Streams and Sockets in DTU-RTMM

Robin Sharp Hans-Henrik Lgvengreen
Edward Todirica
Department of Information Technology
Technical University of Denmark

Version 1.4, September 2000

Abstract

This document describes the concepts used in the stream layer in the DTU-RTMM
distributed multimedia systems architecture, and presents standard interfaces for
accessing this layer from the session layer which coordinates the transmission of data
among the sites involved in the operation of a virtual seminar room.

1 Introduction

In a virtual seminar room, data representing video pictures, still images, sound and other
information are passed around among the sites taking part in the seminar, and are presented
in real time to the users at these sites to give them the impression of taking part in a seminar
or other discussion. In the DTU-RTMM project, which aims at creating an implementation
of such a virtual seminar room, the computer system at each site is organised in a layered
architecture, as illustrated in Figure 1.

Communication between the computer system at any particular site and its environment,
in the form of audio, video or network communication, ultimately takes place via the
hardware adaptor cards which are controlled by the drivers in the operating system. We
denote the combination of a peripheral unit with its driver a system component. In a
distributed, interactive multimedia system, such as DTU-RTMM, it is necessary to pass
data between the system components, so that for example encoded audio and video can be
passed to the network (and vice versa), data can be passed between the network system
component in one site to the network system component in another site, and so on. The
Stream Layer offers facilities to create and maintain logical connections between system

2 STREAM LAYER CONCEPTS 2

Presentation

Session control

Stream

OS Driver

Adaptor cards

Figure 1: RTMM system architecture

components for this purpose. The Session Layer then coordinates the setting up of those
connections which are necessary for particular applications such as the Virtual Seminar
Room. Finally, the Presentation Layer provides facilities to implement the user interface,
through which audio, video and control information is presented to the users.

This report focuses on the Stream Layer and Session Layer and the way in which they
interact. Each layer is presented first in an abstract manner and then in terms of a
programming interface which gives access to the facilities offered by the layer in question.
The programming interface is documented using the nuweb literate programming system,
which permits the code and documentation to be extracted directly from a single source.

2 Stream Layer Concepts

The Stream Layer offers the Session Layer facilities for creating and maintaining logical
connections through which data may be passed.

2.1 Streams, Sockets and Connections

A stream is a logically related sequence of data units which pass between two system
components, starting at the source of the stream and finishing at its destination. To
pass a stream between system components, a connection must be set up between these
components.

A socket, through which the stream passes, is used to identify the particular starting
point of a stream in the source system component and the particular ending point in the

2 STREAM LAYER CONCEPTS 3

destination system component. Each socket has a unique identification and is associated
with a particular system component. Sockets permit unidirectional flow of data. Sockets
through which data pass out of the system component are distinguished from those through
which data pass into the component: The socket in the source from which the stream
starts is denoted an QutSocket and the socket in the destination at which the stream ends
is denoted an InSocket. For illustrative purposes, these are conveniently designated by
graphical symbols as shown in Figure 2.

Figure 2: An OutSocket (left) and an InSocket (right)

When initially created, a connection carries a stream between two sockets: one QutSocket
and one InSocket, as illustrated in Figure 3. The sockets may be associated with the same
or different system components. The flow of the stream to the destination InSocket can
be switched on and off; this is indicated in the figures by a valve. When the connection is
initially created, the flow is switched off.

» = — i

Figure 3: A stream passing on a connection between two sockets

By setting up a connection between an QutSocket which is the source of an existing stream
to one or more further InSockets, a stream may be passed to multiple InSockets, as illus-
trated in Figure 4. The InSockets may be associated with the same or with different system
components acting as destinations for the stream. Whereas it is in this way possible for

» A

Figure 4: A stream passing between multiple sockets

an QutSocket to be the source for a stream with multiple destinations, it is not possible
for the same InSocket to be the destination for several streams.

A connection passing between two sockets offers a certain Quality of Service (QoS) to the
streams which it carries. The parameters of the QoS include the bandwidth, delay, jitter
and other properties of the connection, and are expected to be compatible with the QoS
required for the stream concerned (see Section 2.4 below).

2 STREAM LAYER CONCEPTS 4

2.2 Socket types

Both InSockets and QutSockets may be of two types:

Local sockets, which are associated with streams that carry data between system com-
ponents on the same site.

Network sockets, which are associated with streams that carry data between system
components on different sites. These system components will in practice always be
network system components.

A typical system involving several streams, some with local sockets and some with network
sockets is shown in Figure 5. In this example, an audio stream (stream of encoded audio
data) originating from the physical microphone could be passed from the Audio System
Component to the Network System Component on the Source Site, and from there to the
Network System Component on the Destination Site, and then on to the Audio System
Component on the Destination Site for presentation on the physical loudspeaker there.

,,,,,,,,,,,,,,, SOURCESITE ____________DESTINATIONSTE |

! LOGICAL

! | ! | CONNECTIONS
| | ! * M ! | * |

Audio Network Network Audio

! System System | ! System System |

) Component Component | Component Component

D \ L@:@ | PHYSICAL

' Microphone Phy$cd network L oudspeaker 3 MEDIA

Figure 5: A system with connections between local and network sockets

]

Local sockets: - Network sockets:

Note that the logical connections associated with streams for all types of sockets appear
in the Stream Layer, but that they may make use of physical connections, typically via a
network, which involve the Driver Layer and associated physical adaptor cards.

2.3 Relaying of Streams

In the version of DTU-RTMM described in this document, streams are considered as
passing directly between a source and one or more destination system components. The

2 STREAM LAYER CONCEPTS)

destination system component may then be responsible for relaying the stream to another
system component, as illustrated in the example of Figure 5.

The relaying system component may pass the stream on unaltered, or may apply some
transformation to the stream. In the latter case, the system component is considered to
generate a new stream, for which it is the originating system component. The sequence
of connections which through which an unaltered stream is passed is said to make up
the path followed by the stream, and the component which is the final destination of the
stream is denoted the stream’s sink. Relaying is the concern of the designer of the system
component concerned. The current version of the system does not include facilities for
directly setting up streams on an end-to-end basis between system components which
cannot directly communicate with one another; this is the case if they are on different sites
and not directly connected by a network.

2.4 Stream States

A stream has a number of state components which can be read and set:

e The Quality of Service required for the stream, including in particular its average
and maximum delay and jitter, its bandwidth and its error rate, as measured from
the original source of the stream to its final destination.

e The type-specific attributes of the stream, which describe properties which are rele-
vant to the type of stream concerned, such as the original volume of an audio stream,
the title, frame size and original brightness of a video stream and so on.

e The transmission state of the stream, which is the the subset of the InSockets associ-
ated with the stream which are open for passing data. An InSocket may be open or
closed. When it is closed, data passed into it at the OQutSocket in the source system
component will just be ignored.

e The input data pointer of the stream, which describes how many data units have
been passed into the QutSocket in the source of the stream.

Since the QoS and attributes are properties of the stream, they can only be meaningfully set
on the site containing the system component from which the stream originates. Adjustment
of presentation parameters such as the volume of the audio stream or brightness of the
video stream at a given destination site are local matters which lie outside the scope of
this document.

3 FORMALISATION OF STREAMS AND SOCKETS 6

2.5 Stream Slots

Data passed into and out of sockets are carried in structures known as stream slots. Each
stream slot consists of a buffer area, together with information about where in this area
actual data and protocol control information are to be found. In the general case, the buffer
area looks as illustrated in Figure 6. The aim of this is to permit easy implementation

] | |
T T

| |
bsI ot heTad detta tail end &J ot

Figure 6: Layout of buffer area in a stream slot

of layered protocol architectures, where protocol control information in a given layer is
appended before and after the data passed down from the layer above. The buffer area
runs from bslot to eslot. Valid data (payload) for the device considered occupy the area
between data and tail. Control information can be appended in the header area before
data and in the trailer area after tail. At any instant, the current extent of the header area
runs from head to data, and the current extent of the trailer area from tail to end.

3 Formalisation of Streams and Sockets

A more formal specification of what is required of the streams and sockets is presented
here in a VDM-like notation describing the data domains involved and the criteria used
for delimiting legal objects.

A stream is identified by a unique identifier, id € Strld, and is described by a group of
properties:

3.1 Streams = Strld — StreamProps
3.2 Strld C token

The properties of a stream are its required quality of service, gos € QoS, its attributes,
attrib € Attributes, its type, styp € StrType and the set of connections currently carrying
the stream, state, which is a possibly empty subset of the domain of Connection:

3.3 StreamProps = QoS x Attributes x StrType x Connection-set

The required quality of service of a stream is described by a mapping between unique
identifiers and QoS parameters with numerical values:

3.4 QoS = QoSId — QosVal

3 FORMALISATION OF STREAMS AND SOCKETS 7

3.5 QoSId C token
3.6 QosVal = R|Z|N

The attributes of a stream are described by a mapping between unique identifiers and
parameters of various types:

3.7 Attributes = Attrld — AttribVal
3.8 Attrld C token
3.9 AttribtVal = R|Z | N | B|token | ...

The type of a stream may be Audio, Video, etc.:
3.10 StrType = Audio | Video | ...

