
THE RTMM TOOLBOX FOR DMM APPLICATIONS

Robin Sharp and Edward Todirica

InformaticsandMathematicalModelling
TechnicalUniversityof Denmark
DK-2800Kgs.Lyngby, Denmark.

ABSTRACT

Thispaperdescribesanapproachto implementingdistribu-
tedmultimediaapplicationsbasedon theuseof a software
toolbox. The tools in the box allow the designerto spec-
ify which componentsare to be used,how they are logi-
cally connectedandwhat propertiesthe streamsof datato
be passedbetweenthe componentsareto have. Examples
aregivenof systemcomponentsfor handlingaudio,video
and networking, and the performanceoffered by this ap-
proachis discussed.

1. INTRODUCTION

At theTechnicalUniversityof Denmark,work is in progress
to developaVirtual SeminarRoom(VSR)asanexampleof
an interactive distributedmultimedia(DMM) system.It is
well known that implementationof systemsof this typein-
volvesa numberof technicalchallenges,asit is necessary
to ensurethatdatarepresentingvideopictures,still images,
soundandother informationare passedbetweenthe sites
takingpart in theseminar, andarepresentedin real time to
the usersat thesesites,to give themthe illusion that they
aretakingpartin adiscussionin thesameroom.To do this,
it is necessaryto haveanefficientsystemfor capturing,dis-
tributing andreplayinghigh quality video,audioandother
datain real time, in orderto meetthedesiredsynchronisa-
tion requirements[1].

Theapproachto systemconstructiontakenin theRTMM
projectis to providetheDMM applicationimplementorwith
a softwaretoolboxbasedon a numberof simpleconcepts.
The toolbox offers facilities for connectingactive entities,
known assystem components, via logical channelsthrough
which streams of datawith variousquality of servicere-
quirementscanbe passed.Typically, a systemcomponent
is composedof a hardwaredeviceandadaptorcardwith its
driver, but puresoftwarecomponents,suchasstreamtrans-
formers,alsooccur. Thefacilitiesareofferedattheinterface
to a conceptualStream Layer, which is the basison which
all applicationsarebuilt. For portability, theStreamLayer
softwareis implementedasaGNUC++library, andthesys-
temrunson astandardLinux/PCplatform.

2. THE STREAM LAYER ABSTRACTION

TheStreamLayeroffersits usersfacilitiesfor definingsys-
temcomponents,for specifyinghow they arelogically con-
nectedand for specifyingwhich typesof streamsof data
passthroughtheseconnections.Figure2 shows a simple
exampleof a systemconsistingof two physicallyseparated
sites,eachcontainingtwo systemcomponents:avideosys-
temcomponentandanetworksystemcomponent.A stream
is a logically relatedsequenceof dataunitswhich passbe-
tweentwo systemcomponents,startingat thesource of the
streamandfinishingat its destination.

A socket, throughwhich the streampasses,is usedto
identify theparticularstartingpointof astreamin thesource
systemcomponentand the particularendingpoint in the
destinationsystemcomponent.RTMM socketspermituni-
directional flow of data. The socket in the sourcefrom
which the streamstartsis denotedan OutSocket and the
socketin thedestinationatwhichthestreamendsanInSocket.
For illustrative purposes,thesearedesignatedby graphical
symbolsasshown in Figure1.

Figure 1: A connectionfrom an OutSocket (left) to an
InSocket (right)

To passa streambetweensystemcomponents,a con-
nection mustbe setup betweenthesecomponents.When
initially created,aconnectionconnectstwo sockets:anOut-
Socket andan InSocket, which may be associatedwith the
sameor differentsystemcomponents.By settingup a con-
nectionto oneor morefurtherInSockets, anOutSocket may
becomethesourcefor a streamwith multiple destinations.
However the sameInSocket cannotbe the destinationfor
severalstreams.

A connectionpassingbetweentwo socketsoffersa cer-
tain Quality of Service (QoS) to thestreamwhich it carries.
Theparametersof theQoSincludethebandwidth,delay, jit-
ter andotherpropertiesof theconnection,andareexpected
to becompatiblewith theQoSrequiredfor thestream.

