Best-eff ort Suppor t for a Virtual Seminar Room

Robin Sharp and Edward Todirica
Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark.

{robin,edward }@imm.dtu.dk

ABSTRACT

This paper describes the RTMM Virtual Seminar Room, an
interactive distributed multimedia application based on a
platform with a simple middleware architecture, using best
effort scheduling and a best effort network service. Emphasis
has been placed on achieving low latency in all parts of the
software system, so that as large a margin as possible is
available for the transfer of data through the network. This
approach gives good user acceptability for the transfer of
audio and video over distances of several hundred kilometers
within the high-bandwidth Danish Research Network. The
design of central parts of the system is presented, and the
performance offered by this approach is discussed.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communi-
cations Applications—Teleconferencing; C.2.4 [Computer
Communication Networks]: Distributed Sytems; D.4.8
[Operating Systems]: Performance

General Terms
Multimedia

Keywords

Multimedia, Virtual Seminar Room, Best-effort service

1. INTRODUCTION

At the Technical University of Denmark, work is in progress
to develop a Virtual Seminar Room (VSR) as an example of
an interactive distributed multimedia (DMM) system. This
development work is part of the RTMM (Real-Time Multi
Modal) project, a collaborative effort involving the Infor-
matics and Mathematical Modelling department and the
COM Center at the university. The VSR is intended for
use in teaching situations, where it should offer participants
facilities to see and hear one another and to have access to
various pieces of shared virtual equipment, such as a virtual

MULTIMEDIA ' 02 Juan les Pins, France

Loudspeakers Microphone array

)

C Video camera

ydAio

Participants

Writing tablet o T
Screen . -

Figure 1: Layout of a typical site of the RTMM
Virtual Seminar Room

whiteboard, a virtual slide projector and virtual demonstra-
tions. The layout of a typical site in the RTMM VSR is
shown in Figure 1. One or more participants sit in front
of a camera, screen, microphone (or microphone array, as
in the figure) and a set of loudspeakers, with access to a
writing tablet and keyboard, which are used for writing on
the virtual whiteboard and controlling the running of the
teaching session. To increase user acceptance, and promote
natural reactions among the participants at each site, it has
been our aim that each site should be set up in an ordi-
nary teaching room, with ordinary furniture and a platform
based on a standard PC, and that the only visible special
equipment should be the large screen, the camera, and the
loudspeakers and microphones needed for achieving the re-
quired quality for the video and audio.

Implementation of systems of this type involves a number
of technical challenges, as it is necessary to ensure that data
representing video pictures, still images, sound and other
information are passed between the sites taking part in the
seminar, and are presented in real time to the users at these
sites, to give them the illusion that they are taking part in
a discussion in the same room. To do this, it is necessary

SOURCE SITE

,,

A f

DESTINATION SITE

Vi

R

,,

LOGICAL

CONNECTIONS

7

Video Network Network Video
System System System System
Component Component Component Component
g C | | PHYSICAL
' Camera Physical ngtwork Ser - MEDIA

Figure 2: A system with two sites and four system components.

to have an efficient system for capturing, distributing and
replaying high quality video, audio and other data in real
time, in order to meet the necessary synchronisation require-
ments [8]. One of the aims of the RTMM project has been to
investigate the extent to which this target can be achieved
on the basis of a standard platform with a standard operat-
ing system and best-effort network connections. This paper
discusses how this aim has been achieved.

2. THE STREAM LAYER ABSTRACTION

The approach to system construction taken in the RTMM
project is to provide the DMM application implementor with
middleware designed as a software toolbox based on a num-
ber of simple concepts. The toolbox offers facilities for con-
necting active entities, known as system components, via
logical channels through which streams of data with various
quality of service requirements can be passed. Typically, a
system component is composed of a hardware device and
adaptor card with its driver, but pure software components,
such as stream transformers, also occur. The facilities are
offered at the interface to a conceptual Stream Layer, which
is the basis on which all applications are built. For porta-
bility, the Stream Layer software is implemented as a GNU
C++ library, and the system runs on a standard Linux/PC
platform.

The Stream Layer offers its users facilities for defining sys-
tem components, for specifying how they are logically con-
nected and for specifying which types of streams of data
pass through these connections. Figure 2 shows a simple
example of a system consisting of two physically separated
sites, each containing two system components: a video sys-
tem component and a network system component. A stream
is a logically related sequence of data units which pass be-
tween two system components, starting at the source of the
stream and finishing at its destination.

