Condor

. (YY)
A Distributed Job Scheduler | eeee@
0000
o000
o0
°
Mikkel Bystrup Stensgaard (s001434)
Matias Dons Dollerup (s991367)
000
0000
[X XX
-4
Agenda :
e Introduction
e Scheduling
e Universes

e Architechture
e Administration
e Conclusion

Introduction to Condor (1)

e Condor is a distributed job scheduler

e Provides environment for handling several
jobs simultaneously

e Provides snapshot mechanism for restoration
and migration of jobs

Introduction to Condor (2)

e A Condor pool is a set of grids, opportunistic
worksations and dedicated workstations

e Multiple pools can be connected through
Condor

e Condor takes advantage of opportunistic
workstations to minimize idle time

Introduction to Condor (3)

e Example:

A Condor cluster at UW-Madison Department

of Sciences containing more than a 1000
workstations including a 500 CPU Beowulf
cluster, delivers around 650 CPU-days on a
typical day.

Condor advertising (1)

e Condor operates through an advertising
interface

e Both jobs and workstations advertise their
presence in the pool

e A job advertisement presents the
specifications for a job

e A workstation adverticement presents the
capabilities of a workstations

[X X]
0000
[X XX
. . -4
Condor advertising (2) :
e Jobs are specified in a Job Description File
that Condor uses to create an advertisement
e The main fields in a description file is the
requirements and the ranking expressions
e Expressions is given by a logical syntax,
hence allowing very specific formulation
[X X]
0000
o000
. . -4
Condor advertising (3) :
e Example: A job description file
universe = vanilla # select runtime environment
executable = some_job
requirements = (Arch=="INTEL" && OpSys=="LINUX") #target
rank = (Memory * 10000) + KFlops #target
arguments = —-verbose
input = in.dat # redirect to stdin
output = out.dat # redirect to stdout

log = log.txt
queue # add job to queue

Job scheduling in Condor

e Jobs can be added from any terminal within
the pool

e Condor matches job advertisements with
machine advertisements and schedules
execution

Universes in Condor

e Condor provides scheduling for a variety of
applications by using different execution
environments called universes.

Vanilla Universe: Sequencial programs based on a shared file
system.

MPI Universe: Message Parsing programs, based on process
parallelism. These jobs is only run on Beowulf clusters — not on
the opportunistic workstations.

Parallel Virtual Machine - PVM Universe: Supports jobs where
machines can enter and/or leave during job execution.

Globus Univers: Grid computing environment.

Standard Universe: Special Condor environment uptimized for
effective job scheduling.

Standard Universe

e Application checkpointing enables process
migration and process restoration

e Requires the application to be linked with
Condor libraries

e Limitations: (running in user mode)

e Multi-process jobs are not allowed including
multiple kernel threads

e Network communication must be brief

e No interprocess communication (shared memory,
pipes, semaphores)

Checkpointing (1)

e a "snapshot” of the jobs current state

e Freedom to preempt job
o Rescheduling a higher priority job
e User reclaims non-dedicated PC
e Enables migration

e Increases fault tolerance

Checkpointing (2)

e Condor writes the following to a file/socket
e CPU state, including registers
e Stack
o State of all open files
e Signal handlers
e Pending signals

Program must be linked with the Condor library!

Access to data

e Shared file system

e Common on Beowulf cluster

e Must be specified as a requirement expression
e Condor File Transfer mechanism

o Condor automatically transfer specified files
before starting the job. Also transfer output files
back when job are finished of pre-empted.

e Remote 1/O calls
e Only possible in the Standard universe

Remote I/O operations

e Shared file system

o Bandwidth to central server limits possible
number of nodes. (or performance)

e Requires account on file server

e Condor Remote System operations
o No special account. (easier administration)

e Open/Read/write operation are handled on
submitter machine.