A connection is described by six components: the identifier for the associated stream, sid €
Strld, the OutSocket, os € OutSocket from which the connection originates, the InSocket,
1s € InSocket at which it ends, the transmission state of the connection, open € B, which
is true if the connection is open for passing the stream and false otherwise, the budgetted
quality of service parameters for the connection, gosb € QoS and the current values of
these quality of service parameters, qosv € QoS:

3.11 Connection = Strld x InSocket x OutSocket x B X QoS X QoS

A socket is identified by a unique identifier id € SocklId, and is associated with a system
component, a socket type and a possibly empty set of connections:

3.12 Socket = Sockld — SockProps
3.13 SocklId C token
3.14 SockProps = Component x SockType x Connection-set

The type of a socket may be a network InSocket, network OutSocket, local InSocket or
local OutSocket:

3.15 SockType = InNet | OutNet | InLoc | OutLoc

InSockets and OutSockets are disjoint subsets of sockets whose socket types are restricted
in the obvious way:

3.16 InSocket C Socket
3.17 OutSocket C Socket
3.18 InSocket N OutSocket =
3.19 is-wf-InSocket(sid — sp) &
let mk-SockProps(comp, styp, cs) = sp in
(styp = InNet) V (styp = InLoc)

3 FORMALISATION OF STREAMS AND SOCKETS 8

3.20 is-wf-OutSocket(sid — sp) &

let mk-SockProps(comp, styp, cs) = sp in
(styp = OutNet) V (styp = OutLoc)

A system component is identified by a unique identifier id € Compld, and is associated with
a possibly empty set of InSockets, a possibly empty set of OutSockets, a possibly empty set
of streams originating within the system component, a mapping which describes the current
association between streams and the InSockets of the component, and a mapping which
describes the current association between streams and the OutSockets of the component:

3.21 Components = Compld — Component

3.22 Compld C token

3.23 Component = InSocket-set x OQutSocket-set X Strld-set x Strmapi X Strmapo
3.24 Strmapi = Strld — InSocket

3.25 Strmapo = Strld — OutSocket

A well-formed set of components is such that (1) For each component, the range of the
Stream/InSocket mapping is a subset of the component’s InSockets and the range of the
Stream/OutSocket mapping is a subset of the component’s OutSockets, (2) For each com-
ponent, the domain of the Stream /OutSocket mapping is a subset of the streams originating
in the set of components, and (3) For any two different components, their sets of InSock-
ets are disjoint, their sets of OutSockets are disjoint and the sets of streams which they
generate internally are disjoint:

3.26 is-wf-Components(comps) &of
Ycid € dom comps-
let mk-Component(iss, 0ss, sids, smapi, smapo) = comps(cid) in
rng smapi C 1ss A rng smapo C 0ss N\
Vsid € dom smapo - (Icid’ € dom comps-
(let mk-Component(iss', oss', sids', smapi', smapo’) = comps(cid') in
sid € sids')) A
Veid' € dom comps-
(let mk-Component(iss', 0ss', sids', smapi', smapo') = comps(cid') in
(cid # cid') =
((issNiss’' = 0) A (ossNoss’ = 0) A (sids N sids’ = 0)))

A system is composed of system components and connections:
3.27 System = Components x Connection-set
A well-formed system is composed of system components, comps € Components, and

connections, cs C Connection, such that the set of components is well-formed, and for
each connection, ¢ € cs, (1) The stream identifier identifies a stream originating from

4 CONCRETE STREAM LAYER INTERFACES 9

a component in the system, (2) The InSocket and OutSocket belong to components in
the system, (3) Whereas the InSocket may be the origin of several connections, a given
connection may only be associated with a single stream, and (4) The budgetted and current
QoS settings refer to the same QoS parameters:
3.28 is-wf-System(comps, cs) &f
is-wf-Components(comps) A
Ve € cs
(let mk-Connection(sid, is, 0s, open, qosb, gosv) = ¢ in
(3t € dom comps-
let mk-Component(iss, 0ss, sids, smap) = comps(t) in
sid € sids)
A(3t" € dom comps-
let mk-Component(iss', 0ss', sids', smap’) = comps(t') in
is € iss")
A3 € dom comps-
let mk-Component(iss”, 0ss", sids", smap") = comps(t") in
sid € dom smap” A
0s € 0ss" A
0s = smap"(sid))
AV € es-
let mk-Connection(sid',is', 0s', open’, qost', qosv') = ¢’ in
(is =is") & (sid = sid'))
A(dom gosb = dom gosv))

4 Concrete Stream Layer Interfaces

The Stream Layer interfaces are here defined in terms of C++ class definitions. A set of
class definitions describe the concepts associated with streams and connections and another
set the concepts associated with sockets.

The class definitions make use of definitions from the C++ Standard Template Library and
the C++ String Library, and require the inclusion of header files for the STL map, vector
and string types. The definitions are documented using the nuweb system, enabling the
header files to be extracted directly from the documentation as described in Appendix A.

4.1 Debugging, Errors and Exceptions

To ease the task of debugging, a number of conventions have been introduced. Compilation
of code which is only to be included and executed in a debugging version of the program can

4 CONCRETE STREAM LAYER INTERFACES 10

be controlled by the DEBG variable which is 0 by default, and is set to 1 if the compilation
parameter -DDEBUG is used. When DEBG is 1, an output stream debg is defined as being
identical to cout, and can be used as the destination for debugging messages, for example:

debg << "this is a debugging message" << endl;

The variable DEBG can be used in the usual way to ensure conditional compilation of code
which is only to be included in the debugging version:

if (DEBG)
cout << "This code is only executed in the debugging version" << endl;

The required definitions are as follows:

(debugging information 10a) =
//defining a function for printing debugging messages if DEBUG is defined
#ifdef DEBUG
#define DEBG 1
#else
#define DEBG O
#endif

#define debg if (DEBG) cout
&

Macro defined by scraps 10ab.
Macro referenced in scrap 43.

Many of the classes provide a show method which displays information about the method
variables or similar. The show method appends the output to the stream myshow, which will
be directed to cout if the -DSHOW compilation parameter is used. The required definitions
are:

(debugging information 10b) =
//defining a function for printing messages if SHOW is defined
#ifdef SHOW
#define SHW 1
#else
#define SHW O
#endif

#define myshow if (SHW) cout
<&

Macro defined by scraps 10ab.
Macro referenced in scrap 43.

4 CONCRETE STREAM LAYER INTERFACES 11

Several of the classes may throw exceptions, which by convention are defined in a separate
class, for example such that exceptions generated in class XXX are described in the class
XXX_error. Objects of the exception class are parameterised by a value of an enumeration
type which describes the error and a possibly empty string which can be used to generate
error messages. Each exception class provides a method showError which displays the
error message on standard output, using the string if it is not empty or a default error
message if the string is empty.

4.2 Streams and Connections

Objects of the Connection class describe logical connections which can be used for passing
streams between two sockets. The class provides methods for creating, destroying and
manipulating the state of such connections. The Connection class relies on auxiliary classes
whose dependencies require them to be defined in the following order:

(connection class 11) =

(connection error class 13)
(connection class definition 12)
<

Macro referenced in scrap 43.

The main definition of the Connection class is as follows:

4 CONCRETE STREAM LAYER INTERFACES 12

(connection class definition 12) =

class Connection
{ /7 Variables sskskskskskskokokskok sk s sk okok sk ok i sk ok o s o ok ok ok ok ok skok ok ok ok ok o o ook ok ok ok ok 3k ok o o ok ok ok ok ok ok ok ok ok ok

public:
string streamID; // Stream identifier
InSocket* inSocket; // Ref. to InSocket object
OutSocket* outSocket; // Ref. to DutSocket object
QoS* budgetqos; // Budget values for QoS parameters
QoSx* currentqos; // Current QoS parameter values
voidx* priv; // Hidden variables used in the
// implementation.
protected:
bool open; // true if connection open

// Methods skskokokokokokokokokokokokokok ok ok ok ok ok o ok ok ok sk okok sk skook ok ok ok ok o o o o ook ok ok ook sk sk ok sk ok ok ok ok ok o ok
public:
// Constructors and (alias for) destructor
Connection(string strID, InSocket* is, OutSocket* os)
throw (Connection_error);
Connection(string strID, InSocket* is, OutSocket* os, QoS* qosb)
throw (Connection_error) ;
void disconnect();

// Methods for getting and setting transmission state of connection.

bool getConnState(); // Get transmission state
void openConnState() ; // Set InSocket open
void closeConnState(); // Set InSocket closed
void show() ;

¢

Macro referenced in scrap 11.

When a connection is initially created, it is closed for transmission of data, and the set
of current values for QoS parameters, qosv, are all set to 0. If a set of budget values for
QoS parameters, qosb, is not supplied in the constructor, a default set of budget values is
taken from the stream object identified by streamID. There is no default constructor with
a void argument list.

Errors in handling the setting up of connections cause exceptions described by objects of
the class Connection_error, which is described as follows:

4 CONCRETE STREAM LAYER INTERFACES 13

(connection error class 13) =
class Connection_error
{ public:
enum Connerrtype {unmatched_strID, not_sink};
// Variables ik skokskskokodkok skokokokokok ek ook o koo o ook st o o koo ok ks e e ok sk o e ok sk e ok ok sk o
Connerrtype e_type;
string nam;
// Methods sk sk kkkok ok sk s sekeok sk ok ok sk sk sk o ok sk sk o s ok sk sk o sk o sk sk sk ok sk sk ok o sk sk o ke ok sk o ke ok ko ok
Connection_error(Connerrtype e); // Constructor initialises
// e_type to e and nam to
// the empty string
Connection_error(Connerrtype e, string s);// Constructor initialises
// e_type to e, and nam to s
void showError();
// Displays on the standard output an error message associated
// with the errortype e. If string s was not empty when the
// error was thrown, then s is displayed, otherwise a default
// error message is displayed.
// This method is independent of the -DSHOW compilation parameter.
s
<

Macro referenced in scrap 11.

The individual errors are identified by the elements of the enumeration type Connerrtype,
of which the following are currently defined:

Error Caused by...

unmatched_strID | Attempt to create a connection between two sock-
ets which are associated with different streams
not_sink Attempt to open a connection for which the input
socket is not connected to a sink.

Objects of the Stream class describe named streams. The class provides methods for getting
access to the objects which describe properties, such as the required end-to-end QoS and
other attributes, of such streams. Methods associated with the QoS and Attributes objects
make it possible to get and set the values for these properties.

4 CONCRETE STREAM LAYER INTERFACES 14

(stream class 14) =
class Stream
{ public:
enum StrType { AUDIO, VIDEO, WBOARD }; // Possible types of stream
/7 Variables kskkskokskokokkokkokkok ko sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ook ook ook o o sk o sk ok o ok ok ok ok o ok ok ok o

public:
string streamID; // Identifier for stream
protected:
QoS* qos; // (End-to-end) QoS for stream
Attributes* attribs; // Attributes for stream
StrType stype; // Type of stream
public:
voidx* priv; // Hidden variables used in the

// implementatiomn.
[/ Methods — kskokskokskokskokokkok kok ok ook sk ok o ok ok ok o sk o ok sk ok ok ok ok ko sk ook o ok o ok sk o sk ook o ok ok ok ok o sk o sk ok ok
public:
// Constructor
Stream(string id, StrType s); // Initialises streamID=id, stype=s;
// uses defaults for other members

// Methods for getting access to QoS and other attributes

QoS* getQoS(); // Returns ref. to QoS object
Attributes* getAttribs(); // Returns ref. to Attributes object
StrType getStrtype() ; // Returns stream type

I

O

Macro referenced in scrap 43.

As noted previously, the required QoS and other attributes are associated with the stream,
and so it only makes sense to attempt to change these properties on the site from which
the stream originates.

Objects of the class StreamState describe the dynamic aspects of the states of the local
streams on a given site. Streams are identified by their streamID component. Methods
are provided to retrieve the list of connections which the stream passes through, to derive
the list of open InSockets which the stream passes through and to add new connections:

4 CONCRETE STREAM LAYER INTERFACES 15

(stream dynamic state 15a) =
class StreamState
{ protected:
map <string,vector<Connection*>,less<string> > connmap;
// Mapping between local stream identifiers
// and lists of connections
voidx* priv; // Hidden variables used in the
// implementation.