A socket, through which the stream passes, is used to iden-
tify the particular starting point of a stream in the source
system component and the particular ending point in the
destination system component. RTMM sockets permit uni-
directional flow of data. The socket in the source from which
the stream starts is denoted an OutSocket and the socket in
the destination at which the stream ends an InSocket. For

illustrative purposes, these are designated by graphical sym-
bols as shown in Figure 3.

Figure 3: A connection from an OutSocket (left) to
an InSocket (right)

To pass a stream between system components, a connection
must be set up between these components. When initially
created, a connection connects two sockets: an OutSocket
and an InSocket, which may be associated with the same or
different system components. By setting up a connection to
one or more further InSockets, an OutSocket may become
the source for a stream with multiple destinations, as illus-
trated in Figure 4. On the other hand, it is not possible for

Figure 4: Connections for passing a stream to mul-
tiple InSockets

the same InSocket to be the destination for several streams.
When initially created, an InSocket is closed; it must be put
into the open state in order to pass data. Data arriving at
the InSocket when it is closed will just be ignored.

A connection passing between two sockets offers a certain
Quality of Service (QoS) to the stream which it carries. The
parameters of the QoS include the bandwidth, delay, jitter
and other properties of the connection, and are expected to
be compatible with the QoS required for the stream.

A more complete description of the Stream Layer API is
given in [7].

3. SYSTEM COMPONENTS

Conceptually, each system component can have one or more
InSockets through which incoming streams can be received
by the component, and one or more OutSockets through

which outgoing streams can be sent out of the component.
An incoming stream can be consumed by the component,
in which case the data in the stream are typically directed
to some ouput device associated with the component. Sim-
ilarly, a component may be used to generate an outgoing
stream, whose data typically originate from some input de-
vice. Finally, a component may pass an incoming stream on
as an outgoing stream, possibly after transforming it into a
stream with new properties. The Stream Layer API offers
functions for associating generator (source) functions, con-
sumer (sink) functions and transformer functions with the
component, and for setting up internal connections within
the component in order to pass incoming streams at InSock-
ets to OutSockets via which the streams can leave the com-
ponent.

A typical RTMM DMM system is composed of several dif-
ferent types of system component. Most of these are directly
associated with particular hardware adapter cards based on
specialised auxiliary processors that are exploited to reduce
the load on the CPU. Examples used within the implemen-
tation of the VSR set up at DTU are:

Audio A: Based on a standard stereo sound card for en-
coding and decoding audio signals.

Audio B: Based on the Bittware Spinner ADSP-21065L
dual-DSP board [1], which is used for executing more
advanced signal processing algorithms for source lo-
cation, beam forming and echo cancellation, using a
4-microphone array as input source and a two channel
audio setup for output [3]. The positional information
about the source of the sound provided by this compo-
nent enables us to control the orientation of the video
camera, so as to follow the current speaker.

Video A: Based on the Matrox Marvel G400 graphics card [5]

for MJPEG encoding and a standard, freely available
software library (IJG JPEG [4]) for MJPEG decoding
of video in SIF/CIF format. The received video can be
displayed either in a separate window or in full-screen
mode, using functions from the SDL library.

Video B: Based on the Equator MAP-CA video DSP plat-
form [2] for more advanced video processing, including
MJPEG encoding and decoding in full PAL resolution
and MPEG en- and decoding.

Whiteboard: Based on the Wacom graphics tablet as in-
put device.

UDP Network: Based on a standard network card and
UDP/IP protocol stack.

As can be seen, some of the components are implemented
in several versions, which can be selected according to the
desired quality of the relevant stream and/or the target price
of the complete system.

Figure 5 shows an example of the code needed to set up
a small application involving a video component, an audio
component and a network component on each site. Only the
code related to the video streams is shown; the code for the
audio streams is similar. The corresponding system struc-
ture is shown in Figure 7. Note that the threads, marked
tl,t2, ... ,t12 in the figure, are not explicitly activated by the
code shown above, but are activated within the components
concerned.

startStreamLayer() ;
//Declare components
VideoComp C1;
AudioComp C2;
NetComp C3;

//Video component
//Audio component
//Network component

//Create sockets for the components.

//Socket id: first number - component no.

