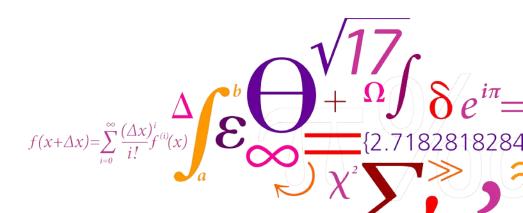


# A Parameter-Choice Method That **Exploits Residual Information**

Per Christian Hansen Section for Scientific Computing DTU Informatics

Joint work with Misha E. Kilmer Tufts University **TUFTS** 



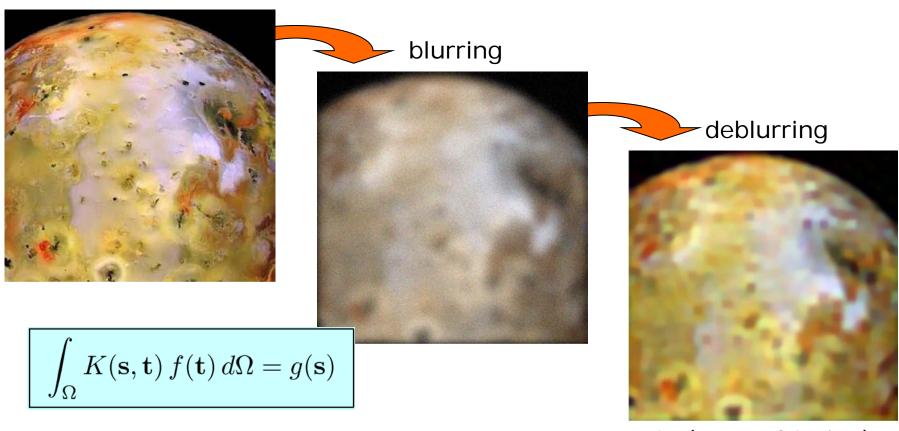


#### DTU Informatics

Department of Informatics and Mathematical Modeling

# **Inverse Problems: Image Deblurring**





$$f(\mathbf{t}) = \text{true scenery}$$

$$g(\mathbf{s}) = \text{data (blurred image)}$$

$$K(\mathbf{s}, \mathbf{t})$$
 = point spread function

Io (moon of Jupiter)

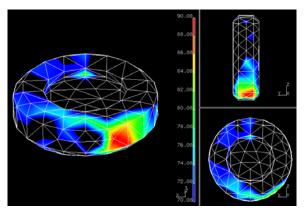
You cannot depend on your eyes when your imagination is out of focus

– Mark Twain

### **Sound Source Reconstruction**





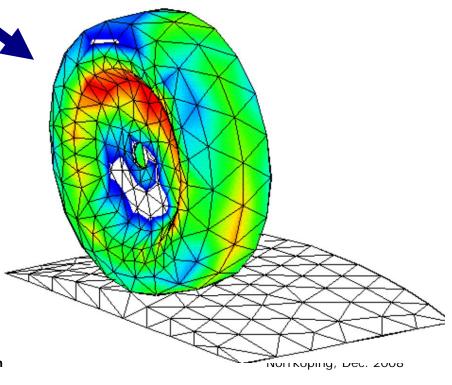


$$\int_{\Omega} K(\mathbf{s}, \mathbf{t}) f(\mathbf{t}) d\Omega = g(\mathbf{s})$$

