
Synchronisation
Based on the paper “High Performance Operating Systems”
by Robin Sharp, DTU August 2001

02226 High Performance Operating Systems
s002660 Bjarke Frøsig and s001686 Paul Knudsen

DTU, September 23, 2004.

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 2

Agenda

Problem
Usual proposals
Multiprocessor Synchronisation
Cache Concepts
Barriers
Other methods
Conclusion
Debate

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 3

Problem

A basic problem in multi-process computing:
We want to do the following with two processes: x = x + 1 and x = x + 1 yielding x = 2
Initial value of x is 0.

Proc1 Proc2
ld x,r1 (r1 = 0) ...

add 1,r1 (r1 = 1) ld x,r1 (r1 = 0)
st r1,x (x := r1 = 1) add 1,r1 (r1 = 1)

... st r1,x (x := r1 = 1)

In the end x = 1 where it should be x = 2.

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 4

Usual proposals

We need atomic operations/critical regions
Hardware support

Special CPU instructions
Test-and-set, swap etc.
Impossible on small RISC CPUs
Locked memory access

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 5

Example

Test-and-set
Acquirespin(lock) :

while TestAndSet(lock) = LOCKED do
nop();

end;

Releasespin(lock) :
Clear(lock);

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 6

Software Synchronisation

It is possible to make synchronisation with
software
Two-process Tie-breaker Algorithm

Problems with out-of-order execution on SMP
Lamport’s Fast Mutual Exclusion Algorithm
Operating-system-level (embedded)

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 7

Two-process Tie-breaker Algorithm
bool in1 = false, in2 = false;
int last = 1;

Process CS1 {
while (true) {
in1 = true; last = 1;
while (in2 and last == 1) skip;
critical section;
in1 = false;
noncritical section;

}
}

Process CS2 {
while (true) {
in2 = true; last = 2;
while (in1 and last == 2) skip;
critical section;
in2 = false;
noncritical section;

}
}

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 8

Multiprocessor Synchronisation

What about SMPs and distributed systems?
Shared address space
Scaling

Memory consumption
Performance

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 9

Cache Concepts

Snooping vs. Directory
Write invalidation vs. Write update
Write through vs. Write back

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 10

Snooping vs. Directory

Snooping
Snoops on the activity on the bus

Directory-based
Uses a single shared directory

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 11

Write invalidation vs. Write update

Write invalidation
When a write is attempted, all other cached
copies of the variable is invalidated

Write update
The new value is sent to all cache controllers

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 12

Write through vs. Write back

Write through
When data is stored in the local cache, it is also
written in the memory

Write back
Data is only written in the local cache – and then
written when necessary
E.g. if another process generates a read miss

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 13

Example

CPU activity Bus activity P1 cache P2 cache X

0

P1 reads X Cache miss for X 0 0

P2 reads X Cache miss for X 0 0 0

P1 writes 1 to X Invalidate X 1 0

P2 reads X Cache miss for X,
write back to X

1 1 1

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 14

Test-and-TestAndSet

TestAndSet behavior
Problem with write and invalidate signal

Test-and-TestAndSet
Acquirespin(lock) :

while TestAndSet(lock) = LOCKED do
while lock = LOCKED do end;

end;

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 15

Test-and-TestAndSet
CPU P1 + cache CPU P2 + cache CPU P3 + cache Bus activity

Has lock Spins testing
l = LOCKED

Spins testing
l = LOCKED

l := FREE Receives invalidate
signal

Receives invalidate
signal

Write invalidate cached
copies of l

Cache read miss when
testing l = LOCKED

Cache read miss when
testing l = LOCKED

P3 cache miss serviced,
write back to memory
from P1 cache

Wait Reads l = FREE Copy fetched from
memory to P3 cache

Reads l = FREE Executes TestAndSet,
gets cache write miss

Copy fetched from
memory to P2 cache

Executes TestAndSet,
gets cache write miss

Returns FREE l :=
LOCKED

Generate write invalidate
after P3 cache miss

Returns LOCKED Enters critical section Write back to memory
after P3 cache miss

Spins testing l =
LOCKED

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 16

Binary Exponential Backoff

AcquireBEB(lock) :
delay := 1;
while TestAndSet(lock) = LOCKED do

pause(irand() * delay);
delay := 2 * delay + 1;

end;

ReleaseBEB(lock) :
Clear(lock);

Reduces bus/network contention
Drawback: Long waits

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 17

Graunke and Thakkar’s queuing lock algorithm
Initialisequeue(lock) :

lock.slots[0] := TRUE;
lock.slots[1] := TRUE;
…

lock.slots[N - 1] := TRUE;
lock.who_was_last := 0;
lock.this_means_locked := FALSE;

Aquirequeue(lock) :
atomicbegin
ahead_of_me := lock.who_was_last;
what_is_locked := lock.this_means_locked;
lock.who_was_last := myId;
lock.this_means_locked := lock.slots[myId];

atomicend;
await(lock.slots[ahead_of_me] != what_is_locked);

Releasequeue(lock) :
lock.slots[myId] := !lock.slots[myId];

Excellent scaling O(1)
Drawback: Memory use?

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 18

Barriers

Classical barrier:
Every thread must spin when entering the barrier
Every thread must also spin when leaving the
barrier

Sense reversing centralised barrier
A flag eliminates ambiguity

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 19

Trees

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 20

Mellor-Crummey and Scott’s tree barrier
algorithm

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 21

Other methods

Non-blocking and Wait-free Synchronisation
Avoiding deadlock caused by thread-errors

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 22

Conclusion

All parallel systems require synchronisation
Scientific problems often need barriers

Differential equations solved in small time steps

Synchronisation s002660 Bjarke Frøsig and s001686 Paul Knudsen 23

Debate

Questions?