// second number - stream no.
//Initial "s'": local socket, "n": network socket
QutSocketx* s11 = Cl.createOutSocket("s11");

InSocket* s12 = Cl.createInSocket ("s12");
InSocket* 831 = C3.createInSocket ("s31");
OutSocket* s32 = C3.createOutSocket("s32");

OutNetSocket* n31
C3.createlListenSocket ("Streaml","n31");
//Set up socket to receive on agreed local port
InNetSocket* n32 = C3.createReceiver("45678");

//Create connections between components.

//Connection id: first number - source comp.

// second number - dest. comp.

Connection *c13,%*c31;

try{ c13= new Connection("Streaml",s31,s11);
c31= new Connection("Stream2",s12,s32);

} catch (Connection_error e){e.showError();l};

//Create internal connections in C3.
C3.connectInToOut("",0,0,s31,n31);
C3.connectInToOut("",0,0,n32,832);

//Create network connection to remote port
n31->connect ("foo.bar.com 45678");

//0Open connections to allow stream to flow
c13->openConnState() ;
c31->openConnState() ;

//Associate source + sink functions with sockets

try{ Cl.source(1,"Streaml",0,s11);
C1.sink(1,"Stream2",0,s12);

}catch (Component_error e){e.showError();}

//Activate the generated stream

try{Cl.activateStream("Streaml") ;
}catch (Component_error e){e.showError();}

enc.iét.:reamLayer O;

Figure 5: Code for setting up a small application
using the RTMM toolbox

4. PERFORMANCE

A series of timing measurements made on the system are
summarised in Table 1. These timings were observed over a
two-way link between DTU and Aarhus in Denmark, a dis-

Min. | Max. | Avg. | Std.dev.
Stream layer 0.04 | 0.13 | 0.05 0.03
Video decoding 15.6 | 29.0 | 19.5 1.57
Video presentation 11.2 | 27.2 | 13.1 1.50
Network transmission | 8.9 20.1 | 10.5 0.96
End-to-end video 41.3 | 58.7 | 444 2.33

Table 1: Video processing times in the system (mil-
liseconds)

100 km

_~ 2x100Mbits, Fast Ethernet

622Mbit/s STM—-4c

Aarhus

Figure 6: The National Backbone of the Danish Re-
search Network

tance of about 400 km., using UDP/IP over the Danish Re-
search Network. The National Backbone of this network is
illustrated diagramatically in Figure 6. DTU is situated on
the same campus as the main network node in Lyngby, which
is connected to the node in Aarhus both by a 622 Mbit/s
STM-4c link passing though Odense, and an IP network
based on double 100 Mbit/s Fast Ethernet links.

The computers at both ends are based on a 933 MHz Pen-
tium III CPU with 256 Mbytes of main memory, runnning
RedHat Linux version 6.2 with the Linux 2.3.99 kernel. For
the purposes of the measurement, the RTMM application
running in Aarhus was set up to act as a reflector which
returned all the received audio and video data to the Lyn-
gby site. In all the measurements, the Video A video sys-
tem component, operating in 352x288 pixel format at 25
frames/s, and the Audio A audio system component were
used. The minimum, maximum and average bandwidth re-
quirements for video were 3.15, 3.50 and 3.30 Mbit/s, with
a standard deviation of 0.04 Mbit/s. For audio, the band-
width was a constant 670 kbit/s for uncompressed mono
CD quality. All measurements refer to a period of about
1 minute (1500 frames). For network transmission, one IP
packet was used to contain each JPEG encoded video frame
(about 16.5 kbytes) or a mono audio packet of about 1 kbyte,
so no IP segmentation was required.

The times referred to in the table are measured as follows:

e Stream layer: On the source site, the time from the
start of transmission of a frame from the source video
system component until the end of receipt by the source
network system component. This is a measure of the
delays introduced by the Stream Layer software.

e Video decoding: In the destination system component,
the time from the instant when the frame is completely
received by the component until the software decoding
algorithm is completed.

e Video presentation: In the destination system compo-
nent, the time from the instant when the frame has
been received and decoded until the SDL library func-
tion returns after storing the frame in the video frame
buffer.

e Network transmission: The time from the start of trans-
mission of a frame from the source network system
component until the entire frame has been received by
the destination network component. (This is measured
as half the time for sending the frame to the remote
site and back again, where the remote site acts as a
reflector.)

e End-to-end video: Measured as the time from the in-
stant when the frame is completely captured until the
presentation function returns, where the video frames
are sent to the remote site and back again, with the
remote system functioning as a reflector. The network
transmission time is here halved, so the value in the ta-
ble is a measure of the true end-to-end delay for video
between two sites.

