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Abstract

Communication protocols often rely on stateful mechanisms to ensure
certain security properties. For example, counters and timestamps can
be used to ensure authentication, or the security of communication can
depend on whether a particular key is registered to a server or it has been
revoked. ProVerif, like other state of the art tools for protocol analysis,
achieves good performance by converting a formal protocol specification
into a set of Horn clauses, that represent a monotonically growing set of
facts that a Dolev-Yao attacker can derive from the system. Since this set
of facts is not state-dependent, the category of protocols of our interest
cannot be precisely analysed by such tools, as they would report false
attacks due to the over-approximation.

In this paper we present Set-π, an extension of the Applied π-calculus
that includes primitives for handling databases of objects, and propose a
translation from Set-π into Horn clauses that employs the set-membership
abstraction to capture the non-monotonicity of the state. Furthermore,
we give a characterisation of authentication properties in terms of the set
properties in the language, and prove the correctness of our approach.
Finally we showcase our method with three examples, a simple authen-
tication protocol based on counters, a key registration protocol, and a
model of the Yubikey security device.

1 Introduction

The automated verification of security protocols has been the subject of intensive
study for about two decades now. This has resulted in methods and tools that
are feasible for finding attacks or proving the absence of attacks for a large class
of protocols. One of the most successful approaches is static analysis, as for
instance used in the ProVerif tool [6, 8, 24, 15, 10]. The key idea of this approach
is to avoid the exploration of the state space of a transition system, but rather
compute an over-approximation of the set of messages that the intruder can ever
learn. The abstraction is efficient because it avoids the common state-explosion
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of model checking and it does not require a limitation to finite state-spaces.
While this works fine for many protocols, we get trivial “attacks” if a protocol
relies on a notion of state that is not local to a single session. A simple example
is the protocol:

A→ B : {Msg ,Counter}Key

where Key is a symmetric key known only to A and B, Msg is some payload
message and Counter is the current value of a counter used for avoiding replay
attacks: B accepts a message only if Counter is strictly greater than in the last
accepted message from A. This protocol thus ensures injective agreement [18]
on Msg , since B can be sure that A has sent Msg and it is not a replay, i.e., even
if A chooses to transmit several times the same Payload Msg , B will not accept
it more often than A sent it. There are of course several ways to model such a
counter in the applied π calculus, the input language of ProVerif, however none
is going to work in the abstraction due to its monotonicity : roughly speaking,
whatever B accepts once, he will accept any number of times and we thus
get trivial attacks. In fact, verifying injective agreement properties in ProVerif
requires a dedicated mechanism [9].

The above message is taken from the CANAuth protocol [16] that is in-
tended for the automotive industry and needs to work under strong limitations
on bandwidth and time. Due to these constraints, standard mechanisms like
challenge-response (B first sends a nonce, then A includes it in the message
instead of the counter) are no option. But even without such bounds there
are practical real-world examples that today’s abstraction approaches cannot
support:

• Key update/revocation: after updating an old key with a fresh one, one
does not accept messages encrypted with the old key anymore (at least
after some grace period).

• Key tokens/hardware security modules: they maintain a set of keys of
different status and attribute, and can be communicated with through an
API. When changing the status of a key, an operation may no longer be
possible with that key.

• Data bases: an online shop that maintains a database of orders along with
their current status; a customer may cancel an order, but only as long as
it has not entered the status “shipped”.

More generally, systems that have a notion of state (that is not local to a
session) and that have a non-monotonic behavior—i.e. an action is possible
until a certain change of state and that is disabled afterwards are incompatible
with the abstraction of tools like ProVerif.

Contributions. In this paper we formally define the novel Set-π calculus that
extends the popular applied π calculus [1] by a notion of sets of messages. It
allows us to declaratively specify how processes can store, lookup and manip-
ulate information like sets of keys, orders, or simply counters as in the above
example. (Note that this does not increase the expressive power of applied π,
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since one could also simulate sets using private channels.) The semantics gives
rise to an infinite-state transition system since we can model unbounded pro-
cesses that generate any number of fresh messages. We can define state-based
queries for Set-π, that ask for attacker-derivable messages, their set membership
status, and boolean combinations thereof. A specification is secure iff no query
is satisfied in any reachable state. Note that we do not specify a particular
attacker, but more generally prove that the protocol is secure in the presence of
an arbitrary attacker A that can be specified as a Set-π calculus (without access
to restricted names and sets).

The second contribution is a stateful abstraction for Set-π. The idea is that
the abstraction of a message incorporates the information to which sets it be-
longs, and we model how this set membership can change. In doing so, we
integrate the essential part of the state information into an otherwise state-
less abstraction. This fine balance allows us to combine the benefits of state-
less abstraction—namely avoiding state explosion and bounds to finite state
spaces—and at the same time support a large class of protocols that rely on
some state aspects.

Formally, this abstraction is a translation from a Set-π protocol specification
and a set of queries into a set of first-order Horn clauses. Our third contribution
is to prove a soundness result for this abstraction: every reachable state is
abstractly represented by the Horn clauses. In particular, if the Horn clauses
have no model, then the given Set-π specification is secure for the given queries
and against an arbitrary Set-π-attacker. For checking whether the Horn clauses
have a model, we can use various automated tools like ProVerif.

Finally, we demonstrate the practical feasibility of our approach by two
major case studies on the MaCAN and CANAuth which are candidates for
the next generation automotive systems; we use in this paper only excerpts as
illustrating examples, the full analysis is found in [12].

Plan of the Paper The rest of the paper proceeds as follows: Section 2 intro-
duces the language and presents, as a running example, a simplified version of
CANAuth—a protocol for securing in-vehicle communication—a protocol that
can be more precisely analysed with Set-π. Section 3 describes the type system.
Section 4 gives an instrumented semantics for the language. Section 5 presents
two definitions for weak and strong authentication and provides a mechanised
way to encode such properties in Set-π. Section 6 presents our translation of
Set-π into Horn clauses and Section 7 proves the correctness of this approach.
In Section 8 we present the key registration and the Yubikey examples along
with experimental results, and finally in Section 9 we discuss related work.

2 Set-Pi

The calculus is presented in Figure 1. The syntactic categories are terms M,N ,
processes P,Q, set-membership expressions b, set-membership transitions b+,
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M,N ::= x | al[M1, . . . ,Mn] | f (M1, . . . ,Mn)

P,Q ::= 0 | !k P | P1 |P2

| out(M,N); P | in(M,x : T ); P | newl x : a; P

| let x = g(M1, . . . ,Mn) inP else Q

| if b thenP else Q | update(b+); P

| lock(L); P | unlock(L); P

b ::= b1 ∧ b2 | b1 ∨ b2 | ¬b | M ∈ s
b+ ::= b+1 ; b+2 | M ∈ s | M /∈ s

Sys ::= new s : set T ; Sys

| reduc ∀ ~x : ~T . g(M1, . . . ,Mn) → M ; Sys |P

Figure 1: The process calculus

and system declarations Sys. Types in the language, denoted by T and TSym,
are introduced in the next section.

We mark with P the set of processes produced by the syntactic category P
and with M the set of terms produced by M . To avoid ambiguity, we mark
with S = {s1, . . . , sn} the sets declared in a specific Set-π model, while we use
s, s′, s1, s2 and so on to denote any of the sets in S, and L denotes a collection
of locked sets.

Terms are either variables, names or constructor applications. Names are
annotated with a sequence of terms that record which copy of the process created
them, by the use of session identifiers, and input terms to keep track of data
dependencies. Constructors are generally accompanied by destructors defined
as rewrite rules that describe cryptographic primitives. For example:

reduc ∀xm : tm, xk : key . dec(enc(xm, xk), xk) → xm;

models symmetric key encryption: for every message xm, key xk, if a process
knows an encrypted message enc(xm, xk) and the key xk then it can obtain the

message xm. For any rewrite rule of the form reduc ∀ ~x : ~T . g(M1, . . . ,Mn) →
M ; we require that fv(M) ⊆ fv(M1, . . . ,Mn) ⊆ {~x}.

Processes P,Q are: the stuck process 0, replication – which is marked by a
label k, parallel composition of two processes, output, typed input, restriction
– marked by a label l – and destructor application. We require that processes
are closed and that they are properly alpha-renamed. Note that the user does
not specify annotated names and labels in the initial process, hence the grey
color. Names are introduced by the semantic step for restriction, and unique
labels are automatically inserted by the parser.
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The distinguishing feature of our calculus is the ability to track values in
databases: the membership test (if b thenP else Q) allows us to check a mem-
bership condition b, while a set transition (update(b+); P ) inserts and removes
terms from sets, according to b+. Finally we use locks on sets to ensure linearity
of set transitions: the construct lock(L) prevents all other processes to modify
sets in L in the continuation, while unlock(L) releases the locks on L.

A system Sys is the context in which the process operates. A new set s
containing elements of type T is declared with new s : set T , and the reduc
construct specifies a rewrite rule.

As syntactic sugar we add the following features to Set-π:

• n-tuples 〈M1, . . . ,Mn〉, encoded with a constructor tpln(M1, . . . ,Mn) and

n destructors reduc ∀ ~x : ~T . prj in(tpln(x1, . . . , xn)) → xi;

• pattern matching on tuples for let bindings and inputs, encoded using
multiple let bindings with the destructors prj in and equality tests;

• !{s1,...,sn}P means the replication of P that locks sets s1, . . . , sn before its
execution; the semantics releases the locks when P reduces to 0;

• let variable assignments when the right hand side is not a defined de-
structor, denoting by M /∈ s the expression ¬(M ∈ s), and omitted else
branches where not needed.

CANAuth example As a running example we use CANAuth, a protocol that
runs on top of resource limited CAN bus networks and—due to the real-time
requirements of CAN bus networks—uses one way communication from source
to destination, avoiding challenge-response patterns. The low level mechanism
that is used to ensure freshness properties is the use of counters together with
message authentication codes. Comparing a counter with the highest value
previously received allows to ensure that a message cannot be replayed.

Here we model a simplified form of its message authentication procedure,
that assumes that the two communicating parties, a sender Alice and a receiver
Bob, have established a session key k and are both keeping track of their own
local copy of a counter c.

In order for Alice to send a message m to Bob, she signs m and her own
counter c increased by one with the shared key k. Here we denote with
hmac(msg(c), k) such a signature. Bob receives the message and checks whether
the counter c is already in the set received ; if not, it accepts the message.

A , new1 c : cnt;

let m = msg(c) in

event send(m);

out(ch, 〈m, hmac(m, k)〉); 0
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T ::= t | a | f(T1, . . . , Tn) algebraic data types

TSym ::= T data types

| (T1, . . . , Tn)→ T destructor type

| set T set type

Figure 2: Type system

B , in(ch, 〈xm, xs〉 : 〈msg(cnt), hmac(msg(cnt), key)〉);
let xc = getcnt(xm) in

let = checksign(xm, xs, k) in

if xc /∈ received then

update(xc ∈ received);

event accept(xm); 0

S , new received : set cnt;

reduc ∀x : cnt . getcnt(msg(x)) → x;

reduc ∀x : t, k : key . checksign(x, hmac(x, k), k) → x;

new2 k : key;

(!3A | !4 {received}B)

In order to express authentication we insert two events: send and accept.
These are just syntactic sugar for set operations and, as we show in Section 5,
they can be translated into set operations.

3 Type system

The type system presented in Figure 2 is constructed to track the membership
of values in sets. We denote by Sym the set of symbols for terms, destructors
and sets that occur in a process; the category of types for Sym is TSym .

Data types T are either type variables, name types or constructors over
types. Name types (a) are atomic types like key or cnt, type variables (t) are
used to make destructors polymorphic, and constructor types define the shape of
a constructor. For example the term pk(skeyl[]) has type pkey , pk(skey), and
a possible type for the constructor enc(xm, xk) could be enc(pair(id, pkey), key),
if we give the type pair(id, pkey) to xm and key to xk.

Destructor types are of the form (T1, . . . , Tn)→ T where we require fv(T ) ⊆
fv(T1, . . . , Tn). A destructor can therefore be applied to different types of data
in the process, as long as the typing judgment instantiates a ground type when
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it is applied. For example the destructor:

reduc ∀xm : t, xk : key . dec(enc(xm, xk), xk) → xm;

has type (enc(t, key), key)→ t, while the instantiation dec(enc(xm, xk), xk) has
type (enc(pair(id, pkey), key)) → pair(id, pkey) considering the previous type
assignment.

Set types specify the type of terms contained in sets. For example a set of
type set pk(skey) contains public keys.

The typing rules (Figure 3) enforce the correct typing of processes. Γ is the
type environment, a map from identifiers of terms, destructors and sets to their
type.

The typing rules for terms check whether the environment contains the right
types for variables, and build types accordingly for the constructors. The rules
for systems create the type environment required for typing destructors and
set operations in processes. The rule for destructors applies the substitution
σ = {Ti/xi} to the terms M1, . . . ,Mn,M in order to obtain the type of the
destructor, while the rule for sets simply adds the type to the environment.

Processes are typed recursively on their syntactic form. The rules for the
stuck process, parallel, replication and output simply try to type the continua-
tion under the same Γ. The rules for input and restriction add to Γ the type of
the new bound variables. The rules for if and update check that the membership
test or the set transitions are well-formed (i.e. M is of type T when s is of type
set T ) and that the interested sets are locked. Finally the rule for let infers the
type of the result of the destructor application given the types of M1, . . . ,Mn,
by finding a type substitution that allows typing all arguments of the destructor
and by applying such substitution to the result type.

We allow destructor definitions to contain type variables, while we require
processes and sets to have only terms of ground types. In the Section 4 we intro-
duce a formal semantics for the language, together with the necessary subject
reduction results for the type system.

