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1. Introduction

Algorithms based on orthogonal transformations play an important role in many signal pro-
cessing applications. There are several reasons for this. Orthogonal transformations are
numerically stable, which is particularly important when the matrix dimensions m and n

increase and/or the condition number increases, and when the numerical rank of the matrix
is an issue. Decompositions based on orthogonal transformations are often easy to update
in a reliable fashion, thus reducing the computational burden by a factor m or n. And,
�nally, these decompositions can yield information about certain subspaces de�ned on the
matrix which play an essential role in noise suppression techniques and other signal processing
applications.

One of the main numerical tools in signal processing based on orthogonal transformations
is the singular value decomposition (SVD), cf. [5], [26, x2.5], [57, x1.4.3], and its generaliza-
tions to matrix pairs, triplets, etc. The SVD detects near-rank de�ciency in a matrix very
reliably and yields all the necessary subspace information. Because the SVD algorithm is so
reliable and numerically stable, it is used in a wide variety of applications, such as frequency
estimation via least squares and total least squares [48], [49], [58], principal component anal-
ysis [60], noise reduction in speech processing [33], computer-aided geometric design [40], and
information retrieval [4]. Additional applications of the SVD can be found in the International
Workshop on SVD and Signal Processing proceedings [17], [42], [59].

Although the SVD is a valuable analytical and computational tool, it has certain draw-
backs. First, for many problems the SVD is unpractical because the algorithm is unable to
take advantage of important matrix properties, such as structure or sparsity, to minimize
both computational work-load and storage requirements. This is due to the full bidiagonal-
ization phase in the algorithm. This drawback also appears in specialized algorithms such
as the partial SVD algorithm designed to compute only the \needed" information. Second,
the SVD is di�cult to update and downdate [9], [27], and thus it is not always suitable for
applications with real-time constraints. Depending on the application, these di�culties with
the SVD make alternative decompositions attractive, provided they are nearly as reliable and
more e�cient to compute and up/downdate.

The rank-revealing QR (RRQR) decomposition [10], [24] is one of the alternatives to the
SVD, being faster to compute and yet providing reliable estimates for the rank and the desired
subspaces. Indeed, the RRQR decomposition has advantages in sparse matrix computations
[47] and subset selection problems [26, x12.2], but unfortunately its representation of the
numerical null space is not well suited for up- and downdating [6].

Rank-revealing two-sided orthogonal decompositions, also referred to as UTV decompo-
sitions [55], [57, x5.4] or complete orthogonal decompositions [26, x5.4.2], are other promising
alternatives to the SVD that provide reliable estimates for the numerical rank and the de-
sired subspaces. There are two main advantages in using rank-revealing UTV decompositions

1



2 CHAPTER 1. INTRODUCTION

instead of the SVD or RRQR decomposition: UTV decompositions can be computed more
e�ciently than the SVD, and their subspace information is easier to up- and downdate, cf.
[3], [26, x12.5.5], [45], [52], [53]. Some applications of UTV decompositions can be found in
[1], [2], [23], [37], [46], [53].

The SVD can be generalized to pairs of matrices in several ways, depending on the
application [16], and the same holds for the UTV decompositions. For example, the socalled
ULLV decomposition due to Luk and Qiao [38] reveals the numerical rank of the matrix
\quotient" ABy (where By is the pseudoinverse of the second matrix B), and thus it matches
the quotient SVD. The ULLV decomposition can be up- and downdated by means of the
same techniques as the UTV decompositions.

The purpose of this work is to provide a package with easy-to-use Matlab templates
for computing and working with UTV decompositions. For completeness, we include a few
templates for computing the RRQR decomposition. In our implementations we focus on ro-
bustness and modularity, rather than ultimate performance. The reason behind this choice
is that in most signal processing applications, the algorithms must be tuned to the particular
application anyway. Hence, we consider Matlab templates the optimal way to communi-
cate algorithms, developed by numerical analysts, to the signal processing community and
other users. Our package requires Matlab Version 5.2, and it is available from Netlib at
http://www.netlib.org/numeralgo.

Our notation is standard linear algebra notation plus Matlab-style matrix indexing where,
e.g., A(1: k; 1: k) denotes the leading k�k submatrix of A. The particular notation used here
follows closely the one used in [21] where the accuracy of the various quantities, computed
by means of UTV and RRQR decompositions, are investigated, and where several numerical
examples can be found.

After a brief introduction to rank-revealing decompositions, we summarize some impor-
tant properties of UTV decompositions in Section 2. Next, in Sections 3 and 4, we describe
the algorithms used in this package for computing and up/downdating UTV decompositions.
In Section 5 we turn to de�nitions and algorithms for the ULLV decomposition of a matrix
pair. We do by no means attempt to be complete; all algorithmic details can be found else-
where in the literature, and pointers to the relevant literature is always given. We conclude
with manual pages in Section 6 for all 46 functions included in the package.

We wish to thank Adam Bojanczyk for sharing his ULLV algorithms with us during the
early stages of this project. Also thanks to Sanzheng Qiao for kindly providing us with his
Matlab software.



2. Rank-Revealing Orthogonal Decompositions

Roughly speaking, a rank-revealing decomposition is a decomposition in which information
about the numerical rank of the matrix can be easily extracted. Here, \numerical rank" usu-
ally means the number of singular values larger than a certain threshold, and it is important
to realize that for this concept to make sense, there has to be a well-determined gap in the
singular value spectrum at the threshold [25], [29, x3.1]. Hence, rank-revealing decomposi-
tions may also be labeled as \gap-revealing decompositions," a phrase coined by Stewart [56].
General treatments of rank-revealing decompositions are presented in [29, Chap. 3] and [57,
Chap. 5].

Turning to algorithms for computing rank-revealing orthogonal decompositions, experi-
ence shows that it is natural to distinguish between high-rank and low-rank algorithms for
the two important cases where the numerical rank is either close to the number of rows or
columns of the matrix, or much smaller. So far, no e�cient algorithm has been developed
for computing a rank-revealing orthogonal decomposition of a matrix whose numerical rank
is approximately half the number of rows or columns.

All rank-revealing orthogonal decompositions introduced so far are two-sided in nature,
i.e., they are of the general form A = XM Y T , where the two \outer matrices" X and
Y are orthogonal|occasionally they are permutation matrices|and the \middle matrix"
M is the matrix that reveals the numerical rank or gap. We conjecture that rank-revealing
decompositions must be two-sided; for example, in connection with the RRQR decomposition,
column permutations are needed to guarantee that one reliably detects the numerical rank.

2.1. The Singular Value Decomposition

The most well-known example of a rank-revealing two-sided orthogonal decomposition is the
singular value decomposition (SVD), cf. [26, x2.5]. The SVD of an m � n matrix A with
m � n is given by

A = U

�
�
0

�
V T = U1 �V T =

rX
i=1

�i ui v
T
i ; (2.1)

where U1 = U(: ; 1:n) and r = rank(A). Both U and V are orthogonal, i.e., UTU = Im and
UT
1 U1 = V TV = In. The diagonal elements �i of the n� n diagonal matrix � are called the

singular values of A with the ordering

�1 � � � � � �r > �r+1 = � � � = �n = 0:

The columns of U and V are referred to as the left and right singular vectors, respectively.
The �rst r columns of U and V are the orthonormal eigenvectors associated with the r

nonzero eigenvalues of AAT and ATA, respectively.

3



4 CHAPTER 2. RANK-REVEALING ORTHOGONAL DECOMPOSITIONS

Given an integer k � r, we partition the SVD according to

A = (Uk; U0; U?)

0
@ �k 0

0 �0

0 0

1
A (Vk; V0)

T ; (2.2)

where �k = diag(�1; : : : ; �k) and �0 = diag(�k+1; : : : ; �n) are diagonal matrices consisting
of the k largest and the n � k smallest singular values, respectively. The matrix Ak de�ned
by Ak = Uk �k V

T
k is a rank-k matrix approximation to A, and is the nearest one in the

2-norm. This matrix is called the truncated SVD matrix, and it has important theoretical
and practical value [29, x3.2].

2.2. Numerical Rank and Singular Subspaces

The selection of k obviously depends on both the application and the method used to deter-
mine the parameter. One way is to simply specify the �rst k or last n � k singular triplets
(�i; ui; vi) needed to capture the most relevant information in the data matrix A for the
particular application. This approach is used, for example, in information retrieval [4]. A
di�cult aspect of this approach is that ad hoc procedures are often used to choose k.

Another way is to specify a threshold � , and then k is identi�ed as the largest integer
such that �k > � . The parameter k is then called the numerical rank of A with respect to � .
Suppose, for example, that the singular values of A are

�1 = 1:0; �2 = 0:5; �3 = 0:1; �4 = 10�5; and �5 = 10�10:

Then k = 3 with respect to � = 10�3, but k = 2 with respect to � = 0:3. The parameter
k plays an important role in signal processing in distinguishing signal from noise, when the
signal can be considered as a sum of a pure signal plus additive white noise. The parameter
� re
ects the noise level, and k is related to the number of prominent signals. Moreover,
the matrices Uk, �k , and Vk carry information about the pure signal (plus some noise),
while (U0; U?), �0, and V0 carry information solely about the noise. Some issues concerning
the very important subproblem of selecting � for numerical rank detection are discussed
in [28], [51], [54].

Once k is speci�ed, there are four fundamental numerical subspaces de�ned by the SVD
of A. They are

R(Ak) = R(Uk) the numerical range of A
N (Ak) = R(V0) the numerical null space of A
R(AT

k ) = R(Vk) the numerical row space of A
N (AT

k ) = R((U0; U?)) the numerical null space of AT .

Here, R(M) denotes the range (or column space) of the matrix M and N (M) denotes the
null space of M .



2.3. UTV DECOMPOSITIONS 5

2.3. UTV Decompositions

The SVD is a special two-sided decomposition because the middle matrix � is diagonal, and
this is what makes the algorithm computationally expensive and also di�cult to update. In
many circumstances one can sacri�ce the diagonal structure of � for a more e�cient algorithm
that computes a decomposition which provides approximately the same rank and subspace
information, and which can be updated e�ciently. This is the main idea behind the UTV
decomposition, which is a product of three matrices: an orthogonal matrix, a middle matrix
that is triangular or block-triangular, and another orthogonal matrix.

If the middle matrix is upper triangular, then the decomposition is called the URV de-
composition, and for m � n it takes the form

A = UR

�
R
0

�
V T
R = (URk; UR0; UR?)

0
@ Rk F

0 G

0 0

1
A (VRk; VR0)

T ; (2.3)

where Rk is a k � k non-singular matrix and G is an (n � k) � (n � k) matrix. If A has a
well-de�ned gap (�k+1 � �k), then the URV decomposition is said to be rank-revealing if

�min(Rk) = O(�k) and k(FT ; GT )k2 = O(�k+1): (2.4)

The second form, in which the middle matrix is lower triangular, is called the ULV decom-
position, and it takes the form

A = UL

�
L

0

�
V T
L = (ULk; UL0; UL?)

0
@ Lk 0

H E

0 0

1
A (VLk; VL0)

T ; (2.5)

where Lk is a k � k non-singular matrix and E is an (n � k) � (n � k) matrix. If A has a
well-de�ned gap (�k+1 � �k), then the ULV decomposition is said to be rank-revealing if

�min(Lk) = O(�k) and k(H; E )k2 = O(�k+1): (2.6)

Although decompositions of the form (2.3) and (2.5) have been around for some time (they
are discussed in the classical book by Lawson and Hanson [35] from 1974), algorithms which
guarantee the rank-revealing property (2.4) and (2.6) are more recent. From the standard
perturbation theory for singular values, cf. [26, x8.6.1], it follows that the smaller the norm
of the o�-diagonal block, the better the approximations in (2.4) and (2.6).

We mention that there are situations where �k and �k+1 are not well separated but �k,
Uk, and Vk of the SVD are still useful. In some of these cases a UTV decomposition may still
be an appropriate tool, but more research is needed in order to understand precisely when
(see [31] for an example).

UTV decompositions are often used to supply good estimates of basis vectors for the
numerical subspaces. For example, the subspace R(URk) or R(ULk) can be considered an
approximation to the numerical range R(Uk), and the subspaces are identical if the o�-
diagonal block is zero. Hence it is natural to compare the numerical subspaces of A to
the corresponding UTV-based subspaces of A. The following theorem gives bounds for the
distance between the SVD- and UTV-based subspaces (see [26, x2.6.3] for more information
about subspace distances).
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Theorem 1. (See Corollaries 2.3 and 2.5 in [20].) Let A have the UTV decompositions as
in (2.3) and (2.5) and the SVD as in (2.1). If �min(Rk) > kGk2, then

dist(R(Uk);R(URk)) � kFk2 kGk2
�min(Rk)2 � kGk22

(2.7)

and
kFk2
2 kRk2 � dist(R(V0);R(VR0)) � �min(Rk) kFk2

�min(Rk)2 � kGk22
: (2.8)

Similarly, if �min(Lk) > kEk2, then

kH j2
2 kLk2 � dist(R(Uk);R(ULk)) � �min(Lk) kHk2

�min(Lk)2 � kEk22
(2.9)

and

dist(R(V0);R(VL0)) � kHk2 kEk2
�min(Lk)2 � kEk22

: (2.10)

The a posteriori bounds in (2.7){(2.10) show that the UTV-based subspaces of A are
accurate approximations of the singular subspaces of A provided the o�-diagonal block of
the middle matrix is su�ciently small in norm. In the next section we discuss strategies to
compute UTV decompositions so that the o�-diagonal block is su�ciently small.

Another important result that follows from Theorem 1 is that the URV-matrix URk ,
considered as an approximate basis for the numerical range R(Uk), has a smaller upper
bound than the corresponding ULV-matrix ULk , due to the factor kFk2 instead of the factor
�min(Lk). On the other hand, the ULV-matrix VL0, considered as an approximate basis for the
numerical null space R(V0), has a smaller upper bound than the corresponding URV-matrix
VR0. We conclude that the choice of decomposition depends on which quantities one wants
to estimate; e.g., if one wants to estimate numerical null spaces then the ULV decomposition
is preferred.