// Methods stk o ook s sk ok ke o e o sk sk stk ok ok o e o e sk o sk sk sk ok ke o o o e o sk sk sk sk ek ke o e o e sk ok sk sk ok ok ke o o ke ok ok ok

ublic:
’ // CONSTIUCTOTS *kkakskokokok sk ok kokok ok ok ok sk ok ok ok ok sk ok o o ok sk sk o o ok sk sk ok e ok ko ok o ok k ok sk o ke ok sk o o ook ok
StreamState(); // Default constructor sets up empty
// mapping between ids and connections.
~“StreamState() ; // Default destructor
// Methods for getting and setting components of the dynamic state **¥*x*
void getConnections(string strID, vector<Connection*>& clist);

// Appends list of Connections through
// which stream with identifier strID
// passes to clist
void addConnection(string strID, Connection* & conn);
// Adds conn to list of connections for
// stream with identifier strID
void getOpenSockets(string strID, vector<InSocket*>& opensl);
// Appends list of open InSockets through
// which stream with identifier strID
// passes to opensl
void show() ; // Displays member variables of the class.
// To exploit this, the -DSHOW compilation
// parameter must be used when compiling.
};
<

Macro referenced in scrap 43.

4.3 Sockets

The base class for all socket classes is the abstract class Socket, defined by:

(socket classes 15b) =

class Connection; // to be defined later!
class SysComp; // to be defined later!

class Socket
{ /7 Variables sskskokskskokskskokok sk skook sk ok sk ok ok sk sk ok sk ok s ok ok ok ook ok ok s ok ok sk k sk okeok ok s ok sk ok 3 o ok ok o ok ok ok 3 ook ok ok

public:
enum SockType { INNET, OUTNET, INLOC, OUTLOC };

protected:

4 CONCRETE STREAM LAYER INTERFACES 16

SysComp* comp; // Component which the socket
// belongs to

Connection* conn; // Connection associated with
// socket

string socketID; // Socket identifier

SockType socketType; // Socket type

public:
voidx* priv; // Hidden variables used in the

// implementation.
/7 Methods — kskkskokokokokskok ko ook ook ok kokok o sk ok ok ok ok ko ok ok o ok ok ok sk ko o ok ok sk o sk ok o ok ok ok sk o sk o sk ok

public:
virtual void open(); // Creates and opens socket
virtual void open(string locid);// Creates and opens socket
// with given identifier
virtual void close(); // Closes and destroys socket
virtual SysComp* getComponent () ; // Returns ref. to component
// associated with socket
virtual void setComponent (SysComp* comp) ;
// Sets the component
// associated with socket
virtual Connection* getConn() ; // Returns ref. to connection
// associated with socket
virtual void setConn(Connection* c);
// Sets the connection
// associated with socket
virtual string getSocketID(); // Returns socket identifier on
// local system
virtual void setSocketID(); // Sets the socket identifier
virtual SockType getSocketType(); // Returns the socket type
virtual Stream getStream() ; // Returns ref. to the stream
// associated with socket
virtual QoS getQoSParams () ; // Returns ref. to (budget) QoS

// parameters of associated
// stream

// Functions made available for debugging purposes.

void show(); // Displays member variables of the class.
// To exploit this, the -DSHOW compilation
// parameter must be used when compiling.

};
&

Macro defined by scraps 15b, 17ab, 18, 19, 20.
Macro referenced in scrap 43.

The socket identifier identifies the socket uniquely within the component on the local
system. The syntax of socket identifiers is given in Section 6.2 below.

InSockets and OutSockets are both Sockets. At the interface to the Stream Layer, it is
possible to put data into an OutSocket and get data out of an InSocket. Data are carried

4 CONCRETE STREAM LAYER INTERFACES 17

in structures known as stream slots, whose properties are described in Section 4.4 below.

(socket classes 17a) =

class InSocket : virtual public Socket
{ // Variables skt skokskkokok sk sokok sk ok ko ok ke ok sk ok ke ok skl sk ok e ksl sk o e ksl sk o s ok ksl sk ok sk sk sk ok

public:

[/ Methods eskskokskokskokokskokskokkokokok ok ok sk ok ok ok ok ok ook ok ok ok skok oo ok ok ok ook ok o ok ok ok o ook ko ok ok o oo ok
public:
virtual CSlotx* get() = 0; // Gets one or more stream slots
// containing data

};

class OutSocket : virtual public Socket
{ // Variables sk sk sk ook sk koo ke ok koo s ok sk skok e kol sk s ksl s ok ksl ook ok sk sk ok ok

public:

protected:
Bufpool* freeSlots; // Pointer to buffer pool object

/7 Methods — sksksokskokskskokskokokokokokokok s okok ok ok ok ook ok ko ok ok ok ok ook ok o skok ok ok ok ook o o oo ok ok o ok o
public:
virtual void put(CSlot* cs) = 0; // Sends one or more stream slots
// containing data

};
&

Macro defined by scraps 15b, 17ab, 18, 19, 20.
Macro referenced in scrap 43.

Network sockets are also Sockets, which on creation have an socket identifier valid on the
local site. The remote socket to be connected to when a network connection is set up is
specified in a method of the class OutNetSocket which is derived from the NetSocket class,
as described below.

(socket classes 17b) =
class NetSocket : virtual public Socket
{ // Variables sk koo ko sk koo ok ok ok ok ok sk o el s e e ke o e o o sk ok sk e e s ke ks e ke o e o
public:

// Methods sk skokokok ok ko ook o ko ok ko o sk ok sk o ko ok sk ok sk o sk o ok sk ok ok o sk o ok sk ok sk ok o ko ok o
public:
virtual void open(string locSocketID); // Creates and opens socket
// with the local socket id
// locSocketID
};
<

Macro defined by scraps 15b, 17ab, 18, 19, 20.
Macro referenced in scrap 43.

4 CONCRETE STREAM LAYER INTERFACES 18

Network InSockets are derived from Network sockets and InSockets. Network OutSockets
are derived from Network Sockets and OutSockets. On creation, both these types of socket
are given an local socket identifier valid on the site where they are created. Objects of the
NetOutSocket class perform a listening function to detect requests for connection coming
from remote sites. To set up the actual network connection when a request arrives, the
connect method in the NetOutSocket is used, specifying the socket identifier on the remote
site which is to be connected to.

(socket classes 18) =

class InNetSocket : public InSocket, public NetSocket
{ // Variables sksksksksskokokokskokskokokokskok ook sk ok ook ke ok ook o ok ks ook e koo o e ksl sk o e ok ksl ook ok ks sk ook

public:

// Methods 2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 3k >k 3k dk k >k %k >k >k >k 3k 3k 3k 3k >k 3k 3k >k >k >k %k >k >k >k 3k 3k >k 3k 3k %k >k >k >k >k 3k 3 3 % % >k >k

public:

InNetSocket (string locSocketID); // Constructor creates and opens
// InSocket with local socket
// id locSocketID

void open(string locSocketID); // Creates and opens InSocket
// with local id locSocketID

CSlotx* get(); // Gets one or more stream slots
// containing data

void close(); // Closes and destroys socket

};

class OutNetSocket : public OutSocket, public NetSocket
{ /7 Variables sk sk ko s ko ok ok ook ok ko ok sk ok ook ok o kol o ko o ok o ok sk o sk o sk sk ok k sk ok sk ok o ok o

public:

[/ Methods — sksoksoksokok ook ok ko okokok ook ko sk ok skok ok ko ok ok sk ok ok ok ok sk o sk ok o ok ok ok sk o sk o sk ok ok
public:
OutNetSocket (string locSocketID); // Constructor creates and opens
// socket with local socket id
// locSocketID
void open(string locSocketID); // Opens OutSocket with local
// id locSocketID, and listens
// for connection requests
void connect (string remSocketID) ;
// Connects to an InNetSocket
// which has requested the
// stream provided by this
// OutNetSocket

void put (CSlot* cs); // Sends one or more stream slots
// containing data
void close(); // Closes and destroys socket
I
<

Macro defined by scraps 15b, 17ab, 18, 19, 20.
Macro referenced in scrap 43.

4 CONCRETE STREAM LAYER INTERFACES 19

Local sockets are also Sockets, but their derived classes have no means of handling network
connections.

(socket classes 19) =

class LocSocket : virtual public Socket
{ /7 Variables soksksksksoskoskoksk skokskokokok sk sk s ok kook ok ok ok sk ok o ok ok sk ok ok kok sk o e ok sk sk s o ok ok ok o sk ok k sk ok ok o ok

public:

// Methods 2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 5k 3k 3k k k >k %k %k %k >k 3k 3k 3k 3k 3k 5k >k %k >k >k Kk K >k >k 3k 3k 3k %k >k >k >k >k >k >k 3k 3 3 4 % >k >k

public:
virtual void open(string locSocketID); // Creates and opens socket with
// local socket id locSocketID

};
&

Macro defined by scraps 15b, 17ab, 18, 19, 20.
Macro referenced in scrap 43.

Local InSockets are derived from Local sockets and InSockets. Local OutSockets are derived
from Local Sockets and OutSockets.

4 CONCRETE STREAM LAYER INTERFACES 20

(socket classes 20) =

class InLocSocket : public InSocket, public LocSocket
{ /7 Variables soksksksksokokoksk skokkokokosk sk sk sk ook ook o ok ok ok o o ok ok sk sk ok o kok sk o e ok sk ok s o ok k ok o o ok k ok ok ok o ok

public:

// Methods stk ok ok sk sk ok ke ok o ok sk sk stk ok o o e o o sk sk sk ok ok ok ke o ok o ook sk sk sk sk sk ke ok ok o oo o sk ok sk sk ok sk ke ok o ok ok ok ok ok

public:
InLocSocket (string locSocketID); // Constructor creates and opens
// InSocket with local socket
// id locSocketID
void open(string locSocketID); // Creates and opens InSocket
// with local id locSocketID
CSlotx* get(); // Gets one or more stream slots

// containing data
s
class OutLocSocket : public OutSocket, public LocSocket
{ /7 Variables soksksksksskoskokskskokskokokok sk sokok sk ook kok o ok ok sk ok ok ok ok sk sk ok e ki sk o e ksl sk sk e ok ok sk s sk ok sk sk sk ok

public:

// Methods stk o o ok s sk ok ke o ook sk sk stk ok o o e o o sk sk sk ok sk sk ke o o e ok sk sk sk sk sk ke ok ke o e o o sk ok sk sk ok sk ke ok o ke ok ok ok ok

public:
OutLocSocket (string locSocketID); // Constructor creates and opens
// OutSocket with local socket
// id locSocketID
void open(string locSocketID); // Creates and opens OutSocket
// with local id locSocketID
void put (CSlot* cs); // Sends one or more stream slots
// containing data
+;
<

Macro defined by scraps 15b, 17ab, 18, 19, 20.
Macro referenced in scrap 43.