The measurements all refer to the processing of the video
stream. For the audio stream, the processing times required
are, of course, smaller. All times were measured by record-
ing timestamps captured by using the gettimeofday system
call, which returns a value with a relative accuracy of 1 us.
To limit the overhead involved in recording the timestamps,
they were stored in memory in a buffer dimensioned to hold
results from one minute’s operation of the system. At the
end of the chosen measuring period, the application was
stopped and the data were copied into non-volatile storage.
Not unexpectedly, the observed times are completely dom-
inated by the video processing and network transmission
times. The overhead introduced by the Stream Layer for
transfer of data between system components on the same
site is very small.

4.1 Performance Analysis

The performance of the system depends strongly on the im-
plementation of the Stream Layer software, and in partic-
ular on the way in which the various activities are parti-
tioned on threads. The current implementation associates a
thread with each socket. On each site, data from a partic-
ular stream are passed from the source system component
through one or more connections to a network OutSocket or
from a network InSocket through one or more connections
to the sink system component. For the system set up by the
code of Figure 5, this is illustrated in Figure 7.

Each connection contains a queue with a limited size (de-
fault size 10 elements). The thread corresponding to the
OutSocket puts data units on the queue, and the thread cor-
responding to the InSocket gets data units from the queue.
The queue operations are blocking, so the OutSocket thread
is blocked when the queue is full and the InSocket thread is
blocked when the queue is empty. In this way, even if there
are many threads in the VSR application, only a few of them
are active at any given time; most of them are blocked wait-
ing on empty queues. This means that the scheduler has the

Video Component

1
S11
t stream 1 c13
é Network

Component

C

. S12um [c3 n31
mm
° stream 2 c31 @ 3)—3
s3p - n32
t5 t4 @
Audi mpon n33
= udio Component 1) ™ (10— &
s23 s33 [n34
c32 t8 N
stream 3 iininini Q © -

s34
$24

7 fstream 4 c23

©,

Figure 7: The software architecture of a simple site

Yellow circles symbolise threads and striped rectangular
boxes buffers (queues). The component, connection and
socket identifiers correspond to the code example given
in Figure 5.

relatively simple task of handling only a few ready to run
threads. We can say that in the Stream Layer the activity
follows the data units: threads become active only if they
have a data unit to transfer. Thus the threads correspond-
ing to the Stream Layer have a very short execution time,
and most of the time is spent in the threads which corre-
spond to the sinks, where relatively much processing has to
take place.

Within the video and audio sink threads, it is possible that,
due to delays in the system, buffers corresponding to sev-
eral frames will be available at the same time. The strat-
egy adopted here is always to present the newest buffer and
throw away older ones which are waiting to be dealt with.
During periods where the system is busy with other activ-
ities, or in cases where some buffers take an exceptionally
long time to be processed, frames will be lost.

The behaviour of the system was investigated in detail by
running the Linux Trace Toolkit (LTT) utility [6] together
with the VSR application. LTT makes it possible, amongst
other things, to record the times at which selected sys-
tem events, such as interrupts and context switches between
threads, take place. Some typical results from this investiga-
tion are shown graphically in Figures 8 and 9, both of which
illustrate the activity of the system as a function of time.
In each of the figures, the red curve shows the active thread
at consecutive instants of time, and the green crosses mark
the instants at which interrupts from the various peripheral
units took place. The labels on the vertical axis of each plot
identify the activities, where the thread names correspond
to the names used in Figure 7, and the names of the inter-
rupts are derived from the devices concerned in the obvious
manner.

Close inspection of the tracing data reveals a number of char-
acteristic patterns of activity. For example, with reference
to Figure 8:

1. Samples are generated by the audio source and are
processed on average every 10 ms., in the figure at
times approximately 567000, 580000, 589000, 601000,
610000, 622000 and 632000. A corresponding pat-
tern is seen in the threads which process incoming au-
dio and deliver it to the audio sink, at times 569000,
581000, 592000, ...

2. Samples are generated by the video source and are
processed on average every 40 ms., in the figure at
times 560000 and 600000. A corresponding pattern is
seen in the threads which process incoming video and
deliver it to the video sink, starting at times 581000
and 621000.

3. The video sink thread (t6) uses a large amount of CPU
time to decode and present each incoming frame. Each
period during which the thread processes an incom-
ing frame ends with a very short period of activity
(at times 574000 and 613500 in the figure), when the
thread releases resources.