At this stage we mention that the matrix A is often a noisy realization of a pure matrix
A plus additive noise, where A can be assumed to be exactly rank de�cient. Hence, it is
of interest to compare the UTV-based subspaces, computed from A, with the corresponding
exact subspaces de�ned from A which, in turn, are identical to the fundamental SVD-based
subspaces of A . The relevant perturbation theory can be found in [19].

The standard way to use the UTV decompositions in solving numerically rank-de�cient
least squares problems min kAx � bk2 is to \plug in" either of the UTV decompositions
for A and then neglect the two blocks with small norm, i.e., either F and G in the URV
decomposition, or E and H in the ULV decomposition. The corresponding UTV-based least
squares solutions are then given by

xRk = VRkR
�1
k UT

Rkb and xLk = VLkL
�1
k UT

Lkb;

and the accuracy of these solutions is investigated in [21]. The computation of truncated
UTV solutions is implemented in the two Matlab functions tulv and turv for computing xRk
and xLk, respectively. Similar UTV-based total least squares solutions are studied in [62].
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Although the RRQR decomposition was not introduced this way, it can be considered as
a special URV decomposition in which the right orthogonal matrix is a permutation matrix
�. It is customary to write this decomposition in the form

A� = Q

�
RQ

0

�
= (Q1; Q2; Q?)

0
@ R11 R12

0 R22

0 0

1
A ; � = (�1; �2):

Computation of the RRQR decomposition is implemented in the two Matlab functions hrrqr
and lrrqr, designed for the high- and low-rank cases, respectively, cf. [10], [12], and [24].
The corresponding truncated RRQR solution is given by xQk = �1(R11; R12)

yQT
1 b, and

computation of this solution is implemented in the Matlab function trrqr. We note that
RRQR algorithms often, in addition to the three matrices Q, R, and �, return a matrix W
whose columns span an approximation to either N (Ak), in the high-rank case, or R(AT

k ),
in the low-rank case, and RRQR-based total least squares solutions can be based on this
matrix. More details about RRQR-based solutions can be found in [11], while a study of the
accuracy of the RRQR-based subspaces and solutions is presented in [21].

2.4. A Numerical Example

To illustrate some of the quantities de�ned above, we generate an 8�6 matrix A with singular
values

2; 1; 0:5; 0:2; 0:05; 0:001;

and the numerical rank of A, with respect to the threshold � = 0:1, is k = 4. Then we
use the Matlab function hurv (described in the next section) to compute a rank-revealing
decomposition of A. The computed triangular factor R has the form

R =

0
BBBBBB@

0:47 0:67 �0:54 0:92 7:7 � 10�5 �4:3 � 10�6
0 1:46 �0:79 0:03 �3:8 � 10�5 1:2 � 10�6
0 0 0:64 �0:34 5:2 � 10�5 �1:8 � 10�6
0 0 0 0:46 �1:1 � 10�4 6:5 � 10�6
0 0 0 0 4:5 � 10�3 2:3 � 10�4
0 0 0 0 0 1:0 � 10�3

1
CCCCCCA
:

The norms of the three nonzero blocks are kRkk2 = 2:00, kFk2 = 1:46 � 10�4, and kGk2 =
5:00 � 10�3, clearly revealing the numerical rank of A, and the smallest singular value of Rk

is �min(Rk) = 0:20. The accuracy of the estimated subspaces, and the corresponding upper
bounds from Theorem 1, are as follows:

dist(R(Uk);R(URk)) = 1:68 � 10�5; kFk2 kGk2
�min(Rk)2 � kGk22

= 1:85 � 10�5

dist(R(V0);R(VR0)) = 6:85 � 10�4; �min(Rk) kFk2
�min(Rk)2 � kGk22

= 7:35 � 10�4

and we see that the upper bounds are very close to the actual subspace distances. This ex-
ample illustrates that the rank-revealing URV decomposition indeed provides good estimates
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for the SVD-based quantities, and that the numerical range is better approximated than the
numerical null space.

We also compute rank-revealing ULV and RRQR decompositions by means of the Matlab
functions hulv and hrrqr, and the corresponding triangular matrices L and RQ are

L =

0
BBBBBB@

0:22 0 0 0 0 0
�0:11 0:90 0 0 0 0
�0:02 �1:18 0:93 0 0 0
0:39 �0:61 0:68 �1:08 0 0

1:4 � 10�4 4:7 � 10�5 9:1 � 10�5 5:6 � 10�5 5:0 � 10�3 0
4:4 � 10�6 1:5 � 10�6 2:9 � 10�6 1:8 � 10�6 1:3 � 10�4 1:0 � 10�3

1
CCCCCCA

and

RQ =

0
BBBBBB@

0:89 0:74 0:81 0:22 0:56 0:94
0 10:56 0:30 0:76 0:21 0:33
0 0 0:43 0:52 0:37 �0:14
0 0 0 0:49 0:08 �0:06
0 0 0 0 5:9 � 10�3 7:3 � 10�4
0 0 0 0 0 1:6 � 10�3

1
CCCCCCA
;

both revealing the numerical rank of A. The ULV subspace distances and their upper bounds
from Theorem 1 are

dist(R(Uk);R(ULk)) = 8:50 � 10�4; �min(Lk) kHk2
�min(Lk)2 � kEk22

= 8:99 � 10�4

dist(R(V0);R(VL0)) = 2:10 � 10�5; kHk2 kEk2
�min(Lk)2 � kEk22

= 2:25 � 10�5

illustrating that for the rank-revealing ULV decomposition, the null space estimate is indeed
more accurate than the estimate of the numerical range. Finally, turning to the RRQR
decomposition, the quantities Q1 and W provide approximate bases for the numerical range
and null space with

dist(R(Uk);R(Q1)) = 5:29 � 10�3; dist(R(V0);R(W )) = 6:78 � 10�4;

and we see that both approximations are poorer than those from the UTV decompositions.



3. UTV Algorithms

Turning to algorithms for computing UTV decompositions, experience shows that it is natural
to distinguish between high-rank algorithms for the case k � n, and low-rank algorithms for
the case k � n. So far, no e�cient algorithm has been developed for computing a rank-
revealing orthogonal decomposition of a matrix whose numerical rank is approximately half
the number of rows or columns.

We concentrate on the ULV algorithms; the URV algorithms are very similar, and thus
we omit a discussion of these algorithms. We assume that the reader is familiar with stan-
dard \building blocks" of numerical linear algebra such as orthogonal transformations and
condition estimation. Finally, we mention that all of our algorithms are designed for the case
m � n, and if the left orthogonal matrix is required then we always compute the \skinny"
part, i.e., U1.

3.1. High-Rank Algorithms

Many applications give rise to high-rank matricesA where k � n. One example is direction-of-
arrival estimation in signal processing, where k corresponds to the number of incoming signals
which is usually comparable to the number of sensors n. Another example is discretizations
of certain deconvolution problems (Fredholm integral equations of the �rst kind), in which
the integral operator has a null space of small dimension.

For such high-rank matrices, Stewart introduced the rank-revealing URV and ULV de-
compositions and algorithms [52], [53] as alternatives to the SVD. In these algorithms, the
rectangular matrix A is preprocessed by a standard orthogonal triangular factorization, in
which the \skinny" form is computed if only U1 is required. This factorization can take
advantage of the structure of A, such as Toeplitz structure (although the feature is not im-
plemented in our package). Then condition estimation, plane rotations from the left and
right, and de
ation steps are used to achieve the rank-revealing form. Here, by condition es-
timation we mean estimation of the smallest singular value of a matrix and the corresponding
left or right singular vector.

Stewart's high-rank algorithms \peel o�" the small singular values of A one at a time,
starting with the smallest. In each step, the estimated singular vector is used to generate
Givens rotations which, when applied to A, produce the desired rank-revealing triangular
form. If � denotes the threshold used in determining the numerical rank, then the generic
high-rank ULV algorithm can be summarized as follows for the case m � n:

9
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Generic High-Rank ULV Algorithm (Stewart).

1. Let k n and compute an initial factorization A = U1L

with a lower triangular L.
2. Condition estimation: let e�k estimate �min(L(1: k; 1: k))

and let wk estimate the corresponding left singular vector.
3. If e�k > � then exit.
4. Revealment: determine an orthogonal Pk such that Pkwk = (0; : : : ; 0; 1)T ;
5. update L(1: k; 1: k) PT

k L(1: k; 1:k);
6. update L(1: k; 1: k) L(1: k; 1:k)Qk, where the orthogonal

matrix Qk is chosen such that the updated L is triangular;
7. Re�nement (optional): while kL(k; 1: k� 1)k2 > � kLkF

apply QR-re�nement to the bottom row of L(1: k; 1: k).
8. De
ation: let k  k � 1.
9. Go to step 2.

The three phases that we| for clarity| call revealment (steps 4{6), re�nement (step 7),
and de
ation (step 8) are usually referred to collectively as \re�nement." Before step 8, a
small singular value has revealed itself in the form of small elements in absolute value in the
bottom row of L(1: k; 1: k).

Steps 5 and 6 consist of interleaved left and right Givens transformations applied in such
a way that intermediate �ll-in is restricted to the upper bidiagonal of L. The left and right
transformations are accumulated into U1 and In in order to compute the two �nal orthogonal
matrices U1 and V . This approach is e�cient for high-rank matrices with k � n, because the
smallest n�k singular values are guaranteed to emerge �rst, one per de
ation step, and thus
the algorithm terminates after n� k de
ation steps when only large singular values remain.

The optional QR-re�nement in step 7, which can be used to reduce and control the norm
of the o�-diagonal block, is explained in Section 3.3 (the iteration is, of course, safeguarded
by allowing only a small number of re�nement steps for each k). If re�nement is used, then
upon completion of the ULV algorithm we can guarantee that k(H ; E)kF �

p
n� k � kLkF .

The condition estimation in step 2 can be implemented in various ways, and there are
many algorithms available for triangular matrices, cf. the survey [32]. The algorithm we
have chosen was designed by Cline, Conn, and Van Loan [13] to be consistent with the 2-
norm, and it is implemented in the Matlab function ccvl. The complete high-rank algorithms
are implemented in the two Matlab functions hulv and hurv for computing ULV and URV
decompositions, respectively.

There is an intimate and subtle relationship between the accuracy of the condition es-
timator and the norm of the o�-diagonal block H or F , cf. the study in [20]. The main
conclusion is that an accurate condition estimator will produce an o�-diagonal block with
small norm. This fact has inspired us to develop alternative high-rank UTV algorithms,
implemented in Matlab functions hulv a and hurv a, in which the condition estimation and
revealment steps can be repeated| for each value of k|until the norm of the current o�-
diagonal block is su�ciently small. Thus, we have replaced QR-re�nement with re�nement
of the condition estimation. The condition estimation used in these algorithms is inverse
iteration (implemented in the Matlab function inviter), which allows us| for a �xed k|to
restart the iterations in a simple way. The use of inverse iterations has also been suggested
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by Yoon and Barlow in connection with a ULV downdating algorithm [65]. The alternative
ULV algorithm takes the following form for m � n.

Generic High-Rank ULV Algorithm (Alternative Version).

1. Let k  n and compute an initial factorization A = U1L
with a lower triangular L.

2. Let wo
k  k�1=2 � ones(k; 1).

3. Condition estimation: let (e�k; wk) inviter(L(1: k; 1:k); wo
k).

4. If e�k > � then exit.
5. Revealment| similar to steps 4{6 in Stewart's algorithm.
6. Re�nement (optional): if kL(k; 1: k� 1)k2 > � kLkF
7. let wo

k  (0; : : : ; 0; 1)T ,
8. go to step 3.
9. De
ate: let k k � 1.
10. Go to step 2.

Here, ones is Matlab's built-in function for generating a vector of all ones, and the revealment
step 4 is identical to steps 4{6 in Stewart's algorithm. The notation used in step 3 means that
the estimates e�k and wk are computed by means of inverse iteration with starting vector wo

k.
We use a �xed starting vector in order to ensure that the decomposition can be reproduced.
Ideally, we would like to stop the inverse iterations when the estimate wk ensures that the
norm kL(k; 1: k� 1)k2|after the revealment step| is su�ciently small. Unfortunately, the
only available a priori bound is kL(k; 1: k � 1)k2 < e�k, which is too crude. Hence, when
re�nement is used it is necessary to perform alternating condition-estimation and revealment
steps.

3.2. Low-Rank Algorithms

Certain applications give rise to low-rank matrices A in which k � n. For instance, low-rank
matrices arise in information retrieval using latent semantic indexing (LSI) [4], where the
elements of the m � n matrix A provide an incomplete connection between n documents
which de�ne the database, and m key words pertaining to the database. The parameter k is
typically 0:1% of min(m;n), thus relatively few factors are adequate for the LSI approach.

Low-rank problems are traditionally solved using SVD-based techniques, and more details
can be found in [61]. Low-rank UTV algorithms [22] are computationally attractive alterna-
tives to the SVD because they provide enough important information, but more e�ciently
than the SVD.

Our generic low-rank UTV algorithms are very similar to the alternative version of the
high-rank algorithm. They \peel o�" the large singular values of A one at a time, starting
with the largest, and in each step the estimated singular vector is used to generate Givens
rotations which, when applied to A, produce the desired rank-revealing triangular form. The
low-rank revealment step di�ers from the high-rank version in that the permutation matrix Pk
is chosen such that Pkwk = (1; 0; : : : ; 0). If again � denotes the threshold used in determining
the numerical rank, the generic ULV algorithm can be summarized as follows for m � n:
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Generic Low-Rank ULV Algorithm.

1. Let k  1 and compute an initial factorization A = U1L
with a lower triangular L.

2. Let wo
k  (n� k + 1)�1=2 � ones(n� k + 1; 1) and ` = 1.

3. Norm estimation: (e�k; wk) normest(L(k:n; k:n); wo
k).

4. If e�k > � then exit.
5. Revealment|as explained in the text above.
6. Re�nement (optional): if ` < `max

7. let wo
k  (1; 0; : : : ; 0)T and ` = `+ 1,

8. go to step 3.
9. De
ate: let k  k + 1.
10. Go to step 2.