4.4 Stream Slots

The stream slot structures used for passing data into and out of sockets are instances of
the class CSlot. The variables in objects of this class are as follows:

4 CONCRETE STREAM LAYER INTERFACES 21

(stream slot class definition 21) =

class CSlot
{ friend class Bufpool;

// Variables sksskskokskskokskokokok sk sk kokokok ok sdokok ok s ok okok ok o ok skok ok o o ok ok ok ok ok k sk sk o o ok sk sk o o ok sk sk o ok ok ko o

public:
unsigned char* data; // Pointer to first octet of data
unsigned int dlen; // Number of octets of data in slot
private: // Pointers to:
unsigned charx bslot; // First octet in buffer area
unsigned char* head; // First octet of header in slot
unsigned char* tail; // First octet of trailer in slot
unsigned char* end; // First unoccupied octet in slot
unsigned char* eslot; // First octet after buffer area
CSlotx* nextslot; // Next slot in list, if any
public:
voidx* priv; // Hidden variables used in the

// implementation.

<

Macro defined by scraps 21, 23b, 24ab.
Macro referenced in scrap 25.

It is a requirement that, at all times:
bslot < head < data < tail < end < eslot

Likewise, by definition, tail — data = dlen. All the methods of the class must maintain
these invariants. Errors in handling CSlot objects cause exceptions described by objects
of the class CSlot_error, which is defined as follows:

4 CONCRETE STREAM LAYER INTERFACES 22

(stream slot error 22) =
class CSlot_error
{ public:
enum Sloterrtype { buffer_full, buffer_empty,
header_ovfl, trailer_ovfl, data_ovfl,
header_unfl, trailer_unfl, data_unfl,
expand_head, expand_data };

[/ Variables sk koo skkokskokok ok ok skok s ko ok ok o kol ko o sk o ksl ok ok sk ok ek ok o ko o sk ok o ko o ok sk ok ok
public:
Sloterrtype e_type;
string nam;
[/ Methods sskskokokskskokok ko ok s skok ok kok o ok sk o o sk ok o sk o o ko o ko o ok sk o ok sk o ok sk o ok o o ko o k ok o ok o ok ok ok ok
public:
CSlot_error(Sloterrtype e); // Constructor initialises
// e_type to e and nam to
// the empty string
CSlot_error(Sloterrtype e, string s); // Constructor initialises
// e_type to e, and nam to s
void showError();
// Displays on the standard output an error message associated
// with the errortype e. If string s was not empty when the
// error was thrown, then s is displayed, otherwise a default
// error message is displayed.
// This method is independent of the -DSHOW compilation parameter.
s
<

Macro referenced in scrap 25.

The individual errors are identified by the elements of the enumeration type Sloterrtype,
of which the following are currently defined:

Error Caused by... Such that...

buffer_full | Adding data data < bslot V tail > eslot
buffer_empty | Removing data data > tail

data_ovfl Adding data data < head V tail > end
data_unfl Removing data tail < data

header_ovfl | Adding header head < bslot V head > data
header_unfl | Removing header head > data

trailer_ovfl | Adding trailer end < tail V end > eslot
trailer unfl | Removing trailer end < tail

expand head | Expanding header area | Header area overwrites data area
expand data | Expanding data area Data area overwrites trailer area

The pointers correspond in the natural way to the quantities illustrated in Figure 6, with
the convention that pointers to the ends of areas always point to the first octet after the
area concerned, i.e. the beginning of the next area, if any. Thus, for example, end points

4 CONCRETE STREAM LAYER INTERFACES 23

to the first octet of the free area after the trailer and eslot to the first octet after the end
of the buffer area.

Some default sizes for the header and trailer fields are set up by the following definitions:

(stream slot defaults 23a) =

#define DEFAULTSIZE 1000 //Default size used to allocate the buffer from a
//CSlot class. In this buffer is stored the data form
//the header,tail,and data regions.

#define DEFAULTHEAD 50 //Default size allocated to the header in case no
//value is specified for the header length in the
//constructor of the CSlot class

#define DEFAULTDATA O //Default size allocated to the header in case mno
//value is specified for the data length in the
//constructor of the CSlot class

#define DEFAULTTAIL 10 //Default size allocated to the tail in case no
//value is specified for the tail length in the
//constructor of the CSlot class

<o

Macro referenced in scrap 25.

The constructor and destructor methods of the class are as follows:

(stream slot class definition 23b) =
[/ Methods — skskskokskokokokokskokskokokokskok ok ok ok ok ok ook ok ok ook sk ok ook ok ok o sk ok ok ook koo sk ok o o ok ok oo sk ok o o

public:
// Constructors and destructors
CSlot(); // Default constructor uses default maximum
// header and trailer lengths with data
// length O.
~“CSlot(); // Default destructor.
CSlot (unsigned int d1); // Uses default maximum header and trailer

// lengths with data length dl.
CSlot (unsigned int hl, unsigned int dl, unsigned int tl1);
// Uses header length hl, trailer length tl
// and data length dl.
%

Macro defined by scraps 21, 23b, 24ab.
Macro referenced in scrap 25.

The following methods can be used to check and/or modify the available space in the
stream socket before adding data, headers or trailers:

4 CONCRETE STREAM LAYER INTERFACES 24

(stream slot class definition 24a) =
// Methods for checking and changing available space

unsigned int headRoom() ; // returns (head - bslot)

unsigned int tailRoom(); // returns (eslot - end)

unsigned int dataRoom(); // returns (eslot - data - deftlen)
// where deftlen is the default trailer
// length.

void expandHead(int hl) throw(CSlot_error);
// Increments head, data, tail and end by
// hl, causing exception if buffer area
// contains data or trailer.

void expandData(int dl) throw(CSlot_error);
// increments tail and end by dl, causing
// exception if buffer area contains
// trailer.

<

Macro defined by scraps 21, 23b, 24ab.
Macro referenced in scrap 25.

The class also includes a number of methods for adding headers and trailers to the stream
slot before passing the slot into the socket, and for stripping them from the stream slot
after receiving the slot from the socket:

(stream slot class definition 24b) =

// Methods for adding and removing headers and trailers
void appendToTail(unsigned char* source, unsigned int dl1)
throw(CSlot_error);
// Copies dl octets of data from source to
// area starting at end, and increments
// end by dl.
void appendToHead(unsigned char* source, unsigned int dl1)
throw(CSlot_error);
// Copies dl octets of data from source to
// area ending at head, and decrements
// head by dl.
void appendToData(unsigned char* source, unsigned int dl1)
throw(CSlot_error);
// Copies dl octets of data from source to
// area starting at datatdlen, and
// increments dlen by d4l.
void removeFromTail (unsigned char* dest, unsigned int dl1)
throw(CSlot_error);
// Copies dl octets of data to dest from
// area ending at end, and decrements
// end by dl.
void removeFromHead (unsigned char* dest, unsigned int dl1)
throw(CSlot_error);
// Copies dl octets of data to dest from
// area starting at head, and increments

4 CONCRETE STREAM LAYER INTERFACES 25

// head by dl.

void removeFromData(unsigned char* dest, unsigned int dl1)

throw(CSlot_error);

// Copies dl octets of data to dest from
// area ending at data+dlen, and
// decrements dlen by dl.

void strip() throw(CSlot_error);
// Strips all headers and trailers from
// the slot, leaving head=data and
// tail=end.

void clean(); // Frees the slot so it can be reused.

// Functions made available for debugging purposes.

void show(); // Displays member variables of the class.
// To exploit this, the -DSHOW compilation
// parameter must be used when compiling.

};
&

Macro defined by scraps 21, 23b, 24ab.
Macro referenced in scrap 25.

Note that appendToHead and removeFromTail are defined in terms of the pointer to the
end of the area concerned. In accordance with the convention given previously, this pointer
points to the first octet after the area concerned.

The CSlot class relies on auxiliary classes whose dependencies require them to be defined
in the following order:

(stream slot class 25) =

(stream slot defaults 23a)
(stream slot error 22)

(stream slot class definition 21, ...)
<

Macro referenced in scrap 43.

Pools of stream slots are described by objects of the class Bufpool, which is described as
follows:

4 CONCRETE STREAM LAYER INTERFACES 26

(buffer pool class definition 26) =

class Bufpool
{ /7 Variables soksksksksokokoksk skokkokokosk sk sk sk ook ook o ok ok ok o o ok ok sk sk ok o kok sk o e ok sk ok s o ok k ok o o ok k ok ok ok o ok

private:
CSlot* buffers; // Linked list of buffer slots
int nbufs; // Number of buffer slots
void* priv; // Hidden variables used in the

// implementation
/7 MetROAs ko ksk ok ko sk ko ok ok ook o sk ok ok ok o ok o ko k ok o sk ok sk o ko o sk ok sk o sk o ok ok ok ok o sk o ok ok o ok ook o ko o ok o
public:
// CONSTITUCTOTS ok kokokakok ks ok skok ko sk ok ok sk ok ok o ok ok o o sk ok o ko ok o sk ok o ko o o sk o ko ko o sk o
Bufpool(int n) throw (Bufpool_error);
// Initialise pool with n default slots,
// throwing exception if not enough space
Bufpool(int n, unsigned int hl, unsigned int dl, unsigned int tl)
throw (Bufpool_error);
// Initialise pool with n slots with
// header length hl, data length dl
// and trailer length tl, throwing
// exception if not enough space
// Methods for reserving and releasing stream slots kkkksikskskokskskkkokkskkkkk
CSlot* getbuf() throw (Bufpool_error);
// Get stream slot from pool, throwing
// exception if no slots left in pool
void releasebuf(CSlot* cs);// Return stream slot to pool
int bufsleft(); // Returns number of slots left in pool
s
<

Macro referenced in scrap 27b.

