
How to Verify Privacy Automatically

Laouen Fernet
DTU Compute
lpkf@dtu.dk

November 13, 2023

mailto:lpkf@dtu.dk



Control of
privacy


Automated
verification

Alice Bob

• ping
// •

• oo pong •

Security protocols



Take-aways

1. We should formally verify privacy in many applications

Electronic voting Contact tracing Mobile payments,
transport, e-passports...



Take-aways

2. We can define privacy goals in a declarative and intuitive
way with logic

(α, β)-privacy



Take-aways

3. Automated verification of (α, β)-privacy is practical

Decision procedure and prototype tool [1]



At the bar

Challenge 25 by the bartender: private information disclosed

The Bourne Identity, 2002



At the bar

Challenge 25 by the bartender: private information disclosed

The Bourne Identity, 2002



Protocol specification

Tag
⋆ T ∈ Tags.
K := r(T ).

r(T ) := h(K ).

snd(g(K )).0

Reader
rcv(x).
try T = getT(x) in

s := state(T ).

try s ′ = extract(x , s) in
state(T ) := h(s ′).
snd(ok).0

• Processes with atomic
transactions

• Intruder controlling the
network

• Crypto API



(α, β)-privacy

• Formula α = payload, over alphabet Σ0 ⊂ Σ

• Formula β = technical information, over alphabet Σ
• Violation of privacy = β excludes some models of α

Example: unlinkability for two sessions
α ≡ T1,T2 ∈ Tags Question: T1

?= T2



Example: voting


v1


v2


v3


v4

• α ≡ v1, v2, v3, v4 ∈ {0, 1} ∧ v1 + v2 + v3 + v4 = 2
• β includes α and encrypted ballots etc.

• If β ⇒ v1 = v4 ∧ v2 = v3: privacy violation



Example: voting


v1


v2


v3


v4

• α ≡ v1, v2, v3, v4 ∈ {0, 1} ∧ v1 + v2 + v3 + v4 = 2
• β includes α and encrypted ballots etc.
• If β ⇒ v1 = v4 ∧ v2 = v3: privacy violation



Protocol excerpt
...
* x in Agent.
* y in {yes, no}. # Flip a coin
receive M.
try N := dcrypt(inv(pk(s)),M) in
if y = yes then

new R. send crypt(pk(x),pair(yes,N),R)
else

new R. send crypt(pk(x),no,R)
...



Multi message-analysis problem

Several possibilities

(y = yes, [. . . , l 7→ {yes,N}pk(x)])
(y = no, [. . . , l 7→ {no}pk(x)])

The concrete execution corresponds to one of them

One multi message-analysis problem = one pair (α, β)



Automated verification

Challenges:
• Undecidable problem
• Infinite state space
• Proofs!

Methods:
• Restriction to a (large) class of protocols + bound
• Constraints solving with abstractions



Idea of the procedure

• We verify privacy as a reachability property in a
transition system

• We use the lazy intruder (finite branching when the
intruder is sending messages)

• In each state, we represent several executions
• We normalize states so that, in each state, all
possibilities are “equivalent”



Symbolic representation

(α, β) in every state

Abstraction
−→

Several (αi , βi) in every
symbolic state



Recent work

• Paper on decision procedure with correctness and
termination proofs

• Prototype tool implemented in Haskell
• Models and case study for several existing protocols
• Paper on typing result for guaranteeing well-typed
attacks



Current and future work

• Compositionality result: how to combine protocols
securely?

• Development of the tool (user-friendliness)
• Support for a larger class of protocols



Take-aways

1 We should formally verify privacy in many applications
2 We can define privacy goals in a declarative and
intuitive way with logic, using (α, β)-privacy

3 Automated verification of (α, β)-privacy is practical



References
L. Fernet, S. Mödersheim, and L. Viganò.
A decision procedure for alpha-beta privacy for a bounded number of
transitions.
In CSF 2024 (to appear). IEEE, 2024.
Extended version at https://people.compute.dtu.dk/lpkf.

S. Mödersheim and L. Viganò.
Alpha-beta privacy.
ACM Trans. Priv. Secur., 22(1):1–35, 2019.

S. Gondron, S. Mödersheim, and L. Viganò.
Privacy as reachability.
In CSF 2022. IEEE, 2022.

https://people.compute.dtu.dk/lpkf