The notation in step 3 means that the estimates e�k and wk are computed by means of a 2-norm
estimator with starting vector wo

k. We say that this algorithm is \warm started" because of
the initial triangular factorization, and again the left and right orthogonal transformations
are accumulated into U1 and In, respectively, to produce the �nal U1 and V .

In the low-rank algorithms, the condition estimation of the high-rank algorithms is re-
placed by estimation of the largest singular value (which is identical to the 2-norm) and a
corresponding singular vector. This can be accomplished by means of the classical power
method [26, x8.2] or by means of Lanczos bidiagonalization [26, x9.2]. The number of it-
erations in both methods depends on the gap between the largest and the second largest
singular values in the current submatrix, and often the Lanczos method is faster than the
power method; see [22] for more details.

The most important di�erence between the high- and low-rank algorithms is that in
the low-rank algorithm, the norm of the current o�-diagonal block (i.e., L(k + 1:n; 1: k) in
the ULV algorithm) does not become small until k reaches its �nal value| the details are
discussed in [22]. Hence, we cannot use the norm of the current o�-diagonal block to control
the re�nement process, so this process is controlled only by the maximum number `max of
re�nement steps allowed for each k.

The two warm-started low-rank Matlab functions included in this package are lulv and
lurv for computing low-rank ULV and URV decompositions, respectively, and the underlying
power and Lanczos methods are implemented in the Matlab functions powiter and lanczos.
From a probabilistic point of view, random starting vectors for the iterative singular value
estimators are superior to �xed vectors [34], but still we have chosen to use a �xed starting
vector because this ensures that the computed decompositions can be reproduced.

We remark that several Lanczos-based algorithms have been suggested for computing good
estimates of the low-dimensional signal subspaces associated with various problems [14], [18],
[63], [64]. None of these algorithms produce a UTV decomposition, only approximations to
the desired subspaces|whether this is a drawback depends on the particular application.

When estimating the largest singular value of a matrix, there is no particular need for
working with a triangular matrix (which, on the other hand, is essential when estimating the
smallest singular value e�ciently in the high-rank algorithms). This lead to the de�nition of
an alternative form of the UTV decomposition in which the initial triangularization is omitted,
and the �nal matrix middle matrix is block triangular with a square (m�k)�(n�k) bottom



3.3. REFINEMENT TECHNIQUES 13

right submatrix. This version, and the corresponding \cold started" algorithm, is described
in [22], and the corresponding Householder-based low-rank algorithms are implemented in
the Matlab functions lulv a and lurv a.

3.3. Re�nement Techniques

Once a UTV decomposition has been computed, one may want to improve the accuracy of
the estimated singular subspaces, represented by the columns of the matrices U and V . It
follows from Theorem 1 that this can be achieved by reducing the norm of the o�-diagonal
block, i.e., either F in the URV decomposition, or H in the ULV decomposition.

This can be accomplished by a block QR iteration applied to either R or L, as described
in [41]. Consider the URV decomposition. In the �rst step, right Givens rotations are
constructed such that F is annihilated and the (2,1)-block �lls out. In the second step, left
Givens rotations are applied to the updated matrix in order to annihilate the (2,1)-block
again and thus restore the upper triangular form. If these two steps are repeated, then it
is proved in [41] that the norm of the o�-diagonal block converges linearly to zero, with a
factor equal to kGk2=�min(Rk) for the URV decomposition, and kEk2=�min(Lk) for the ULV
decomposition. These \post processing" re�nement operations are implemented in the two
Matlab functions ulv qrit and urv qrit.

Re�nement can also be applied in each step of the UTV algorithms, as shown in Stewart's
high-rank algorithm above, by \
ipping" the last row of the current L(1: k; 1: k)|or the last
column of R(1: k; 1: k)|as in the block QR iteration. Again, it follows from the theory in
[41] that re�nement of a single row or columns of the current triangular matrix will reduce
the norm of the o�-diagonal block. In the alternative high-rank algorithm, as well as in
the low-rank algorithms, the QR-re�nement steps are replaced by repeated restarts of the
condition or norm estimator followed by revealment. The initial guess in the restart is chosen
so that one continues the iterations in order to further improve the norm estimate, thereby
resulting in a reduction of the o�-diagonal block's norm.

A di�erent 
avor of re�nement is used in Stewart's PLQ decomposition [56], where a
pivoted QR factorization is followed by an orthogonal reduction to lower triangular form,
which can be considered as \half a QR iteration". The lower triangular matrix produced
in this way is sometimes quite good at revealing gaps in the singular value spectrum, but
without the theoretical justi�cation underlying the UTV decompositions.

3.4. Numerical Examples

We will �rst show the in
uence of the number of power iterations used to estimate the largest
singular value in the low-rank ULV algorithm. We generate a low-rank 8� 6 matrix A with
singular values 0.3, 0.2, 0.05, 0.03, 0.02, and 0.01, and the numerical rank of A with respect
to the threshold � = 0:1 is k = 2. Then we use the Matlab function lulv to compute ULV
decompositions of A using a �xed number of 1, 2, 3, and 4 power iterations in each stage of
the algorithm, and the results are shown in Table 3.1 where we use the notation

d(Uk) = dist(R(Uk);R(URk)); d(V0) = dist(R(V0);R(VR0)):
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Power iterations kHk2 d(Uk) d(V0)

1 3:4 � 10�2 1:6 � 10�1 3:7 � 10�2
2 1:8 � 10�3 9:2 � 10�3 2:3 � 10�3
3 1:1 � 10�4 5:6 � 10�4 1:4 � 10�4
4 6:5 � 10�6 3:4 � 10�5 8:6 � 10�6

Table 3.1: Results from the low-rank ULV algorithm with the call lulv(A,0.1,power its).

Re�nement steps kHk2 d(Uk) d(V0)

0 3:4 � 10�2 1:6 � 10�1 3:7 � 10�2
1 2:0 � 10�3 1:1 � 10�2 2:6 � 10�3
2 5:1 � 10�5 2:7 � 10�4 6:8 � 10�5
3 3:0 � 10�6 1:6 � 10�5 4:0 � 10�6
4 1:8 � 10�7 9:7 � 10�7 2:4 � 10�7

Table 3.2: Results from the low-rank ULV algorithm with the call lulv(A,0.1,1,ref steps).

First of all, we see that the norm of the o�-diagonal block H decreases as the number of power
iterations increases, re
ecting the fact that the more accurate the singular vector estimate,
the closer the triangular matrix is to block diagonal form, and thus the more accurate the
subspace estimates. Moreover, as expected from Theorem 1, we see that the approximate
null space bases are always more accurate than the bases for the numerical range.

Another way to achieve accurate subspace estimates is to perform one or more re�nement
steps in each stage of the algorithm. To illustrate this, we use lulv again with one power
iteration followed by re�nement in the form of 0, 1, 2, 3, or 4 re�nement steps in each stage.
The results of this experiment are shown in Table 3.2, and it is no surprise that the results
improve as the number of re�nement steps increases.

The third way to improve the accuracy of the UTV subspaces is to perform block QR
iterations on the �nal triangular matrix L, and we illustrate this by applying block iterations
(using the function ulv qrit) to the matrix L computed with one power iteration and no
re�nement in each stage; cf. Table 3.3. Clearly, the block QR iterations reduce the o�-
diagonal block's norm and improve the subspace estimates. The same conclusions hold for
the high-rank algorithms; we do not show the results here.

Block iterations kHk2 d(Uk) d(V0)

0 3:4 � 10�2 1:6 � 10�1 3:7 � 10�2
1 1:7 � 10�3 8:9 � 10�3 2:2 � 10�3
2 1:0 � 10�4 5:4 � 10�4 1:3 � 10�4
3 6:3 � 10�6 3:4 � 10�5 8:4 � 10�6
4 3:9 � 10�7 2:1 � 10�6 5:2 � 10�7

Table 3.3: Results from the ULV re�nement algorithm using block QR iterations, with the
call ulv qrit(k,block its,L,V,U).



4. Up- and Downdating

One of the most important properties of the UTV decompositions is their ability to be
updated and downdated e�ciently and stably. Here we brie
y summarize the algorithms
used in the package. It should be noted that none of the algorithms described below apply to
the block triangular low-rank UTV decomposition computed by the cold-started algorithms
mentioned in Section 3.2.

4.1. Updating

Consider �rst updating the UTV decomposition with an additional row wT and with a positive
weighting factor � � 1 applied to A (which is a standard operation in signal processing), i.e.,
given the UTV decomposition A = U1 T V T , where T is either L or R, we want to compute
the new UTV decomposition �

�A

wT

�
= U1 T V

T
:

The updating is accomplished by promoting wT to the middle matrix,�
�A
wT

�
=

�
U1 0
0 1

��
T

wTV

�
V T ;

and then left and right Givens rotations G and H are used to annihilate the elements of wTV .
Thus we obtain�

�A

wT

�
=

�
U1 0
0 1

�
G

�
T
0

�
HTV T =

�
U1 u2

�� T
0

�
V
T
= U1T V

T
;

i.e., V = V . Notice that V is always needed in order to accomplish the updating, while U1 is
not required.

The order in which the Givens rotations are applied is important because we wish, as far
as possible, to maintain the small elements present in the triangular matrix T . Using the
scheme proposed by Stewart [52] together with the fact that if � = 1 then the numerical rank
can either remain at k or increase by one, we merely have to apply one step of condition
estimation and at most one de
ation step in this case. See [26, x12.5.5] or [52] for more
details.

The updating algorithm is implemented in the Matlab functions ulv up and urv up, and
after all the Givens rotations have been applied, we normalize the columns of V as recommend
in [43]. In these implementations, the condition estimation is accomplished by means of ccvl,
and we allow re�nement of the updated triangular matrix.

15
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Moonen et al. [44] presented a related updating algorithm in which the updating step is
followed by one|or a few|sweeps of Kogbetliantz's iterative SVD algorithm. The result
of this post-processing is that if the initial middle matrix T is close to diagonal (e.g., if the
initial decomposition is the SVD), then the norm of the o�-diagonal part of T stays relatively
small after each updating step. We have not implemented this variant in our package.

4.2. Downdating

The downdating problem is the following: given the UTV decomposition A = U1 T V
T ,

where T is either L or R, compute the new UTV decomposition of the (m�1)�n submatrix
A(2:m; : ), i.e.,

A =

�
wT

A(2:m; : )

�
; A(2:m; : ) = U1 T V

T
:

Downdating is a more complicated problem than updating, and the algorithm depends on
whether the matrix U1 is explicitly available, because its �rst row is required in the down-
dating algorithm.

If U1 is available, then the �rst step is to augment U1 with one additional column u2 that
is orthogonal to the columns of U1, i.e., U

T
1 u2 = 0, in such a way that the norm of the �rst row

of the matrix (U1; u2) is one, and this can almost always be achieved by orthonormalizing
the unit vector e1 = (1; 0; : : : ; 0)T to U1 by means of the modi�ed Gram-Schmidt (MGS)
process [15]. At this stage, the UTV decomposition of A can be reformulated as

A = (U1; u2)

�
T
0T

�
V T :

If T = R, then we use the standard algorithm for downdating a QR factorization, cf. [26,
x12.5.3]. We apply a sequence of right Givens rotations G that annihilate all but the �rst
element of the �rst row of (U1; u2), starting from the right, and these rotations are also applied
from the left to the middle matrix:

(U1; u2)G =

� �1 0T

0 U

�
and GT

�
R
0T

�
=

�
yT

R

�
;

where the (m� 1)�n matrix U has orthonormal columns. Then it follows immediately that
the three matrices U , R, and V constitute a URV decomposition of A(2:m; : ).

If T = L, then we use the algorithm from [8]. First we annihilate all but the �rst element
of U1, again starting from the right, and when these rotations G are applied from the left to
L then they must be interleaved with right rotations H that restore the triangular form:

U1G = eU =

�
� eT1eU(2:m; : )

�
; GT LH = eL; eV = V H;

where j�j � 1. We �nish by a single Givens rotation eG involving u2 and the �rst column ofeU in which � = eU(1; 1) is annihilated, and when eG is applied from the left to the middle
matrix, it introduces a single �ll-in in the bottom row:�eU; u2� eG =

�
0T �1
U 0

�
and eGT

� eL
0T

�
=

�
L

� eT1

�
:
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Then the ULV decomposition of A(2:m; : ) consists of U , L, and eV .
Finally, we need to make the new UTV decomposition a rank-revealing one. We note that

the numerical rank can either remain at k or decrease by one. Hence, due to the ordering
of the Givens rotations, most of the small elements in T remain small, and we need only
perform a few condition estimation and de
ation steps.

Consider now the case where U1 is not available, which is common in signal processing
applications due to constraints in both memory size and computational complexity. The
vector qT = U1(1; : ) can be computed from the relation wT = qTTV T by solving this equation
for q, i.e.

q =
�
TT
��1

V Tw; (4.1)

and the �rst element of u2 is then given by u2(1) = (1 � kqk22)1=2. Once this information
is available, it follows from the relations above that the downdating can be accomplished.
Unfortunately, this so-called Linpack procedure is numerically inferior when kqk2 is close
to one, in which case it is more safe to use algorithms based on the corrected semi-normal
equation (CSNE) approach [7]. Two versions of this approach have been developed: the �rst
by Bojanczyk and Lebak [8], and the second by Park and Eld�en [45] and further improved
by Barlow, Yoon, and Zha [3]. It is outside the scope of this work to present the details of
these sophisticated downdating algorithms; instead we refer to the papers for details.

The process of orthogonalizing e1 to U1 breaks down when e1 lies in the range of U1, and
one instance where this happens is when the exact rank of the coe�cient matrix decreases
during the downdating process, as shown in the following theorem.

Theorem 2. Let qT = U1(1; : ). If rank(A(2:m; : ))< rank(A), then

e1 2 R(U1) () kqk2 = 1: (4.2)

Proof. Since rank(T ) = rank(A), and since

rank(U1(2:m; : )T) = rank(A(2:m; : )) = rank(A)� 1;

we conclude that U1(2:m; : ) must be rank de�cient. Now, from the CS decomposition [26,
x2.6.4] of U1 it is clear that kqk2 = 1, rank(U1(2:m; : )T) = n�1. Hence, rank(A(2:m; : ))<
rank(A) implies that kqk2 = 1. This, in turn, is equivalent to e1 2 R(U1) because kUT

1 e1k2 =
kqk2 is the norm of the orthogonal projection of e1 on the range of U1.