4 Semantics

We define in Figure 4 an instrumented operational semantics for the language.
We have transitions of the form ρ, S,P → ρ′, S′P ′ where:

• ρ : Var → M, an environment mapping process variables (x, y, . . . ) to
name instances (al[. . . ]),

• S ⊆ S×M records the set-membership states,

• P ⊆ P × ℘(S) × ℘(M) is a multiset of concurrent processes, which are
represented as triplets (P,L, V ) where P is a process, L is the set of locks
held by P , and V is a list of terms that influenced the process (either
session identifiers or inputs).
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Terms:

Γ ` x : T
Γ(x) = T

Γ ` a[V ] : a

Γ `M1 : T1 · · · Γ `Mn : Tn
Γ ` f (M1, . . . ,Mn) : f (T1, . . . , Tn)

Systems:

Γ[g 7→ (σM1, . . . , σMn)→ σM ] ` Sys
Γ ` reduc ∀ ~x : ~T . g(M1, . . . ,Mn) → M ; Sys

σ = {Ti/xi}

Γ[s 7→ set T ] ` Sys
Γ ` new s : set T ; Sys

∅,Γ ` P
Γ ` P

Processes:

∅,Γ ` 0

∅,Γ ` P1 ∅,Γ ` P2

∅,Γ ` P1 |P2

∅,Γ ` P
∅,Γ `!l P

L,Γ ` P
L,Γ ` out(M,N); P

L,Γ[x 7→ T ] ` P
L,Γ ` in(M,x : T ); P

L,Γ[x 7→ a] ` P
L,Γ ` newl x : a; P

L,Γ ` b L,Γ ` P
L,Γ ` update(b+); P

Γ `Mi : σTi L,Γ[x 7→ σT ] ` P L,Γ ` Q
L,Γ ` let x = g(M1, . . . ,Mn) in P else Q

Γ(g) = (T1, . . . , Tn)→ T

L,Γ ` b L,Γ ` P L,Γ ` Q
L,Γ ` if b thenP else Q

L ∪ L′,Γ ` P
L,Γ ` lock(L′); P

L′ ∩ L = ∅

L \ L′,Γ ` P
L,Γ ` unlock(L′); P

L′ ⊆ L

Conditions:

L,Γ `M : T

L,Γ `M ∈ s Γ(s) = set T, s ∈ L
L,Γ ` b1 L,Γ ` b2

L,Γ ` b1 ∧ b2

L,Γ ` b1 L,Γ ` b2
L,Γ ` b1 ∨ b2

L,Γ ` b+1 L,Γ ` b+2
L,Γ ` b+1 ; b+2

L,Γ ` b
L,Γ ` ¬b

Figure 3: Typing rules for terms, rewrite rules, processes and boolean expres-
sions.
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A configuration ρ,S,P represents the parallel execution of all processes in P:

|(Pi,Li,Vi)∈Pρ(Pi)

In the semantic rules we assume Γ to contain the type definitions for sets,
constructors and destructors, and the initial process to be well-typed according
to Γ.

The concrete semantics presented here is a synchronous semantics, which
we choose for simplicity and in accordance with the previous related work on
ProVerif [9].

The rule NIL removes the process 0 when it holds no locks. The rule COM
matches an input and an output processes if the output has the type required
by the input; note that the set V1 of influencing terms for the input process is
increased with the term N ′ constructed from type T using the function ptVx . The
purpose of ptVx is to substitute any type T with a term N ′ that is homomorphic
to T : that is, for every occurrence of a name a in the type T it produces a
variable xa,V that is syntactically different from all other variable occurrences,
and every occurrence of a constructor type produces a constructor term of the
same form.

The rule PAR splits the process into two parallel processes. Replication
REPL is annotated with k ∈ N and produces a fresh copy of P , adding xk to
V and the substitution {k/xk} to the environment ρ; the replication process is
annotated with the index k + 1 after the transition.

The rule for restriction NEW maps x to al[V ] in the continuation of the
process, where l is a unique label for the process newl x : a; P . Here we extend
the terms of Figure 1 to annotate names with a list of variables V under square
brackets.

The rules for let reduce the process to P1 where x is substituted with the
result of the rewrite rule in case of success, and to P2 otherwise.

To that end, we define the relation →ρ as follows. Let s be a term that has
only variables of atomic types and such that ρ(s) is ground. Then s→ρ t holds

iff for some reduction rule reduc ∀ ~x : ~T . l → r, there is a σ such that:

• σ is the most general unifier of l and s; w.l.o.g. we can assume that
fv(Img(σ)) ⊆ Dom(ρ);

• t = σ(r). (Note that ρ(t) is ground.)

Otherwise (if no such σ exists), we write s 6→ρ.
The rules for if b thenP1 else P2 execute P1 in case the set-membership

state S satisfies the boolean formula b, and P2 otherwise. The rule for update
updates the current state according to the expression b+. Finally, lock and
unlock respectively acquire and release the locks on the sets in L′ for the current
process.

Having presented the semantic for Set-π, we need to prove that our typ-
ing judgments are preserved over the transition relation. Hence we introduce
Lemma 1 to then prove subject reduction (Theorem 1).

9



ρ, S,P ] {(0, ∅, V )} → ρ, S,P NIL

ρ, S,P ] {(in(M,x : T ); P1, L1, V1), (out(M,N); P2, L2, V2)} → COM

mgu(N ′, N) ◦ ρ, S,P ] {(P1{N ′/x}, L1, N
′ :: V1), (P2, L2, V2)}

where Γ ` N : T and N ′ = ptri(V1 )
x (T )

ρ, S,P ] {(P1 |P2, ∅, V )} → ρ, S,P ] {(P1, ∅, V ), (P2, ∅, V )} PAR

ρ, S,P ] {(!k P, ∅, V )} → ρ{k/xk}, S,P ] {(P, ∅, xk :: V ), (!k+1 P, ∅, V )} REPL

ρ, S,P ] {(newl x : a; P,L, V )} → ρ, S,P ] {(P{al[V ]/x}, L, V )} NEW

ρ, S,P ] {(let x = g(M1, . . . ,Mn) inP1 else P2, L, V )} →
ρ, S,P ] {(P1{M/x}, L, V )} if g(M1, . . . ,Mn)→ρ M LET1

ρ, S,P ] {(let x = g(M1, . . . ,Mn) inP1 else P2, L, V )} →
ρ, S,P ] {(P2, L, V )} if g(M1, . . . ,Mn) 9ρ LET2

ρ, S,P ] {(if b thenP1 else P2, L, V )} → ρ, S,P ] {(P1, L, V )} if ρ, S |= b IF1

ρ, S,P ] {(if b thenP1 else P2, L, V )} → ρ, S,P ] {(P2, L, V )} if ρ, S 6|= b IF2

ρ, S,P ] {(update(b+); P,L, V )} → ρ, update(S, ρ(b+)),P ] {(P,L, V )} SET

ρ, S,P ] {(lock(L′); P,L, V )} → ρ, S,P ] {(P,L ∪ L′, V )}
if ∀ (P ′′, L′′, V ′′) ∈ P . L′ ∩ L′′ = ∅ LCK

ρ, S,P ] {(unlock(L′); P,L, V )} → ρ, S,P ] {(P,L \ L′, V )} if L′ ⊆ L ULCK

ρ, S |= b1 ∧ b2 iff ρ, S |= b1 and ρ, S |= b2

ρ, S |= b1 ∨ b2 iff ρ, S |= b1 or ρ, S |= b2

ρ, S |= ¬b iff ρ, S 6|= b

ρ, S |= M ∈ si iff ρ(M) ∈ S(si)

update(S,M ∈ s) = S ∪ {(s,M)}
update(S,M /∈ s) = S \ {(s,M)}
update(S, b+1 ; b+2 ) = update(update(S, b+1 ), b+2 )

ptVx (a) = xa,V

ptVx (f(T1, . . . , Tn)) = f(pt1::Vx (T1), . . . , ptn::Vx (Tn))

ri(V ) denotes the set of variables xk in V produced by replication.

Figure 4: Semantics for the process algebra
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We define the mapping âl[V ] = a that recovers the type from an instru-

mented name, and its extension to environments ρ̂(x) = ρ̂(x).

Lemma 1 (Type substitution). Let P be a process, Γ and Γ′ two type environ-
ments, M a term and T a type. If x /∈ Dom(Γ′) and L,Γ[x 7→ T ]Γ′ ` P and
ΓΓ′ `M : T then L,ΓΓ′ ` P{M/x}.

Proof sketch. The proof is carried out by induction on the shape of P , and its
sub-terms and boolean conditions.

In particular, when x is encountered in P , we know that:

(Γ[x 7→ T ]Γ′)(x) = T

Γ[x 7→ T ]Γ′ ` x : T

is applied for the proof of L,Γ[x 7→ T ]Γ′ ` P . Since x{M/x} = M , our statement
directly follows from the hypothesis.

Lemma 2 (Environment extension). Let ρ and ρ′ be two environments such
that Dom(ρ) ⊆ Dom(ρ′) and for all x in Dom(ρ) we have ρ(x) = ρ′(x), let P

be a process, Γ a type environment. If L,Γ[ρ̂] ` P , then L,Γ[ρ̂′] ` P .

Proof. By induction on the shape of P .

Theorem 1 (Subject reduction). Let Γ be a type environment, ρ, S,P a config-
uration. If for all (P,L, V ) ∈ P we have L,Γ[ρ̂] ` P , and if ρ, S,P → ρ′, S′,P ′,
then for all (P ′, L′, V ′) ∈ P ′ we have L′,Γ[ρ̂′] ` P ′.

Proof sketch. The statement can be proven by a case-by-case analysis of the
semantic step ρ, S,P → ρ′, S′,P ′. A detailed version of this proof is available
in the appendix.

Subject reduction enforces that well-typed processes remain well-typed over
transitions, and in particular that values of the right type are inserted and
removed from sets, and that if and update only occur when the concerned sets
are locked.

Attacker processes Because sets represent private information of the proto-
col, our attacker model does not have access to sets. We define it as follows:

Definition 1 (Attacker process). An attacker process is a well-typed process
that shares a channel xch with the honest protocol, and cannot perform set op-
erations (if, update, lock and unlock constructs are excluded).

5 Authentication in Set-π

A general definition of authentication goals for security protocols that has be-
come standard in formal verification are Lowe’s notions of non-injective and
injective agreement [18]. These notions are hard to combine with an abstract
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interpretation approach as they inherently include a form of negation that is
incompatible with over-approximation. For this reason, ProVerif has a special
notion of events that are handled in a special way by its resolution proce-
dure. We now show that in our Set-π calculus we can directly express both
non-injective and injective agreement using sets, and we can thus define events
practically as syntactic sugar.

The definition of authentication is based on events e1 (M) and e2 (M) where
message M typically contains the (claimed) sender and (intended) receiver
name, as well as the data that the participants want to agree on; the event
e1 (M) is issued by the sender typically at the beginning of the session and
e2 (M) by the receiver at the end of the session, but the precise content and
placement can be chosen by the modeler. One can then define non-injective
agreement as follows: whenever an event e2 (M) happens for a message M ,
then previously the event e1 (M) must have happened. Thus, it is an attack
if somebody accepts a message that has not been sent that way. The injec-
tive agreement additionally requires that if e2 (M) has occurred n times, then
e1 (M) must have previously occurred at least n times (i.e., there is an injective
mapping from e2 events to e1 events). Roughly speaking, it is an attack if a
message is accepted more often than it was actually sent. It is hard to auto-
matically verify injective agreement in this formulation. To simplify matters,
it is common to require that the authenticated message M includes something
fresh, i.e., a unique identifier that the sender chooses [23, 9]. Thanks to this
construction, the same e1 event cannot occur more than once. Then, the injec-
tive agreement goal boils down to checking that no e2 event occurs twice (and
that non-injective agreement holds).

Let us thus extend Set-π with event declarations:

Sys ::= . . . | new e : event(T ); Sys

and event processes:

P,Q ::= . . . | event e(M); P

and introduce the semantic rule (EVT):

ρ, S,P ] {(event e(M); P,L, V )} e(M)→ ρ, S,P ] {(P,L, V )}

With this extension of the language, we can reason about non-injective and
injective agreement properties according to Lowe’s definitions. We then encode
processes in the extended calculus with events into processes in standard Set-π
and show how our encoding simulates the events.

Definition 2 (Non-injective agreement). There is a non-injective agreement
between event e1(M) and event e2(M) if and only if, for every possible trace

ρ, S0,P0 → ρ, S1,P1 → · · · → ρ, Sn,Pn produced by the protocol, if ρi, Si,Pi
e2 (M)→

ρi+1, Si+1,Pi+1 occurs in the trace, then also ρj , Sj ,Pj
e1 (M)→ ρj+1, Sj+1,Pj+1

occurs, for j < i.
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We construct a transformation from the extended language with events into
the language without events, then prove the equivalence between Definition 2 in
the original process (extended with events) and a set-property of the transformed
process.

The transformation is as follows:

new e : event(T ); Sys → new e : set T ; Sys
event e(M); P → lock(e); update(M ∈ e);

unlock(e); P

Every event declaration becomes a set declaration in the translated process
(assuming that the names for sets and events are disjoint). Whenever an
event e(M); P occurs, where M is of type T , we substitute it with the pro-
cess that locks e, inserts M in the set e, unlocks e and continues with P ; we also
add a set declaration for e in its scope. Furthermore, to gain precision in the
analysis we merge a set transition followed by an event into a single operation.
That is, if we have a process update(b+); event e(M); P , we transform it into
the process lock(e); update(b+;M ∈ e); unlock(e); P .

Note that this transformation is sound, although two semantic steps are
merged into one: for the purpose of finding violations to an agreement property
where e(M) should happen before e′(M), if there is a trace where event e′(M)
happens between update(b+) and event e(M), then there is also a trace where
event e′(M) happens before the set operation. Given a process P we denote its
event-free encoding as agree(P ).

Theorem 2. Let P be an extended process with events. If there is no reachable
state S from P ′ = agree(P ) that satisfies the expression M ∈ e2 ∧M /∈ e1, then
there is an non-injective agreement between e1 (M) and e2 (M) in P .

Proof sketch. To prove the correctness of our transformation we construct a
simulation relation between P and P ′, were the semantic step of an event is
simulated by our construction. The full proof is found in the appendix.

Definition 3 (Injective agreement). There is an injective agreement between
event e1(M) and event e2(M) if and only if, for every possible trace ρ, S0,P0 →
ρ, S1,P1 → · · · → ρ, Sn,Pn produced by the protocol, if ρi, Si,Pi

e2 (M)→ ρi+1, Si+1,Pi+1

occurs in the trace, then also ρj , Sj ,Pj
e1 (M)→ ρj+1, Sj+1,Pj+1 occurs, for some

j < i; furthermore, there does not exists k > i such that ρk, Sk,Pk
e2 (M)→

ρk+1, Sk+1,Pk+1.