Errors in handling Bufpool objects cause exceptions described by objects of the class
Bufpool_error, which is defined as follows:

4 CONCRETE STREAM LAYER INTERFACES 27

(buffer pool error 27a) =
class Bufpool_error
{ public:
enum Bufpoolerrtype { pool_empty, no_space };

// Variables sk sk sk skkkokskokokokok ok ok ok ok ok ok ok ok ook ok ok ok sk ok koo ok ok o o o o ok ok ok ok ok ok sk ok ok skook ok ok ok o o

public:

Bufpoolerrtype e_type;

string nam;
/7 Methods sskskoksokskokskok sk sk s ook kol o sk o sk sk o e ko o ke s ok sk ok sk sk sk sk sk ke sk o ko s ko o sk ke o
public:

Bufpool_error (Bufpoolerrtype e); // Constructor initialises

// e_type to e and nam to
// the empty string
Bufpool_error(Bufpoolerrtype e, string s);
// Constructor initialises
// e_type to e, and nam to s
void showError();
// Displays on the standard output an error message associated
// with the errortype e. If string s was not empty when the
// error was thrown, then s is displayed, otherwise a default
// error message is displayed.
// This method is independent of the -DSHOW compilation parameter.
I
<

Macro referenced in scrap 27b.

The individual errors are identified by the elements of the enumeration type Bufpoolerrtype,
of which the following are currently defined:

Error ‘ Caused by...
pool_empty Attempt to get buffer from empty pool
pool_nospace | Insufficient space to create pool of requested size

The Bufpool class relies on auxiliary classes whose dependencies require them to be defined
in the following order:

(buffer pool class 27b) =

(buffer pool error 27a)
(buffer pool class definition 26)
<

Macro referenced in scrap 43.

When stream slots are passed between system components, it is the responsibility of the
originating system component to allocate space, and the responsibility of the destination
system component to pass information back to the originating component when the stream

4 CONCRETE STREAM LAYER INTERFACES 28

slot has been emptied, so that the originating component can return the slot to the relevant
pool. Mechanisms for this purpose are not specified in the document.

4.5 Quality of Service Parameters

All streams and connections have Quality of Service parameters associated with them. The
objects describing individual streams or connections are all instances of the class QoS. This
makes use of the STL template class map to implement a mapping between identifiers for
QoS parameters and their types and values. In this way, any set of named parameters with
numerical values can be used to describe the QoS for a particular stream or connection.

The QoS class relies on two auxiliary classes, and the dependencies of these classes require
them to be defined in the following order:

(stream QoS class 28a) =

(QoS parameter 30)

{QoS parameter error 31)
(QoS class definition 28b, ...)
<o

Macro referenced in scrap 43.

The main definition of the QoS class is as follows:

(QoS class definition 28b) =
class QoS
{ /7 Variables ssksskssksosksoksokskok ok sk sk koksk ok koo ko ok ok sk ok ok ook ok sk ok ok ok ko ko sk ok o ok ok ok sk o sk o sk ok ok
public:
map<string,QoSelem*,less<string> > qvals;
// Mapping between names and (type,value)
// pairs of the QoS parameters
/7 MEthods sk ks ko kok ko sk ok sk ok ok ok ok ok sk ek o sk ok ok ok ok sk o ok ok ok ok ko ko sk ook o ok o ok sk o sk ok o ok ok ok sk o sk o sk ok ok

public:
// Constructor and destructor
QoSO ; // Creates QoS object with empty map
“QoSO); // Destroys QoS object
<&

Macro defined by scraps 28b, 29.
Macro referenced in scrap 28a.

4 CONCRETE STREAM LAYER INTERFACES 29

(QoS class definition 29) =

// Methods for getting and setting QoS values

void getQoSvalues (vector<QoSelem*>& v) ;
// Appends all current (type,value) pairs
// for QoS parameters from qvals to v

void selectQoSvalues(vector<string>% naml, vector<QoSelem*>& v)

throw (QoSparm_error);

// Appends current (type,value) pairs for
// QoS parameters whose names are given
// in naml to v;
// Throws exception if one or more of the
// named parameters are not defined.

QoSelem* getQoSvalue(string nam) throw (QoSparm_error);
// Returns current (type,value) pair for
// the QoS parameter with name nam.
// Throws exception if parameter with
// this name not defined.

void setQoSvalue(string nam, QoSelem* tvpair)

throw (QoSparm_error);

// Sets (type,value) for the QoS parameter
// with the name nam.
// Throws exception if parameter with
// this name not defined.

void putQoSvalue(string nam, QoSelem* tvpair);
// Sets (type,value) for the QoS parameter
// with the name nam, inserting a new
// element in the map if no entry with
// the given name exists.

+;
<&

Macro defined by scraps 28b, 29.
Macro referenced in scrap 28a.

The type and value of each QoS parameter is described by an instance of the class QoSelem.
This uses a union type to permit the value field of the QoS parameter to have any of the
numerical types int, long int, unsigned, float and double, together with a type tag,
which indicates the type which has currently been allocated to the value field:

4 CONCRETE STREAM LAYER INTERFACES 30

(QoS parameter 30) =
class QoSelem
{ public:
enum qtype_id { Z, L, N, R, D };

// Variables sksskskokskskokskokokok sk sk kokokok ok sdokok ok s ok okok ok o ok skok ok o o ok ok ok ok ok k sk sk o o ok sk sk o o ok sk sk o ok ok ko o

qtype_id typ; // Tag for actual type of QoS parameter;
// Default type = int (code Z)
union p_vals {int i; // Possible value fields
long int j;
unsigned k;
float f;

double g;} qval;
/7 MetRodis ko sk ko sk koo ok ok ook ok sk ok ok ok o ok o ko ok ok o sk ok sk o ko o sk ok sk o sk ok ok ok ok ok o ko ok ok o ok ook o ko o ok o
// Constructors: a default and one for each possible type of value

QoSelem() ; // Default: typ=Z, qval.i=0
QoSelem(int z);
QoSelem(long int 1);
QoSelem(unsigned n);
QoSelem(float r);
QoSelem(double d);

};

<

Macro referenced in scrap 28a.

The sets of QoS parameters currently defined for audio and video stream QoS objects are
as follows:

Identifier Audio | Video | Type Description

maxbandwidth + + | float Maximum bandwidth (bits/s)
avgbandwidth + + | float Average bandwidth (bits/s)
maxburstbw + + | float Maximum burst bandwidth (bits/s)
maxdelay + + | long int | Maximum delay (100ns)

avgdelay + + long int | Average delay (100ns)

maxjitter + + int Maximum jitter (100ns)

avgjitter + + int Average jitter (100ns)

errorrate + + | float Error rate (error bits/bit)

The sets of QoS parameters which describe the QoS targets and current properties of
connections are to be determined.

Errors in handling QoS objects cause exceptions described by objects of the class QoSparm_error,
which is defined as follows:

4 CONCRETE STREAM LAYER INTERFACES 31

(QoS parameter error 31) =
class QoSparm_error
{ public:
enum QoSerrtype {undef_QoSparm, muldef_QoSparm, unachiev_QoSparm };

// Variables skkkskoksskokodkokkokokdok ok ok ook ok ok koo o koo e ok sk sk e koo o ks s o e ok ks e ook sk sk o o e ok
QoSerrtype e_type;
string nam;
// Methods sk skskskskok sk skok sk ok sksk ok e kok sk ok e sk sk sk ok e ok sk o s e ksl sk s o ok sk oo s ok sk sk sk e o sk sk s e ok sk sk e ok ok sk
QoSparm_error (QoSerrtype e) ; // Constructor initialises
// e_type to e and nam to the
// empty string
QoSparm_error (QoSerrtype e, string s); // Constructor initialises
// e_type to e, and nam to s
void showError();
// Displays on the standard output an error message associated
// with the errortype e. If string s was not empty when the
// error was thrown, then s is displayed, otherwise a default
// error message is displayed.
// This method is independent of the -DSHOW compilation parameter.
s
<

Macro referenced in scrap 28a.

The individual errors are identified by the elements of the enumeration type QoSerrtype,
of which the following are currently defined:

Error ‘ Caused by...
undef_QoSparm Reference to undefined QoS parameter
muldef_QoSparm Insertion of QoS parameter which is already in map

unachiev_QoSparm | Attempt to set unachievable value for QoS parameter

The member nam of the QoSparm_error object is expected to be the string which identifies
the QoS parameter, reference to which caused the error.

4.6 Stream Attributes

Many streams have attributes in addition to classical QoS parameters. The class of at-
tributes is defined in a manner analogous to that of QoS parameters, and relies on some
auxiliary classes which have to be defined in the following order:

4 CONCRETE STREAM LAYER INTERFACES

(stream attributes class 32a) =
(attribute element 33)
(attribute element error 34)
(attributes class definition 32b)
<O

Macro referenced in scrap 43.

(attributes class definition 32b) =

class Attributes
{ /7 Variables sskskskskskokokokskskk s sk okok sk ok ke sk ok o s ok ok ok ok ok ok skok ok ok ok ok o o ook ok ok ok Kok 3k k o o o ok ok ok ok ok ok ok ok ok
public:
map<string,Attrelem*,less<string> > avals;
// Mapping between names and (type,value)
// pairs of the attributes
/7 Methods soksksksksk sk sk sk ok ok sk sk sk o ok ok ok ok sk sk kK 3 o ok o o ok ook skok sk k 3 ko o ook o ok sk ok 3k K K o o o ok ok ok ok ok ok ok ok

public:
// Constructor and destructor
Attributes(); // Creates Attributes object with empty map
“Attributes(); // Destroys Attributes object

// Methods for getting and setting attribute values

void getAttrvalues(vector<Attrelem*>& v) ;
// Appends all current (type,value) pairs
// for attributes in avals to v.

void selectAttrvalues(vector<string>& naml, vector<Attrelem*>& v)

throw (Attrib_error);

// Appends current (type,value) pairs for
// attributes with names in naml to v;
// Throws exception if one or more of the
// named parameters are not defined.

Attrelem* getAttrvalue(string nam) throw (Attrib_error);
// Returns current (type,value) pair for
// the Attribute with name nam.
// Throws exception if parameter with
// this name not defined.

void setAttrvalue(string nam, Attrelemx* tvpair)

throw (Attrib_error);

// Sets (type,value) for the Attribute
// with the name nam.
// Throws exception if parameter with
// this name not defined.

void putAttrvalue(string nam, Attrelem* tvpair);
// Sets (type,value) for the Attribute
// with the name nam, inserting a new
// element in the map if no entry with
// the given name exists.

I
<

Macro referenced in scrap 32a.