Our algorithms detect and overcome this di�culty as follows. If U1 is available, the
situation is detected reliably by the \twice is enough" strategy in MGS, and instead we
orthonormalize the vector (1; 2; : : : ; m)T to U1 which yields a vector u2 whose �rst component
is of the order of the machine precision. If U1 is not available, the situation is detected during
the CSNE algorithm which returns an exact zero for u2(1).

At this stage, we want to emphasize that numerically stable UTV downdating algorithms
have become very complex, and the computational overhead can become quite large, espe-
cially when the exact rank decreases. In certain real-time applications where the complexity
of the software is limited, it may be worth to consider whether recomputation of the ULV
decomposition|which simpli�es the code at the expense of introducing a time delay or a
gap in the output data| is to be preferred to the more complex algorithms. The decision
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to recompute the UTV decomposition should then be linked to the detection of the situation
when e1 on the range of U1.

The downdating algorithms described above are implemented in the two Matlab functions
ulv dw and urv dw for downdating the ULV and URV decompositions, respectively. Similar
to the updating implementations, we normalize the columns of U1 and V once all Givens
rotations have been applied.

Downdating frequently arises in signal processing in connection with sliding window ap-
plications where, in each time step, the top row of A is skipped and a new row is appended
to the bottom of A. Algorithmically, this is treated by means of an updating step followed
by a downdating step, and this combined action is implemented in the two Matlab functions
ulv win and urv win.

4.3. A Numerical Example

The subspace tracking capability of the up- and downdating algorithms is demonstrated
in the Matlab demo functions wulvdemo and wurvdemo. Here, we illustrate some of the
inherent numerical di�culties associated with a ULV downdating step as implemented in
ulv dw. Consider �rst the case where U1 is available, and let A be a 6� 4 matrix such that
svd(A)=(2:08; 1:03; 0:21; 1:24 � 10�16), svd(A(2:m; : )) = (2; 1; 1:96 � 10�16; 8:11 � 10�17), and
svd(U1(2:m; : )) = (1; 1; 1; 2:41 �10�16). First we use MGS with one reorthogonalization step
to orthogonalize z = e1 to U1, by means of the generic algorithm:

Generic MGS Algorithm.
1. For j = 1:n, z  z � U1(: ; j)

�
U1(: ; j)

Tz
�
; end

2. If kzk2 < 2�1=2 then
3. for j = 1:n, z  z � U1(: ; j)

�
U1(: ; j)

Tz
�
; end

We obtain kzk2 = 2:32 � 10�16, and we conclude that e1 2 R(U1). Instead, we choose
z = (1; 2; : : : ; m)T and apply the above MGS algorithm to this vector. After normalization
we end up with a vector u2 whose �rst component, as expected, is practically zero, u2(1) =
�1:34 � 10�17. Then the downdating process can be completed.

Next, consider the situation where U1 is not available, and where q must be computed
from w via (4.1). With the same data as above, the Linpack procedure yields

q = (�0:968; �0:200; 0:153; �4:40 � 10�16)

with kqk2 = 1 exactly, and thus u2(1) = 0. Hence, in this exactly rank de�cient case, there
is in principle no problem in using the simple Linpack approach. However, in �nite precision
arithmetic we cannot distinguish an exactly rank-de�cient problem from a near-rank-de�cient
problem. To illustrate this, we modify the matrix slightly, such the small singular values of
A and A(2:m; : ) become somewhat larger than the machine precision (8:49 � 10�7 and 10�6,
10�9, respectively); now kqk2 6= 1, but it is so close to one that u2(1) cannot be computed
as (1 � kqk22)1=2. Thus, we must switch to the CSNE approach, which leads to the result
u2(1) = 5:36 � 10�9.



5. Quotient UTV Decompositions

Throughout the years, rank-revealing orthogonal decompositions|and in particular the
SVD|have been generalized to matrix pairs, triplets, etc. One of the most well known
and most frequently used generalizations is the quotient SVD (QSVD), or generalized SVD,
of two matrices A and B with the same number of columns [26, x8.7.3], which yields infor-
mation about the numerical rank and numerical subspaces of the matrix \quotient" AB�1

when B is invertible, and ABy (where By is the pseudoinverse [26, x5.5.4] of B) when B has
full column rank. The QSVD has numerous applications in signal processing as well as in
many other applications, cf. [16], [29], and is available in Matlab 5.2 as function gsvd.

5.1. The Rank-Revealing ULLV Decomposition

In signal processing applications, the QSVD is often used in connection with problems that
involve additive colored noise, where the matrix A represents the sampled noisy signal, while
the matrix B represents the noise. As long a A and B have the same number of columns
and B has full column rank, the matrix quotient ABy represents a so-called prewhitened
signal with white noise, to which the standard �ltering and noise-reduction techniques can
be applied; see [33] for details.

In these applications it is natural to generalize the UTV decomposition to such pairs of
matrices with the same number of columns. In this work, we focus on the important case
where B has full column rank, which is very often the case in signal processing applications.
Then the quotient ULV composition, also referred to as the ULLV decomposition [38], takes
the form

A = UA LA LV
T ; B = UB LV

T ; (5.1)

where UA and UB have orthonormal columns and V is orthogonal, i.e., UT
AUA = UT

BUB =
V TV = In, while LA and L are both lower triangular. Moreover, L has full rank, because
we assume that B has full column rank. The corresponding quotient URV decomposition is
de�ned analogously, and we shall not pursue this decomposition here.

Since B has full rank, its pseudoinverse is given by By = V L�1UT
B , and thus the matrix

quotient can be written in terms of the ULLV decomposition as

ABy = UA LA U
T
B :

We see that the three matrices UA, LA, and UB form the ULV decomposition of ABy, and
this decomposition can always be made to reveal the numerical rank of ABy by means of
ULV revealment steps. When this is the case, we say that the ULLV decomposition (5.1) is
a rank-revealing quotient ULV decomposition of A and B.

19
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For completeness, we mention that if B does not have column full rank, then we can
always assume that preprocessing has been applied to the matrix pair such that B is p � n

with rank(B) = p < n. The corresponding quotient ULV decomposition then takes the form

A = UA LA

�
L 0
0 In�p

�
V T ; B = UB (L; 0)V T ;

where L is now p� p; for more details about this version and its application in interference
problems, see [30] and [39]. Other generalized UTV decompositions are discussed in [50]
(matrix quotients of the form A�1B) and [8] (a decomposition of the form A = UA LA LV

T ,
B = UB LB LV

T ).
We note that the approximation bounds in Theorem 1 immediately carry over to the

numerical subspaces of the matrix quotient ABy, when applied to the columns of UA and UB
and the corresponding vectors of the QSVD.

5.2. ULLV Algorithms

The algorithms for computing and modifying rank-revealing quotient UTV decompositions
are similar to those for the ordinary UTV decompositions, except that care must be taken to
maintain the triangular structure of both LA and L. Here, we assume that the matrix B has
full rank. We restrict ourselves to a ULLV algorithm for the high-rank case; corresponding
low-rank ULLV algorithms can always derived from the low-rank ULV implementations lulv
and lulv a.

5.2.1. A Simple ULLV Algorithm

To compute a rank-revealing ULLV decomposition in the high-rank case, we need an initial
decomposition with the same structure. As long as B has full rank and is well conditioned,
we can use the following approach.

Initial ULLV Algorithm.
1. Compute the QL factorization B = UB L.
2. Solve A = Z L for Z (i.e., formally, Z = AL�1).
3. Compute the QL factorization Z = UA LA.

Then the condition estimation and de
ation steps of Stewart's high-rank UTV algorithm are
applied to the three matrices UA, LA, and UB in order to make the ULLV decomposition
reveal the numerical rank of ABy. Note that some of the Givens rotations in these steps are
also be applied from the left to L, and they must be interleaved with right Givens rotations
(which are also applied to V ) in order to maintain the triangular form of L. The complete
algorithm is implemented in the Matlab function ullv, where the details of the condition
estimation and de
ation steps can be studied. We do not provide low-rank algorithms for
the ULLV decomposition.

5.2.2. Updating Algorithms

Algorithms for updating the ULLV decomposition (5.1) when a row is appended to A and/or
B are described in [38]. Consider the case where a row wT is appended to A; then we promote
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this row to L as follows (where a weighting factor � is included for completeness):�
� A
wT

�
=

�
UA 0
0T 1

��
� LA 0
0T 1

��
L

wTV

�
V T ; B = UB (In; 0)

�
L

wTV

�
V T :

Now left and right Givens rotations are used to annihilate all but the leftmost element of the
row wTV and, simultaneous, maintain the triangular structure of L. The left rotations are
also applied from the right to LA and interleaved with other rotations applied from the left
that maintain the triangular form of LA, and we arrive at the intermediate form�

�A

wT

�
=

� eUA 0
0T 1

�� eLA 0
0T 1

�� eL
� eT1

� eV T ; B = eUB (In; 0)

� eL
� eT1

� eV T :

Next, the element � is annihilated by means of a scaled rotation Y from the left, satisfying

Y

� eL
� eT1

�
=

� eL
0

�
:

The transformation Y is a Givens rotation scaled by c, and it has the form

Y =

0
@ c2 0T cs

0 In�1 0
�cs 0T c2

1
A ; Y �1 =

0
@ 1 0T �s=c

0 In�1 0
s=c 0T 1

1
A : (5.2)

When Y �1 is propagated to the left it creates �ll,� eLA 0
0T 1

�
Y �1 =

� eLA ez
� eT1 1

�
; (In; 0) Y

�1 = (In; �� e1);

where � = s=c, and fortunately this �ll does not contribute to the updated A or to B because
of the newly created zero row. Notice that the scaled rotation maintains the submatrices eL,eLA, and In. At this second intermediate stage, we have�

�A

wT

�
=

� eUA 0
0T 1

�� eLA
� eT1

� eLV T
; B = eUB eL eV T ;

and now � is annihilated by means of a single left Givens rotation which creates �ll in the
last column of the leftmost factor of A that can be neglected:� eUA 0

0T 1

�� eLA
� eT1

�
= (UA; z)

�
LA
0

�
= UA LA:

Hence, we arrive at �
�A

wT

�
= UA LA eLV T

; B = eUB eLV T
:

The updating process concludes, as usual, with condition estimation, revealment, and de
a-
tion. We refer to [38] for more details as well as a similar algorithm for updating B. The
updating algorithms are implemented in the two Matlab functions ullv up a and ullv up b,
respectively, where further details can be found.

Whenever B is ill conditioned or rank de�cient, the initial ULLV algorithm described
above must be avoided, and instead one should apply the updating algorithm ullv up a a
number of times to the initial matrix pair 0 and B with � = 1, in such a way that the rows
of A are introduced one at a time, cf. [38].
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5.2.3. Downdating Algorithms

Algorithms for downdating the ULLV decomposition (5.1) when a row is removed from A
and/or B are described in [31]. These algorithms, in turn, are adapted from the downdating
algorithms presented in the unpublished report [36]. They are not as sophisticated as the
algorithms in [3] and [45], but more research is necessary to extend the latter algorithms to
the ULLV decomposition.

When A is downdated, then the matrix UA is �rst augmented with an additional column
u2 that is orthonormal to the columns of UA in such a way that the norm of the �rst row of
(UA; u2) has norm one. Then we formally write the ULLV decomposition as

A =

�
wT

A(2:m; : )

�
= (UA; u2)

�
LA 0
0T 1

��
L
0T

�
V T ;

B = UB (In; �� e1)
�

L

0T

�
V T ;

where � is a parameter to be determined later. Now we annihilate all but the leftmost element
of the top row of UA by means of a sequence of Givens rotations, starting from the right.
Applying the necessary Givens rotations in order to maintain the triangular form of LA and
L, we compute

A =

�
� eT1 u2(1)eUA u2(2:m)

� � eLA 0
0T 1

�� eL
0T

� eV T ; B = eUB (In; �� e1)
� eL

0T

� eV T :

Next, we apply a single Givens rotation to the �rst and last columns of the leftmost matrix
in the expressions for A to annihilate �, and we obtain�

� eT1 u2(1)eUA u2(2:m)

� � eLA 0
0T 1

�
=

�
0T �1bUA 0

� � bLA �s e1
� eT1 c

�
:

This relation de�nes the quantity � used in the augmented expression for B. Finally, we
apply the scaled transformation Y (5.2) from the right to the rightmost matrix in the above
expression, with c and s determined from the relations � = s=c and c2 + s2 = 1. This
transformation annihilates �, and we obtain� bLA �s e1

� eT1 c

�� eL
0T

�
=

�
LA 0
0 1

��
L

� eT1

�
;

(In; �� e1)
� eL

0T

�
= (In; 0)

� eL
� eT1

�
:

We thus arrive at the expressions

A(2:m; : ) = bUA LA L eV T ; B = eUB L eV T :

Finally, condition estimation and de
ation steps are applied. We refer to [31] for more details
and for a similar algorithm for downdating B. The downdating algorithms are implemented
in the two Matlab functions ullv dw a and ullv dw b, respectively, where details can also be
found.
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5.3. Numerical Examples

Our �rst example illustrates the structure of the two triangular matrices LA and L. Both A
and B are random 8� 5 matrices; A has numerical rank k = 3 with respect to the threshold
� = 0:005, and B is well conditioned with condition number equal to 6.3. Using the function
ullv, we compute

LA =

0
BBBB@

2:7 � 10�2 0 0 0 0
�3:2 � 10�1 2:8 � 10�1 0 0 0
1:1 � 10�2 5:3 � 10�1 7:5 � 10�1 0 0
1:1 � 10�4 1:3 � 10�4 �9:2 � 10�5 2:9 � 10�3 0
�5:4 � 10�6 �6:3 � 10�6 4:5 � 10�6 �1:6 � 10�4 1:2 � 10�3

1
CCCCA

and

L =

0
BBBB@

0:45 0 0 0 0
0:06 0:62 0 0 0
�2:4 0:38 2:5 0 0
0:45 0:05 �0:74 1:07 0
�0:19 0:11 �0:04 �0:12 1:01

1
CCCCA :

With respect to the same threshold � = 0:005, the numerical rank of ABy is clearly revealed
through LA as 3.