13
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Figure 5: State transitions of messages in the CANAuth example

For proving injective agreement properties the transformation becomes:

new e : event(T ); Sys → new e : set T ;
new twice-e : set T ; Sys

event e(M); P → lock(e, twice-e);
if M /∈ e then

update(M ∈ e);
unlock(e, twice-e); P

else
update(M ∈ twice-e);
unlock(e, twice-e); P

Every event declaration becomes a pair of set declarations for e and twice-e in
the translated process (assuming that the names for sets and events are disjoint).
Whenever an event e(M); P occurs, where M is of type T , we substitute it with
the process that locks e and twice-e, and performs update(M ∈ e); P when
M has not yet been inserted in e; when it is already present in e it performs
update(M ∈ twice-e); P , and in both cases unlocks e and twice-e; finally we add
set declarations for e and twice-e in the scope. Similarly to the non-injective
case, we merge a set operation with the event that follows. Given a process P
we denote its event-free encoding as inj -agree(P ).

Theorem 3. Let P be an extended process with events. If no reachable state
S from P ′ = inj -agree(P ) satisfies the expression (M ∈ e2 ∧M /∈ e1) ∨ (M ∈
twice-e2), then the injective agreement between e1 (M) and e2 (M) holds in P .

Proof sketch. To prove the correctness of our transformation we construct a
simulation relation between P and P ′, were the semantic step of an event is
simulated by our construction. The full proof is found in the appendix.

Relating back to our example, Figure 5 shows in green the desired transitions
and in red the undesired ones. Our model satisfies non-injective agreement if no

14



message is being accepted without being previously sent by the honest principal.
It satisfies injective agreement if no message is accepted twice.

6 Translation

The translation takes a process in Set-π and produces a set of Horn clauses that
are then solved by a saturation based resolution engine, like ProVerif or SPASS.

At the end of the section we show how the translation is carried out for our
CANAuth example. We now present the general concepts of the translation at
an intuitive level, which we then refine with details later in the section. The
translation produces clauses with predicates of the form msg(M,N) to denote
that the system has produced an output of N on channel M , predicates of the
form att(M) to denote that the attacker process knows M , predicates of the
form name(a) to denote that a new name is produced by the protocol, and
clauses that conclude transfer(·, ·) to denote set-transitions.

The body of a Horn clause represents the inputs that are required to reach a
specific point in the process, while the head of the clause represents the output
that is generated. For example:

in(ch, x : a); in(ch, y : b); out(ch, f (x, y))

produces the clause:

msg(ch, x) ∧msg(ch, y)⇒ msg(ch, f (x, y))

Names and variables in the predicates are annotated with a special construc-
tor val that defines their current membership class. For example if we have three
sets in our system s1, s2, s3, the term val(a, 1, 0, xs3,a) represents a name a in the
process algebra in a state where a is in s1, it is not in s2 and its membership to
the set s3 is not constrained, as denoted by the variable xs3,a. By doing so two
clauses can be unified only if the terms are in consistent states. For example
val(a, 1, 0, xs3,a) unifies with val(a, xs1,a, 0, 1) but not with val(a, xs1,a, 1, 1), be-
cause the first term represents a name a that is not in s2, while the third term
represents a in a state where it belongs to s2.

Now we look at how the translation is constructed. We use a special function
α, which we call the set-abstraction, to record whether a particular term belongs
to some sets or not, and introduce the rules of Figure 6 to transform clauses,
predicates and terms into annotated ones. The set-abstraction is a function of
type:

α : (S×M)→ ({0, 1} ∪ {xs,M | s ∈ S,M ∈M})

where we require:

α(s,M) /∈ {0, 1} =⇒ α(s,M) = xs,M
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〈[H1 ∧ · · · ∧Hn ⇒ C]〉α = 〈[H1]〉α ∧ · · · ∧ 〈[Hn]〉α ⇒ 〈[C]〉α
〈[p(M1, . . . ,Mn)]〉α = p(〈[M1]〉α, . . . , 〈[Mn]〉α)

〈[f (M1, . . . ,Mn)]〉α = f (〈[M1]〉α, . . . , 〈[Mn]〉α)

〈[al[V ]]〉α =


val(al[V ], α(s1, a

l[V ]), . . . , α(sn, a
l[V ]))

if l ∈ labels(P0)

val(a>[], α(s1, a
l[V ]), . . . , α(sn, a

l[V ])) otrw

〈[x]〉α = val(x, α(s1, x), . . . , α(sn, x))

Figure 6: Applying the set-abstraction

It takes a process set s and a term M , and returns either the constant 1, to
enforce that M is in s, the constant 0 , to enforce that M is not in s, or the
variable xs,M , to allow one of the two choices to be picked consistently across
the hypotheses.

The function 〈[p]〉α of Figure 6 recursively applies the set-abstraction to the
clauses. When it encounters an annotated name al[V ] in the protocol, it pro-
duces a constructor val(. . . ) where the first parameter is the name itself—with
no annotations in case of attacker names—and the remaining parameters repre-
sent the membership of al[V ] to the sets s1, . . . , sn; similar clauses are generated
for occurring variables. For the purpose of making the analysis feasible, as a
well-formedness condition we require set types (of the form set T ) to contain only
name types and monadic constructors over name types. For example, set Seed,
set pk(Seed) and set sk(Seed) are acceptable set types, while key(Seed,Nonce)
is not a monadic constructor, hence set key(Seed,Nonce) is not an acceptable
set type.

The function [[P ]]HV Lα of Figure 8 takes a process P , a set of hypothesis
predicates H, that intuitively represent the set of messages required to reach
P , a list of influencing terms for the process V , a set of locks L held by the
process, and the set-abstraction α, and produces a set of clauses representing
the protocol behaviour.

Lastly the set of functions restrict , zero and relax modify the set-abstraction
for various constructs of Set-π. The function restrict takes a set-abstraction α
and a boolean formula b and produces the set of all consistent abstractions that
satisfy b, while zero inserts the constant 0 for fresh names, and relax introduces
variables in the image of α for unlocked sets.

Having introduced the auxiliary functions for manipulating the set-abstraction,
we now come back to explaining the translation process. The function relax (α,L)
is applied at each step of the translation, as it inserts variables in the image of
α for all sets that are not locked, as they may be changed by other processes.

The translation for 0 produces an empty set of clauses. Replication !l P
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restrict(α,M ∈ s) = if α(s,M) 6= 0 then {α′} else ∅

where α′(s′,M ′) =

{
1 if M ′ = M ∧ s′ = s

α(s′,M ′) otherwise

restrict(α,M /∈ s) = if α(s,M) 6= 1 then {α′} else ∅

where α′(s′,M ′) =

{
0 if M ′ = M ∧ s′ = s

α(s′,M ′) otherwise

restrict(α, b1 ∧ b2) =
⋃
{restrict(α′, b2) |α′∈restrict(α, b1)}

restrict(α, b1 ∨ b2) = restrict(α, b1) ∪ restrict(α, b2)

restrict(α,¬(b1 ∧ b2)) = restrict(α, (¬b1) ∨ (¬b2))

restrict(α,¬(b1 ∨ b2)) = restrict(α, (¬b1) ∧ (¬b2))

restrict(α,¬¬b) = restrict(α, b)

zero(α, a) = α′

where α′(s,M) =

{
0 if a occurs in M

α(s,M) otherwise

relax (α,L) = α′

where α′(s,M) =

{
α(s,M) if s ∈ L
xs,M otherwise

Figure 7: Functions for updating α

translates P with the introduction of a new session variable xl in the list of
influencing variables V . Parallel composition P1 |P2 is translated as the union
of the clauses generated by both processes.

Input in(M,x : T ) adds the predicate msg(M,N ′) as an hypothesis in H,
where N ′ is a copy of T where every occurrence of a name type is replaced with a

unique variable using pt
ri(V )
x (T ); the substitution {N ′/x} is then applied on the

continuation. Output out(M,N) produces a clause with head 〈[msg(M,N)]〉α
and with hypotheses 〈[H]〉α. The rule for newl x : a introduces a restricted
name: the value class of al[V ] is set to 0 for every set, the predicate name(al[V ])
is introduced both in the hypotheses for analysing the continuation and as a
fact that follows the current set of hypotheses H. This ensures that all the
set-abstraction variables occurring in the head of a clause are closed under the
hypotheses.

The rule for let x = g(M1, . . . ,Mn) inP1 else P2 looks for a substitution
σ that successfully unifies a definition of the rewrite rule for the destructor g
with the actual parameters M1, . . . ,Mn, and then finds a substitution θ that
unifies the terms in the set-abstraction α accordingly to the unification on the
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[[0]]HV Lα = ∅
[[!l P ]]HV ∅α = [[P ]]H(xl :: V )∅(relax (α, ∅))
[[P1 |P2]]HV ∅α = [[P1]]HV ∅(relax (α, ∅)) ∪ [[P2]]HV ∅(relax (α, ∅))
[[in(M,x : T ); P ]]HV Lα = [[P{N ′/x}]](H ∧msg(M,N ′))(N ′ :: V )Lα′

where α′ = relax (α,L), N ′ = ptri(V )
x (T )

[[out(M,N); P ]]HV Lα = [[P ]]HV L(relax (α,L)) ∪ {〈[H ⇒ msg(M,N)]〉α}
[[newl x : a; l P ]]HV Lα = [[P{al[V ]/x}]](H ∧ name(al[V ]))V Lα′

∪ {〈[H ⇒ name(al[V ])]〉α′}
where α′ = zero(α, al[V ])

[[let x = g(M1, . . . ,Mn) inP1 else P2]]HV Lα =

{[[σ(P1)]]σ(H)σ(V )Lα′′ | reduc ∀ ~x′: ~T ′ . g(M ′1, . . . ,M
′
n) → M ′; is in the

scope of let, σ is an m.g.u. satisfying M1 $M
′
1 ∧ · · · ∧Mn $M

′
n ∧ x $M ′,

θ is an m.g.u. satisfying ∀ s,N1, N2, σ(N1) = σ(N2)⇒ α′(s,N1) $ α′(s,N2),

and α′′ satisfies ∀N .α′′(s, σ(N)) = θ(α′(s,N))} ∪ [[P2]]HV Lα′

where α′ = relax (α,L)

[[if b thenP1 else P2]]HV Lα = {[[P1]]HV Lα′ | α′ ∈ restrict(relax (α,L), b)} ∪
{[[P2]]HV Lα′ | α′ ∈ restrict(relax (α,L),¬b)}

[[lock(L′); P ]]HV Lα = [[P ]]HV (L ∪ L′)(relax (α,L))

[[unlock(L′); P ]]HV Lα = [[P ]]HV (L \ L′)(relax (α,L))

[[update(b+); P ]]HV Lα = {〈[H]〉α′ ⇒ implies(〈[M ]〉α′ , 〈[M ]〉α′′) |
M ∈ fv(b+) ∪ fn(b+)} ∪ [[P ]]HV Lα′′′

where α′ = relax (α,L) and α′′ = update(α, b+) and α′′′ = relax (α′′, L)

Figure 8: Translation rules for processes into Horn clauses

process algebra terms; if both substitutions are found then σ(P1) is analysed
where x is substituted with the result of the reduction. The rule also includes
the clauses generated for P2 on the updated state α′, with no restriction, which
is a standard over-approximation found in similar works, e.g. [7].

The rule for if b thenP1 else P2 translates P1 with all the set-abstractions that
satisfy the formula b, and P2 with all the set-abstractions that satisfy the formula
¬b. The rule for lock(s); translates the continuation by first introducing s in the
locked sets L, and applying relax to take into account state changes from other
processes before the lock takes place. Similarly, the rule for unlock(s); translates
the continuation by removing s from the set L, and applying relax . The rule
for update(b+); , for every name and variable occurring in b+ that we denote
by M , creates a clause of the form 〈[H]〉α′ ⇒ transfer(〈[M ]〉α′ , 〈[M ]〉α′∪{(s,M)}), in
order to mark that whenever M appears in a predicate on state α′, we will also
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have the same predicate on state α′ ∪ {(s,M)}, then proceeds to translate the
continuation.

Clauses representing the attacker We add the following set of clauses
to represent a Dolev-Yao attacker. The attacker can eavesdrop messages form
known channels:

msg(xch, xmsg) ∧ att(xch)⇒ att(xmsg)

The attacker can insert known messages into channels:

att(xch) ∧ att(xmsg)⇒ msg(xch, xmsg)

For every n-ary constructor f occurring in the protocol we produce a clause:

att(x1) ∧ · · · ∧ att(xn)⇒ att(f (x1, . . . , xn))

For all destructors of the form g(M1, . . . ,Mn)→M we produce a clause:

att(M1) ∧ · · · ∧ att(Mn)⇒ att(M)

Finally, the attacker knows a name for each name type a in the initial state S0:

⇒ 〈[att(a>[])]〉S0 ; ⇒ 〈[name(a>[])]〉S0

as well as the public channel shared with the honest protocol:

⇒ 〈[att(chl0 [])]〉S0

Clauses representing the set-transitions We now introduce clauses that
express the meaning of the transfer(·, ·) predicate: roughly speaking, when the
fixedpoint contains transfer(M,M ′), then for every fact C[M ] also C[M ′] holds
(for any context C[·]). Since there are infinitely many contexts C[·], we cannot
directly write this as Horn clauses, but it actually suffices to restrict ourselves
to contexts that occur on the right-hand side of a Horn clause. More precisely,
let Cl be the set of clauses produced by the translation [[P0]]∅∅∅α0. Let Ma,
M ′a be two terms of type a, and consider every clause H ⇒ C[Ma] ∈ Cl for
some context C[·] that is not a transfer predicate. Finally let α and α′ be
two set-abstractions such that H ′ ⇒ transfer(〈[M ′a]〉α, 〈[M ′a]〉α′) ∈ Cl , and let
σ = mgu(Ma,M

′
a). For each such case we add the following Horn clause:

〈[C[M ′a]]〉ασ ∧ transfer(〈[M ′a]〉α, 〈[M ′a]〉α′)σ ⇒ 〈[C[M ′a]]〉α′ σ

This set of clauses transfers messages and attacker knowledge between states.
Hence if a predicate is derivable in the saturation in state α and there is a
transition from α to α′, then the predicate will be derivable in state α′.