32

4 CONCRETE STREAM LAYER INTERFACES 33

The type and value of each attribute is described by an instance of the class Attrelem.
This uses a union type to permit the value field of the attribute to have any of the
numerical types int, long int, unsigned, float and double, or the non-numerical types
bool or string, together with a type tag, which indicates the type which has currently
been allocated to the value field:

(attribute element 33) =
class Attrelem
{ public:
enum atype_id { Z, L, N, R, D, B, TOK };

// Variables sk sk ok ok ok sk sk sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok s 3k ok ok ok ok ok 3k ok ok ok ok ok

atype_id typ; // Tag for actual type of attribute;
// Default type = int (code Z)

union p_vals {int i; // Possible value fields

long int j;

unsigned k;

float f;

double g;

bool t;

charx* s;} aval;

/7 MetROds ko sk ok ko sk ok ok ok ook ok sk ok ok ok o ok o ko k ok o sk ok sk o ko o sk ok sk o sk o ok sk ok ok o sk o ok ok o ok ook o ko o ok o
// Constructors: a default and one for each possible type of value

Attrelem(); // Default: typ=Z, aval.i=0
Attrelem(int z);
Attrelem(long int 1);
Attrelem(unsigned n);
Attrelem(float r);
Attrelem(double 4d);
Attrelem(bool b);
Attrelem(char* tok);

I

<

Macro referenced in scrap 32a.

The sets of attributes currently defined for audio and video streams are as follows:

Identifier Audio | Video | Type Description
imageheight + | int Height of image (pixels)
imagewidth + int Width of image (pixels)
volume + int Volume of audio
brightness + int Brightness of video
title + string | Title of video

Errors in handling attributes cause exceptions described by objects of the class Attrib_error,
which is defined as follows:

4 CONCRETE STREAM LAYER INTERFACES 34

(attribute element error 34) =

class Attrib_error
{ public:
enum Attrerrtype {undef_ Attrib, muldef_Attrib, unachiev_Attrib };

// Variables ik skokskkokokok sk etk ok s koo o o kst oo ok koo ook ks e ok sk e ok sk e ok ok sk o
Attrerrtype e_type;

string nam;
/7 MetROAs ko ksk ok ko sk ko ok ok ook o sk ok ok ok o ok o ko k ok o sk ok sk o ko o sk ok sk o sk o ok ok ok ok o sk o ok ok o ok ook o ko o ok o
Attrib_error (Attrerrtype e); // Constructor initialises

// e_type to e and nam to the
// empty string
Attrib_error(Attrerrtype e, string s); // Constructor initialises
// e_type to e, and nam to s
void showError();
// Displays on the standard output an error message associated
// with the errortype e. If string s was not empty when the
// error was thrown, then s is displayed, otherwise a default
// error message is displayed.
// This method is independent of the -DSHOW compilation parameter.
s
<

Macro referenced in scrap 32a.

The individual errors are identified by the elements of the enumeration type Attrerrtype,
of which the following are currently defined:

Error ‘ Caused by...
undef _Attrib Reference to undefined attribute
muldef Attrib Insertion of attribute which is already in map

unachiev_Attrib | Attempt to set unachievable value for attribute

The member nam of the Attrib_error object is expected to be the string which identifies
the attribute, reference to which caused the error.

4.7 System Components

Objects of the class SysComp describe System Components. The definition of this class
makes use of auxiliary classes whose dependencies require them to be defined in the fol-
lowing order:

4 CONCRETE STREAM LAYER INTERFACES 35

(system component class 35a) =

(system component error 42)
(system component definition 35b, ...)
<&

Macro referenced in scrap 43.

The member variables of such objects define the sets of InSockets and OutSockets, the set
of streams which can be generated by the component concerned, the mappings between
streams and sockets, and the (possibly empty) sets of functions which generate, consume
and transform streams in the component. The member variables are:

(system component definition 35b) =

class SysComp
{ // Variables koo sk ok o ook ok ok ok okokok ok sk ok o o ke ek ok ok sk sk sk ok sk ok ok oo ook ke e ke ek ok

protected:

vector<InSocketx*> insocks; // Set of InSockets
vector<OutSocket*> outsocks; // Set of OutSockets
vector<string> genStreams; // Identifiers for generable streams
map<string,InSocket*> strmapi; // Association between stream ids

// and InSockets
map<string,OutSocket*> strmapo; // Association between stream ids

// and OutSockets
map<Socket*,string> sockmap; // Inverse mapping giving assoc.

// between Sockets and stream ids
vector<pair<InSocket*,0OutSocket*> > iomap;
// List of internal connections
// between InSockets and
// OutSockets.
vector<string> actStreams; // Identifiers for active streams
vector<genfunc> sources; // Vector of pointers to the
// functions which generate data
// for the streams in this
// component
vector<genfunc> sinks; // Vector of pointers to the
// functions which consume data
// from the streams in this
// component
vector<genfunc> transforms; // Vector of pointers to available
// transformation functions for
// this component
public:
void* priv; // Hidden variables used in the
// implementation.

<
Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41.
Macro referenced in scrap 35a.

Objects of the class provide methods for obtaining information about the streams which
the component can generate and streams which are currently actively being generated,

4 CONCRETE STREAM LAYER INTERFACES 36

and also make it possible to activate and deactivate streams which can be generated by
the component. The constructors and the methods for dealing with streams which the
component can generate are defined as follows:

(system component definition 36) =

/7 Methods — kskokskokskokskokokkok skok ok ok sk ok ok ok ok ok o sk o ok sk o ok ok ok ko sk ook o ok o ok sk o sk ok o ok ok ok ok o ok o ko ok
public:
// COISTIUCTOTS ks ks dkok sk ok ok ok ko ok ok ook ook ok sk ok o ok ook ko sk ok o ok ok ok sk o sk o sk ok ok
SysComp () ; // Default constructor: insocks, outsocks
// genStreams are all empty vectors;
// strmapi, strmapo, iomap are empty maps
SysComp (vector<string>& gs); // Sets the set of identifiers for
// generable streams to gs, and all other
// variables to "empty" defaults
~SysComp() ; // Default destructor. Removes component

// Methods for dealing with streams which the component can generate

void getStreams (vector<Stream*>& sl);

// Returns list of generable streams in sl
void getActiveStreams (vector<Stream*>& sl);

// Returns list of active streams in sl
void activateStream(string strID) throw (Component_error);

// Activates generation of stream with
// identifier strID.
// Throws exception if stream with this
// identifier is undefined or not local
void deactivateStream(string strID) throw (Component_error);
// Deactivates generation of stream with
// identifier strID
// Throws exception if stream with this
// identifier is undefined or not local
bool existsGenStream(string strID);
// True if a generated stream with id
// strID exists, otherwise false.
bool existsActStream(string strID);
// True if an active stream with id
// strID exists, otherwise false.
string existsInSockmap (Socket* sock) ;
// Returns the name of the stream
// associated with this socket.
// If there is no name associated
// then return NULL
<

Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41
Macro referenced in scrap 35a.

Both the methods getStreams and getActiveStreams return a list of streams, which can
be searched to find streams of interest in a particular context.

4 CONCRETE STREAM LAYER INTERFACES 37

A further group of methods is available for associating new sockets with the streams pass-
ing into or out of the component and for obtaining information about which sockets are

associated with named streams:

(system component definition 37) =

// Methods for creating new local sockets within the component *kkskkkskk%xxk

OutSocket*

createlQutSocket (string locid);

// Creates and returns reference to a new

//
//
InSocketx*

OutSocket with local socket id locid
in the component

createInSocket (string locid);

// Creates and returns reference to a new

//
//

InSocket with local socket id locid
in the component

// Methods for creating new network sockets within the component ksikxsk*x
OutNetSocket* createlistenSocket(string strID, string sockID);
// Creates and returns reference to a new

//
//
//
//

network OutSocket with socket
identifier sockID, which can supply
the stream with identifier strID

to clients

InNetSocket* createReceiver (string sockID);

// Creates and returns reference to a new

//
//

network InSocket with socket
identifier sockID

// Methods for dealing with the mappings between streams, InSockets

// and OutSockets
InSocketx*

getInSocket (string strID)

throw (Component_error);

// Returns reference to the InSocket

//
//

via which the stream with identifier
strID enters the component

// Throws exception if stream with this

//
OutSocket*

getOutSocket (string strID)

identifier is not an incoming stream
throw (Component_error);

// Returns reference to the OutSocket

//
//

via which the stream with identifier
strID leaves the component

// Throws exception if stream with this

//

void

identifier is not an outgoing stream

connectInToOut (string strID, int transformID, void* params,

InSocket* is, OutSocket* os)

throw (Component_error);

// Makes internal connection to route the

//
//
//
//
//
//

incoming stream with identifier strID
from the InSocket given by is
to the OutSocket given by os,
using the transformation whose number
is transformID with parameters params.
If transformID = 0, the default

4 CONCRETE STREAM LAYER INTERFACES

<

// (identity) transformation is used.

// Throws exception if stream with this

// identifier is not an incoming stream

// or if refs. to sockets are invalid or

// transformation number is not defined.
OutSocket* existsInIomap(InSocket* sock);

// Checks to see if the InSocket sock

// belongs to an internal connection.

// If so, then a reference to the

// OutSocket at the other end of

// the connection is returned.

// If not, NULL is returned.
InSocketx* existsInOimap (OutSocket* sock);

// Checks to see if the QutSocket sock

// belongs to an internal connection.

// If so, then a reference to the

// InSocket at the other end of

// the connection is returned.

// If not, NULL is returned.

Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41.
Macro referenced in scrap 35a.

38

The class also contains methods for reading the content of named hardware registers within
the component:

(system component definition 38) =

<

// Methods for dealing with hardware registers in the system component **x*

unsigned int getHWProperty(string regid);
// Retrieve content of hardware register
// with identifier regid

Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41.
Macro referenced in scrap 35a.

The identifiers used to identify individual registers are not described in this document.

Finally, the class contains a number of useful functions for setting up the sources for
streams originating wthin the component and for introducing transformations to create
new streams by modifying existing streams which arrive at the component:

4 CONCRETE STREAM LAYER INTERFACES 39

(system component definition 39) =
// Methods for setting up the input sources *kiskkksskkkskokskokskoksk ok kiokkdkokokkok ok k
void source(int sourcelD, string streamID, void* params,
OutSocket* socketID)
throw (Component_error);

// Sends the stream generated by the source
// identified by sourceID and identified
// by streamID to the OutSocket given by
// socketID.
// Throws exception if source with number
// sourceID is not defined or if stream
// does not have identifier streamID.

void setupSource(int sourceID, void* params)

throw (Component_error);

// Sets up the source parameters.
// For each source there are different
// parameters, so for generality’s sake
// the type is given as void*.
// Throws exception if source with number
// sourceID is not defined

int registerSource(genfunc func);
// Registers the Source function func as a
// source for this component, and returns
// the source number

genfunc retrieveSource(int sourcelD);
// Retrieves the source function corres-
// ponding to the source number sourceID
// Returns NULL if source with this number
// is not defined

<&

Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41.
Macro referenced in scrap 35a.