Video

SOURCE SITE

System
Component

Network
System

Component

Network
System

Component
System

Component

Video

Physical network

LOGICAL
CONNECTIONS

PHYSICAL
MEDIA

Camera Screen

DESTINATION SITE

Figure2: A systemwith two sitesandfour systemcomponents.

A morecompletedescriptionof the StreamLayer API
is givenin [2].

3. SYSTEM COMPONENTS

Conceptually, eachsystemcomponentcanhaveoneor more
InSocketsthroughwhich incomingstreamscanbereceived
by the component,and one or more OutSockets through
which outgoingstreamscanbesentout of the component.
An incomingstreamcanbe consumed by the component,
in which casethe datain the streamaretypically directed
to someouputdevice associatedwith thecomponent.Sim-
ilarly, a componentmay be usedto generate an outgoing
stream,whosedatatypically originatefrom someinput de-
vice. Finally, acomponentmaypassanincomingstreamon
asanoutgoingstream,possiblyafter transforming it into a
streamwith new properties.The StreamLayer API offers
functionsfor associatinggenerator(source)functions,con-
sumer(sink) functionsand transformerfunctionswith the
component,andfor settingup internalconnectionswithin
thecomponentin orderto passincomingstreamsat InSock-
etsto OutSocketsvia which thestreamscanleave thecom-
ponent.

A typical RTMM DMM systemis composedof several
different types of systemcomponent. Most of theseare
directly associatedwith particularhardwareadaptercards
basedon specialisedauxiliary processorsthatareexploited
to reducethe load on the CPU. Examplesusedwithin the
implementationof theVSRsetup at DTU are:

Audio A: Basedonastandardstereosoundcardfor encod-
ing anddecodingaudiosignals.

Audio B: Basedon the SpinnerDSPboardwhich is used
for executingmoreadvancedsignalprocessingalgo-
rithms for sourcelocation, beamforming and echo
cancellation,usinga4-microphonearrayasinputsource
anda two channelaudiosetupfor output[3].

Video A: BasedontheMatroxMarvel G400graphicscard
for MJPEGcoding and a standardsoftware library
(IJGJPEG)for MJPEGdecodingof videoin SIF/CIF
format.

Video B: Basedon theEquatorMAP-CA videoDSPplat-
form for moreadvancedvideoprocessing,including
MJPEGen/decodingin full PAL resolutionandMPEG
en/decoding.

UDP Network: BasedonastandardnetworkcardandUDP-
/IP protocolstack.

As canbe seen,someof the componentsareimplemented
in severalversions,which canbeselectedaccordingto the
desiredqualityof therelevantstreamand/orthetargetprice
of thecompletesystem.

Figure 3 shows an exampleof the codeneededto set
up a smallapplicationinvolving a videocomponent,anau-
dio componentanda network componenton eachsite. The
correspondingsystemstructureis shown in Figure4.

4. PERFORMANCE

A seriesof timing measurementsmadeon the systemare
summarisedin Table1. Thesetimingswereobservedovera
two-way link betweenDTU andAarhusin Denmark,a dis-
tanceof about400km., usingUDP/IPover theDanishRe-
searchNetwork. Thecomputersatbothendsarebasedona
933MHz PentiumIII CPU,runnningRedHatLinux version
6.2 with theLinux 2.3.99kernel. In all themeasurements,

Min. Max. Avg. Std.dev.
Streamlayer 0.03 0.52 0.08 0.03
Videoprocessing 26.4 33.2 27.8 0.52
Network transmission 10.2 15.0 11.2 0.48
End-to-endvideo 37.3 44.8 39.2 0.72

Table1: Processingtimesin thesystem(milliseconds)

startStreamLayer();
//Declare components
VideoComp C1; //Video component
NetComp C3; //Network component

//Create sockets for the components.
//Socket id: first number - component no.
// second number - stream no.
//Initial "s": local socket, "n": network socket
OutSocket* s11 = C1.createOutSocket("s11");
InSocket* s12 = C1.createInSocket ("s12");
InSocket* s31 = C3.createInSocket ("s31");
OutSocket* s32 = C3.createOutSocket("s32");
OutNetSocket* n31 =

C3.createListenSocket("Stream1","n31");
//Set up socket to receive on agreed port
InNetSocket* n32 = C3.createReceiver("45678");

