
1

Condor 

A Distributed Job Scheduler

Mikkel Bystrup Stensgaard (s001434)
Matias Dons Dollerup (s991367)

Agenda

� Introduction
� Scheduling
� Universes
� Architechture
� Administration
� Conclusion



2

Introduction to Condor (1)

� Condor is a distributed job scheduler

� Provides environment for handling several 
jobs simultaneously

� Provides snapshot mechanism for restoration 
and migration of jobs

Introduction to Condor (2)

� A Condor pool is a set of grids, opportunistic 
worksations and dedicated workstations

� Multiple pools can be connected through 
Condor

� Condor takes advantage of opportunistic 
workstations to minimize idle time



3

Introduction to Condor (3)

� Example:

A Condor cluster at UW-Madison Department 
of Sciences containing more than a 1000 
workstations including a 500 CPU Beowulf 
cluster, delivers around 650 CPU-days on a 
typical day.

Condor advertising (1)

� Condor operates through an advertising 
interface

� Both jobs and workstations advertise their 
presence in the pool

� A job advertisement presents the 
specifications for a job

� A workstation adverticement presents the 
capabilities of a workstations



4

Condor advertising (2)

� Jobs are specified in a Job Description File 
that Condor uses to create an advertisement 

� The main fields in a description file is the 
requirements and the ranking expressions

� Expressions is given by a logical syntax, 
hence allowing very specific formulation

Condor advertising (3)

� Example: A job description file

universe = vanilla # select runtime environment

executable = some_job

requirements = (Arch=="INTEL" && OpSys=="LINUX") #target
rank = (Memory * 10000) + KFlops #target
arguments = -verbose
input = in.dat # redirect to stdin
output = out.dat # redirect to stdout
log = log.txt
queue # add job to queue



5

Job scheduling in Condor

� Jobs can be added from any terminal within 
the pool

� Condor matches job advertisements with 
machine advertisements and schedules 
execution

Universes in Condor
� Condor provides scheduling for a variety of 

applications by using different execution 
environments called universes.
� Vanilla Universe: Sequencial programs based on a shared file 

system.
� MPI Universe: Message Parsing programs, based on process 

parallelism. These jobs is only run on Beowulf clusters – not on 
the opportunistic workstations.

� Parallel Virtual Machine - PVM Universe: Supports jobs where 
machines can enter and/or leave during job execution.

� Globus Univers: Grid computing environment.
� Standard Universe: Special Condor environment uptimized for 

effective job scheduling.



6

Standard Universe

� Application checkpointing enables process 
migration and process restoration

� Requires the application to be linked with 
Condor libraries

� Limitations: (running in user mode)
� Multi-process jobs are not allowed including 

multiple kernel threads
� Network communication must be brief
� No interprocess communication (shared memory, 

pipes, semaphores)

Checkpointing (1)

� a ”snapshot” of the jobs current state

� Freedom to preempt job
� Rescheduling a higher priority job
� User reclaims non-dedicated PC
� Enables migration

� Increases fault tolerance



7

Checkpointing (2)

� Condor writes the following to a file/socket
� CPU state, including registers
� Stack
� State of all open files
� Signal handlers
� Pending signals

Program must be linked with the Condor library!

Access to data

� Shared file system
� Common on Beowulf cluster
� Must be specified as a requirement expression

� Condor File Transfer mechanism
� Condor automatically transfer specified files 

before starting the job. Also transfer output files 
back when job are finished of pre-empted.

� Remote I/O calls
� Only possible in the Standard universe



8

Remote I/O operations

� Shared file system
� Bandwidth to central server limits possible 

number of nodes. (or performance)
� Requires account on file server

� Condor Remote System operations
� No special account. (easier administration)
� Open/Read/write operation are handled on 

submitter machine.
� Implemented by replacing call stub

Remote I/O operations



9

Architecture

� One central manager
� Collects Class-adds
� Match jobs to machines

� Nodes
� Contains local job-queue
� Negotiates with central manager

Deamons, Idle



10

Deamons, job

Deamons (1)

� ”condor_master” process runs on each node
� Can restart other deamons
� Enable network update of binary files
� Inform administrator of problems
� Enable remote start/stop of deamons



11

Deamons (2)

� “start_d”
� Enables the node to excecute jobs

� ”condor_schedd”
� Manages local job-queue

� ”condor_shadow”
� Manages file-transfers, logs etc.

Dependencies

� Dependencies are 
specified as a Directed 
acyclic graph (DAG)

� Submitted via the 
DAGMan scheduler



12

SMPS in condor

� Represented as multible virtual machines
� Possibilty to manually specify resources for 

each VM
� Cpu’s
� Memory
� Swap
� Disk

Administration

� Rich set of tools for administration
� Includes

� Status of pool, including detailed information 
about each node. (current load, memory etc)

� Display job stats, including finished jobs
� Changing scheduling policy on-the-fly



13

Conclusion

� Powerfull tool for scheduling jobs across multible 
platforms

� Works with deticated clusters such as beowolf
� Utilizes resources on non-dedicated PCs
� Includes checkpointing and job migration.

More information
http://www.cs.wisc.edu/condor/



14

Known Condor Pools

Questions?

42