Intuitively this set of rules suffices for the translation because only the honest
protocol produces state transitions; everything that the attacker can derive in a
state, it can also derive in the successor state. Therefore it is only necessary to
transfer the conclusions for the protocol. Lemma 5 establishes the correctness
of this approach.
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Translation of CANAuth into Horn clauses To show how the translation
is applied to produce Horn clauses from the original description, we have taken
an excerpt from our running example, namely the receiving process, translated
the events into set transitions, and label each point of the program:

P1 , !l1 {r,a,at} l2 in(ch, 〈xm, xs〉 :

〈msg(cnt), hmac(msg(cnt), key)〉));l3

let = eq(xs, hmac(xm, k)) in l4

let xc = getcnt(xm) in l5

if xc /∈ r then l6

if xm /∈ a then l7update(xc ∈ r;xm ∈ a); l8

else l9update(xc ∈ r;xm ∈ at); l10

Figure 9 shows the clauses that are generated, together with the recursive
calls of [[·]] that are required to produce them. We use here the notation like
(H1 = ∅) to indicate the development of the parameters H, V , L and α over
the recursive calls of [[·]], and P l to denote the subprocess of P1 at label l.

7 Correctness

In this section we want to establish the correctness of our translation with re-
spect to the semantics of Section 4. We use the inference system of Figure 10 to
express our correctness results. Intuitively, this set of rules relates the instru-
mented semantics to the Horn clauses generated by the translation, namely that
the fixed-point FP0 covers all possible behaviours of a process, when started in
the given configuration (ρ, L, V, S) and in any environment that cannot change
sets in L.

Let S and S′ again be states of the sets (i.e., S(s) yields the elements that
are members of set s in state S); we can view a state as a special case of an
abstraction α that has no variables (i.e., indetermined set memberships) and
we can thus can write 〈[·]〉S accordingly. We will now show: if the semantic
relation induces a reachable state S at which output N on channel M is pro-
duced, then the Horn clauses generated for the protocol entails the ground fact
〈[msg(M,N)]〉S . This ensures that whatever behaviour is present in the seman-
tics is also captured by the translation.

We denote by CP0
the set of clauses produced by the translation, including

the fixed clauses, and by FP0 the set of ground facts derivable from CP0 . First
we introduce the order relation �L on the facts FP0 derivable from the initial
protocol.

Definition 4 (Order relation �L). The order relation S1 �L S2 between states
S1 and S2 holds iff:
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ρ, V, L, S  0
T-NIL

∀S′ s.t.S �∅ S′ (ρ, V, ∅, S′  Q1 ∧ ρ, V, ∅, S′  Q2)

ρ, V, ∅, S  Q1 |Q2
T-PAR

∀S′ s.t.S �∅ S′ (ρ{l/xl}, (xl :: V ), ∅, S′  Q)

ρ, V, ∅, S !lQ
l ∈ N T-REPL

∀S′ s.t.S �L S′ ∀N s.t. Γ ` N : T

〈[ρ(msg(M,N))]〉S′ ∈ FP0
⇒ (mgu(N ′, N) ◦ ρ),

(N ′ :: V ), L, S′  Q{N ′/x}
ρ, V, L, S  in(M,x : T ); Q

N ′ = pt
ri(V )
x (T ) T-IN

〈[ρ(msg(M,N))]〉S ∈ FP0
∧ ∀S′ s.t.S �L S′ (ρ, V, L, S′  Q)

ρ, V, L, S  out(M,N); Q
T-OUT

〈[ρ(name(al[V ]))]〉S ∈ FP0 ∧ ∀S′ s.t.S �L S′ ρ, V, L, S′  Q{al[V ]/x}
ρ, V, L, S  newl x : a; Q

T-NEW

∀S′ s.t.S �L S′ (∀M s.t. g(M1, . . . ,Mn)→ρ M

ρ, V, L, S′  Q1{M/x}) ∧ ρ, V, L, S′  Q2

ρ, V, L, S  let x = g(M1, . . . ,Mn) inQ1 else Q2
T-LET

∀S′ s.t.S �L S′, (ρ, S′ |= b⇒ ρ, V, L, S′  Q1) ∧ (ρ, S′ |= ¬b⇒ ρ, V, L, S′  Q2)

ρ, V, L, S  if b thenQ1else Q2
T-IF

∀S′ s.t.S �L S′ ρ, V, (L ∪ L′), S′  Q
ρ, V, L, S  lock(L′); Q

T-LOCK

∀S′ s.t.S �L S′ ρ, V, (L \ L′), S′  Q
ρ, V, L, S  unlock(L′); Q

T-UNLOCK

∀S′ s.t.S �L S′, (∀ M ∈ fv(b+) ∪ fn(b+)

implies(〈[ρ(M)]〉S′ , 〈[ρ(M)]〉S′′) ∈ FP0)∧
(∀S′′′ s.t.S′′ �L S′′′, ρ, V, L, S′′′  Q)

ρ, V, L, S  update(b+); Q
S′′ = update(S′, ρ(b+)) T-SET

Figure 10: Inference system for correctness
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(i) ∀sj ∈ L . S1(sj) = S2(sj);

(ii) ∀p(M1, . . . ,Mk) . 〈[p(M1, . . . ,Mk)]〉S1
∈ FP0

⇒ 〈[p(M1, . . . ,Mk)]〉S2
∈ FP0

.

Intuitively the �L relation captures the causal relation of the semantic rules,
as condition (ii) requires all predicates of the form msg, name and att to be
transferred from state S1 to state S2. Furthermore condition (i) imposes that
the locked sets L are not modified between the two states. The most general of
such relations is �∅, as it allows any set to be modified.

Next we formalise the definition for set-abstraction α that was introduced
in Section 6.

Definition 5 (Set-abstraction). The mapping α abstracts S under the environ-
ment ρ iff for every set s, term M , either α(s,M) = 1 and ρ(M) ∈ S(s), or
α(s,M) = 0 and ρ(M) /∈ S(s), or α(s,M) = xs,M .

A set abstraction α abstracts a state S if every pair (s,M) that maps to a
variable in α is mapped to a variable that is unique in the image (this is ensured
syntactically by the use of xs,M ), and whenever α(s,M) maps to the constants
1 and 0 then ρ(M) ∈ s and ρ(M) /∈ s, respectively, in the state S.

The following lemmata establish the relation between the operations used in
the translation and the order relation �L. The interested reader can find the
full proofs in the extended version of this article .

Lemma 3 (relax preserves the set-abstraction over �L). Let S, S′ be two states
such that S �L S′, and assume α abstracts S under ρ. Then α′ = relax (α,L)
abstracts S′ under ρ.

Since relax inserts unique variables in α′ for all sets that are not locked, and
for all sets s that are locked α(s) = α′(s) and S(s) = S′(s) holds by condition
(i) of the order relation, then α satisfies the properties of Definition 5.

Lemma 4 (restrict preserves the set-abstraction). Let α be a set abstraction,
ρ an environment, S a state and A = restrict(α, b). If ρ, S |= b and α abstracts
S, then there exists an α′ ∈ A such that α′ abstracts S.

Restrict produces a set of set-abstractions each representing a possible way
of satisfying the formula b. Lemma 4 establishes that if α abstracts S then at
least one of these restrictions on α satisfies the abstraction of S.

Lemma 5 (transfer preserves S �L S′). Let S be a set-membership state, and
S′ = S ∪ {(s1,M1), . . . , (sj ,Mj)} \ {(sj+1,Mj+1), . . . , (sn,Mn)}. If for all M ∈
{M1, . . . ,Mn} we have transfer(〈[M ]〉S , 〈[M ]〉S′) ∈ FP0

then for any set of locks
L such that {s1, . . . , sn} ∩ L = ∅ we have S �L S′.

Lemma 5 establishes that transfer predicates actually capture the state tran-
sitions, hence following the definition of the order �L the set of predicates
derivable in the updated state is larger than that derivable in the original state.

Next we type the attacker process A and the honest protocol P0, under the
initial environment ρ0 = [xch 7→ chl0 []].
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Lemma 6 (Typability of A). Let A be an attacker process, then ρ0, ∅, ∅, S0  A.

Proof of sketch. Let B be a subprocess of A, ρ an environment, S a state, V a
list of terms. We prove that if:

(i) ρ(B) is a closed process, ρ(V ) is ground,

(ii) S0 �∅ S, and

(iii) for every maximal subtermM of B closed under ρ, we have 〈[ρ(att(M))]〉S ∈
FP0

,

then:
ρ, V, ∅, S  B

Proof by induction over the depth of B.
In particular, we have that (i) fv(A) = xch, hence ρ0(A) is closed; (ii)

S0 �∅ S0 by reflexivity; and (iii) the only maximal subterm of A that is bound
by ρ0 is xch, and by construction of the translation 〈[ρ0(att(xch))]〉S0

∈ FP0
.

Hence the attacker process types.

Lemma 7 (Typability of P0). ρ0, ∅, ∅, S0  P0.

Proof sketch. Let Q be a process. We prove that, given a list of terms V , a set
of locks L, a state S, a set-abstraction α, an environment ρ; if:

(i) ρ(Q) is a closed process, ρ(V ) and ρ(H) are ground,

(ii) α abstracts S under ρ,

(iii) CP0 ⊇ [[Q]]HV Lα,

(iv) for every predicate p in H, we have that 〈[ρ(p)]〉S ∈ FP0

Then ρ, V, L, S  Q.
The proof is carried out by induction on the structure of the process Q.
In particular, (i) ρ0 closes P0 by construction, ρ0(∅) is trivially ground, (ii)

α0 abstracts S0 under ρ0 by construction, (iii) CP0 ⊇ [[P0]]∅∅∅α0 by definition of
the translation, (iv) holds vacuously. Therefore the conditions (i–iv) are satisfied
and hence ρ0, ∅, ∅, S0  P0.

Theorem 4 (Subject reduction). If ρ, S,P → ρ′, S′,P ′ and for all (P,L, V ) ∈ P
we have ρ, V, L, S  P then for all (P ′, L′, V ′) ∈ P ′ we have ρ′, V ′, L′, S′  P ′.

The proof is a case-by-case analysis on the semantic rules for the language.

Theorem 5 (Correctness of the analysis). Let Sys[·] be the system context, let
P0 be the protocol, let T be the set of types used by P0, let A be any attacker
process using only types in T , and ρ0 = [xch 7→ chl0 []].

If the typing [] ` Sys[newl0 xch : ch; P0 |A] holds, and if ρ0, S0,P0 =
{(P0 |A, ∅, ∅)} →∗ ρn, Sn,Pn = Pn′ ] {(out(M,N); P ′, L, V )}; then
〈[ρ(msg(M,N))]〉Sn

∈ FP0
.
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Proof. By Lemma 7 we know that ρ0, ∅, ∅, S0  P0; by Lemma 6 we know that
ρ0, ∅, ∅, S0  A, hence all processes in P0 type in the initial state S0.

Let ρ0, S0,P0 → ρ1, S1,P1 → · · · → ρn, Sn,Pn. By inductively applying
Theorem 4 on the length of the trace n we can conclude that all processes in
Pn type in the Sn.

In particular, the process out(M,N); P ′ types in state Sn and hence
〈[ρn(msg(M,N))]〉Sn

∈ FP0
.

Theorem 5 establishes the final relation between the inference system of
Figure 10 and the instrumented semantics. We use this result to link the facts
generated by the translation to a query of interest.

Corollary 1 (Checking queries). If ρ0, S0,P0 = {(P0 |A, ∅, ∅)}→∗ ρj , Sj ,Pj =
P ′j ] {(out(M,N);P ′, L, V )}
→∗ ρn, Sn,Pn and ρn, Sn |= b then there exists an αb ∈ restrict(α0, b) where
θ = mgu(Sn, αb) and 〈[ρn(msg(M,N))]〉θ◦αb

.

Proof. Follows from Theorem 5 and because Sj �∅ Sn.

Therefore we can express any query of the form:

msg(M,N) where b

where b is a boolean expression ranging over names and monadic constructors
in M and N . Queries of this form are general enough to model secrecy from
the attacker’s perspective (assuming that the channel M is public), as well as
the authentication properties discussed in Section 5.

8 Experimental Evaluation

We implemented our analysis into a prototype tool written in Haskell, that
translates processes specified in Set-π and uses ProVerif as a back-end resolution
engine for Horn clauses. The tool is available for download at [11].

Figure 11 shows the results for our examples: the running example on CA-
NAuth, a flawed version of MaCAN [12], a key registration protocol, and an
implementation of the Yubikey protocol modeled after [17]. We recorded the
running times for our test suite on a 2,7 GHz Intel Core i7 with 8 GB of RAM
running OS X. They are comparable to similar ProVerif models in applied-π,
which shows that there is little overhead induced by our specific translation.
In the next two subsections we present the key registration protocol and the
Yubikey example.

8.1 Key Registration

Here we present a key-registration protocol where an honest principal A registers
its current pair of asymmetric keys (pkA, skA) to the server S. An initial pair of
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Example Average time Vulnerable
CANAuth 0.0174s no
MaCAN 0.0244s yes
Key registration 0.0254s no
Yubikey single 0.0194s no

Figure 11: Experimental results

keys is distributed securely to A and S, where A knows both public and secret
keys while S only knows the public key.

Later in the protocol, before the current key expires, A registers a new key
to the server by sending the following message:

A→ S : senc(sk, (new, a, pk′))

which encodes the new public key pk′ with the old secret key sk. S will be able
to decrypt A’s message with the old public key pk, move pk from the set of valid
keys to the database of revoked keys and send back an acknowledgment to A.

S → A : penc(pk′, (confirm))

In turn A will be able to decrypt this message with sk′ and remove the old sk
from its key-ring.