e Implemented by replacing call stub

Remote 1/O operations

Regular System Calls vs. Remote System Calls

How Regular

System Calls Work How Remote System Calls Work

Executing Machine Submitting Machine Executing Machine

User Process

User code

Shadow Condor Job

Remote system 4 | User code

call code \ \
C Library C Library Gondor
Library
Regular system Regular system \
call stubs call stubs \“Remote system
call stubs
Operating System Operating System Operating System

Kernel Kernel Kernel

Architecture

e One central manager
e Collects Class-adds
o Match jobs to machines

e Nodes
e Contains local job-queue
e Negotiates with central manager

Deamons, Idle

Central Manager

Negotiator

%

Machine 2

Machine 1 '

(X X J
0000
0000
o000
D job ¢
eamons, |O .
s |
Central Manager W
e fué’ggt?a;gff_ﬁy “Statd__>
{ \/j),,. —
(21 Schedd
8 J
/ | \
/] N N\
) [“A%' | ~)\% N
(Machine 1 |||\ Machine 2) / \\ \ Machine N
YV N ®ee
_schedd > <_Schedd
< shadow 3 T Starer %
J T .y
C_UserJob
—= = Communication pathway
***** = Process created by fork()
(X X4
0000
o000
[LR
[X J
[]

Deamons (1)

e “condor_master” process runs on each node
e Can restart other deamons
o Enable network update of binary files
¢ Inform administrator of problems
o Enable remote start/stop of deamons

10

Deamons (2)

e “start d”

o Enables the node to excecute jobs

e ‘condor _schedd”

e Manages local job-queue

e ‘condor_shadow”

e Manages file-transfers, logs etc.

Dependencies

e Dependencies are
specified as a Directed
acyclic graph (DAG)

e Submitted via the
DAGMan scheduler

(=,
()

11

SMPS in condor

e Represented as multible virtual machines

e Possibilty to manually specify resources for
each VM

e Cpu’s
e Memory
e Swap
e Disk
Administration 2

e Rich set of tools for administration

e Includes

e Status of pool, including detailed information
about each node. (current load, memory etc)

o Display job stats, including finished jobs
e Changing scheduling policy on-the-fly

12

2

e Edt Vew Favoes Lok teb

|»i

UW-Madison Comp Sci Condor Pool Machine Statistics for May

o Fon el 00 1145CO1 20011 o
ol
w0
s100
Taa
s
a0
1m0
T
P
o
Tel ez T3 R4 SAS Sne M7 Tws WedS Tmi0 Pl SWi2 Sni3 Monlé Twls Vedls Thut? Fi8 Sa1s Sm2 Mon2l Tue22
e o | = | = | i |
o e — s e
Arch Ovner Average Condor Average Idle Average Ovmer Peal Condor Peak
= 1463 443 618 393 635
o @ (69.6%) ©1%) ™) D)
517 2528 95 131 320
e 180%) 9.1%) G0%) %) 4%
36 141 11 12 7
INTELISOLARIS?] (192%) a8 (3 %) %)
120 463 04 40 52
DHELSOLARERS 0% 8.5%) 0% s8%) @)
21 T 00 6 10
SUN4SOLARIS?] ey) ©3%) a2 ctow) |
301 95 28 7 81
SUMAEOLARSY G620 (60.4%) G4%) @))
23 87 09 8 11
SUEWSCLARISHE (19.4%) a28%) @.8%) (66%) ©1%)
338 820 377 164 156
INIELATRNLA [ED) (54.6%) @4.1% ©8%) ©5%)
08 80 05 8 9
| SUN4SOLARIS26 G (@5.6%) e} @8%) ctoo)]

Conclusion

e Powerfull tool for scheduling jobs across multible
platforms

e Works with deticated clusters such as beowolf
e Utilizes resources on non-dedicated PCs
e Includes checkpointing and job migration.

More information
http://www.cs.wisc.edu/condor/

13

Known Condor Pools

Known Condor Pools and Hosts by Country
Tue Sep 28 14:55:31 CDT 2004

ondor Hostis
ondor Pools

10000 |- -

100000

Known Hosts Worldwide: 37237
Known Pools Worldwide: 951

1000

100

Questions?

14