 $f(\mathbf{t}) = \text{surface velocity}$ 

 $g(\mathbf{s}) = \text{data (pressure)}$ 

 $K(\mathbf{s}, \mathbf{t}) = \text{acoustic dipole field}$ 

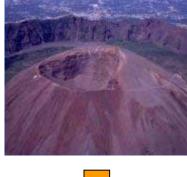


### **Potential Field Inversion**

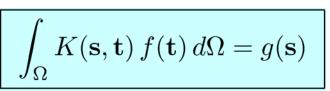








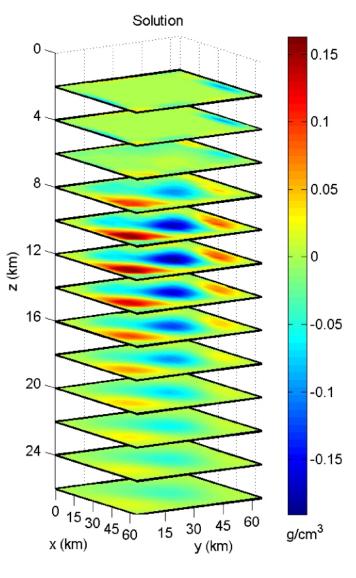




$$f(\mathbf{t}) = \text{magnetization}$$

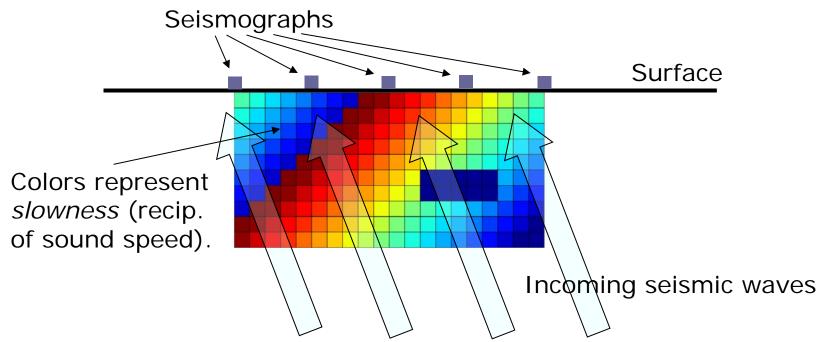
$$g(\mathbf{s}) = \text{data (anomaly)}$$

$$K(\mathbf{s}, \mathbf{t}) = \text{magnetic dipole field}$$



# **Seismic Tomography**



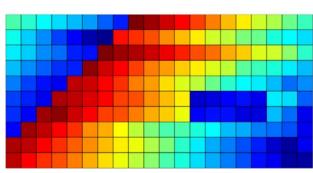


The line integrals

$$b_i = \int_{\text{ray}_i} f(\tau) \, d\tau$$

give the relationship between the material property f and the measured travel times  $b_i$ .





#### **Inverse Problems**



Goal: find the (hidden) source that gives rise to the measured data through a model for the source's action.

Inverse problems are examples of ill-posed problems:

- the solution may not exist,
- the solution may not be unique, or
- > the solution may not depend continuously on data.

The linear systems of equations A x = b associated with our discretizations are always **ill conditioned!** 

Consequence: solutions are extremely sensitive to errors in our data!!



# **SVD Analysis**



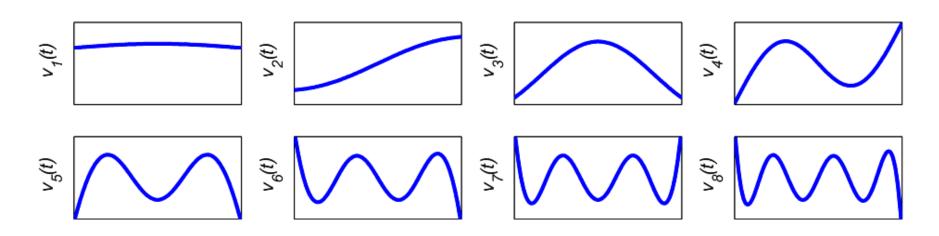
The SVD: 
$$A = U \Sigma V^T$$
,  $U^T U = V^T V = I$ ,  $\Sigma = \text{diag}(\sigma_i)$ .

The "naive solution" is

$$A^{-1}b = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i.$$

We can not use  $A^{-1}b$  because  $u_i^Tb/\sigma_i \to \text{LARGE for } i \to n$ .

The singular vectors looks like a spectral basis (we'll return to this):



# Regularization



We must apply regularization in order to deal with the ill conditioning of the problem and suppress the influence of the noise in the data.

### Tikhonov regularization:

$$\min \{ \|Ax - b\|_2^2 + \lambda^2 \|x\|_2^2 \} \implies x_\lambda = A_\lambda^{\dagger} b.$$

The choice of smoothing norm and parameter  $\lambda$  makes the problem regular and ensures that we compute a robust solution  $x_{\lambda}$ .