Our second example illustrates that the numerical rank of the matrix coe�cient ABy can
di�er from that of A, thus showing the need for a quotient ULV decomposition. The matrix
A is 8� 5 and its singular values are

�1 = 10; �2 = 7; �1 = 4; �1 = 0:4; �1 = 0:2:

There is obviously a cluster of three large singular values, i.e., the rank is three with respect
to the threshold � = 1. The 8� 5 matrix B is again well conditioned with kBk2 = 23:1 and
condition number equal to 58.9. The �ve singular values of the matrix quotient ABy are

�1 = 10; �2 = 5; �1 = 0:5; �1 = 0:2; �1 = 0:1;

showing that the gap in the singular value spectrum has changed; the matrix quotient has
a cluster of only two large singular values, i.e., the numerical rank is now two with respect
to the same threshold � = 1. These two di�erent numerical ranks are estimated correctly by
the ULV decomposition of A and the ULLV decomposition of (A;B). By means of hulv we
compute A's lower triangular factor in the ULV decomposition,

0
BBBB@

5:14 0 0 0 0
4:98 8:09 0 0 0
0:87 �1:48 6:73 0 0

�9:5 � 10�4 5:1 � 10�4 9:7 � 10�4 0:40 0
�3:7 � 10�4 2:2 � 10�4 1:7 � 10�4 3:2 � 10�2 0:20

1
CCCCA ;
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and by means of ullv we compute the following LA-factor in the ULLV decomposition:

LA =

0
BBBB@

5:13 0 0 0 0
�1:94 9:74 0 0 0

�1:2 � 10�3 4:1 � 10�3 0:50 0 0
1:9 � 10�5 2:3 � 10�4 1:0 � 10�2 0:19 0
�8:6 � 10�5 3:7 � 10�5 2:6 � 10�3 �4:3 � 10�2 0:10

1
CCCCA :

Both triangular factors reveal the correct numerical rank of A and ABy, respectively.



6. Manual Pages

This section starts with nine tables that give an overview of the software in the package,
followed by manual pages for all 46 functions.

Demo Functions

hulvdemo Demonstrates the use of the high-rank ULV algorithms hulv and hulv a.
hurvdemo Demonstrates the use of the high-rank URV algorithms hurv and hurv a.
lulvdemo Demonstrates the use of the low-rank ULV algorithms lulv and lulv a.
lurvdemo Demonstrates the use of the low-rank URV algorithms lurv and lurv a.
rrqrdemo Demonstrates the use of the RRQR algorithms hrrqr and lrrqr.
ullvdemo Demonstrates the use of the high-rank ULLV algorithm ullv.
wulvdemo Demonstrates the use of the ULV up- and downdating algorithms,

implemented in ulv win, applied to a sliding window example.
wurvdemo Demonstrates the use of the URV up- and downdating algorithms,

implemented in urv win, applied to a sliding window example.

UTV-Based Solvers

tulv Solves a numerically rank-de�cient least squares problem using the
rank-revealing ULV decomposition.

turv Similar to tulv, except it uses the rank-revealing URV decomposition.

High-Rank UTV Algorithms

hulv Stewart's rank-revealing ULV algorithm.
hulv a The alternative rank-revealing ULV algorithm.
hurv Stewart's rank-revealing URV algorithm.
hurv a The alternative rank-revealing URV algorithm.

Low-Rank UTV Algorithms

lulv Warm-started rank-revealing ULV algorithm.
lurv Warm-started rank-revealing URV algorithm.
lulv a Cold-started rank-revealing ULV algorithm.
lurv a Cold-started rank-revealing URV algorithm.

Block QR Re�nement

ulv qrit Re�nement of L in the ULV decomposition.
urv qrit Re�nement of R in the URV decomposition.

25
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UTV Up- and Downdating

ulv dw Downdate the rank-revealing ULV decomposition.
ulv up Update the rank-revealing ULV decomposition.
ulv win Sliding window modi�cation of the rank-revealing ULV decomposition.
urv dw Downdate the rank-revealing URV decomposition.
urv up Update the rank-revealing URV decomposition.
urv win Sliding window modi�cation of the rank-revealing URV decomposition.

ULLV Algorithms

ullv Compute a high-rank revealing ULLV decomposition.
ullv dw a Downdate A in the rank-revealing ULLV decomposition.
ullv dw b Downdate B in the rank-revealing ULLV decomposition.
ullv up a Update A in the rank-revealing ULLV decomposition.
ullv up b Update B in the rank-revealing ULLV decomposition.

RRQR Algorithms

hrrqr Chan/Foster high-rank RRQR algorithm.
lrrqr Chan-Hansen low-rank RRQR algorithm.
trrqr Solves a numerically rank-de�cient least squares problem

using the RRQR decomposition.

Misc. Tools

app giv Apply a Givens rotation (from the left or right).
app hous Apply a Householder re
ection (from the left or right).
ccvl Estimation of the smallest singular value via the Cline-Conn-Van Loan algorithm.
gen giv Determine a 2� 2 Givens rotation matrix.
gen hous Determine a Householder re
ection matrix.
inviter Estimation of the smallest singular value via inverse iteration.
lanczos Estimation of the largest singular value via Lanczos bidiagonalization.
mgsr Modi�ed Gram-Schmidt expansion step with reorthogonalization.
powiter Estimation of the largest singular value via the power method.
ullv csne Corrected semi-normal equations expansion step (for ULLV).
ullv rdef De
ate one row of LA in the ULLV decomposition.
ullv ref Re�ne one row of LA in the ULLV decomposition.
ulv cdef De
ate one column of L in the ULV decomposition.
ulv csne Corrected semi-normal equations expansion step (for ULV).
ulv rdef De
ate one row of L in the ULV decomposition.
ulv ref Re�ne one row of L in the ULV decomposition.
urv cdef De
ate one column of R in the URV decomposition.
urv csne Corrected semi-normal equations expansion step (for URV).
urv rdef De
ate one row of R in the URV decomposition.
urv ref Re�ne one column of R in the URV decomposition.
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The Demo Functions

The package includes eight demo functions that illustrate the use and functionality of the
main algorithms, by applying them to small test matrices with known singular values. In
addition, we demonstrate that our up- and downdating algorithms are capable of tracking
the numerical rank of a di�cult test problem from [36].

The test matrices used in the ULV, URV, and RRQR demos are \random" matrices with
dimensions 50�20, and their singular values are generated by means of the Matlab commands

s1 = 2*logspace(1,-3,13);

s2 = 5*logspace(-4,-6,7);

s = [s1,s2];

The ULLV demo makes use of a \random" pair of test matrices (A;B) with dimensions
50� 20 and 20� 20, respectively, whose generalized singular values { i.e., the singular values
of AB�1 { are generated by the above Matlab commands. Hence, the numerical rank in all
the test problems is 13 with respect to the threshold � = 10�3. These matrices are used in
the following six demos:

Demo function Functions illustrated

hulvdemo hulv hulv a
hurvdemo hurv hurv a
lulvdemo lulv lulv a
lurvdemo lurv lurv a
rrqrdemo hrrqr lrrqr
ullvdemo ullv

The test matrices used to illustrate the up- and downdating algorithms are from [36].
A \sliding window" technique is used, in which a 5 � 5 matrix is modi�ed in a series of 19
steps, each step involving updating with one new row and downdating involving the oldest
row of the matrix. The matrix is constructed such that the numerical rank in the 20 stages
(including the initial stage) are given by the sequence

3; 3; 3; 3; 4; 5; 4; 3; 2; 2; 2; 2; 3; 4; 5; 4; 3; 3; 3; 3:

The available up- and downdating strategies are illustrated as follows:

Demo function Function illustrated Techniques illustrated

ullvdemo ullv up a, ullv dw a U available
U not available, CSNE approach

wulvdemo ulv win U available
U not available, CSNE approach
U not available, improved CSNE approach

wurvdemo urv win U available
U not available, CSNE approach
U not available, improved CSNE approach
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app giv

Purpose

Apply a Givens rotation (left/right).

Synopsis

[u1,u2] = app giv(v1,v2,c,s)

Description

Apply a Givens rotation, de�ned by the parameters c and s, from the left to the row
vectors v1 and v2 such that

[u1] = [ c s'] [v1]

[u2] [-s c ] [v2]

or from the right to the column vectors v1 and v2 such that

[u1 u2] = [v1 v2] [c -s]

[s' c]

See Also

gen giv Determine a 2-by-2 Givens rotation matrix.

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 216, (1996).
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app hous

Purpose

Apply a Householder transformation.

Synopsis

A = app hous(A,beta,v)

Description

Applies the Householder transformation, de�ned by vector v and scalar beta, to the
matrix A, i.e., A = (I - beta�v�vT )�A.

See Also

gen hous Determine a Householder transformation.

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 211, (1996).
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ccvl

Purpose

Singular value/vector estimates via condition estimation.

Synopsis

[smin,vmin] = ccvl(R)

Description

Compute estimates smin and vmin of the smallest singular value and corresponding
right singular vector of the upper triangular matrix R.

Algorithm

The function is based on the generalized LINPACK codition number estimator.

See Also

inviter Singular value/vector estimates via inverse iteration.

References

[1] A.K. Cline, A.R. Conn & C.F. Van Loan, \Generalizing the LINPACK Condi-
tion Estimator"; in J.P. Hennart (Ed.), \Numerical Analysis", Lecture Notes in
Mathematics, Vol. 909, pp. 73{83, Springer Verlag, (1982).
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gen giv

Purpose

Determine a 2-by-2 Givens rotation matrix.

Synopsis

[c,s,r] = gen giv(a,b)

Description

Compute a (complex) Givens rotation to annihilate b using a, i.e., compute c, s, and r
such that

[ c s'] [a] = [r] or [a b] [c -s] = [r 0]

[-s c ] [b] [0] [s' c]

See Also

app giv Apply a Givens rotation (left/right).

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 215, (1996).
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gen hous

Purpose

Determine a Householder transformation.

Synopsis

[beta,v,r] = gen hous(x)

Description

Given a vector x, this function computes the scalar beta and the vector v such that (I
- beta�v�vT )x is zero in all but the �rst component r = -sign(x1)�norm(x). If x = 0
then v = 0 and beta = 1 is returned.

See Also

app hous Apply a Householder transformation.

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 210, (1996).
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hrrqr

Purpose

Chan/Foster high-rank-revealing RRQR algorithm.

Synopsis

[p,R,Pi,Q,W,vec] = hrrqr(A)
[p,R,Pi,Q,W,vec] = hrrqr(A,tol rank)
[p,R,Pi,Q,W,vec] = hrrqr(A,tol rank,�xed rank)

Description

Computes a rank-revealing RRQR decomposition of an m-by-n matrix A (m � n) with
numerical rank p close to n. The n-by-n matrix R is upper triangular and will reveal
the numerical rank p of A. The norm of the (2,2) block of R is of the order sigma (p+1).

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
Output Parameters

p numerical rank of A;
R, Pi, Q the RRQR factors so that A�Pi = Q�R;
W an n-by-p matrix whose columns span an

approximation to the null space of A;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QR factorization, A = Q�R. Then
de
ation steps based on the generalized LINPACK condition estimator are employed
to produce a rank-revealing decomposition.

See Also

lrrqr Chan-Hansen low-rank-revealing RRQR algorithm.

References

[1] T.F. Chan, \Rank Revealing QR Factorizations", Lin. Alg. Appl., 88/89 (1987),
pp. 67{82.

[2] L. Foster, \Rank and Null Space Calculations Using Matrix Decomposition With-
out Column Interchanges", Lin. Alg. Appl., 74 (1986), pp. 47{71.
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hulv

Purpose

Stewart's high-rank-revealing ULV algorithm.

Synopsis

[p,L,V,U,vec] = hulv(A)
[p,L,V,U,vec] = hulv(A,tol rank)
[p,L,V,U,vec] = hulv(A,tol rank,tol ref,max ref)
[p,L,V,U,vec] = hulv(A,tol rank,tol ref,max ref,�xed rank)

Description

Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix L is lower triangular and will reveal the
numerical rank p of A. The norm of the (2,1) and (2,2) blocks of L are of the order
sigma (p+1). U and V are unitary matrices, where only the �rst n columns of U are
computed.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of A;
L, V, U the ULV factors such that A = U�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QL factorization, A = U�L. Then de
a-
tion and re�nement (optional) are employed to produce a rank-revealing decomposition.
The de
ation procedure is based on the generalized LINPACK condition estimator, and
the re�nement steps on QR-iterations.
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See Also

hulv a An alternative high-rank-revealing ULV algorithm.

References

[1] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494{499.
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hulv a

Purpose

An alternative high-rank-revealing ULV algorithm.

Synopsis

[p,L,V,U,vec] = hulv a(A)
[p,L,V,U,vec] = hulv a(A,tol rank)
[p,L,V,U,vec] = hulv a(A,tol rank,max iter)
[p,L,V,U,vec] = hulv a(A,tol rank,max iter,tol ref,max ref)
[p,L,V,U,vec] = hulv a(A,tol rank,max iter,tol ref,max ref,�xed rank)

Description

Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix L is lower triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices, where only the �rst n columns of U
are computed.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter maximum number of steps of inverse iteration in

the singular vector estimator;
tol ref upper bound on the 2-norm of the o�-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
max iter = 5;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of A;
L, V, U the ULV factors such that A = U�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
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The rectangular matrix A is preprocessed by a QL factorization, A = U�L. Then de
a-
tion and re�nement (optional) are employed to produce a rank-revealing decomposition.
The de
ation procedure is based on singular vector estimation via inverse iteration,
which can be repeated using re�ned singular vector estimates.

See Also

hulv Stewart's high-rank-revealing ULV algorithm.

References

[1] R.D. Fierro, L. Vanhamme and S. Van Hu�el, \Total Least Squares Algorithms
Based on Rank-Revealing Complete Orthogonal Decompositions". In \Recent
Advances in Total Least Squares Techniques and Errors-in-Variables Modeling",
pp. 99{116, SIAM, Philadelphia, 1997.
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hurv

Purpose

Stewart's high-rank-revealing URV algorithm.