A ,in(kdba, ska : SKey);

if ska ∈ ringa then

new s′a : Seed;

update(sk(s′a) ∈ ringa);

out(ch, senc(ska, (new key, a, pk(s′a))));

out(kdba, sk(s′a));

in(ch, xc : senc(PKey, xt));

let xr = pdec(sk(s′a), xc) in

if xr = confirm then

update(ska /∈ ringa);

out(ch, ska); 0

S ,in(ch, xs : senc(SKey, (xt, xt′ , PKey)));

in(kdbs, pka : PKey);

let (= new,= a, pk′a) = pdec(pka, xs) in

if pka ∈ valida ∧ pk′a /∈ valida ∧ pk′a /∈ revokeda then
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update(pka ∈ revokeda; pka /∈ valida; pk′a ∈ valida);

out(ch, penc(pk′a, confirm));

out(kdbs, pk
′
a); 0

Sys ,reduc ∀x : Seed,m : t .

pdec(pk(x), senc(sk(x),m))→ m;

reduc ∀x : Seed,m : t .

sdec(sk(x), penc(pk(x),m))→ m;

reduc ∀x : Seed . keypair(sk(x), pk(x)) → true;

new ringa : set sk(Seed);

new valida : set pk(Seed);

new revokeda : set pk(Seed);

new kdba : SKey; new kdbs : SKey; new sa : Seed;

update(sk(sa) ∈ ringa; pk(sa) ∈ valida);

out(kdba, sk(sa));

out(kdbs, pk(sa));

(!{ringa}A | !{valida,revokeda} S)

Once a new key is established and the client receives confirmation from
the server that the secret key sk has been revoked, sk can be revealed to the
attacker. An attacker succeeds in breaking the protocol when she discovers a
secret key that is still registered to the server.

8.2 Yubikey

Yubikey is a small USB token used to authenticate to supported online services.
It works by maintaining a pair of a secret identity (shared with the server) and
a public identity (shared publicly), and by sending to the Yubikey server its
own public identity, together with the one time password encrypted with the
current value of a counter using a shared key k.

Here we model a simplified version of the Yubikey protocol, where we are
interested in the injective agreement between the client Yubikey (Y K) and the
server (Srv). The process BP represents the process activated by pressing
they Yubikey button, which authenticates the user to the server. We define a
public channel ch, and a private channel ch server that is only used to securely
exchange the secret identity and shared key to the server.

The Yubikey process Y K creates a new fresh key k, its own public and
secret identities (xpid and xsid), stores them securely to the server, then reveals
its public identity and starts the BP process.

The button press (BP ) process initiates the authentication procedure, in-
creasing the counter (this is encoded in our calculus by the creation of a fresh
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value), producing the nonces xnonce and xtpr, and sending the encrypted mes-
sage. An event yk press is inserted to denote that the button has been pressed.

The server on the other end receives the login request from the Yubikey,
retrieves its secret identity and key k from its own channel, pattern matching
on the Yubikey’s public identity to find the right tuple, decrypts the message
with the retrieved key k, and finally if the counter has not been used, it issues
a yk login event to conclude the protocol.

Sys , new yk press : event(cnt);

new yk login : event(cnt);

new used : set cnt;

reduc ∀x : t, k : key . sdec(senc(x, k), k) → x;

new ch : channel;

new ch server : channel;

(! Y K | ! Srv)

BP , new xc : cnt;

new xnonce : nonce;

new xtpr : nonce;

event yk press(xc);

out(ch, 〈xpid, xnonce, senc(〈xsid, xc, xtpr〉, k)); 0

Y K , new k : key;

new xpid : pid;

new xsid : sid;

out(ch server, 〈xpid, xsid, k〉);
out(ch, xpid);

!BP

Srv , in(ch, 〈xpid, xnonce, xenc〉 :

〈pid, nonce, senc(〈sid, cnt, nonce〉, key)〉);
in(ch server, 〈= xpid, xsid, xk〉 : 〈pid, sid, key〉);
let 〈= xsid, xcnt, xtpr〉 = sdec(xenc, xk) in

lock(used);

if xcnt /∈ used then

update(xcnt ∈ used);

event yk login(xcnt);

unlock(used); 0

Here we find an injective agreement between the events yk press and yk login.
Although this example shows only one Yubikey and Server pair, it can be ex-
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tended by including multiple copies of the client and server processes, and copies
of the respective sets and events to prove the injective agreement with a finite
number of participants.

9 Conclusions and Related Work

The Set-π calculus and its set-based abstraction method provide an important
step to overcome a serious limitation in current automated protocol verification:
the limited support verifying protocols that use state. When a change in state
can lead to non-monotonicity (things that were possible before the change are
not possible after it) then the standard abstraction and resolution approach
leads to false positives. Our solution is to enter just the “right amount” of
state information into the abstraction of messages: enough to represent the
non-monotonic aspects we want to model, but only so much that we do not
destroy the benefit of the stateless abstraction approach in the first place. This
work has been inspired by several works that go in a similar direction and we
discuss here how they relate to us.

The closest works are two articles that similar to this work add state informa-
tion into abstraction-based approaches. The AIF framework [20] first presented
the idea of encoding set memberships into the state abstraction. AIF is based
on the low-level AVISPA Intermediate Format [23] and thus does not have the
declarativity of a process calculus. For instance, one has to explicitly specify the
attacker and cannot derive it from the calculus. Further, AIF uses the “raw”
set membership abstraction, while in our abstraction approach we do integrate
the context in which messages have been created which gives a finer abstraction.
Also Set-π uses locks on sets, while AIF does not have this notion (and the lock
exists only as per the scope of each AIF transition rule).

The second similar stateful abstraction approach is StatVerif [2] which also
provides an extension of the applied π calculus. While we use state informa-
tion in the abstraction of messages, StatVerif encodes state information as an
additional argument in the generated predicates of the Horn clauses. The state
transition that this approach supports are in some sense like “breaking glass”:
we can make at some point a global change which cannot be reverted (to avoid
cycles in the state transition graph). We believe that Set-π and StatVerif have
some complementary strengths as there are examples that cannot be directly
expressed in the other. While StatVerif can express that a set of messages makes
a state transition at the same time, our abstraction looses this relation between
messages. On the other hand, we can flexibily have messages change their set
membership independent of each other, and they can return to any previous
state. An argument for the expressiveness of Set-π is that we have a systematic
way to formalize agreement properties using sets.

There are several model-checking approaches that can deal with stateful
protocols, namely the AVISPA/AVANTSSAR platform [3]. Note that here one
needs to bound the number of steps of honest agents which is often fine for
finding attacks, but gives limited guarantees for verification. In fact, [14] studies
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APIs of key tokens using SATMC [4] of AVISPA, and considers abstractions of
data similar to our set abstraction. This can in some cases lead to finitely many
reachable abstracted states so the analysis despite depth bound is complete. The
AVANTSSAR platform also includes the novel specification language ASLan
that besides sets also supports the formulation of Horn-clause policies that are
freshly evaluated in every state. For certain fragments we can obtain effective
model-checking approaches, but again at the price of bounding the number of
steps of honest agents [21].

Another verification approach that supports the verification of stateful pro-
tocols is the Tamarin prover [19]. Instead of abstraction techniques, it uses
backward search and lemmata that allow to cut of search to cope with the in-
finite state spaces. Even for quite simple stateful protocols, such lemmata have
to be supplied by the user to achieve termination. This is demonstrated by the
work of [17] that presents another extension of the applied π-calculus where
processes can manipulate a global key map and defines a suitable encoding into
Tamarin rules. The benefit of Tamarin and related tools is a great amount of
flexibility in formalising relationships between data that cannot be captured by
a particular abstraction and resolution approach. However it comes at the price
of loosing automation, i.e., that the user has to supply insight into the problem
by proving auxiliary lemmata.

Other works have proposed a type-based approach to the verification of
stateful protocols. Bugliesi et al. [13] propose a type system with resource-
aware authorisation policies based on a variant of affine logic with replication.
The type system is constructed on a variant of the Applied π-calculus, and
can express access revocation to resources once they are consumed. Swamy
et al. [22] propose a variant of ML with value-dependent types called F* for
proving security properties in stateful protocol implementations. It has been
used to prove the security of a full implementation of the TLS protocol [5],
and can encode the type system of [13]. Like in the case of Tamarin, these
approaches are very expressive but not fully automated and often require the
user to supply additional lemmata. The most interesting current developments
are thus to identify fragments of the problem that can be covered for instance
using SMT solvers.

We believe that there is potential for further refining our analysis, in partic-
ular it seems possible to integrate ideas from the StatVerif approach, possibly
even from the Tamarin-based approach into the set-based abstraction to further
enlarge the class of protocols we can support.

Acknowledgments

The work presented in this paper was partially supported by the EU ARTEMIS
Project no. 295354 “SESAMO” (sesamo-project.eu) and by the EU FP7 Projects
no. 318424, “FutureID: Shaping the Future of Electronic Identity” (futureid.eu).
The authors would like to thank Roberto Vigo for valuable discussion and the
anonymous reviewers for helpful comments.

30



References

[1] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Symposium on Principles of Programming Languages,
2001.

[2] Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark Dermot Ryan.
Statverif: Verification of stateful processes. Journal of Computer Security,
22(5):743–821, 2014.

[3] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta,
Alberto Calvi, Alessandro Cappai, Roberto Carbone, Yannick Cheva-
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A Proofs of correctness

Proof of Theorem 1. We prove the theorem with a case-by-case analysis of the
semantic step ρ, S,P → ρ′, S′,P ′.
Case COM.
ρ, S,P ] {(in(M,x : T ); P1, L1, V1), (out(M,N); P2, L2, V2)} → ρ′, S,P]
{(P1{N ′/x}, L1, N

′ :: V1), (P2, L2, V2)}, where ρ′ = mgu(N ′, N) ◦ ρ and N ′ =

pt
ri(V )
x (T ).
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Let (P,L, V ) be a process that remains unchanged after the transition. We

need to prove that if L,Γ[ρ̂] ` P then L,Γ[ρ̂′] ` P . We know that N is a ground
term, and N ′ is homomorphic to N by construction, where every instance of
a name is mapped to a syntactically unique variable1. Hence ρ and ρ′ satisfy
the properties of Lemma 2, namely that Dom(ρ) ⊆ Dom(ρ′) and that for every

variable x in ρ we have ρ′(x) = ρ(x). Therefore we conclude that L,Γ[ρ̂′] ` P .
For P2 we know by hypothesis that since L2,Γ[ρ̂] ` out(M,N); P2 then also

L2,Γ[ρ̂] ` P2. Applying Lemma 2 we conclude that L2,Γ[ρ̂′] ` P2.
For P1 we know by hypothesis that L1,Γ[ρ̂] ` in(M,x : T ); P1, and hence

L1,Γ[ρ̂, x 7→ T ] ` P1. By Lemma 2, since x does not appear in Dom(Γ) ∪
Dom(ρ′), we obtain L1,Γ[ρ̂′, x 7→ T ] ` P1 and by Lemma 1, because Γ[ρ̂′] `
N ′ : T we obtain L1,Γ[ρ̂′] ` P1{N ′/x}.

Therefore all processes type after the transition.

Case NEW.
ρ, S,P ] {(newl x : a; P,L, V )} → ρ, S,P ] {(P{al[V ]/x}, L, V )}

By hypothesis L,Γ[ρ̂, x 7→ a] ` P and since Γ ` al[V ] : a by Lemma 1 we
conclude that L,Γ[ρ̂] ` P{al[V ]/x}. For all processes in P the typing judgment
is unchanged after the transition, hence it holds by hypothesis.

Case REPL.
ρ, S,P ] {(!k P, ∅, V )} → ρ′, S,P ] {(P, ∅, xk :: V ), (!k+1 P, ∅, V )} where ρ′ =
ρ{k/xk}.

By hypothesis:
∅,Γ[ρ̂] ` P
∅,Γ[ρ̂] `!k P

By Lemma 2 we conclude
∅,Γ[ρ̂′] ` P

and hence also
∅,Γ[ρ̂′] `!k+1 P

applying the typing rule for replication.
Let (P ′, L′, V ′) be a process in P, then by hypothesis L′,Γ[ρ̂] ` P ′. Since

xk /∈ Dom(ρ) and ρ′ = ρ{k/xk}, by Lemma 2 we conclude L′,Γ[ρ̂′] ` P ′.
Remaining cases.
For all remaining cases we have a semantic rule of the form ρ, S,P ]{(P,L, V )}
→ ρ, S′,P]{(P ′, L′, V ′)}. We observe that in all these cases L,Γ[ρ̂] ` P contains
L′,Γ[ρ̂] ` P ′ as hypothesis, hence it holds after the transition. For all processes
in P the typing judgment is unchanged after the transition, hence it holds by
hypothesis.

Proof of Theorem 2. One can construct a simulation relation between agree(P )
and P , defined as a binary relation on semantic configurations: ρ1, S1,P1 ∝
ρ2, S2,P2.

1The use of position indexes in constructors and replication indexes serves this purpose.
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In particular, when P = event e(M); P1 we have that if (3, 1) ∈∝ and:

1ρ, S,P ] {(event e(M); P1, L, V )} e(M)→
2ρ, S,P ] {(P1, L, V )}

then:

3ρ, S′,P ′ ] {(lock(e); update(M ∈ e); unlock(e); P2, L, V )} →
4ρ, S′,P ′ ] {(update(M ∈ e); unlock(e); P2, L, V )} →
5ρ, S′ ∪ {(e,M)},P ′ ] {(unlock(e); P2, L, V )} →
6ρ, S′ ∪ {(e,M)},P ′ ] {(P2, L, V )}

where P2 = agree(P2) and (6, 2) ∈∝.
When a set operation precedes an event, that is:

update(b+); event e(M); P1

the set transition and the event are merged into a single set transition in the
transformed process:

lock(e); update(b+;M ∈ e); unlock(e); P2

Hence we build the following simulation, where the third component extends
the relation with the event that the process being simulated has still to emit, ε
indicating that there is no pending event in the simulated process. If (4, 1, ε) ∈∝
and:

1ρ, S,P ] {(update(b+); event e(M); P1, L, V )} →
2ρ, S′,P ] {(event e(M); P1, L, V )} e(M)→
3ρ, S′,P ] {(P1, L, V )}

then:

4ρ, S′′,P ′ ] {(lock(e); update(M ∈ e); unlock(e); P2, L, V )} →
5ρ, S′′,P ′ ] {(update(b+;M ∈ e); unlock(e); P2, L, V )} →
6ρ, S′′′,P ′ ] {(unlock(e); P2, L, V )} →
7ρ, S′′′,P ′ ] {(P2, L, V )}

where P2 = agree(P1) and (7, 2, e(M)) ∈∝ and (7, 3, ε) ∈∝.
Because P is well-typed all the sets modified by update(b+) are locked, and

there is no unlock operation before the event. Hence for any trace in the orig-
inal process, where the set transition and the event are not consecutive, there
is an equivalent trace where the interleaved transitions execute before the set
transition.
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In particular if a correspondence between events e1(M) and e2(M)—where
e2 (M) follows a set operation—is violated by a trace where e1 (M) occurs be-
tween the execution of the set transition and e2 (M), then there exists a trace
where e1 (M) occurs before the set transition, and such trace can be simulated
by agree(P ).

