of
cooperative tasks using implicit coordination.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Pro-
ceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI 2009), 1623–1628.
Anderson, M., and Papanikolopoulos, N. 2008. Implicit
cooperation strategies for multi-robot search of unknown ar-
eas. Journal of Intelligent and Robotic Systems 53(4):381–
397.
Bolander, T., and Andersen, M. B. 2011. Epistemic planning

for single and multi-agent systems. Journal of Applied Non-
Classical Logics 21(1):9–34.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the 5th International Conference on Artificial Intelli-
gence Planning Systems (AIPS 2000), 52–61.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
Bulling, N., and Jamroga, W. 2014. Comparing variants
of strategic ability: how uncertainty and memory influence
general properties of games. Autonomous Agents and Multi-
Agent Systems 28(3):474–518.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1–2):35–84.
Engesser, T.; Bolander, T.; Mattmüller, R.; and Nebel, B.
2017. Cooperative epistemic multi-agent planning for im-
plicit coordination. In Proceedings of the 9th Workshop on
Methods for Modalities (M4M 2017), 75–90.
Hollinger, G.; Singh, S.; Djugash, J.; and Kehagias, A. 2009.
Efficient multi-robot search for a moving target. The Inter-
national Journal of Robotics Research 28(2):201–219.
Jamroga, W., and Ågotnes, T. 2007. Constructive knowl-
edge: what agents can achieve under imperfect information.
Journal of Applied Non-Classical Logics 17(4):423–475.
Jamroga, W., and van der Hoek, W. 2004. Agents that know
how to play. Fundam. Inform. 63(2–3):185–219.
Kominis, F., and Geffner, H. 2015. Beliefs in multiagent
planning: From one agent to many. In Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS 2015), 147–155.
Konolige, K., and Nilsson, N. J. 1980. Multiple-agent plan-
ning systems. In Proceedings of the 1st Annual National
Conference on Artificial Intelligence (AAAI 1980), 138–142.
Muise, C.; Belle, V.; Felli, P.; McIlraith, S.; Miller, T.;
Pearce, A. R.; and Sonenberg, L. 2015. Planning over multi-
agent epistemic states: A classical planning approach. In
Proceedings of the 29th AAAI Conference on Artificial In-
telligence (AAAI 2015), 3327–3334.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sens-
ing. In Proceedings of the 6th International Conference on
Artificial Intelligence Planning Systems (AIPS 2002), 212–
222.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Proceedings of the 14th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 2–11.
Petrick, R. P. A., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS 2013), 389–397.
Spaan, M. T.; Gordon, G. J.; and Vlassis, N. 2006. Decen-
tralized planning under uncertainty for teams of communi-

cating agents. In Proceedings of the 5th International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), 249–256.
Stulp, F.; Isik, M.; and Beetz, M. 2006. Implicit coordination
in robotic teams using learned prediction models. In Pro-
ceedings 2006 IEEE International Conference on Robotics
and Automation (ICRA 2006), 1330–1335.
van Ditmarsch, H. P.; van der Hoek, W.; and Kooi, B. 2007.
Dynamic Epistemic Logic. Springer Heidelberg.