4. Network activity, indicated by the presence of network
interrupts, shows regular heavy bursts (in the figure
around 578000 and 620000). Each of these bursts is
due to the arrival of a group of Ethernet packets car-
rying an encoded video frame. (In the setup consid-
ered here, 11 Ethernet packets are needed to carry a
coded frame of about 16.5 kbytes.) Similarly, pairs
of network interrupts appear at regular intervals, cor-
responding to the arrival of a group of two Ethernet
packets carrying an encoded audio frame.

5. “Other processes” use about 10% of the CPU time.
Most of this is activity within the X server.

The figures clearly reveal the systematic manner in which
the consecutive threads involved in processing the video and
audio streams are activated. It is also clearly seen that the
video sink thread is the thread which occupies most of the
available CPU time, in agreement with the timestamp-based
measurements given in Table 1. LTT itself introduces a
small overhead into the system, partly due to the execution
of the thread marked LTT, and partly as a (not explictly
visible) overhead to the running of the kernel. This overhead
is typically estimated to account for at most 2.5% of the
available CPU time [9], and is thus expected to cause very
little distortion in the behaviour of the system.

Neither the Linux OS nor the UDP/IP network offer QoS
guarantees, so the resources available for the VSR applica-
tion may be strongly influenced by other activities in the
system. In such a best-effort system, it is obviously impor-
tant not to have too many competing tasks running together
with the VSR application. In particular, the software video
decoding technique is very CPU intensive and competition
with other high-CPU activities can cause loss of frames due
to failure to complete decoding before the arrival of the next
frame. However, it is, as we see, in practice possible to
achieve good results, with low (~40 ms.) end-to-end la-
tency, full 25 frames/s frame rate and low (< 1 x 1072) rate
of frame loss, in a system with a moderate load. The traces
and statistical measurements reported here have been made
in a system running version 4.0.2 of the XFree86 X server,
the KDE2 window manager and two open console windows,
in addition to the RTMM VSR application and the tracing
tool. Apart from the tracing tool, this is probably typical of

Control -

X server -
Main N

Video sink, t6
t5
t4
t3
t2

Video source, t1
Audio sink, t12
t11

t10 -

19

t8 -

Audio source, t7 |~
LTT [~

Other Proc.
Idle

Other INTR |-
Video INTR
Audio INTR
Network INTR
Timer INTR -

Activity

560000 570000 580000

590000

600000 610000 620000 630000
Time (microsec.)

640000

Figure 8: Activity in the system during an 80 msec. interval in which two video frames were processed

T T T T T
X server

Control -
Main -

Video sink, t6
t5

Video source, t1
Audio sink, t12
t11

Activity
=
o

Audio source, t7
LTT [

Other Proc.
Idle [~

Other INTR [~
Video INTR -
Audio INTR
Network INTR

Timer INTR
1 1 1 1 1

580000 581000 582000 583000 584000 585000 586000 587000 588000 589000 590000 591000 592000 593000 594000 595000

Time (microsec.)

Figure 9: A close-up of activity during a smaller time interval in Figure 8

the kind of activity which will need to be supported while
the VSR is in operation in a genuine teaching situation.

5. USER EXPERIENCES

Figure 10 illustrates the type of display experienced in a
simple case where two users communicate over the Lyngby-
Aarhus link using the full-screen video display mode. For
use when multiple sites are connected, the decoded video
from each site can be presented in a separate window. Users
of the system express great satisfaction with the quality of
the displayed video, which is experienced as being markedly
superior to the more traditional videoconference quality of-
fered by systems based on the use of H.323. Factors which

contribute to this experience include the inherently higher
quality of the MJPEG encoding and the low round-trip time
achieved within the system over the distances concerned.
The large amount of surplus bandwidth in the Danish Re-
search Network helps to ensure that IP packets can be de-
livered with moderate jitter and a very low rate of packet
loss in the network. Packet re-ordering has not been ob-
served at all. The small rate of frame loss which is observed
in the system is, as remarked previously, almost exclusively
due to missed display deadlines due to delays in decoding,
and is not considered significant (in most cases it is not even
noticed) by participants.

Figure 10: A scene in the VSR with just two sites.

The simple audio system, based on a single microphone and
a pair of loudspeakers at each site, gives adequate sound
quality, but requires a carefully chosen near-field microphone
in order to achieve an appropriate ambience in an ordinary
room. The more advanced audio system with beam forming
and source location, using an array of far-field microphones,
is experienced as being extremely effective. The advanced
audio system offers the added advantage of being able to
control the orientation of a rotatable camera, so that it fol-
lows the current speaker. This is extremely useful in cases
where there are several participants in the same room, as it
enables participants at other sites more exactly to identify
who is speaking. Participants consider this a very attractive
feature.