So if ρ0, S0,P ′0 has no trace such that there exists a k where Sk |= M ∈
e2 ∧M /∈ e1 then it cannot simulate a trace from ρ0, S0,P0 such that e2(M)
has fired but e1(M) has not, but since ρ0, S0,P ′0 ∝ ρ0, S0,P0, there is no trace
violating the non-injective agreement.

Proof of Theorem 3. Similarly to the proof for Theorem 2, we build a simula-
tion, this time between processes inj -agree(P ) and P , where:

In particular we have that if (1, 3) ∈∝ and:

1ρ, S,P ] (event e(M); P1, L, V )
e(M)→

2ρ, S,P ] (P1, L, V )

then:

3ρ, S′,P ′ ] (lock(e, twice-e); if ¬M ∈ e then update(M ∈ e);
unlock(e, twice-e); P2 else update(M ∈ twice-e);
unlock(e, twice-e); P2, L, V )→2

4ρ, S′,P ′ ] (if ¬M ∈ e then update(M ∈ e); unlock(e, twice-e);

P2 else update(M ∈ twice-e); unlock(e, twice-e);

P2, L ∪ {e, twice-e}, V )→
5ρ, S′,P ′ ] (update(M ∈ e); unlock(e, twice-e); P2,

L ∪ {e, twice-e}, V )→
6ρ, S′ ∪ {(e,M)},P ′ ] (unlock(e, twice-e); P2,

L ∪ {e, twice-e}, V )→2

7ρ, S′ ∪ {(e,M)},P ′ ] (P2, L, V )

if e(M) has not previously fired in the trace, then (2, 7) ∈∝, or:

5′ρ, S′,P ′ ] (update(M ∈ twice-e); unlock(e, twice-e); P2,

L ∪ {e, twice-e}, V )→
6′ρ, S′ ∪ {(twice-e,M)},P ′ ] (unlock(e, twice-e); P2,

L ∪ {e, twice-e}, V )→2

7′ρ, S′ ∪ {(twice-e,M)},P ′ ] (P2, L, V )

if e(M) already fired in the trace, then (2, 7′) ∈∝.
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If a process is of the form:

update(b+); event e(M); P1

it gets translated into:

lock(e, twice-e); if ¬M ∈ e
then update(b+;M ∈ e); unlock(e, twice-e); P2

else update(b+;M ∈ e); unlock(e, twice-e); P2

where P2 = agree(P1). An argument similar to the proof for Theorem 2 can be
used to construct a simulation relation.

So if ρ0, S0,P ′0 has no trace such that there exists a k where Sk |= (M ∈
e2 ∧M /∈ e1) ∨ (M ∈ twice-e2) then it cannot simulate a trace from ρ0, S0,P0

such that e2(M) has fired but e1(M) has not, nor a trace where e2(M) has
executed twice, and since ρ0, S0,P ′0 ∝ ρ0, S0,P0 then there is no trace violating
the injective agreement.

Proof of Lemma 3. Let M be a term and s be a set. If s ∈ L then α′(s,M) =
α(s,M) by definition of relax (α,L), and S′(s) = S(s) by property (i) of the
order relation �L. Therefore if α′(s,M) = α(s,M) = 1[] then M ∈ S(s) = S(s′)
and if α′(s,M) = α(s,M) = 0[] then M /∈ S(s) = S′(s).

If α′(s,M) = x then either s ∈ L and α′(s,M) = α(s,M), or s /∈ L and
x = xs,M . In the first case x is different from all other α′(s′,M ′) were M ′ 6=
M ∧ s′ 6= s, by hypothesis if s′ ∈ L and by construction if s /∈ L. In the second
case xs,M is unique by construction.

Proof of Lemma 4. The proof is done by induction on the depth of b.
Base cases:

Case b = M ∈ s.
If A = ∅ then it is the case that α(s,M) = 0, and because α abstracts S under
ρ we have M /∈ S(s), hence ρ, S 6|= M ∈ s, invalidating the hypothesis.

If A = {α′} then α′(s,M) = 1 and ρ, S |= M ∈ s implies ρ(M) ∈ S(s);
and for all s′,M ′ such that s′ 6= s or M ′ 6= M we have α′(s′,M ′) = α(s′,M ′).
Therefore α′ satisfies the abstraction requirements.

Case b = ¬M ∈ s.
Similar to b = M ∈ s.

Inductive cases:

Case b = b1 ∧ b2.
By definition A =

⋃
{restrict(α′, b2) | α′ ∈ restrict(α, b1)}. If ρ, S |= b1 ∧

b2 then also ρ, S |= b1 and ρ, S |= b2. By inductive hypothesis there exists
α1 ∈ restrict(α, b1) that abstracts S under ρ. For such α1 again by inductive
hypothesis there exists α2 ∈ restrict(α1, b2) that abstracts S under ρ, and α2 is
in A by construction.

Case b = b1 ∨ b2.
By definition A = restrict(α, b1) ∪ restrict(α, b2), and since ρ, S |= b1 ∨ b2 then
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(a) ρ, S |= b1 or (b) ρ, S |= b2. If (a) holds, then by inductive hypothesis there
exists an α′ ∈ restrict(α, b1) that abstracts S under ρ, therefore α′ ∈ A. Similar
is the case when (b) holds.

Case b = ¬(b1 ∧ b2).
Then by definition A = restrict(α,¬(b1 ∧ b2)) = restrict(α, (¬b1) ∨ (¬b2)) and
by De Morgan’s laws ρ, S |= ¬(b1 ∧ b2) iff ρ, S |= (¬b1) ∨ (¬b2). The case for ∨
can then be applied, using the inductive hypothesis on ¬b1 and ¬b2.

Case b = ¬(b1 ∨ b2).
Then by definition A = restrict(α,¬(b1 ∨ b2)) = restrict(α, (¬b1) ∧ (¬b2)) and
by De Morgan’s laws ρ, S |= ¬(b1 ∨ b2) iff ρ, S |= (¬b1) ∧ (¬b2). The case for ∧
can then be applied, using the inductive hypothesis on ¬b1 and ¬b2.

Case b = ¬¬b1.
By definition A = restrict(α,¬¬b1) = restrict(α, b1). Since ρ, S |= ¬¬b1 iff
ρ, S |= b1 we obtain the result by inductive hypothesis on b1.

Proof of Lemma 5. The generated clauses for implies produce all the transi-
tions over contexts that appear as conclusions in the clauses generated by the
translation. Therefore if an attacker can derive a fact from a set of known terms
M1, . . . ,Mn in state S, and there is a transition from state S to state S′, then
by induction either (base case) Mi is transferred because it is a head of one
of the clauses produced for the protocol, or (inductive case) it is constructed
by an attacker rule from a set of sub-terms M ′1, . . . ,M

′
k that are transferred by

hypothesis.

Proof of Lemma 6. Let B be a process, ρ an environment, S a state, V a list of
terms. We prove that if:

(i) ρ(B) is a closed process, ρ(V ) is ground,

(ii) S0 �∅ S, and

(iii) for every maximal subtermM of B closed under ρ, we have 〈[ρ(att(M))]〉S ∈
FP0

,

ρ, V, ∅, S  B

Proof by induction over the depth of B.
Base case:

Case B = 0.
Holds trivially:

ρ, V, ∅, S  0

Inductive cases:
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Case B = B1 |B2.
We need to prove:

∀S′ s.t.S �∅ S′ (ρ, V, ∅, S′  B1 ∧ ρ, V, ∅, S′  B2)

ρ, V, ∅, S  B1 |B2

Let i ∈ {1, 2}, let S′ be a state such that S �∅ S′, then: (i) ρ(B) is a
closed process by hypothesis, fv(B) = fv(Bi), hence ρ(Bi) is also closed, ρ(V ) is
ground by hypothesis; (ii) S0 �∅ S �∅ S′ hence S0 �∅ S′, (iii) because S �∅ S′
and because, by inductive hypothesis, for every maximal subterm M of B closed
under ρ we have 〈[ρ(att(M))]〉S ∈ FP0

, then 〈[att(M)]〉S′ ∈ FP0
(condition iv of

�∅).
We proved ρ, V, ∅, S′  B1 and ρ, V, ∅, S′  B2 for any successor state S′;

hence we conclude: ρ, V, ∅, S′  B.

Case B =!lB1.
We need to prove:

∀S′ s.t.S �∅ S′ (ρ ◦ {l/xl}, (xl :: V ), ∅, S′  B1)

ρ, V, ∅, S !lB1

where l ∈ N.
Let S′ be a state such that S �∅ S′; then: (i) fv(B) = fv(B1) and since ρ(B)

is closed then ρ ◦ {l/xl} is also closed, as l does not appear in B; (ρ ◦ {l/xl})(xl ::
V ) is ground because ρ(V ) is ground by hypothesis and xl{l/xl} is ground by
construction; (ii) S0 �∅ S �∅ S′ hence S0 �∅ S′, (iii) because S �∅ S′ and
because, by inductive hypothesis, for every maximal subterm M of B closed
under ρ we have 〈[ρ(att(M))]〉S ∈ FP0

, then 〈[ρ(att(M))]〉S′ ∈ FP0
.

Since we proved ρ, V, ∅, S′  B1 for any successor state S′, we can conclude
that ρ, V, ∅, S  B.

Case B = in(M,x : T ); B1.
We need to prove:

∀S′ s.t.S �∅ S′ ∀N s.t. Γ ` N : T 〈[ρ′(msg(M,N ′))]〉S′

∈ FP0 ⇒ ρ′, (N ′ :: V ), ∅, S′  B1{N ′/x}
ρ, V, ∅, S  in(M,x : T ); B1

where ρ′ = ρ ◦mgu(N ′, N), N ′ = pt
ri(V )
x (T ).

Let S′ be a state such that S �∅ S′, let N be a term such that Γ ` N : T ;
then: (i) since N is ground, ρ′ is by construction a grounding substitution for
all variables that appear in N ′; therefore because fv(B1) = fv(B) ∪ fv(N ′)
and since B is closed under ρ, then B1 is closed under ρ′ and ρ′(V ∪ {N ′})
is ground (ii) S0 �∅ S �∅ S′ hence S0 �∅ S′; and (iii) since for every max-
imal subterm M ′ of B closed under ρ we have 〈[ρ(att(M ′))]〉S ∈ FP0 by hy-
pothesis and S �∅ S′, therefore we have 〈[ρ(att(M ′))]〉S′ ∈ FP0

. In particular
〈[ρ(att(M))]〉S′ ∈ FP0

and given that att(xc) ∧ msg(xc, xm) ⇒ att(xm) ∈ CP0

and 〈[ρ(msg(M,N))]〉S′ ∈ FP0
, we can conclude 〈[ρ(att(N))]〉S′ ∈ FP0

and since
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ρ(N) = ρ′(N ′) then 〈[ρ′(att(N ′))]〉S′ ∈ FP0 . For every maximal subterm M ′

of B1{N ′/x} that is closed under ρ′, one of the following holds: either M ′ is
also a maximal subterm of B closed under ρ, and since Dom(ρ) ⊆ Dom(ρ′)
we have 〈[ρ′(att(M ′))]〉S′ ∈ FP0

; or M ′ = N ′ and hence 〈[ρ′(att(N ′))]〉S′ ∈ FP0
,

or M ′ = f(M1, . . . ,Mn) and N ′ = Mi for some i; for 1 ≤ j ≤ n, j 6= i, Mi

is a maximal subterm of B closed under ρ, therefore 〈[ρ(att(Mj))]〉S ∈ FP0 by
hypothesis, then also 〈[ρ′(att(Mj))]〉S′ ∈ FP0 , and since att(x1)∧ · · · ∧ att(xn)⇒
att(f (x1, . . . , xn)) then also 〈[ρ′(att(f (M1, . . . ,Mn)))]〉S′ ∈ FP0

; therefore we can
conclude that ρ′, V, ∅, S′  B1{N ′/x} therefore also ρ, V, ∅, S  in(M,x : T ); B1

holds.

Case B = out(M,N); B1.
We need to prove:

〈[ρ(msg(M,N))]〉S ∈ FP0
∧ ∀S′ s.t.S �∅ S′ (ρ, V, ∅, S′  B1)

ρ, V, ∅, S  out(M,N); B1

Let us prove the first condition of the rule. By hypothesis, M and N are
bound terms inB, therefore 〈[ρ(att(M))]〉S ∈ FP0

and 〈[ρ(att(N))]〉S ∈ FP0
. Since

att(xc) ∧ att(xm) ⇒ msg(xc, xm) ∈ CP0
we conclude that 〈[ρ(msg(M,N))]〉S ∈

FP0
.
To prove the second condition, let S′ be a state such that S �∅ S′; then: (i)

ρ(B) is a closed process by hypothesis, and fv(B1) ⊆ fv(B), therefore ρ(B1) is
also closed; ρ(V ) is ground by hypothesis; (ii) S0 �∅ S �∅ S′ hence S0 �∅ S′;
(iii) any maximal subterm M ′ of B closed under ρ is also a maximal subterm of
B1 closed under ρ; by hypothesis then 〈[ρ(att(M ′))]〉S ∈ FP0

and since S �∅ S′
then 〈[ρ(att(M ′))S′]〉∈FP0

and therefore ρ, V, ∅, S′  B1.
Since both conditions of the rule are satisfied, we can conclude ρ, V, ∅, S 

out(M,N); B1.

Case B = newl x : a; B1.
We need to prove:

〈[name(al[V ])]〉S ∈ FP0
∧

∀S′ s.t.S �∅ S′ ρ, V, ∅, S′  B1{al[V ]/x}
ρ, V, ∅, S  newl x : a; B1

because x is restricted within the attacker process A.
By definition of the attacker rules, 〈[name(a>[])]〉S0

∈ FP0
, and since l /∈

label(P0), then 〈[al[V ]]〉S0
= 〈[a>[]]〉S0

, hence 〈[name(al[V ])]〉S0
∈ FP0

. Since S0 �∅
S then 〈[name(al[V ])]〉S ∈ FP0 . Similarly we conclude that also 〈[att(al[V ])]〉S′ ∈
FP0 .