//Create connections between components.
//Connection id: first number - source comp.
// second number - destn. comp.
Connection *c13,*c31;
try{ c13= new Connection("Stream1",s31,s11);

c31= new Connection("Stream2",s12,s32);
} catch (Connection_error e){e.showError();};
//Create internal connections in C3.
C3.connectInToOut("",0,0,s31,n31);
C3.connectInToOut("",0,0,n32,s32);
//Create network connection to remote site
n31->connect("foo.bar.com 45678");

//Open connections to allow stream to flow
c13->openConnState();
c31->openConnState();

//Associate source + sink functions with sockets
try{ C1.source(1,"Stream1",0,s11);

C1.sink(1,"Stream2",0,s12);
}catch (Component_error e){e.showError();}

//Activate the generated stream
try{C1.activateStream("Stream1");
}catch (Component_error e){e.showError();}

...

...
endStreamLayer();

Figure3: Codefor settingup a smallapplicationusingthe
toolbox

Only the coderelatedto the video streamsis shown;
thecodefor theaudiostreamsis similar.

theVideoA videosystemcomponent,operatingin 352x288
pixel formatat 25 frames/s,andtheAudio A audiosystem
componentwereused.Theminimum,maximumandaver-
agebandwidthrequirementsfor videowere3.15,3.50and
3.30Mbit/s, with a standarddeviation of 0.04Mbit/s. For
audio,thebandwidthwasa constant670kbit/s for uncom-
pressedmonoCD quality. All measurementsrefer to a pe-
riod of about1minute(1500frames).Fornetwork transmis-
sion,oneIP packetwasusedto containeachJPEGencoded
videoframe(about16.5kbytes)or a monoaudiopacket of

��������������������

��

��

��

	�	�	�	�	
�
�
�

����������������
�����������
����������������
Component
Network

n31

n32s32

s12

s11

stream 2

Video Component

Audio Component

s23

s24

s34

s33

n33

n34

stream 1

C3

C1

C2

s31

c13

c23

c32

c31

stream 3

stream 4

Figure4: Thesoftwarearchitectureof a simplesite

Circles symbolise threads and striped rectangular
boxes buffers (queues). The component,connection
andsocket identifierscorrespondto thecodeexample
givenin Figure3.

about1 kbyte.
The timesreferredto in the tablearemeasuredasfol-

lows:
� Streamlayer: On sourcesite, the time from thestart

of transmissionof a framefrom thesourcevideosys-
temcomponentuntil theendof receiptby thesource
network systemcomponent.This is a measureof the
delaysintroducedby theStreamLayersoftware.

� Video processing:In the destinationsystemcompo-
nent,thetimefrom theinstantwhentheframeis com-
pletely receivedby the componentuntil the decoded
framehasbeenstoredin theframebuffer.

� Network transmission:The time from startof trans-
missionof a framefrom the sourcenetwork system
componentuntil the entire frame hasbeenreceived
by thedestinationnetwork component.(This is mea-
suredashalf thetime for sendingtheframeto there-
motesite andbackagain,wherethe remotesite acts
asa reflector.)

� End-to-endvideo: Measuredasthetime from thein-
stantwhentheframeis completelycaptureduntil the
presentationfunctionreturns,wherethevideoframes
aresentto theremotesiteandbackagain,with there-
motesystemfunctioningasa reflector. Thenetwork
transmissiontime is herehalved,so the valuein the
table is a measureof the true end-to-enddelay for
videobetweentwo sites.

Not unexpectedly, thesetimesarecompletelydominatedby
the videoprocessingandnetwork transmissiontimes. The
overheadintroducedby theStreamLayerfor transferof data
betweensystemcomponentson thesamesiteis verysmall.

5. DISCUSSION

Theperformanceof thesystemdependsstronglyon theim-
plementationof theStreamLayersoftware,andin particu-
lar ontheway in which thevariousactivitiesarepartitioned
on threads.Thecurrentimplementationassociatesa thread
with eachsocket. Oneachsite,datafrom aparticularstream
arepassedfrom thesourcesystemcomponentthroughone
or moreconnectionsto a network OutSocket or from a net-
work InSocket throughoneor moreconnectionsto thesink
systemcomponent.For the systemsetup by the codeof
Figure3, this is illustratedin Figure4.