Synopsis

[p,R,V,U,vec] = hurv(A)
[p,R,V,U,vec] = hurv(A,tol rank)
[p,R,V,U,vec] = hurv(A,tol rank,tol ref,max ref)
[p,R,V,U,vec] = hurv(A,tol rank,tol ref,max ref,�xed rank)

Description

Computes a rank-revealing URV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices, where only the �rst n columns of U
are computed.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of A;
R, V, U the URV factors such that A = U�R�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QR factorization, A = U�R. Then de
a-
tion and re�nement (optional) are employed to produce a rank-revealing decomposition.
The de
ation procedure is based on the generalized LINPACK condition estimator, and
the re�nement steps on QR-iterations.
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See Also

hurv a An alternative high-rank-revealing URV algorithm.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.
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hurv a

Purpose

An alternative high-rank-revealing URV algorithm.

Synopsis

[p,R,V,U,vec] = hurv a(A)
[p,R,V,U,vec] = hurv a(A,tol rank)
[p,R,V,U,vec] = hurv a(A,tol rank,max iter)
[p,R,V,U,vec] = hurv a(A,tol rank,max iter,tol ref,max ref)
[p,R,V,U,vec] = hurv a(A,tol rank,max iter,tol ref,max ref,�xed rank)

Description

Computes a rank-revealing URV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p close to n. In the two-sided
orthogonal decomposition, the n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices, where only the �rst n columns of U
are computed.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter maximum number of steps of inverse iteration in

the singular vector estimator;
tol ref upper bound on the 2-norm of the o�-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
max iter = 5;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p the numerical rank of A;
R, V, U the URV factors such that A = U�R�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QR factorization, A = U�R. Then
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de
ation and re�nement (optional) are employed to produce a rank-revealing decom-
position. The de
ation procedure is based on singular vector estimation via inverse
iteration, which can be repeated using re�ned singular vector estimates.

See Also

hurv Stewart's high-rank-revealing URV algorithm.

References

[1] R.D. Fierro, L. Vanhamme and S. Van Hu�el, \Total Least Squares Algorithms
Based on Rank-Revealing Complete Orthogonal Decompositions". In \Recent
Advances in Total Least Squares Techniques and Errors-in-Variables Modeling",
pp. 99{116, SIAM, Philadelphia, 1997.
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inviter

Purpose

Singular value/vector estimates via inverse iteration.

Synopsis

[smin,vmin] = inviter(R,max iter,guess v)

Description

Compute estimates smin and vmin of the smallest singular value and correspond-
ing right singular vector of the upper triangular matrix R via inverse iteration using
max iter iterations. The vector guess v is the initial guess.

Input Parameters
R upper triangular matrix;
max iter maximum number of steps of inverse iteration;
guess v initial guess vector;

See Also

ccvl Singular value/vector estimates via condition estimation.

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 362, 1996.
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lanczos

Purpose

Singular value/vector estimates using the Lanczos procedure.

Synopsis

[umax,smax,vmax] = lanczos(A,max iter,guess u)
[umax,smax,vmax] = lanczos(A,max iter,guess u,reorth)

Description

Computes an estimate of the largest singular value and the associated singular vec-
tors of the matrix A using Lanczos bidiagonalization with a maximum of max iter
iterations. The vector guess u is the starting vector, and if reorth is true, then MGS
reorthogonalization is used.

Input Parameters
A m-by-n matrix;
max iter maximum number of iterations;
guess u initial guess vector;
reorth MGS reorthogonalization if true;

Defaults reorth = 1 (reorthogonalization).

See Also

powiter Singular value/vector estimates using the power method.

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 495, 1996.
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lrrqr

Purpose

Chan-Hansen low-rank-revealing RRQR algorithm.

Synopsis

[p,R,Pi,Q,W,vec] = lrrqr(A)
[p,R,Pi,Q,W,vec] = lrrqr(A,tol rank)
[p,R,Pi,Q,W,vec] = lrrqr(A,tol rank,max iter)
[p,R,Pi,Q,W,vec] = lrrqr(A,tol rank,max iter,�xed rank)

Description

Computes a rank-revealing RRQR decomposition of an m-by-n matrix A (m � n) with
numerical rank p close to 1. The n-by-n matrix R is upper triangular and will reveal
the numerical rank p of A. Thus, the norm of the (2,2) block of R is of the order
sigma (p+1).

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps; max iter = 5;

Output Parameters
p numerical rank of A;
R, Pi, Q the RRQR factors so that A�Pi = Q�R;
W an n-by-p matrix whose columns span an

approximation to the null space of A;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QR factorization, A = Q�R. Then
de
ation steps based on principal singular vector estimation via the power method are
employed to produce a rank-revealing decomposition.

See Also

hrrqr Chan/Foster high-rank-revealing RRQR algorithm.

References

[1] T.F. Chan and P. C. Hansen, \Low-Rank Revealing QR Factorizations", Num.
Lin. Alg. with Applications, 1 (1994), pp. 33{44.
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lulv

Purpose

Warm-started low-rank-revealing ULV algorithm.

Synopsis

[p,L,V,U,vec] = lulv(A)
[p,L,V,U,vec] = lulv(A,tol rank)
[p,L,V,U,vec] = lulv(A,tol rank,max iter)
[p,L,V,U,vec] = lulv(A,tol rank,max iter,num ref)
[p,L,V,U,vec] = lulv(A,tol rank,max iter,num ref,est type)
[p,L,V,U,vec] = lulv(A,tol rank,max iter,num ref,est type,�xed rank)

Description

Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p � n. In the two-sided or-
thogonal decomposition, the n-by-n matrix L is lower triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices, where only the �rst n columns of U
are computed.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of re�nement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
L, V, U the ULV factors such that A = U�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QL factorization, A = U�L. Then de
a-
tion and re�nement (optional) are employed to produce a rank-revealing decomposition.
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The de
ation procedure is based on principal singular vector estimation via the Lanczos
or power method, which can be repeated using re�ned singular vector estimates.

See Also

lulv a Cold-started low-rank-revealing ULV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, \Low-Rank Revealing UTV Decompositions", Nu-
merical Algorithms, 15 (1997), pp. 37{55.
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lulv a

Purpose

Cold-started low-rank-revealing ULV algorithm.

Synopsis

[p,L,V,U,vec] = lulv a(A)
[p,L,V,U,vec] = lulv a(A,tol rank)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter,num ref)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter,num ref,est type)
[p,L,V,U,vec] = lulv a(A,tol rank,max iter,num ref,est type,�xed rank)

Description

Computes a rank-revealing ULV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p � n. In the two-sided orthog-
onal decomposition, the m-by-n matrix L is lower block-triangular and will reveal the
numerical rank p of A. Thus, the norm of the (2,1) and (2,2) blocks of L are of the
order sigma (p+1). U and V are unitary matrices.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of re�nement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
L, V, U the ULV factors such that A = U�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

There is no initial decomposition. De
ation and re�nement (optional) are employed by
means of Householder transformations to produce a rank-revealing decomposition. The
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de
ation procedure is based on principal singular vector estimation via the Lanczos or
power method, which can be repeated using re�ned singular vector estimates.

See Also

lulv Warm-started low-rank-revealing ULV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, \Low-Rank Revealing UTV Decompositions", Nu-
merical Algorithms, 15 (1997), pp. 37{55.
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lurv

Purpose

Warm-started low-rank-revealing URV algorithm.

Synopsis

[p,R,V,U,vec] = lurv(A)
[p,R,V,U,vec] = lurv(A,tol rank)
[p,R,V,U,vec] = lurv(A,tol rank,max iter)
[p,R,V,U,vec] = lurv(A,tol rank,max iter,num ref)
[p,R,V,U,vec] = lurv(A,tol rank,max iter,num ref,est type)
[p,R,V,U,vec] = lurv(A,tol rank,max iter,num ref,est type,�xed rank)

Description

Computes a rank-revealing URV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p � n. In the two-sided or-
thogonal decomposition, the n-by-n matrix R is upper triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices, where only the �rst n columns of U
are computed.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of re�nement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
R, V, U the URV factors such that A = U�R�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

The rectangular matrix A is preprocessed by a QR factorization, A = U�R. Then de
a-
tion and re�nement (optional) are employed to produce a rank-revealing decomposition.
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The de
ation procedure is based on principal singular vector estimation via the Lanczos
or power method, which can be repeated using re�ned singular vector estimates.

See Also

lurv a Cold-started low-rank-revealing URV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, \Low-Rank Revealing UTV Decompositions", Nu-
merical Algorithms, 15 (1997), pp. 37{55.
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lurv a

Purpose

Cold-started low-rank-revealing URV algorithm.

Synopsis

[p,R,V,U,vec] = lurv a(A)
[p,R,V,U,vec] = lurv a(A,tol rank)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter,num ref)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter,num ref,est type)
[p,R,V,U,vec] = lurv a(A,tol rank,max iter,num ref,est type,�xed rank)

Description

Computes a rank-revealing URV decomposition of an m-by-n matrix A with m � n,
where the algorithm is optimized for numerical rank p � n. In the two-sided orthogo-
nal decomposition, the m-by-n matrix R is upper block-triangular and will reveal the
numerical rank p of A. Thus, the norm of the (1,2) and (2,2) blocks of R are of the
order sigma (p+1). U and V are unitary matrices.

Input Parameters
A m-by-n matrix (m � n);
tol rank rank decision tolerance;
max iter max. number of steps of the singular vector estimator;
num ref number of re�nement steps per singular value;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
max iter = 5;
num ref = 0;
est type = 0 (power method);

Output Parameters
p the numerical rank of A;
R, V, U the URV factors such that A = U�R�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

There is no initial decomposition. De
ation and re�nement (optional) are employed by
means of Householder transformations to produce a rank-revealing decomposition. The
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de
ation procedure is based on principal singular vector estimation via the Lanczos or
power method, which can be repeated using re�ned singular vector estimates.

See Also

lurv Warm-started low-rank-revealing URV algorithm.

References

[1] R.D. Fierro and P.C. Hansen, \Low-Rank Revealing UTV Decompositions", Nu-
merical Algorithms, 15 (1997), pp. 37{55.
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mgsr

Purpose

Modi�ed Gram-Schmidt with re-orthogonalization (expansion step).

Synopsis

q = mgsr(U,kappa)

Description

Modi�ed Gram-Schmidt with re-orthogonalization is used to expand the m-by-n ma-
trix U having orthogonal columns with a new column q, which is orthogonal to the
other columns of U. The parameter kappa (greater than one) is used to decide if re-
orthogonalization is needed; kappa = 1 ensures re-orthogonalization, however, a typical
value for kappa is sqrt(2).

Algorithm

The algorithm relies on the fact that one re-orthogonalization is always enough.

See Also
ullv csne Corrected semi-normal equations expansion (ULLV).
ulv csne Corrected semi-normal equations expansion (ULV).
urv csne Corrected semi-normal equations expansion (URV).

References

[1] J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, \Reorthogonalization
and Stable Algorithms for Updating the Gram-Schmidt QR Factorization", Math.
Comp., 30 (1976), pp. 772{795.



54 CHAPTER 6. MANUAL PAGES

powiter

Purpose

Singular value/vector estimates using the power method.

Synopsis

[umax,smax,vmax] = powiter(A,max iter,guess u)

Description

Compute approximations smax, umax, and vmax to the principal singular value and the
corresponding left and right singular vectors of the m-by-n matrix A using the power
method. The initial guess of umax is guess u, and the maximum number of iterations
is determined by max iter.

See Also

lanczos Singular value/vector estimates using the Lanczos procedure.

References

[1] G.H. Golub and C.F. Van Loan, \Matrix Computations", Johns Hopkins Univer-
sity Press, 3. Ed., p. 330, 1996.
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trrqr

Purpose

Solves a least squares problem using the RRQR decomposition.

Synopsis

x trrqr = trrqr(Q,R,Pi,p,b)

Description

Solves the near-rank de�cient least squares problem

min_x || b-A*x ||_2

using the RRQR decomposition. Here, A�Pi = Q�R is the RRQR decomposition of A,
p is the numerical rank of A, and the TRRQR solution is de�ned by

x_trrqr = Pi(:,1:p)*inv(R(1:p,1:p))*Q(:,1:p)'*b.

See Also
tulv Solves a least squares problem using the ULV decomposition.
turv Solves a least squares problem using the URV decomposition.
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tulv

Purpose

Solves a least squares problem using the ULV decomposition.

Synopsis

x tulv = tulv(U,L,V,p,b)

Description

Solves the near-rank de�cient least squares problem

min_x || b-A*x ||_2

using the ULV decomposition. Here, A = U�L�VT is the ULV decomposition of A, p
is the numerical rank of A, and the TULV solution is de�ned by

x_tulv = V(:,1:p)*inv(L(1:p,1:p))*U(:,1:p)'*b.

See Also
turv Solves a least squares problem using the URV decomposition.
trrqr Solves a least squares problem using the RRQR decomposi-

tion.



57

turv

Purpose

Solves a least squares problem using the URV decomposition.

Synopsis

x turv = turv(U,R,V,p,b)

Description

Solves the near-rank de�cient least squares problem

min_x || b-A*x ||_2

using the URV decomposition. Here, A = U�R�VT is the URV decomposition of A, p
is the numerical rank of A, and the TURV solution is de�ned by

x_turv = V(:,1:p)*inv(R(1:p,1:p))*U(:,1:p)'*b.

See Also
tulv Solves a least squares problem using the ULV decomposition.
trrqr Solves a least squares problem using the RRQR decomposi-

tion.
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ullv

Purpose

High-rank-revealing ULLV algorithm.

Synopsis

[p,LA,L,V,UA,UB,vec] = ullv(A,B)
[p,LA,L,V,UA,UB,vec] = ullv(A,B,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv(A,B,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ullv(A,B,tol rank,tol ref,max ref,�xed rank)

Description

Computes a rank-revealing ULLV decomposition of an mA-by-n matrix A (mA � n)
and an mB-by-n full-rank matrix B (mB � n):

A = UA*LA*L*V' and B = UB*L*V'

The ULLV decomposition is a quotient ULV decomposition, i.e., the n-by-n matrix LA
is lower triangular and will reveal the numerical rank p of A�pinv(B). Thus, the norm
of the (2,1) and (2,2) blocks of LA are of the order sigma (p+1). U and V are unitary
matrices, where only the �rst n columns of UA and UB are computed.