6. CONCLUSIONS

As part of a current research program into interactive, dis-
tributed multi-modal systems, we have at DTU implemented
a prototype Virtual Seminar Room based on an operating
system with best-effort scheduling and a network with a
best-effort IP service. The VSR is built up on the basis of
middleware, the RTMM Stream Layer, which offers a con-
venient and efficient toolbox for constructing a variety of
DMM systems. Measurements on the system confirm that
the run-time penalty introduced by using this approach is
very small compared to the time required for decoding and
network transmission in the system. This is important, in
order to ensure that suitably large timing margins are avail-
able for the activities which may be affected by network
and OS delays introduced by the best-effort service. Obser-
vations confirm that the rate of frame loss due to missed
deadlines is considerably less than 1 x 1073,

Creation of the necessary middleware, the RTMM Stream
Layer toolbox, has not involved modification of the Linux
operating system kernel. This makes the middleware simple
to deploy, as it becomes possible to avoid kernel patches
and problems caused by incompatibilities amongst various
kernel versions. It also makes the solution readily portable.
Although built for Linux, a version for Windows could easily
be produced by using the Cygwin environment. For use in
the RTMM VSR project, a GUI has been developed which
enables the user to set up the system in a simple manner by
”plugging together” system components, both locally and

remotely.

The measurements reported here have been based on a sys-
tem which uses MJPEG video encoding over IP, a technique
which can be implemented relatively cheaply using standard
off-the-shelf components. We intend to continue to experi-
ment with other techniques for video encoding and are cur-
rently developing further system components, including a
virtual slide projector and an ATM network system compo-
nent, for use in the VSR and other multimedia applications.
Users have expressed satisfaction with the current system
with site separations of up to a few hundred kilometers, as
described here. We intend shortly to start experiments with
systems with much larger extents, to investigate the tech-
nical problems which this involves and to gauge the user
acceptibility of ssuch systems for practical interactive work-
ing.

7. ACKNOWLEDGMENTS

The authors would like to thank the Danish Research Coun-
cils and the Danish Center for IT Research, who have par-
tially supported the RTMM project as part of the Center
for Multimedia in Denmark. We should also like to thank
our former colleague Peter Kirk Hansen, who was largely re-
sponsible for the audio side of the system, and our partners
at the COM Center at DTU for their excellent collaboration
during the project.

8. REFERENCES

[1] Bittware, Inc. Spinner ADSP-21065L Audio OEM
Board. WWW document, 2002. Available from URL
http://www.bittware.com/products/PCI/SPNR/~
spnr_desc.stm.

[2] Equator Technologies, Inc. MAP-CA DSP Datasheet,
June 2001. Document HWR.CA.DS.2001.6.20, available
from URL http://www.equator.com/products/-
library/ca_datasheet_010620.pdf.

[3] S. Forchhammer, A. Fosgerau, P. Hansen, R. Sharp,

E. Todirica, and A. Zsigri. Video conferencing for a

virtual seminar room. In Proc. 4th International

Conference on Digital Signal Processing and its

Applications, Moscow, pages 382-385, Feb. 2002.

Independent JPEG Group. IJG Files. Web document,

2001. Available from URL

http://www.ijg.org/files/.

[6] Matrox Graphics, Inc. Marvel G400. Web document,
2002. Available from URL http://www.matrox.com/-
mga/products/tech_info/marv_g400.cfm.

[6] Opersys, Inc. Linuz Trace Toolkit Reference Manual,
version 0.8, Jan. 2002. Available from URL
http://www.opersys.com/LTT/Help/index.html.

[7] R. Sharp, H.-H. Lgvengreen, and E. Todirica. Streams
and Sockets in DTU-RTMM, version 1.4. Technical
report, Department of Information Technology, DTU,
Sept. 2000.

[8] R. Steinmetz. Human perception of jitter and media
synchronization. IEEE Journal on Selected Areas in
Communications, 14(1):61-72, Jan. 1996.

[9] K. Yaghmour and M. R. Dagenais. Measuring and
characterizing system behaviour using kernel-level
event logging. In Proceedings of the 2000 USENIX
Annual Technical Conference, San Diego. USENIX
Association, June 2000.

[4