### Regularization by projection:

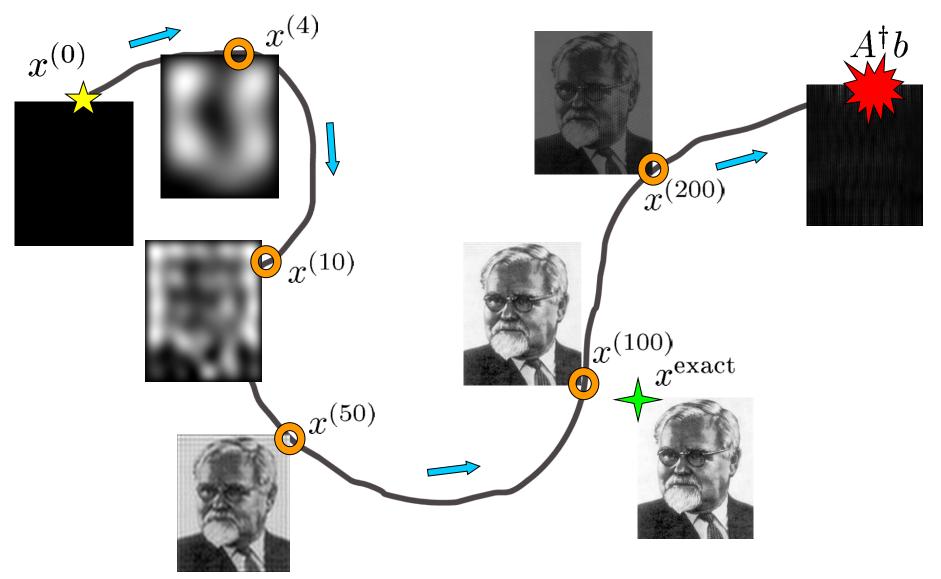
$$\min \|Ax - b\|_2$$
 subject to  $x \in \mathcal{S}_k$ 

where  $S_k$  is a k-dimensional subspace spanned by desirable basis vectors:

- TSVD:  $S_k = \operatorname{span}\{v_1, v_2, \dots, v_k\},\$
- CGLS:  $S_k = \operatorname{span}\{A^T b, A^T A A^T b, (A^T A)^2 A^T b, \ldots\}.$

# **Semi-Convergence of CGLS**





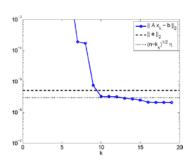
# The Quest for the Holy Grail = $\lambda$ (or k)



Many of the current parameter-choice methods are based on *norms*.

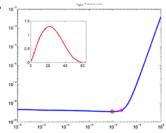
**Discrepancy Principle.** Fit to the error level in the data:

find 
$$\lambda$$
 so  $||A x_{\lambda} - b||_2 \approx ||e||_2$ .



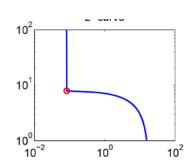
Generalized Cross Validation. Minimize prediction error:

minimize 
$$\frac{\|A x_{\lambda} - b\|_{2}}{\operatorname{trace}(I - AA_{\lambda}^{\dagger})} .$$



L-Curve Criterion. Find the "corner" of the curve

$$(\log ||A x_{\lambda} - b||_2, \log ||L x_{\lambda}||_2).$$



### The Three Golden Rules of Inversion



According to Bill Lionheart, Manchester University (augmented by PCH):

- 1. Understand the measured data and their errors.
- 2. Be precise about what you want from the solution.
- 3. Incorporate what you already know about the solution.
- 4. Understand the forward model, incl. model errors.
- 5. Don't expect mathematics to compensate for lack of knowledge of the above.
- 6. There is no parameter-choice rule that will work for all problems!

### A New Approach



The original idea is due to Bert Rust (Comp. Sci. Stat. 2000):



When the true solution is not known, the residual vector provides the only objective guide for assessing the quality of an estimate.

The strategy is to go beyond norms:

- Make use of more information present in the residual vector.
- Main ingredients of our analysis:
  - SVD/Fourier analysis,
  - statistical NCP analysis.

