Technical University of Denmark Informatics and Mathematical Modelling

High Performance Operating Systems Beowulf

- Authors: Bojan Pajkovski Yavor Emilov Markov
- Supervisor:Robin SharpDate:September 16, 2004

Introduction

This Presentation

- Beowulf clusters
- Cluster classification Beowulf

Beowulf

- History
- Model
- Evolution of the Beowulf project
- Application domains
- System architecture
- Software specification
- System communication
- Conclusion and Future work

What are Beowulf clusters?

www.beowulf.org

 Beowulf clusters are scalable performance clusters based on commodity hardware, on a private system network, with open source software (Linux) infrastructure. ÷ŷ.

- Beowulf Cluster Classification
 - Application Target High Performance (HP) cluster
 - Node Ownership Dedicated Clusters
 - Node Hardware CoPs / PoPs (COW / NOW)
 - Node OS Linux
 - Node Configuration Homogeneous cluster
 - Levels of Clustering Group Clusters (2-99)

History

- Epic poem from the 8th century
- Beowulf Great warrior
 - saves the Lord of the Danes and his court from the evil monster *Grendel*
- Beowulf has a 10 year anniversary this month

Bojan Pajkovski & Yavor Markov

September 16, 2004

4

Beowulf Model

- Low-cost supercomputing
- Ability to adopt to latest technologies
- Beowulf clusters yield same or better performance than similar MPP systems
- Basic System Environment
 - Linux OS
 - GNU development environment
 - Programs usually written in C, C++ or Fortran
 - Message passing libraries (PVM and MPI) for parallel computations

Bojan Pajkovski & Yavor Markov

The Beowulf project (1)

- Project at Goddard Space Flight Center, NASA
 - Designed by Donald Becker
- Main goals
 - Investigate the potential of PC clusters for performing computational tasks
 - Achieve "best" overall system cost/performance ratio for the cluster
 - Achieve a 1 GFLOPS peak performance
- Initial prototype
 - Project started in 1994
 - Initially consisting of 16 Intel 486-DX4 processors
 - 10 Mbps Ethernet, up to 4.6 MFLOPS
 - 10 GB storage capacity

The Beowulf project (2)

2nd Beowulf

- Pentium 100 MHz
- 100 Mbps Ethernet
- 280 MFLOPS
- 3rd Beowulf
 - Built at NASA and other research labs
 - Pentium Pro processors
 - Performance over 2 GFLOPS
- Beowulf clusters among the top 500 performing supercomputers

Application Domains

Scientific and Engineering problems

- Simulations
- Biotechnology
- Petro-clusters
- Financial market modelling
- Data mining
- Stream processing
- Web servers and databases
 - Internet servers for audio and games

Bojan Pajkovski & Yavor Markov

System Architecture (1)

No fixed system architecture

Processor

- Initially the most important but not anymore
- Beowulf works on dedicated processors
- Work on Intel processors
- Memory
 - Today very important together with bus speed
 - Distributed Shared Memory (DSM)

Bojan Pajkovski & Yavor Markov

System Architecture (2)

Network

- TCP/IP communication between different processors
- Bandwidth of the network was the bottleneck
- Fast Ethernet (100 Mbps) ?
- Gigabit Ethernet
 - Latency high applications must be restructured for latency tolerance
 - Better interprocessor communications performance
- Future: Fiber optic networks by 2010 ?
- Secondary storage systems
 - No longer a limiting factor
 - For a cluster of 100 Nodes, over 1 TB storage capacity

Software Specifications

- No standard software package
- Open source software
- Linux OS
 - Support for multiprocessor thread scheduling
 - Custom kernel configuration and compilation
- GNU compilers (C, C++, Fortran)
 - Deliver very good performance (compile-time analysis, code gen.)
- PVM / MPI libraries
 - Applications should be programmed for parallel execution, communicating using PVM or MPI