Eachconnectioncontainsa queuewith a limited size
(default size10 elements).Thethreadcorrespondingto the
OutSocket putsdataunitson thequeue,andthethreadcor-
respondingto the InSocket getsdataunits from thequeue.
Thequeueoperationsareblocking,sotheOutSocket thread
is blockedwhenthequeueis full andtheInSocket threadis
blockedwhenthequeueis empty. In this way, evenif there
aremany threadsin theVSRapplication,only afew of them
areactiveatany giventime;mostof themareblockedwait-
ing on emptyqueues.This meansthat the schedulerhasa
relatively simpleproblemof handlingonly a few readyto
run threads.We cansaythat in theStreamLayertheactiv-
ity followsthedataunits: threadsbecomeactiveonly if they
havea dataunit to transfer. Thusthethreadscorresponding
to the StreamLayer have a very shortexecutiontime, and
the total overheaddue to the StreamLayer is very small,
mostof thetimebeingusedby thethreadscorrespondingto
sourcesandsinks.

Neither the Linux OS nor the UDP/IP network offer
QoSguarantees,sotheresourcesavailablefor theVSR ap-
plication are strongly influencedby the other activities in
the system. In sucha best-effort system,it is important
not to havemany competingtasksrunningtogetherwith the
VSR application. In particular, the softwarevideo decod-
ing techniqueis very CPU intensive andcompetitionwith
otherhigh-CPUactivities cancauselossof framesdue to
failure to meetdecodingdeadlines.However, it is, aswe
see,in practicepossibleto achieve goodresults,with low
(� 40 ms.) end-to-endlatency, full 25 frames/sframerate
andlow (�������������) rateof frameloss,in a systemwith
a moderateload – for example,a window manageranda
few othernon-CPUintensiveapplications.This is quitead-
equatefor thekind of activity which needsto besupported
while theVSR is in operation.

6. CONCLUSIONS

A softwaretoolboximplementedon thebasisof a standard
operatingsystemhasbeenshown to offer designersof mul-
timediaapplicationsa convenientway of structuringtheir
designs.Therun-timepenaltyintroducedby usingthis ap-

proachis very small comparedto thetime requiredfor de-
coding and network transmissionin the system. It offers
a lot of flexibility by allowing easyintegrationof different
datasourcesand sinks. As the examplepresentedin this
paperillustrates,the StreamLayer is also easyto use. It
reducesthe developmenttime for multimediaapplications
by letting developersworry abouthow they shouldproduce
andpresenttheir streamsandnot abouthow to transferthe
streamsefficiently.

Creationof this toolbox hasnot involved modification
of the Linux operatingsystemkernel. This makesit sim-
pler to deploy the toolbox, asit avoids kernelpatchesand
problemscausedby incompatibilitiesamongstvariousker-
nel versions.It alsomakesthetoolboxportable.Although
built for Linux, a versionfor Windowscouldeasilybepro-
ducedby usingthe Cygwin environment. The toolboxhas
beenappliedin the RTMM VSR project,whereit is con-
trolled via a GUI which enablestheuserto ”plug together”
components,both locally andremotely. We intendto con-
tinue to experimentwith this approachand are currently
developingfurther systemcomponents,including a virtual
whiteboard,a virtual slide projectorandan ATM network
systemcomponent,for usein the systemin the VSR and
othermultimediaapplications.

7. ACKNOWLEDGMENTS

TheRTMM projecthasbeenpartiallysupportedby theDan-
ish ResearchCouncilsand the DanishCenterfor IT Re-
searchaspartof theCenterfor Multimediain Denmark.

8. REFERENCES

[1] Ralf Steinmetz,“Humanperceptionof jitter andmedia
synchronization,” IEEE Journal on Selected Areas in
Communications, vol. 14,no.1, pp.61–72,Jan.1996.

[2] Robin Sharp,Hans-HenrikLøvengreen,and Edward
Todirica, “Streamsandsockets in DTU-RTMM, ver-
sion1.4,” Tech.Rep.,Departmentof InformationTech-
nology, DTU, Sept.2000.

[3] S.Forchhammer,A. Fosgerau,P.S.K.Hansen,R.Sharp,
E. Todirica, andA. Zsigri, “V ideo conferencingfor a
virtual seminarroom,” in Proc. 4th International Con-
ference on Digital Signal Processing and its Applica-
tions, Moscow, Feb. 2002.