Note that the algorithm is optimized for numerical rank p close to n, and that this
algorithm should not be used if B is ill conditioned or rank de�cient.

Input Parameters
A mA-by-n matrix (mA � n);
B mB-by-n matrix (mB � n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank de
ate to the �xed rank given by �xed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(A,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
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p numerical rank of A�pseudoinverse(B);
LA,L,V,UA,UB the ULLV factors such that A = UA�LA�L�VT

and B = UB�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm

First �nd the QL factorization of B = UB�L and solve X = A�inv(L) followed by another
QL factorization of X = UA�LA. Thus, A = UA�LA�L and B = UB�L. Then de
ation
and re�nement (optional) are employed to produce a rank-revealing decomposition.
The de
ation procedure is based on the generalized LINPACK condition estimator,
and the re�nement steps on QR-iterations.

See Also
hulv Stewart's high-rank-revealing ULV algorithm.
hulv a An alternative high-rank-revealing ULV algorithm.

References

[1] F.T.Luk and S.Qiao, \A New Matrix Decomposition for Signal Processing", Au-
tomatica, 30 (1994), pp. 39{43.
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ullv csne

Purpose

Corrected semi-normal equations expansion (ULLV).

Synopsis

[u1,q1,
ag csne] = ullv csne(A,LA,L,V,kappa)

Description

Compute the �rst row u1 of the m-by-n matrix UA and the �rst element q1 of the
expanded column q which is orthogonal to the columns of UA, by using the LINPACK
approach if it is safe, and if not, by solving the following least squares problem by means
of the CSNE method:

(A*V)'*(A*V)*z = (LA*L)'*(LA*L)*z = (A*V)'*e1

where

A = UA*LA*L*V'

If the parameter 
ag csne is true, the CSNE approach has been used. The parameter
kappa (greater than one) is used to control the orthogonalization procedure. A typical
value for kappa is sqrt(2).

Algorithm

The algorithm is based on triangular solves. If LA is rank de�cient, then the rank
information is used in the triangular solves.

See Also
mgsr Modi�ed Gram-Schmidt expansion.
ulv csne Corrected semi-normal equations expansion (ULV).

References

[1] A. Bj�orck, H. Park and L. Eld�en, \Accurate Downdating of Least Squares Solu-
tions", SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549{568.

[2] H. Park and L. Eld�en, \Downdating the Rank Revealing URV Decomposition",
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138{155.
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ullv dw a

Purpose

Downdate the A-part of the rank-revealing ULLV decomposition.

Synopsis

[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv dw a(p,LA,L,V,UA,UB,A,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec]= ullv dw a(p,LA,L,V,UA,UB,A,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA�LA�L�VT

and mB-by-n matrix B = UB�L�VT (mA > n), the function computes the downdated
decomposition

A = [ a ] and B = UB*L*V'

[UA*LA*L*V']

where a is the top row being removed from A. If the matrix UA is maintained, the
modi�ed Gram-Schmidt algorithm is used in the expansion step of the downdating
algorithm. If the matrix UA is left out by inserting an empty matrix [], the method
of LINPACK/CSNE (corrected semi-normal equations) is used, and the matrix A is
needed. Note that the row dimension of UA will decrease by one, and that the matrix
UB can always be left out by inserting an empty matrix [].

Input Parameters
p numerical rank of A�pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA�LA�L�VT

and B = UB�L�VT ;
A mA-by-n matrix (mA > n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(LA,1)�eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of the downdated decomposition;
LA,L,V,UA,UB the ULLV factors such that

A = [a; UA�LA�L�VT] and B = UB�L�VT ;
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ullv up a Update the A-part of the rank-revealing ULLV decomposi-

tion.

References

[1] A.W. Bojanczyk and J.M. Lebak, \Downdating a ULLV Decomposition of Two
Matrices"; in J.G. Lewis (Ed.), \Applied Linear Algebra", SIAM, Philadelphia,
1994.

[2] J.M. Lebak and A.W. Bojanczyk, \Modifying a Rank-Revealing ULLV Decomposi-
tion", Report CTC94TR186, School of Electrical Engineering, Cornell University,
1994.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.
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ullv dw b

Purpose

Downdate the B-part of the rank-revealing ULLV decomposition.

Synopsis

[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,A)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,A,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv dw b(p,LA,L,V,UA,UB,A,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec]= ullv dw b(p,LA,L,V,UA,UB,A,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA�LA�L�VT

and mB-by-n matrix B = UB�L�VT (mB > n), the function computes the downdated
decomposition

A = UA*LA*L*V' and B = [ b ]

[UB*L*V']

where b is the top row being removed from B. If the matrix UB is maintained, the
modi�ed Gram-Schmidt algorithm is used in the expansion step of the downdating
algorithm. If the matrix UB is left out by inserting an empty matrix [], the method
of LINPACK/CSNE (corrected semi-normal equations) is used, and the matrix B is
needed. Note that the row dimension of UB will decrease by one, and that the matrix
UA can always be left out by inserting an empty matrix [].

Input Parameters
p numerical rank of A�pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA�LA�L�VT

and B = UB�L�VT ;
B mB-by-n matrix (mB > n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults tol rank = sqrt(n)�norm(LA,1)�eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of the downdated decomposition;
LA,L,V,UA,UB the ULLV factors such that

A = UA�LA�L�VT and B = [b; UB�L�VT];
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ullv up b Update the B-part of the rank-revealing ULLV decomposi-

tion.

References

[1] A.W. Bojanczyk and J.M. Lebak, \Downdating a ULLV Decomposition of Two
Matrices"; in J.G. Lewis (Ed.), \Applied Linear Algebra", SIAM, Philadelphia,
1994.

[2] J.M. Lebak and A.W. Bojanczyk, \Modifying a Rank-Revealing ULLV Decomposi-
tion", Report CTC94TR186, School of Electrical Engineering, Cornell University,
1994.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.
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ullv rdef

Purpose

De
ate one row of LA in the ULLV decomposition.

Synopsis

[LA,L,V,UA,UB] = ullv rdef(LA,L,V,UA,UB,r,umin)

Description

Given the ULLV decomposition of the matrix pair A = UA�LA�L�VT and B = UB�L�VT ,
the function de
ates LA(1:r,1:r). umin is an estimate of the left singular vector of
LA(1:r,1:r) associated with the smallest singular value. On return, norm(LA(r,1:r)) is
of the order sigma (r). The matrices UA, UB and V can be left out by inserting an
empty matrix [].

See Also

ullv ref Re�ne one row of LA in the ULLV decomposition.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494{499.
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ullv ref

Purpose

Re�ne one row of LA in the ULLV decomposition.

Synopsis

[LA,L,V,UA,UB] = ullv ref(LA,L,V,UA,UB,r)

Description

Given the ULLV decomposition of the matrix pair A = UA�LA�L�VT and B = UB�L�VT ,
the function re�nes the last row of LA(1:r,1:r). The matrices UA, UB and V can be
left out by inserting an empty matrix [].

Algorithm

Re�nement is an iterative algorithm, which reduces the norm of the target row by
applying one block QR iteration to LA.

See Also

ullv rdef De
ate one row of LA in the ULLV decomposition.

References

[1] S.Qiao, \Computing the ULLV Decomposition", CRL Report 278, Communica-
tions Research Laboratory, McMaster Uni., Hamilton, Canada, pp. 1{13, January,
(1994).

[2] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.

[3] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494{499.



67

ullv up a

Purpose

Update the A-part of the rank-revealing ULLV decomposition.

Synopsis

[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv up a(p,LA,L,V,UA,UB,a,beta,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec]= ullv up a(p,LA,L,V,UA,UB,a,beta,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA�LA�L�VT

and mB-by-n matrix B = UB�L�VT (mA,mB � n), the function computes the updated
decomposition

[beta*A] = UA*LA*L*V' and B = UB*L*V'

[ a ]

where a is the new row added to A, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
UA will increase by one, and that the matrices UA and UB can be left out by inserting
an empty matrix [].

Input Parameters
p numerical rank of A�pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA�LA�L�VT

and B = UB�L�VT ;
a the new row added to A;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)�norm(LA,1)�eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of [beta�A; a]�pseudoinverse(B);
LA,L,V,UA,UB the ULLV factors such that

[beta�A; a] = UA�LA�L�VT and B = UB�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ullv up b Update the B-part of the rank-revealing ULLV decomp.
ullv dw a Downdate the A-part of the rank-revealing ULLV decomp.

References

[1] F.T.Luk and S.Qiao, \A New Matrix Decomposition for Signal Processing", Au-
tomatica, 30 (1994), pp. 39{43.

[2] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.
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ullv up b

Purpose

Update the B-part of the rank-revealing ULLV decomposition.

Synopsis

[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta,tol rank)
[p,LA,L,V,UA,UB,vec] = ullv up b(p,LA,L,V,UA,UB,b,beta,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec]= ullv up b(p,LA,L,V,UA,UB,b,beta,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULLV decomposition of the mA-by-n matrix A = UA�LA�L�VT

and mB-by-n matrix B = UB�L�VT (mA,mB � n), the function computes the updated
decomposition

A = UA*LA*L*V' and [beta*B] = UB*L*V'

[ b ]

where b is the new row added to B, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
UB will increase by one, and that the matrices UA and UB can be left out by inserting
an empty matrix [].

Input Parameters
p numerical rank of A�pseudoinv(B) revealed in LA;
LA,L,V,UA,UB the ULLV factors such that A = UA�LA�L�VT

and B = UB�L�VT ;
b the new row added to B;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)�norm(LA,1)�eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of A�pseudoinverse([beta�B; b]);
LA,L,V,UA,UB the ULLV factors such that

A = UA�LA�L�VT and [beta�B; b] = UB�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ullv up a Update the A-part of the rank-revealing ULLV decomp.
ullv dw b Downdate the B-part of the rank-revealing ULLV decomp.

References

[1] F.T.Luk and S.Qiao, \A New Matrix Decomposition for Signal Processing", Au-
tomatica, 30 (1994), pp. 39{43.

[2] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.



71

ulv cdef

Purpose

De
ate one column of L in the ULV decomposition.

Synopsis

[L,V,U] = ulv cdef(L,V,U,r,umax)

Description

Given the ULV decomposition U�L�VT , the function de
ates L(r:n,r:n). umax is an
estimate of the left singular vector of L(r:n,r:n) associated with the largest singular
value. On return, norm(L(r:n,r)) is of the order sigma r. The matrices U and V can be
left out by inserting an empty matrix [].

See Also

ulv rdef De
ate one row of L in the ULV decomposition.

References

[1] R.D. Fierro and P.C. Hansen, \Low-Rank Revealing UTV Decompositions", Nu-
merical Algorithms, 15 (1997), pp. 37{55.
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ulv csne

Purpose

Corrected semi-normal equations expansion (ULV).

Synopsis

[u1,q1,
ag csne] = ulv csne(A,L,V,kappa)

Description

Compute the �rst row u1 of the m-by-n matrix U and the �rst element q1 of the
expanded column q which is orthogonal to the columns of U, by using the LINPACK
approach if it is safe, and if not, by solving the following least squares problem by means
of the CSNE method:

(A*V)'*(A*V)*z = L'*L*z = (A*V)'*e1

where

A = U*L*V'

If the parameter 
ag csne is true, the CSNE approach has been used. The parameter
kappa (greater than one) is used to control the orthogonalization procedure. A typical
value for kappa is sqrt(2).

Algorithm

The algorithm is based on triangular solves. If L is rank de�cient, then the rank
information is used in the triangular solves.

See Also
mgsr Modi�ed Gram-Schmidt expansion.
ullv csne Corrected semi-normal equations expansion (ULLV).
urv csne Corrected semi-normal equations expansion (URV).

References

[1] A. Bj�orck, H. Park and L. Eld�en, \Accurate Downdating of Least Squares Solu-
tions", SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549{568.

[2] H. Park and L. Eld�en, \Downdating the Rank Revealing URV Decomposition",
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138{155.
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ulv dw

Purpose

Downdating a row in the rank-revealing ULV decomposition.

Synopsis

[p,L,V,U,vec] = ulv dw(p,L,V,U)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type,tol rank)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type,tol rank,tol ref,max ref)
[p,L,V,U,vec] = ulv dw(p,L,V,U,A,alg type,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULV decomposition of an m-by-n matrix A = U�L�VT with m
� n, the function computes the downdated decomposition

A = [ a ]

[U*L*V']

where a is the top row being removed from A. Two of the downdating algorithms oper-
ate on the lower triangular matrix L without using the information of its rank-revealing
structure in the downdate step. The two variants di�er in the way they obtain infor-
mation of the �rst row of U. If the matrix U is maintained, the modi�ed Gram-Schmidt
algorithm is used in the expansion step of the downdating algorithm (alg type=3).
Note that the row dimension of the returned U has decreased by one. If the matrix U
is left out by inserting an empty matrix [], the method of LINPACK/CSNE (corrected
semi-normal equations) is used (alg type=1), and the matrix A is needed.

The third downdating algorithm operates on the lower triangular matrix L by using the
information of its rank-revealing structure to the extent possible (alg type=2). This
variant can be considered as a improved version of LINPACK/CSNE, and its accuracy
will be in between the two other algorithms.

Input Parameters
p numerical rank of A revealed in L;
L, V, U the ULV factors such that A = U�L�VT ;
A m-by-n matrix (m > n);
alg type algorithm type (see Description);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;
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Defaults alg type = 3;
tol rank = sqrt(n)�norm(L,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p numerical rank of the downdated decomposition;
L, V, U the ULV factors such that A = [a; U�L�VT];
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ulv up Updating a row in the rank-revealing ULV decomposition.
ulv win Sliding window modi�cation of the rank-revealing ULV de-

comp.

References

[1] A. Bj�orck, H. Park and L. Eld�en, \Accurate Downdating of Least Squares Solu-
tions", SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549{568.

[2] H. Park and L. Eld�en, \Downdating the Rank Revealing URV Decomposition",
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138{155.