4 CONCRETE STREAM LAYER INTERFACES

(system component definition 40) =
// Methods for setting up Simks skskskskokokskoksk okkskok ook skok ook ok kok ok ook sk ok ok ook sk sk k ok
void sink(int sinkID, string streamID, void* params,
InSocket* socketID)
throw(Component_error) ;
// Starts a thread corresponding to
// sinkID which receives a stream
// identified by streamID from the
// InSocket given by socketID
// Throws exception if dest. with number
// sinkID is not defined or if stream
// does not have identifier streamID.
void setupSink(int sinkID, void* params)
throw(Component_error) ;
// Sets up the sink parameters.
// For each source there are different
// parameters, so for generality’s sake
// the type is given as void*.
// Throws exception if dest. with number
// sinkID is not defined

int registerSink(genfunc func);
// Registers the Sink function func
// as a sink for this component,
// and returns the sink number
genfunc retrieveSink(int sinkID);

// Retrieves the sink function
// corresponding to the sink

// number sinkID

// Returns NULL if sink with this
// number is not defined

<&

Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41
Macro referenced in scrap 35a.

4 CONCRETE STREAM LAYER INTERFACES 41

(system component definition 41) =
// Methods for setting up transformations s sksksksksk sk sk sk sk sk sk >k %k ok 5k >k ok ok 3k 5k 3k 3k ok 5 5k % 3k 5k > %k 5k
void setupTransform(int transformID, void* params)
throw(Component_error) ;
// Sets up the transformation parameters.
// For each source there are different
// parameters, so for generality’s sake
// the type is given as void*.
// Throws exception if transform with number
// transformID is not defined
int registerTransform(genfunc func);
// Registers the transformation function
// func and returns the transformation
// number
genfunc retrieveTransform(int transformID);
// Retrieves the transformation function
// corresponding to the transformation
// number transformID
// Returns NULL if transform with this
// number is not defined

// Auxiliary methods
void show () ; // Displays member variables of the class.
// To exploit this, the -DSHOW compilation
// parameter must be used when compiling.
void removeStream(string s);
// Removes all occurrences of the stream s
// from the data structures for SysComp.
+;
<&
Macro defined by scraps 35b, 36, 37, 38, 39, 40, 41.
Macro referenced in scrap 35a.

Errors in handling system components cause exceptions described by objects of the class
Component_error, which is defined as follows:

4 CONCRETE STREAM LAYER INTERFACES 42

(system component error 42) =
class Component_error
{ public:
enum Comperrtype {undef_stream, nonlocal_stream,

not_instream, not_outstream,
invalid_socket,
source_undefined, sink_undefined,
transform_undefined, unmatched_strID};

// Variables sk sk ok ook ok sk ok ook o sk ok sk sk ok o ko sk o ks ok sk ok sk o ko ok sk ok ok o ko ok sk ok sk ook o ko ok o ok

Comperrtype e_type;

string nam;
/7 MetRods ks sk sk ko sk ook sk ok ook ok sk ok ok ok o ok o ko ok ok o sk o sk o ok ok o sk ok ko sk ok o ok ok ok o ko ok ok o ok o sk o k ok o ok o K
// Constructor initialises
// e_type to e and nam to
// the empty string
Component_error (Comperrtype e, string s); // Constructor initialises

// e_type to e, and nam to s

Component_error (Comperrtype e);

void showError();
// Displays on the standard output an error message associated
// with the errortype e. If string s was not empty when the
// error was thrown, then s is displayed, otherwise a default
// error message is displayed.
// This method is independent of the -DSHOW compilation parameter.
I
<

Macro referenced in scrap 35a.

The individual errors are identified by the elements of the enumeration type Comperrtype,
of which the following are currently defined:

Error

Caused by...

undef_stream
nonlocal_stream
not_instream
not_outstream
invalid_socket
source_undefined
sink _undefined

transform_undefined

unmatched_strID

Reference to stream whose identifier is unknown

Reference to stream which is not generable in local component
Reference to stream as an incoming stream when it is not
Reference to stream as an outgoing stream when it is not
Reference to a socket which is not currently valid for the com-
ponent

Reference to a source which has not been defined for this com-
ponent

Reference to a sink which has not been defined for this compo-
nent

Reference to a transformation which has not been defined for
this component

Attempt to make internal connection between sockets associated
with different streams

4 CONCRETE STREAM LAYER INTERFACES 43

The member nam of the Component_error object is expected to be the string which iden-
tifies the stream, reference to which caused the error.

4.8 Class relationships

The class definitions given above are provided in a single header file, streams.h, where
their dependencies require them to be defined in the following order:

"streams.h" 43 =
// Header file for DTU-RTMM Streams and Sockets
// Version 1.4 Robin Sharp June 2000
[/ ok sdeokokok koo o o sk ok o ok ke o o sk s ok ok sk o o sk o e ok ks o
// *** Generated file. Do not edit. *okok
[/ koksdeokok koo ok o ok skskokook o ok ok o o o ks ok e ok sk sk ok o o sk sk ok e ok sk skok o

#include <list>
#include <string>
#include <vector>
#include <map>
#include <queue>
#include <semaphore.h>
#include <stdio.h>

#ifndef _STREAMS_
#define _STREAMS_

(debugging information 10a, ...)

// genfunc is a type used for generic functions, as required
// the pthread package used to create threads.
typedef void* (*genfunc) (voidx*);

(stream slot class 25)

(buffer pool class 27b)
(stream QoS class 28a)
(stream attributes class 32a)
(stream class 14)

(socket classes 15b, ...)
(connection class 11)
(stream dynamic state 15a)
(system component class 35a)
#endif // _STREAMS_

<

5 SESSION LAYER CONCEPTS 44
5 Session Layer Concepts

The Session Layer is responsible for setting up suitable connections for distributing the
streams generated by the system components on the various sites. The Session Layer
offers facilities for registering and deregistering system components and the streams which
they generate. The detailed implementation of the registry used for this purpose will not
be described in this document.

Streams are identified in the Session Layer by Stream Identifiers, each of which is con-
structed from a Site Identifier, which identifies the physical computer system in which
the stream originates, together with a Local Stream Identifier, which uniquely identifies
the stream within this system. Likewise, system components are identified by Component
Identifiers, which are constructed from a Site Identifier and a Local Component Identifier.

The general procedure for setting up a logical connection for distributing a stream is based
on the principle that the site, say Site A, in which the stream originates makes knowledge of
this stream available to all other systems. Another site, say Site B, which wishes to receive
the stream must then send a request to the originating site, A, asking for the stream to
be directed to B. Both A and B are expected to set up any necessary internal connections
between their network system components and other physical system components acting
as the ultimate source or destination for the stream, as indicated in Figure 5.

,,,,,,,,,,,,,,, SOURCESITE ____________DESTINATIONSTE = ________

| 3 HOR (6) |

! l ! | LOGICAL

| ! | CONNECTIONS
) ¥ ¥R [lo o PAe A ©

Audio Network Network Audio

! System System | ! System System |

| Component Component | Component Component

3 (Di)J : 3 3 PHYSICAL

| Microphone Physical netivork Loudspeakeri | MEDIA

Figure 7: Setting up connections for distributing a stream

Informally, the procedure can be described, with reference to Figure 7, as follows:

e On the originating site, each system component which can act as the originator of
a stream is assumed to have registered this stream when the system component
is started. The Session Layer software is assumed to retrieve information about
available streams from the registry. For each available stream which is interesting in
the context of the application, the Session Layer software on the originating site will:

5 SESSION LAYER CONCEPTS 45

1. Create a Local OutSocket, say los, for the System Component in which the
stream originates.
2. Create a Local InSocket, say netis, for a suitable network System Component
in the context of the application.
3. Create a Connection between los and netis.
O Inform all other sites that the stream originating from the originating System
Component is available.
In terms of the methods defined for system component objects, an example of a code
sequence for setting up the required connection is as follows:

// Set up data structure with identifiers for locally generated streams
vector<string> locstr_ids;
locstr_ids.insert(ss.end(), "AudioStream2");

// Set up local system components
Syscomp* network = new Syscomp();
Syscomp* audio = new Syscomp(locstr_ids);

// Set up local sockets and make connection

OutSocket* los = audio->createlutSocket ("AudioStream2");
InSocket* netis = network->createInSocket();

Connection* locaudio = new Connection("AudioStream2", los, netis);

// Set up network socket which can supply the stream
OutSocket* nos = network->createlListenSocket ("AudioStream2","socknam");

The mechanism for informing other sites about the existence of the stream lies outside
the scope of this document.
e Any other site which receives knowledge of an available stream which is interesting
in the context of the application will:
4. Create a Local OutSocket, say netos, for a suitable network System Component.
5. Create a Local InSocket, say lis, for the System Component which is the ulti-
mate destination for the stream.
6. Create a Connection between netos and lis.
O Send a request to the originating site, asking for the stream to be distributed.

In terms of the methods defined for system component objects, an example of a code
sequence for setting up the required connection is as follows:

6 CONCRETE SESSION LAYER INTERFACES 46

// Set up data structure with identifiers for locally generated strefams
vector<string> locstr_ids;
locstr_ids.insert(ss.end(),);

// Set up local system components
Syscomp* network = new Syscomp();
Syscomp* audio = new Syscomp(locstr_ids);

// Set up network socket which can receive the stream
InSocketx* nis = network->createReceiver ("AudioStream2","socknam") ;

// Set up local sockets and make connection

InSocket* 1lis = audio->createInSocket ("AudioStream2");
OutSocket* mnetos = network->createlutSocket();

Connection* locaudio = new Connection("AudioStream2",lis,netos);

The mechanism for discovering that another site can offer a given stream lies outside
the scope of this document.

e On receipt of a request for distribution of a stream, the originating site will set up a
network connection (9) between a free OutSocket (7) on its network System Compo-
nent and a free InSocket (8) on the requesting system’s network System Component,
and will open this connection for transmission of data.

The software in the source and destination systems will decide when to open their respective
local internal connections, (3) and (6), for transmission. This decision will depend on the
needs of the application.

6 Concrete Session Layer Interfaces

The Session Layer interfaces are here defined in terms of C++ class definitions. At present,
only one class is defined specifically for use in the Session Layer: the class Registry. Objects
of this class describe System Components and the streams originating in these components,
and provide methods for registering new components and their generated streams in a
global registry accessible to all systems.