Let S′ be a state such that S �∅ S′; then: (i) because fv(B1{al[V ]/x}) =
(fv(B) ∪ {x}) \ {x} = fv(B) and by hypothesis ρ(B) is closed, then also
ρ(B1{al[V ]/x}) is closed; ρ(V ) is ground by hypothesis; (ii) since S0 �∅ S �∅ S′
then S0 �∅ S′, and (iii) by hypothesis, for every maximal subterm M of B
closed under ρ we have 〈[ρ(att(M))]〉S ∈ FP0 , and since S �∅ S′ we also have
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〈[ρ(att(M))]〉S′ ∈ FP0 ; we also have 〈[ρ(att(al[V ]))]〉S′ ∈ FP0 ; every maximal sub-
termM ofB1 closed by ρ is either a maximal subterm ofB closed by ρ, or it is the
newly created name al[V ], or it is an applied constructor over maximal ρ-closed
subterms of B: similarly to the case for input, in either situation the clause
〈[ρ(att(M))]〉S′ holds; therefore we satisfy the judgment ρ, V, ∅, S′  B1{a[]/x}.

Because all conditions of the rule are satisfied we conclude V, ∅, S  newl x :
a; B1.

Case B = let x = g(M1, . . . ,Mn) inB1 else B2.
We need to prove:

∀S′ s.t.S �∅ S′ (∀M s.t. g(M1, . . . ,Mn)→ρ M

ρ, V, ∅, S′  B1{M/x}) ∧ ρ, V, ∅, S′  B2

ρ, V, ∅, S  let x = g(M1, . . . ,Mn) inB1 else B2

Let S′ be a state such that S �∅ S′.
We now prove ρ, V, ∅, S′  B1{M/x}: (i) because ρ(B) is closed, and because

fv(M) ⊆ fv(M1, . . . ,Mn), then fv(B1{M/x}) = (fv(B) ∪ {x}) \ {x} ∪ fv(M) =
fv(B), then also ρ(B1) is closed; (ii) since S0 �∅ S �∅ S′ then S0 �∅ S′, and
(iii) by hypothesis, for every maximal subterm N of B closed under ρ we have
〈[ρ(att(N))]〉S ∈ FP0

, and since S �∅ S′ we also have 〈[ρ(att(N))]〉S′ ∈ FP0
; in

particular the property holds for M1, . . . ,Mn as they are bound in B; since for
all destructor definitions:

reduc ∀ ~x : ~T . g(M ′1, . . . ,M
′
n) → M ′

CP0
includes the rule:

att(M ′1) ∧ · · · ∧ att(M ′n)⇒ att(M ′)

and because the rewrite rule succeeds producing M , then 〈[ρ(att(M1))]〉S′ ∈
FP0

and 〈[ρ(att(Mn))]〉S′ ∈ FP0
and hence 〈[ρ(att(M))]〉S′ ∈ FP0

. Hence the
conditions (i–iii) are satisfied and we conclude ρ, V, ∅, S′  B1{M/x}.

We now prove ρ, V, ∅, S′  B2: (i) because σ is a grounding substitution
for B, and since fv(B) = fv(B2) then it is also grounding for B2; (ii) since
S0 �∅ S �∅ S′ then S0 �∅ S′, and (iii) by hypothesis, for every maximal
subterm M of B that is closed under ρ we have 〈[ρ(att(M))]〉S ∈ FP0

, and since
S �∅ S′ we also have 〈[ρ(att(M))]〉S′ ∈ FP0

; hence we conclude ρ, V, ∅, S′  B2.
Since both hypotheses of the rule are satisfied, we conclude that ρ, V, ∅, S 

let x = g(M1, . . . ,Mn) inB1 else B2.

In particular, we have that (i) fv(A) = xch, hence ρ0(A) is closed; (ii)
S0 �∅ S0 by reflexivity; and (iii) the only maximal subterm of A that is bound
by ρ0 is xch, and by construction of the translation 〈[ρ(att(xch))]〉S0

∈ FP0
.

Hence the attacker process types.

Proof of Lemma 7. Let Q be a process. We prove that, given a list of terms V ,
a set of locks L, a state S, a set-abstraction α, an environment ρ; if:
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(i) ρ(Q) is a closed process, ρ(V ) and ρ(H) are ground,

(ii) α abstracts S,

(iii) CP0
⊇ [[Q]]HV Lα,

(iv) for every predicate p in H, we have that 〈[ρ(p)]〉S ∈ FP0

Then ρ, V, L, S  Q.
The proof is carried by induction on the size of the process Q.
Base case:

Case Q = 0.
Trivially holds:

ρ, V, L, S  0

Inductive cases:

Case Q = Q1 |Q2.
We need to prove:

∀S′ s.t.S �∅ S′ (ρ, V, ∅, S′  Q1 ∧ ρ, V, ∅, S′  Q2)

ρ, V, ∅, S  Q1 |Q2

Let α′ = relax (α, ∅), let S′ be any state such that S �∅ S′.
Let i ∈ {1, 2}, then: (i) fv(Qi) ⊆ fv(Q) hence ρ(Qi) is closed, and ρ(V )

and ρ(H) are ground by hypothesis, (ii) α′ abstracts S′ under ρ by Lemma 3,
(iii) CP0

⊇ [[Q1 |Q2]]HV ∅α ⊇ [[Qi]]HV ∅α′ by construction, (iv) by hypothesis,
for every predicate p in H, we have that 〈[ρ(p)]〉S ∈ FP0 and S �∅ S′, then
〈[ρ(p)]〉S′ ∈ FP0 , we finally conclude that ρ, V, ∅, S′  Qi.

Therefore we can conclude that also ρ, V, ∅, S  Q1 |Q2.

Case Q =!lQ1.
We need to prove:

∀S′ s.t.S �∅ S′ (ρ ◦ {l/xl}, (xl :: V ), ∅, S′  Q1)

ρ, V, ∅, S !lQ1
l ∈ N

Let α′ = relax (α, ∅), let S′ be any state such that S �∅ S′ and ρ′ = ρ◦{l/xl}.
Because (i) fv(Q1) = fv(Q) hence ρ′(Q1) is closed, and ρ′(xl :: V ) is ground

since xl is ground by the applied substitution {l/xl} and ρ(V ) is ground by
inductive hypothesis, ρ(H) is ground by hypothesis hence also ρ′(H) is ground,
(ii) α′ abstracts S′ under ρ by Lemma 3, (iii) CP0

⊇ [[!lQ1]]HV ∅α = [[Q1]]H(xl ::
V )∅α′, and (iv) by hypothesis, for every predicate p inH, we have that 〈[ρ(p)]〉S ∈
FP0 and S �∅ S′, then 〈[ρ(p)]〉S′ ∈ FP0 , we finally conclude that ρ ◦ {l/xl}, (xl ::
V ), ∅, S′  Q1.

Therefore we can conclude that also ρ, V, ∅, S !lQ1.
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Case Q = in(M,x : T ); Q1.
We need to prove:

∀S′ s.t.S �L S′ ∀N s.t. Γ ` N : T 〈[ρ(msg(M,N))]〉S′

∈ FP0 ⇒ ρ′, (N ′ :: V ), L, S′  Q1{N ′/x}
ρ, V, L, S  in(M,x : T ); Q1

where N ′ = pt
ri(V )
x (T ).

Let α′ = relax (α,L), let S′ be any state such that S �L S′, let ρ′ =
ρ ◦mgu(N ′, N).

Because (i) fv(Q1{N ′/x}) = (fv(Q) ∪ {x}) \ {x} ∪ fv(N ′) ⊆ Dom(ρ′), and
ρ′(N ′ :: V ) is ground because by construction ρ′(N ′) is ground, and ρ(V ) is
ground by hypothesis, and ρ′(H ∧msg(M,N ′)) is also ground, because ρ′(N ′) is
ground by construction, and ρ(M) is ground by hypothesis, since ρ(Q) is closed;
(ii) α′ abstracts S′ by Lemma 3, (iii) CP0

⊇ [[P{N ′/x}]](H ∧ msg(M,N ′))(N ′ ::
V )Lα′ and (iv) by hypothesis, for every predicate p in H, we have that 〈[ρ(p)]〉S ∈
FP0

and S �L S′, then 〈[ρ(p)]〉S′ ∈ FP0
, and by hypothesis on the rule we re-

quire 〈[ρ(msg(M,N))]〉S′ ∈ FP0 , therefore we conclude that ρ′, (N ′ :: V ), L, S′ 
Q1{N ′/x}.

Therefore we can conclude that also ρ, V, L, S  in(M,x : T ); Q1.

Case Q = out(M,N); Q1.
We need to prove:

〈[ρ(msg(M,N))]〉S ∈ FP0
∧

∀S′ s.t.S �L S′ (ρ, V, L, S′  Q1)

ρ, V, L, S  out(M,N); Q1

Let α′ = relax (α,L), and let S′ be any state such that S �L S′.
Because (i) fv(Q1) = fv(Q) and ρ(Q) is closed, hence ρ(Q1) is closed, by

inductive hypothesis ρ(V ) and ρ(H) are ground, (ii) α′ abstracts S′ by Lemma 3,
(iii) CP0 ⊇ [[Q1]]HV Lα′ and (iv) by hypothesis, for every predicate p in H, we
have that 〈[ρ(p)]〉S ∈ FP0

and S �L S′, then 〈[ρ(p)]〉S′ ∈ FP0
, hence we conclude

that ρ, V, L, S′  Q1.
Since by construction 〈[H ⇒ msg(M,N)]〉α ∈ CP0

, and by hypothesis α
abstracts S and for every predicate p in H holds 〈[ρ(p)]〉S ∈ FP0 , we can conclude
that 〈[ρ(msg(M,N))]〉S ∈ FP0 .

Therefore all hypotheses of the rule for output are satisfied, so we can con-
clude that ρ, V, L, S  out(M,N); Q1.

Case Q = newl x : a; Q1.
We need to prove:

〈[ρ(name(al[V ]))]〉S ∈ FP0
∧

∀S′ s.t.S �L S′ ρ, V, L, S′  Q1{al[V ]/x}
ρ, V, L, S  newl x : a; Q1
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Since by construction 〈[H ⇒ name(al[V ])]〉α ∈ CP0 , and by hypothesis α
abstracts S and for every predicate p in H holds 〈[ρ(p)]〉S ∈ FP0 , we can conclude
that 〈[ρ(name(al[V ]))]〉S ∈ FP0

.
Let α′ = relax (α,L), let S′ be any state such that S �L S′.
Because (i) fv(Q1{al[V ]/x}) = (fv(Q) ∪ {x}) \ {x} ∪ fv(V ) and since ρ(Q)

and ρ(V ) are closed by inductive hypothesis, also ρ(Q1{al[V ]/x}) is closed; ρ(H)
and ρ(V ) are closed by inductive hypothesis; (ii) α′ abstracts S′ by Lemma 3,
(iii) CP0 ⊇ [[Q1{al[V ]/x}]](H ∧ name(al[V ]))V Lα′ and (iv) by hypothesis, for
every predicate p in H, we have that 〈[ρ(p)]〉S ∈ FP0

and S �L S′, then
〈[ρ(p)]〉S′ ∈ FP0

, and since we proved 〈[ρ(name(al[V ]))]〉S ∈ FP0
and S �L S′ then

〈[ρ(name(al[V ]))]〉S′ ∈ FP0
, therefore we conclude that ρ, V, L, S′  Q1{al[V ]/x}.

Therefore all hypotheses of the rule for restriction are satisfied, so we can
conclude that ρ, V, L, S  newl x : a; Q1.

Case Q = let x = g(M1, . . . ,Mn) inQ1 else Q2.
We need to prove:

∀S′ s.t.S �L S′ (∀M s.t. g(M1, . . . ,Mn)→ρ M

ρ, V, L, S′  Q1{M/x}) ∧ ρ, V, L, S′  Q2

ρ, V, L, S  let x = g(M1, . . . ,Mn) inQ1 else Q2

Let α′ = relax (α,L), let S′ be any state such that S �L S′. Assume
g(M1, . . . ,Mn)→ρ M .

As for the Q1 branch, the following clauses will be generated:

{[[σ(P1)]]σ(H)σ(V )Lα′′ | reduc ∀ ~x′ : ~T ′

g(M ′1, . . . ,M
′
n)→M ′ is in the scope of let, σ is an m.g.u.

that satisfies M1 $M
′
1 ∧ · · · ∧Mn $M

′
n ∧ x $M ′, θ is

an m.g.u. that satisfies, ∀ s,N1, N2, σ(N1) = σ(N2)⇒
α′(s,N1) $ α′(s,N2) and α′′(s, σ(N1)) = θ(α′(s,N1))}

Because (i) fv(Q1{M/x}) = (fv(Q) ∪ {x}) \ x ∪ fv(M) and we require that
fv(M) ⊆ fv(M1, . . . ,Mn), then fv(Q1{M/x}) ⊆ fv(Q) ∪ fv(M1, . . . ,Mn); since
ρ(Q) is closed then also ρ(M1), . . . , ρ(Mn) are closed, hence we conclude that
ρ(Q1{M/x}) is also closed; ρ(H) and ρ(V ) are ground by hypothesis; (ii) α′

abstracts S′ under ρ by Lemma 3, (iii) CP0
⊇ [[σ(Q1)]]σ(H)σ(V )Lα′ and (iv) by

hypothesis, for every predicate p in H, we have that 〈[ρ(p)]〉S ∈ FP0 and S �L S′,
then 〈[ρ(p)]〉S′ ∈ FP0 , therefore we conclude that ρ, V, L, S′  Q1{M/x}.

As for the Q2 branch: (i) ρ(Q) is closed, hence also ρ(Q2); ρ(V ) and ρ(H)
are ground by hypothesis, (ii) α′ abstracts S′ under ρ by Lemma 3, (iii) CP0

⊇
[[Q2]]HV Lα′ by definition of the translation, and (iv) by hypothesis, for every
predicate p in H, we have that 〈[ρ(p)]〉S ∈ FP0 and S �L S′, then 〈[ρ(p)]〉S′ ∈ FP0 ,
we conclude that ρ, V, L, S′  Q1.