[3] A.W. Bojanczyk and J.M. Lebak, \Downdating a ULLV Decomposition of Two
Matrices"; in J.G. Lewis (Ed.), \Applied Linear Algebra", SIAM, Philadelphia,
1994.

[4] J. L. Barlow, P. A. Yoon and H. Zha, \An Algorithm and a Stability Theory for
Downdating the ULV Decomposition", BIT, 36 (1996), pp. 14{40.

[5] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.
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ulv qrit

Purpose

Re�nement of L in the ULV decomposition via QR-iterations.

Synopsis

[L,V,U] = ulv qrit(p,num ref,L,V,U)
[L,V] = ulv qrit(p,num ref,L,V)
[L] = ulv qrit(p,num ref,L)

Description

Given the ULV decomposition U�L�VT with numerical rank p, the function re�nes the
rank-revealing decomposition via num ref steps of block QR iterations.

Algorithm

Re�nement is identical to block QR iteration, in which the o�-diagonal block of the
lower triangular matrix L is \
ipped" to the (1,2)-position and then back again.

See Also

ulv ref Re�ne one row of L in the ULV decomposition.

References

[1] R. Mathias and G.W. Stewart, \A Block QR Algorithm and the Singular Value
Decomposition", Lin. Alg. Appl., 182 (1993), pp. 91{100.
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ulv rdef

Purpose

De
ate one row of L in the ULV decomposition.

Synopsis

[L,V,U] = ulv rdef(L,V,U,r,umin)

Description

Given the ULV decomposition U�L�VT , the function de
ates L(1:r,1:r). umin is an
estimate of the left singular vector of L(1:r,1:r) associated with the smallest singular
value. On return, norm(L(r,1:r)) is of the order sigma r. The matrices U and V can be
left out by inserting an empty matrix [].

See Also
ulv cdef De
ate one column of L in the ULV decomposition.
ulv ref Re�ne one row of L in the ULV decomposition.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494{499.
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ulv ref

Purpose

Re�ne one row of L in the ULV decomposition.

Synopsis

[L,V,U] = ulv ref(L,V,U,r)

Description

Given the ULV decomposition U�L�VT , the function re�nes the last row of L(1:r,1:r).
The matrices U and V can be left out by inserting an empty matrix [].

Algorithm

Re�nement is an iterative algorithm, which reduces the norm of the target row by
applying one block QR iteration to L.

See Also

ulv rdef De
ate one row of L in the ULV decomposition.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494{499.
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ulv up

Purpose

Updating a row in the rank-revealing ULV decomposition.

Synopsis

[p,L,V,U,vec] = ulv up(p,L,V,U,a)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta,tol rank)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta,tol rank,tol ref,max ref)
[p,L,V,U,vec] = ulv up(p,L,V,U,a,beta,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULV decomposition of an m-by-n matrix A = U�L�VT with m
� n, the function computes the updated decomposition

[beta*A] = U*L*V'

[ a ]

where a is the new row added to A, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
U will increase by one, and that the matrix U can be left out by inserting an empty
matrix [].

Input Parameters
p numerical rank of A revealed in L;
L, V, U the ULV factors such that A = U�L�VT ;
a the new row added to A;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)�norm(L,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters



79

p numerical rank of [beta�A; a];
L, V, U the ULV factors such that [beta�A; a] = U�L�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ulv dw Downdating a row in the rank-revealing ULV decomposition.
ulv win Sliding window modi�cation of the rank-revealing ULV de-

comp.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494{499.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.
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ulv win

Purpose

Sliding window modi�cation of the rank-revealing ULV decomp.

Synopsis

[p,L,V,U,vec] = ulv win(p,L,V,U,A,a)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type,tol rank)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type,tol rank,tol ref,max ref)
[p,L,V,U,vec] = ulv win(p,L,V,U,A,a,alg type,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing ULV decomposition of an m-by-n matrix A = U�L�VT (m �
n), the function computes the updated decomposition corresponding to the combined
up- and down-dating action

A -> [ A ] -> [ w ]

[ a ] [ A ]

where a is a new row added to A, and w is the row that is downdated after the updating
process. If U is not available, then insert the empty matrix [].

Input Parameters
p numerical rank of A revealed in L;
L, V, U the ULV factors such that A = U�L�VT ;
A m-by-n matrix (m � n);
a new row added to A;
alg type algorithm type (see Description of ulv dw);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

L(p+1:n,1:p) relative to the Frobenius-norm of L;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults alg type = 3;
tol rank = sqrt(n)�norm(L,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
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p numerical rank of the modi�ed A;
L, V, U the ULV factors such that the modi�ed A = U�L�VT ;
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(L(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
urv win Sliding window modi�cation of the rank-revealing URV de-

comp.

References

[1] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494{499.
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urv cdef

Purpose

De
ate one column of R in the URV decomposition.

Synopsis

[R,V,U] = urv cdef(R,V,U,r,vmin)

Description

Given the URV decomposition U�R�VT , the function de
ates R(1:r,1:r). vmin is an
estimate of the right singular vector of R(1:r,1:r) associated with the smallest singular
value. On return, norm(R(1:r,r)) is of the order sigma r. The matrices U and V can be
left out by inserting an empty matrix [].

See Also
urv rdef De
ate one row of R in the URV decomposition.
urv ref Re�ne one column of R in the URV decomposition.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. Appl., 14 (1993), pp. 494{499.
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urv csne

Purpose

Corrected semi-normal equations expansion (URV).

Synopsis

[u1,q1,
ag csne] = urv csne(A,R,V,kappa)

Description

Compute the �rst row u1 of the m-by-n matrix U and the �rst element q1 of the
expanded column q which is orthogonal to the columns of U, by using the LINPACK
approach if it is safe, and if not, by solving the following least squares problem by means
of the CSNE method:

(A*V)'*(A*V)*z = R'*R*z = (A*V)'*e1

where

A = U*R*V'

If the parameter 
ag csne is true, the CSNE approach has been used. The parameter
kappa (greater than one) is used to control the orthogonalization procedure. A typical
value for kappa is sqrt(2).

Algorithm

The algorithm is based on triangular solves. If R is rank de�cient, then the rank
information is used in the triangular solves.

See Also
mgsr Modi�ed Gram-Schmidt expansion.
ulv csne Corrected semi-normal equations expansion (ULV).

References

[1] A. Bj�orck, H. Park and L. Eld�en, \Accurate Downdating of Least Squares Solu-
tions", SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549{568.

[2] H. Park and L. Eld�en, \Downdating the Rank Revealing URV Decomposition",
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138{155.
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urv dw

Purpose

Downdating a row in the rank-revealing URV decomposition.

Synopsis

[p,R,V,U,vec] = urv dw(p,R,V,U)
[p,R,V,U,vec] = urv dw(p,R,V,U,A)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type,tol rank)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type,tol rank,tol ref,max ref)
[p,R,V,U,vec] = urv dw(p,R,V,U,A,alg type,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing URV decomposition of an m-by-n matrix A = U�R�VT with m
� n, the function computes the downdated decomposition

A = [ a ]

[U*R*V']

where a is the top row being removed from A. Two of the downdating algorithms oper-
ate on the upper triangular matrix R without using the information of its rank-revealing
structure in the downdate step. The two variants di�er in the way they obtain infor-
mation of the �rst row of U. If the matrix U is maintained, the modi�ed Gram-Schmidt
algorithm is used in the expansion step of the downdating algorithm (alg type=3).
Note that the row dimension of the returned U has decreased by one. If the matrix U
is left out by inserting an empty matrix [], the method of LINPACK/CSNE (corrected
semi-normal equations) is used (alg type=1), and the matrix A is needed.

The third downdating algorithm operates on the upper triangular matrix R by using
the information of its rank-revealing structure to the extent possible (alg type=2). This
variant can be considered as an improved version of LINPACK/CSNE, and its accuracy
will be in between the two other algorithms.

Input Parameters
p numerical rank of A revealed in R;
R, V, U the URV factors such that A = U�R�VT ;
A m-by-n matrix (m > n);
alg type algorithm type (see Description);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;
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Defaults alg type = 3;
tol rank = sqrt(n)�norm(R,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
p the numerical rank of the downdated decomposition;
R, V, U the URV factors such that A = [a; U�R�VT];
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
urv up Updating a row in the rank-revealing URV decomposition.
urv win Sliding window modi�cation of the rank-revealing URV de-

comp.

References
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[2] H. Park and L. Eld�en, \Downdating the Rank Revealing URV Decomposition",
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138{155.

[3] A.W. Bojanczyk and J.M. Lebak, \Downdating a ULLV Decomposition of Two
Matrices"; in J.G. Lewis (Ed.), \Applied Linear Algebra", SIAM, Philadelphia,
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[5] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.
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urv qrit

Purpose

Re�nement of R in the URV decomposition via QR-iterations.

Synopsis

[R,V,U] = urv qrit(p,num ref,R,V,U)
[R,V] = urv qrit(p,num ref,R,V)
[R] = urv qrit(p,num ref,R)

Description

Given the URV decomposition U�R�VT with numerical rank p, the function re�nes the
rank-revealing decomposition via num ref steps of block QR iterations.

Algorithm

Re�nement is identical to block QR iteration, in which the o�-diagonal block of the
upper triangular matrix R is \
ipped" to the (2,1)-position and then back again.

See Also

urv ref Re�ne one column of R in the URV decomposition.

References

[1] R. Mathias and G.W. Stewart, \A Block QR Algorithm and the Singular Value
Decomposition", Lin. Alg. Appl., 182 (1993), pp. 91{100.
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urv rdef

Purpose

De
ate one row of R in the URV decomposition.

Synopsis

[R,V,U] = urv rdef(R,V,U,r,vmax)

Description

Given the URV decomposition U�R�VT , the function de
ates R(r:n,r:n). vmax is an
estimate of the right singular vector of R(r:n,r:n) associated with the largest singular
value. On return, norm(R(r,r:n)) is of the order sigma r. The matrices U and V can
be left out by inserting an empty matrix [].

See Also

urv cdef De
ate one column of R in the URV decomposition.

References

[1] R.D. Fierro and P.C. Hansen, \Low-Rank Revealing UTV Decompositions", Nu-
merical Algorithms, 15 (1997), pp. 37{55.
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urv ref

Purpose

Re�ne one column of R in the URV decomposition.

Synopsis

[R,V,U] = urv ref(R,V,U,r)

Description

Given the URV decomposition U�R�VT , the function re�nes the last column of R(1:r,1:r).
The matrices U and V can be left out by inserting an empty matrix [].

Algorithm

Re�nement is an iterative algorithm, which reduces the norm of the target column by
applying one block QR iteration to R.

See Also

urv cdef De
ate one column of R in the URV decomposition.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494{499.
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urv up

Purpose

Updating a row in the rank-revealing URV decomposition.

Synopsis

[p,R,V,U,vec] = urv up(p,R,V,U,a)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta,tol rank)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta,tol rank,tol ref,max ref)
[p,R,V,U,vec] = urv up(p,R,V,U,a,beta,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing URV decomposition of an m-by-n matrix A = U�R�VT with m
� n, the function computes the updated decomposition

[beta*A] = U*R*V'

[ a ]

where a is the new row added to A, and beta is a forgetting factor in [0;1], which is
multiplied to existing rows to damp out the old data. Note that the row dimension of
U will increase by one, and that the matrix U can be left out by inserting an empty
matrix [].

Input Parameters
p numerical rank of A revealed in R;
L, V, U the URV factors such that A = U�R�VT ;
a the new row added to A;
beta forgetting factor in [0;1];
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults beta = 1;
tol rank = sqrt(n)�norm(R,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
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p numerical rank of [beta�A; a];
R, V, U the URV factors such that [beta�A; a] = U�R�VT ;
vec a 5-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
urv dw Downdating a row in the rank-revealing URV decomposition.
urv win Sliding window modi�cation of the rank-revealing URV de-

comp.

References

[1] G.W. Stewart, \An Updating Algorithm for Subspace Tracking", IEEE Trans. on
SP, 40 (1992), pp. 1535{1541.

[2] G.W. Stewart, \Updating a Rank-Revealing ULV Decomposition", SIAM J. Ma-
trix Anal. and Appl., 14 (1993), pp. 494{499.

[3] M. Moonen, P. Van Dooren and J. Vandewalle, \A Note on E�cient Numerically
Stabilized Rank-One Eigenstructure Updating", IEEE Trans. on Signal Process-
ing, 39 (1991), pp. 1911{1913.



91

urv win

Purpose

Sliding window modi�cation of the rank-revealing URV decomp.

Synopsis

[p,R,V,U,vec] = urv win(p,R,V,U,A,a)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type,tol rank)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type,tol rank,tol ref,max ref)
[p,R,V,U,vec] = urv win(p,R,V,U,A,a,alg type,tol rank,tol ref,max ref,�xed rank)

Description

Given a rank-revealing URV decomposition of an m-by-n matrix A = U�R�VT (m �
n), the function computes the updated decomposition corresponding to the combined
up- and down-dating action

A -> [ A ] -> [ w ]

[ a ] [ A ]

where a is a new row added to A, and w is the row that is downdated after the updating
process. If U is not available, then insert the empty matrix [].

Input Parameters
p numerical rank of A revealed in R;
R, V, U the URV factors such that A = U�R�VT ;
A m-by-n matrix (m � n);
a new row added to A;
alg type algorithm type (see Description of urv dw);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the o�-diagonal block

R(1:p,p+1:n) relative to the Frobenius-norm of R;
max ref max. number of re�nement steps per singular value

to achieve the upper bound tol ref;
�xed rank if true, de
ate to the �xed rank given by p

instead of using the rank decision tolerance;

Defaults alg type = 3;
tol rank = sqrt(n)�norm(R,1)�eps;
tol ref = 1e-04;
max ref = 0;

Output Parameters
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p numerical rank of the modi�ed A;
R, V, U the URV factors such that the modi�ed A = U�R�VT ;
vec a 6-by-1 vector with:

vec(1) = upper bound of norm(R(1:p,p+1:n)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.
vec(6) = true if CSNE approach has been used.

See Also
ulv win Sliding window modi�cation of the rank-revealing ULV de-

comp.
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