Bojan Pajkovski & Yavor Markov

- Collection of software tools within the Beowulf project
 - Resource management
 - Support for distributed applications
- Includes programming environments and development libraries
 - Message passing libraries (PVM, MPI, BSP)
 - SYS V-style IPC, POSIX threads interface

Bojan Pajkovski & Yavor Markov

System Communication

- TCP/IP over the Ethernet internal to cluster
- Limited performance
 - Ethernet performance characteristics
 - System software managing message passing
- Multiple Ethernet networks to work in parallel
 - Every Beowulf workstation has user access to multiple parallel Ethernet networks

÷ŷ.

Bojan Pajkovski & Yavor Markov

Conclusion

- Low cost alternative to supercomputing
- Composed of COTS (Commercial Off the Shelf Components)
 - Open source operating system (Linux)
 - GNU development environment
 - PVM and MPI
- No fixed system architecture
- High Performance cluster

Bojan Pajkovski & Yavor Markov

Future Work

- Beowulf in the 21st century
 - Processing Nodes
 - Storage
 - System Area Networks
 - The \$1M TFLOPS Beowulf
 - Barriers

15

Bojan Pajkovski & Yavor Markov

Scyld Beowulf

•

Scyld Beowulf

- Developed by Donald Becker and part of the original Beowulf team
- Based on RedHat Linux 6.2 distribution with special software to aid in cluster installation, maintenance, and performance
- Allows for diskless installation of nodes "out of the box"
- Includes standard MPICH package

16

Bojan Pajkovski & Yavor Markov

Extended Beowulf clusters

- Scyld Cluster OS by Donald Becker
 - http://www.scyld.com
- ROCKS from NPACI
 - http://www.rocksclusters.org
- OSCAR from Open Cluster Group
 - http://oscar.sourceforge.net
- OpenSCE from HPCNC
 - http://www.opensce.org

÷2.

Bojan Pajkovski & Yavor Markov

September 16, 2004

17

More Information

Beowulf.org

- http://www.beowulf.org
- IEEE Computing Research Repository on Cluster Computing
 - http://www.ieeetfcc.org/ClusterArchive.html
- Building a Beowulf system
 - http://www.cacr.caltech.edu/beowulf/tutorial/building.html
- PVM / MPI
 - PVM 3.3 http://www.netlib.org/pvm3/index.html
 - MPI http://www.hpclab.niu.edu/mpi/
- Management software
 - KCAP http://smile.cpe.ku.ac.th/research/kcap2/
 - bWatch http://www.sci.usq.edu.au/staff/jacek/bWatch

18

Bojan Pajkovski & Yavor Markov

Thank you for your attention!

·>|

Bojan Pajkovski & Yavor Markov

September 16, 2004

1<u>9</u>

Backup slides

Bojan Pajkovski & Yavor Markov

September 16, 2004

20

Clusters Specification

Based on Node OS Type

- Linux Clusters (Beowulf)
- Solaris Clusters (Berkeley NOW)
- NT Clusters (HPVM)
- AIX Clusters (IBM SP2)
- SCO/Compaq Clusters (Unixware)
- Digital VMS Clusters, HP clusters, etc.

21

Bojan Pajkovski & Yavor Markov

Comparison of Cluster Systems

Project	Platform	Communications	OS	Other
Beowulf	PCs	Multiple Ethernet with TCP/IP with TCP/IP	Linux and Grendel	MPI/PVM, Sockets and HPF
Bereley NOW	Solaris-based PCs and workstations	Myrinet and Active Messages	Solaris + GLUunix + XFs	AM, PVM, MPI, HPF, Split-C
HPVM	PCs	Myrinet with Fast Messages	NT or Linux connection and global resource manager + LSF	Java-frontend, FM, Sockets, Global Arrays, SHMEM and MPI
Solaris MC	Solaris-based PCs and workstations	Solaris-supported	Solaris + Globalization layer	C++ and CORBA