Therefore all hypotheses of the rule for let are satisfied, so we can conclude
that ρ, V, L, S  let x = g(M1, . . . ,Mn) inQ1 else Q2.
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Case Q = if b thenQ1 else Q2.
We need to prove:

∀S′ s.t.S �L S′, (ρ, S′ |= b⇒ ρ, V, L, S′  Q1)∧
(ρ, S′ |= ¬b⇒ ρ, V, L, S′  Q2)

ρ, V, L, S  if b thenQ1else Q2

Let α′ ∈ restrict(relax (α,L), b), let S′ be any state such that S �L S′.
Assume ρ, S′ |= b.

Because (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground by
hypothesis, (ii) α′ abstracts S′ under ρ and is guaranteed to exist by Lemma 3
and Lemma 4 since ρ, S |= b, (iii) CP0 ⊇ [[Q1]]HV Lα′ by definition of the
translation, and (iv) by hypothesis, for every predicate p in H, we have that
〈[ρ(p)]〉S ∈ FP0

and S �L S′, then 〈[ρ(p)]〉S′ ∈ FP0
, we conclude that ρ, V, L, S′ 

Q1.
A similar argument, taking α′ ∈ restrict(relax (α,L),¬b) and assuming ρ, S′ |=

¬b, proves ρ, V, L, S′  Q2.
Therefore all hypotheses of the rule for let are satisfied, so we can conclude

that ρ, V, L, S  if b thenQ1else Q2.

Case Q = lock(s); Q1.
We need to prove:

∀S′ s.t.S �L S′ ρ, V, (L ∪ {s}), S′  Q1

ρ, V, L, S  lock(s); Q1

Let α′ = relax (α,L), let S′ be any state such that S �L S′.
Because (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground by

hypothesis, (ii) α′ abstracts S′ under ρ by Lemma 3, (iii) CP0 ⊇ [[Q1]]HV (L ∪
{s})α′ by definition of the translation, and (iv) by hypothesis, for every predicate
p in H, we have that 〈[ρ(p)]〉S ∈ FP0

and S �L S′, then 〈[ρ(p)]〉S′ ∈ FP0
, we

conclude that ρ, V, (L ∪ {s}), S′  Q1.
Therefore all hypotheses of the rule for lock are satisfied, so we can conclude

that ρ, V, L, S  lock(s); Q1.

Case Q = unlock(s); Q1.
We need to prove:

∀S′ s.t.S �L S′ ρ, V, (L \ {s}), S′  Q1

ρ, V, L, S  unlock(s); Q1

Let α′ = relax (α,L), let S′ be any state such that S �L S′.
Because (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground by

hypothesis, (ii) α′ abstracts S′ under ρ by Lemma 3, (iii) CP0
⊇ [[Q1]]HV (L \

{s})α′ by definition of the translation, and (iv) by hypothesis, for every predicate
p in H, we have that 〈[ρ(p)]〉S ∈ FP0 and S �L S′, then 〈[ρ(p)]〉S′ ∈ FP0 , we
conclude that ρ, V, (L \ {s}), S′  Q1.
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Therefore all hypotheses of the rule for unlock are satisfied, so we can con-
clude that ρ, V, L, S  unlock(s); Q1.

Case Q = update(b+); Q1.
We need to prove:

∀S′ s.t.S �L S′ (∀M ∈ fv(b+) ∪ fn(b+)
implies(〈[ρ(M)]〉S′ , 〈[ρ(M)]〉S′′) ∈ FP0

) ∧
(∀S′′′ s.t.S′′ �L S′′′, ρ, V, L, S′′′  Q1)

ρ, V, L, S  update(b+); Q1

where S′′ = update(S′, ρ(b+)).
Let α′ = relax (α,L), let S′ be any state such that S �L S′.
Because by hypothesis for all p in H we have that 〈[p]〉S ∈ FP0

, and S �L S′
then 〈[p]〉S′ ∈ FP0

.
Let α′′ = update(α′, b+) = α′ ∪ {(s1,M1), . . . , (sj ,Mj)} \ {(sj+1,Mj+1), . . . ,

(sn,Mn)}. Because also CP0
⊇ {〈[H]〉α′ ⇒ implies(〈[M ]〉α′ , 〈[M ]〉α′′) | M ∈

{M1, . . . ,Mn}} by the translation, and α′ abstracts S′ under ρ by Lemma 3,
we obtain that ∀ M ∈ fv(b+) ∪ fn(b+) implies(〈[ρ(M)]〉S′ , 〈[ρ(M)]〉S′′) ∈ FP0 and
hence the first condition is satisfied.

We are left to prove for every state S′′′ such that S′′ �L S′′′ we have
ρ, V, L, S′′′  Q1.

We know that: (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are
ground by hypothesis, (ii) α′ abstracts S′ under ρ by Lemma 3, hence α′′ =
update(α, b+) abstracts S′′ under ρ by Lemma 5, therefore also α′′′ = relax (α′′, L)
abstracts S′′′ under ρ again by Lemma 3; (iii) CP0

⊇ [[Q1]]HV L(α′ ∪ {(s,M)})
by definition of the translation, and (iv) for every predicate p in H we proved
that 〈[ρ(p)]〉S′ ∈ FP0

and that implies(〈[ρ(M)]〉S′ , 〈[ρ(M)]〉S′′) ∈ FP0
; by Lemma 5

we have that also 〈[ρ(p)]〉S′′ ∈ FP0 ; finally because S′′ �L S′′′ we also obtain
that 〈[ρ(p)]〉S′′′ ∈ FP0

.
Hence conditions (i-iv) are satisfied so ρ, V, L, S′′′  Q1.
In particular, (i) ρ0 closes P0 by construction, ρ0(∅) is trivially ground, (ii)

α0 abstracts S0 under ρ0 by construction, (iii) CP0
⊇ [[P0]]∅∅∅α0 by definition of

the translation, (iv) holds vacuously. Therefore the conditions (i–iv) are satisfied
and hence ρ0, ∅, ∅, S0  P0.

Proof of Theorem 4. We prove subject reduction with a case-by-case analysis
on the semantic steps.

Case NIL.
ρ, S,P ] {(0, L, V )} → ρ, S,P

By hypothesis for all (P,L, V ) ∈ P we have ρ, V, L, S  P , and this trivially
holds also after the transition.

Case COM.
ρ, S,P ] {(in(M,x :T ); P1, L1, V1),(out(M,N); P2, L2, V2)}
→ ρ′, S,P ] {(P1{N ′/x}, L1, N

′ :: V1), (P2, L2, V2)} where Γ ` N : T and ρ′ =

ρ ◦mgu(N ′, N) and N ′ = pt
ri(V )
x (T ).
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All processes in P type after the transition: in particular, they are not
influenced by the variables introduced in the domain of ρ, which are enforced
to be syntactically different (Lemma 2). By hypothesis:

∀S′ s.t.S �L1
S′ ∀N ′′ s.t. Γ  N ′′ : T

〈[ρ(msg(M,N ′′))]〉S′ ∈ FP0
⇒

(ρ ◦mgu(N ′′′, N ′′)), (N ′ :: V1), L1, S
′  P1{N ′′′/x}

ρ, V1, L1, S  in(M,x : T ); P1

and
〈[ρ(msg(M,N))]〉S ∈ FP0

∧
∀S′ s.t.S �L2

S′ (ρ, V2, L2, S
′  P2)

ρ, V2, L2, S  out(M,N); P2

Therefore 〈[ρ(msg(M,N))]〉S ∈ FP0
according to the deduction rule for output.

Since also S �L1 S and Γ ` N : T by hypothesis, by the rule for input we
have that (ρ ◦ mgu(N ′, N)), (N ′ :: V1), L1, S  P1{N ′/x}. Finally, by the rule
for output and because S �L2

S, and by the extension lemma (Lemma 2) on
ρ′, we have ρ′, V2, L2, S  P2.

Case PAR.
ρ, S,P ] {(P1 |P2, ∅, V )} → ρ, S,P ] {(P1, ∅, V ), (P2, ∅, V )}

All processes in P trivially type after the transition. By hypothesis:

∀S′ s.t. S �∅ S′ (ρ, V, ∅, S′  P1 ∧ ρ, V, ∅, S′  P2)

ρ, V, ∅, S  P1 |P2

In particular because S �∅ S we have that ρ, V, ∅, S  P1 and ρ, V, ∅, S  P2.

Case REPL.
ρ, S,P ] {(!k P, ∅, V )} →
ρ ◦ {k/xk}, S,P ] {(P, ∅, xk :: V ), (!k+1 P, ∅, V )}

All processes in P trivially type after the transition, as xk does not appear
in any of them by construction. By hypothesis:

∀S′ s.t.S �∅ S′ (ρ ◦ {l/xl}, (xl :: V ), ∅, S′  P )

ρ, V, ∅, S !k P
l ∈ N

with l = k. The rule can be applied with l = k + 1 and hence also ρ ◦
{k/xk}, V, ∅, S !k+1 P , since xk does not appear in the process !k1 P . In partic-
ular S �∅ S and therefore by the extension lemma (Lemma 2) ρ ◦ {k/xk}(V ∪
{i}), ∅, S  P .

Case NEW.
ρ, S,P ] {(newl x : a; P,L, V )} →
ρ, S,P ] {(P{al[V ]/x}, L, V )}

All processes in P trivially type after the transition.
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By hypothesis:

x ∈ bv(P0)⇒ (〈[ρ(name(a[V ]))]〉S ∈ FP0
∧

∀S′ s.t.S �L S′ ρ, V, L, S′  P{al[V ]/x})
ρ, V, L, S  newl x : a; P

In particular S �L S and hence the judgment ρ, V, L, S  P{al[V ]/x} holds.

Case LET-1.
ρ, S,P ] {(let x = g(M1, . . . ,Mn) inP1 else P2, L, V )} →
ρ, S,P ] {(P1{M/x}, L, V )} and g(M1, . . . ,Mn)→ρ M

All processes in P trivially type after the transition.
By hypothesis:

∀S′ s.t.S �L S′ (∀M s.t. g(M1, . . . ,Mn)→ρ M
ρ, V, L, S′  P1{M/x}) ∧ ρ, V, L, S′  P2

ρ, V, L, S  let x = g(M1, . . . , Qn) inP1 else P2

Since S �L S we obtain ρ, V, L, S  P1{M/x}.
Case LET-2.
ρ, S,P ] {(let x = g(M1, . . . ,Mn) inP1 else P2, L, V )} →
ρ, S,P ] {(P2, L, V )} and g(M1, . . . ,Mn) 9ρ

Similarly to the case LET-1, all processes in P type after the transition, and
ρ, V, L, S  P2.

Case IF-1.
ρ, S,P ] {(if b thenP1 else P2, L, V )} →
ρ, S,P ] {(P1, L, V )} and S |= b.

All processes in P trivially type after the transition.
By hypothesis:

∀S′ s.t.S �L S′, (S′ |= b⇒ ρ, V, L, S′  P1)∧
(S′ |= ¬b⇒ ρ, V, L, S′  P2)

ρ, V, L, S  if b thenP1else P2

and since S �L S and S |= B we obtain that ρ, V, L, S  P1.

Case IF-2.
ρ, S,P ] {(if b thenP1 else P2, L, V )} →
ρ, S,P ] {(P2, L, V )} and S 6|= b.

Similarly to the case IF-1, all processes in P type after the transition, and
ρ, V, L, S  P2.

Case LOCK.
ρ, S,P ] {(lock(s); P,L, V )} → ρ, S,P ] {(P,L ∪ {s}, V )} and ∀ (P ′, L′, V ′) ∈
P . s /∈ L′

All processes in P trivially type after the transition.
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By hypothesis:

∀S′ s.t.S �L S′ ρ, V, (L ∪ {s}), S′  P
ρ, V, L, S  lock(s); P

and in particular since S �L S we obtain that ρ, V, L ∪ {s}, S  P .

Case UNLOCK.
ρ, S,P ] {(unlock(s); P,L, V )} → ρ, S,P ] {(P,L \ {s}, V )} and s ∈ L

All processes in P trivially type after the transition.
By hypothesis:

∀S′ s.t.S �L S′ ρ, V, (L \ {s}), S′  P
ρ, V, L, S  unlock(s); P

and in particular since S �L S we obtain that ρ, V, (L \ {s}), S  P .

Case SET.
Let ρ, S,P ] {(update(b+); P1, L1, V1)} →
ρ, S′,P ] {(P1, L1, V1)} where S′ = update(S, ρ(b+)).

Because by hypothesis:

∀S′1 s.t.S �L1
S′1(∀M ∈ fv(b+) ∪ fn(b+)

implies(〈[ρ(M)]〉S′
1
, 〈[ρ(M)]〉S′′

1
) ∈ FP0

)∧
(∀S′′ s.t.S′′1 �L1

S′′′1 , ρ, V1, L1, S
′′′
1  P1)

ρ, V1, L1, S  update(b+); P1

where S′′1 = update(S′1, ρ(b+)), and because S �L1
S and S′ �L1

S′ then
ρ, V1, L1, S

′  P1.
Now let (P2, V2, L2) be a tuple in P. We should prove that the typing

ρ, V2, L2, S
′  P2 holds assuming ρ, V2, L2, S  P2. By Lemma 5 we know

that S �L2
S′, since L1 ∩ L2 = ∅ and for all M ∈ fv(b+) ∪ fn(b+) holds

implies(〈[ρ(M)]〉S , 〈[ρ(M)]〉S′) ∈ FP0
. The proof is carried as a case-by-case anal-

ysis of the process P2. The case T-NIL trivially holds after the transition.
For the cases T-PAR, T-REPL, T-IN, T-OUT, T-NEW, T-LET, T-IF, T-

LOCK, T-UNLOCK, T-SET the following consideration holds: because the
condition of the typing rule ρ, V2, L2, S  P2 is quantified over all states S′′

such that S �L2
S′′, then we have that the states that satisfy S′ �L2

S′′

also satisfy S �L2
S′′, because �L2

is an order relation and S �L2
S′, hence

ρ, V2, L2, S
′  P2.
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