6 CONCRETE SESSION LAYER INTERFACES

"registry.h" 47 =
class Registry

{ public:
enum registry_error { registry_full, registry_empty,
component_already_reg, stream_already_reg,
component_notin_reg, stream_notin_reg };
// Variables sk sk ko ok sk sk sokok ok ok sk sk sk o ok ok ok ok o ok ko o o ok ok ok o ok ok ok sk sk o o ok sk sk o o ok sk sk ok o ok k ko o
public:

// Methods 2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3K 3k 3k 3k 3k 3k k k %k %k %k %k >k 3k 3k 3k 3k 3k 3k >k >k >k >k Kk K >k >k 3k 3k 3k %k 3k >k %k >k >k >k 3k 3 3 % % >k >k

public:
// Constructors and destructors
Registry(); // Sets up registry with no components or streams

“Registry(); // Removes registry

// Methods for registering and deregistering components and streams
void registerComp(SysComp* comp, vector<Stream*>& slis)
throw(registry_error);
// Registers component comp with streams
// given in the list slis.
void deregisterComp(SysComp* comp)
throw(registry_error);
// Deregisters component comp.
addStream(SysComp* comp, Stream* str)
throw(registry_error);
// Registers new stream str in component
// comp.
removeStream(SysComp* comp, Stream* str)
throw(registry_error);
// Deregisters existing stream str in
// component comp.
s
<&

47

The methods of this class may raise exceptions of type registry_error, an enumerated

type, whose elements have the following significance:

Error Caused by attempt to...

registry_full Register information when registry is full
registry_empty Deregister information when registry is empty
component_already.reg | Register already registered component
stream_already_reg Register already registered stream
component_notin reg Deregister unregistered component

stream notin reg Deregister unregistered stream

6 CONCRETE SESSION LAYER INTERFACES 48

6.1 Concrete Syntax for Stream Identifiers

As stated in Section 5 above, a Stream Identifier is composed of a Site Identifier together
with a Local Stream Identifer. By convention, the Local Stream Identifier incorporates

an identifier for the type of the stream, so that the syntactic form of Stream Identifiers is
defined by:

StreamID = [SiteID "."] LocalStreamID

LocalStreamID ::= StreamType "Stream" StreamSuffix

SitelD ::= Identifier

StreamType ::= "Audio" | "Video" | "WhiteBoard" | ...

StreamSuffix = Number | Identifier

Number = DecDigit DecDigitx*

Identifier = Letter IdentChar*

DecDigit = non | nqn | non | ngn | ngn | ngn | ngn | nn | ngn | ngn
Letter = M"a" [, "z" | A" |...] "Z"

IdentChar = Letter | DecDigit | "_" | "=" | "g" | ">

Examples of Stream Identifiers are therefore:

AudioStream2

AudioStreamlLeft
VideoStreamMouse_Hole
IMM.VideoStream24
Tour_d’Eiffel.AudioStreamMixte

If the SiteID element is omitted from StreamID, the StreamlID is assumed to be one which
is valid locally on the site concerned.

6.2 Concrete Syntax for Socket Identifiers

As stated in Section 5 above, a Socket Identifier is composed of a Site Identifier together
with a Local Socket Identifer. By convention, the Local Socket Identifier is an unsigned
number, so that the syntactic form of Socket Identifiers is defined by:

6 CONCRETE SESSION LAYER INTERFACES 49

SocketID ::= ComponentID "." LocalSocketID

ComponentID ::= [SiteID "."] LocalComponentID

SiteID ::= Identifier

LocalComponentID ::= "Audio" | "Video" | "Slides"

LocalSocketID ::= Number

Number ::= DecDigit DecDigitx*

Identifier ::= Letter IdentCharx*

DecDigit co= oM | nqn | non | ngn | ngn | ngn | ngn | nn | ngn | ngn
Letter te="a" ... "z" | A" |...| "Z¢

IdentChar ::= Letter | DecDigit | "_" | "-" | "&" | "’"

Examples of Socket Identifiers are therefore:

Video.24
Tour_d’Eiffel.Audio.117
IT.Slides.12345

If the SiteID element is omitted from ComponentID, the ComponentID is assumed to be
one which is valid locally on the site concerned.

APPENDIX A EXTRACTING CODE AND DOCUMENTATION 50
Appendix A Extracting Code and Documentation

The documentation in this report is generated using the nuweb literate programming sys-
tem originally developed by Preston Briggs. This enables code and documentation to be
extracted from a single source file, thus encouraging the use of meaningful annotations
and facilitating the task of ensuring that modifications to the code are reflected in the
documentation.

Portions of code are in nuweb known as scraps. A scrap may be specified as directly
forming part of a named file with source text, or may be defined as making up the body of
a named macro, which can be inserted within another scrap, as for example in the macro
QoS parameter error on page 30:

(QoS parameter error 18) =

class QoSparm_error
{ public:
enum QoSerrtype {undef_QoSparm, muldef_QoSparm };

// Variables ik skokskkokokok skokokokokok ko ok o ksl o kst oo ok koo ook ks e e ks o e ok sk e ok ok sk o
QoSerrtype e_type;
string nam;

// Methods skskskskskskok sk sk sk ok skosk ok s kok sk ok o ok sk sk ok e ok ok o s e ksl o s e ok koo s ok sk sk sk e o ok sk sk o e ok sk sk e ok ok sk ok
QoSparm_error (QoSerrtype e, string s); // Constructor initialises

// e_type to e, and nam to s
};
<

Macro referenced in scrap 14.

As can be seen, macros are given intelligible names explaining the purpose of the code
(here QoS parameter error). The same file name or macro name may be used for several
scraps. The body of the file or macro then consists of the bodies of the individual scraps
concatenated in the order in which they appear in the text. Scraps are numbered consec-
utively by the system for reference purposes — for example, the scrap shown here is scrap
18, and is referred to from scrap 14. The symbol <¢indicates the end of the body of the
scrap.

The source file for this report is streams.w To generate files containing code and a BTEX
source for the documentation, use the nuweb system:

nuweb -n streams.w
If only code files are to be extracted, use the command:

nuweb -t streams.w

APPENDIX B INDEX OF SYMBOLS ol

This will generate the header files streams.h and registry.h described in this document.
If only the IXTEX source is required, use the command:

nuweb -on streams.w

Processing the IXTEX source with BTEX will produce this report.

Appendix B Index of Symbols

The numbers in this index, which is generated by the nuweb system, refers to the scraps
in which the symbols are defined or referred to. Definitions are indicated by underlined
numbers, and references by plain numbers.

activateStream: 36.
addConnection: 15a.
addStream: 47.
appendToData: 24b.
appendToHead: 24b.
appendToTail: 24b.
Attrelem: 32b, 33.
Attrerrtype: 34.
Attributes: 14, 32b.
Attrib_error: 32b, 34.
atype_id: 33.

B: 33.

bslot: 21, 24a.
Bufpool: 17a, 21, 26.
Bufpoolerrtype: 27a.
Bufpool_error: 26, 27a.
bufsleft: 26.

clean: 24b.

close: 15b, 18.
Comperrtype: 42.

Component_error: 36, 37, 39, 40, 41, 42

connect: 18.
connectInToOut: 37
Connection: 12, 15ab.
Connection_error: 12, 13.
Connerrtype: 13.
createInSocket: 37.
createlListenSocket: 37.

createQutSocket: 37.
createReceiver: 37.

CSlot: 17a, 18, 20, 21, 23a, 23b, 26.

CSlot_error: 22, 24ab.
D: 20, 30, 33.

data: 17a, 18, 20, 21, 23ab, 24ab, 26, 35b, 41.

deactivateStream: 36.
DEBG: 10a.
DEFAULTDATA: 23a.
DEFAULTHEAD: 23a.
DEFAULTSIZE: 23a.
DEFAULTTAIL: 23a.
deregisterComp: 47.
dlen: 21, 24b.

end: 14, 21, 24ab, 37.
eslot: 21, 24a.
existsActStream: 36.
existsGenStream: 36.
existsInIomap: 37.
existsInOimap: 37.
existsInSockmap: 36.
expandData: 24a.
expandHead: 24a.
freeSlots: 17a.
get: 17a, 18, 20.
getActiveStreams: 36.
getAttribs: 14.
getAttrvalue: 32b.

APPENDIX B INDEX OF SYMBOLS

getAttrvalues: 32b.

getbuf: 26.

getComponent: 15b.

getConn: 15b.
getConnections: 15a.
getInSocket: 37.
getOpenSockets: 15a.
getOutSocket: 37.

getQoS: 14.

getQoSParams: 15b.
getQoSvalue: 29.
getQoSvalues: 29.
getSocketID: 15b.
getSocketType: 15b.
getStream: 15b.

getStreams: 36.

getStrtype: 14.

head: 21, 24ab.

headRoom: 24a.

InLocSocket: 20.
InNetSocket: 18, 37.

InSocket: 12, 1ba, 17a, 18, 20, 35b, 37, 40.
L: 30, 33.

LocSocket: 19, 20.

N: 30, 33.

NetSocket: 17b, 18.
nextslot: 21.

open: 12, 15a, 15b, 17b, 18, 19, 20.
OutLocSocket: 20.
OutNetSocket: 18, 37
OutSocket: 12, 17a, 18, 20, 35b, 37, 39.
put: 17a, 18, 20.
putAttrvalue: 32b.
putQoSvalue: 29.

QoS: 12, 14, 15b, 28a, 28b, 29, 30, 43.
QoSelem: 28b, 29, 30.
QoSerrtype: 31.
QoSparm_error: 29, 31.
qtype_id: 30.

R: 30, 33.

52

registerComp: 47.
registerSink: 40.
registerSource: 39.
registerTransform: 41.
Registry: 47.
releasebuf: 26.
removeFromData: 24b.
removeFromHead: 24b.
removeFromTail: 24b.
removeStream: 41, 47.
retrieveSink: 40.
retrieveSource: 39.
retrieveTransform: 41.
selectAttrvalues: 32b.
selectQoSvalues: 29.
setAttrvalue: 32b.
setComponent: 15b.
setConn: 15b.
setQoSvalue: 29.
setSocketID: 15b.
setupSink: 40.
setupSource: 39.
setupTransform: 41.
show: 12, 15a, 15b, 24b, 41.
showError: 13, 22, 27a, 31, 34, 42.
SHW: 10b.

sink: 40.
Sloterrtype: 22.
source: 24b, 39, 40, 41.
Stream: 12, 14, 15b, 36, 47.
streamID: 12, 14, 39, 40.
StreamState: 15a.

strip: 24b.

StrType: 14.
SysComp: 15b, 35b, 36, 41, 47
tail: 21, 23a, 24ab.
tailRoom: 24a.

TOK: 33.

transform: 41.

Z: 30, 33.