#### Our goal:

- Develop a statistically-motivated parameter selection method.
- Extract precisely all relevant "information" from the data.

# The Discrete Fourier Transform (DFT)



The DFT is often written in " $\sum_{i=0}^{n-1}$  notation."

Following Van Loan, we prefer a matrix notation where the DFT is represented by a unitary matrix F such that:

• 1D signal  $x \in \mathbb{R}^n$ :

$$dft(x) = F^H x$$

• 2D signal  $X \in \mathbb{R}^{n \times n}$ :

$$\mathtt{dft2}(X) = F^H X (F^H)^T = F^H X \mathtt{conj}(F)$$

with

$$F_{jk} = \frac{1}{\sqrt{n}} \exp(2\pi\sqrt{-1}(j-1)(k-1)/n), \qquad i, j = 1, \dots, n.$$

The use of the factor  $1/\sqrt{n}$  is non-standard notation, but it makes the similarities with SVD analysis much clearer.

# The 1D Normalized Cumulative Periodogram



Real signals have complex symmetric spectra, and we need only

$$F(:,1:q)^H x, \qquad q = \lfloor n/2 \rfloor + 1.$$

The periodogram for a 1D signal  $x \in \mathbb{R}^n$  is the vector

$$p = |F(:, 1:q)^H x|^2 \in \mathbb{R}^q$$

(called the power spectrum in EE).

The Normalized Cumulative Periodogram (NCP) for the signal x is given by the vector  $c(x) \in \mathbb{R}^{q-1}$  with elements

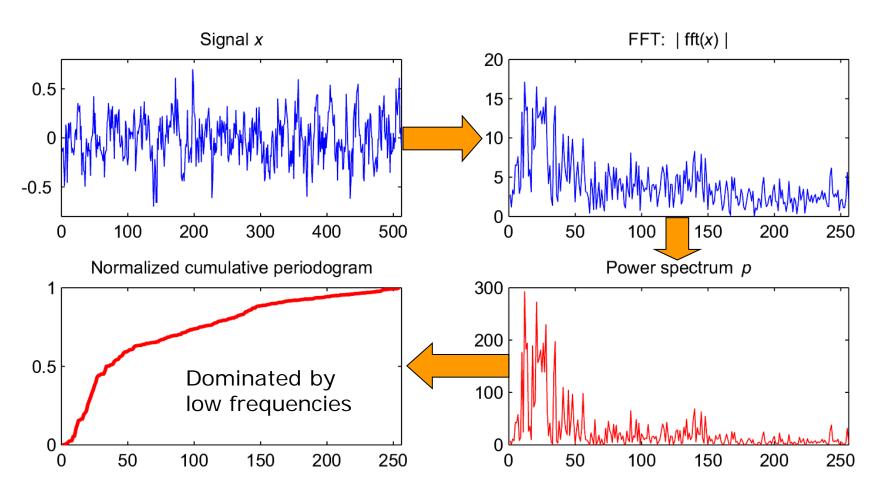
$$c(x)_k = \frac{\|p(2:k+1)\|_1}{\|p(2:q)\|_1}, \qquad k = 1, \dots, q-1.$$

The "DC component" p(1) does not take part of the NCP.

# **Example of NCP Analysis**



Sound signal x = "big storm" (from sound database).



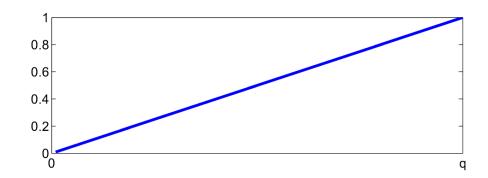
### The NCP Reveals White Noise



White noise is invariant to orthogonal and unitary transformations:

$$Cov(e) = \eta^2 I \implies Cov(F^H e) = F^H Cov(e) F = \eta^2 I.$$

Thus, the expected power spectrum for e is flat, and the expected NCP for e lies on a straight line between (0,0) and (q,1).



The NCP of a realization of the white-noise vector e should lie within the Kolmogorov- $Smirnoff\ limits$  of this straight line.

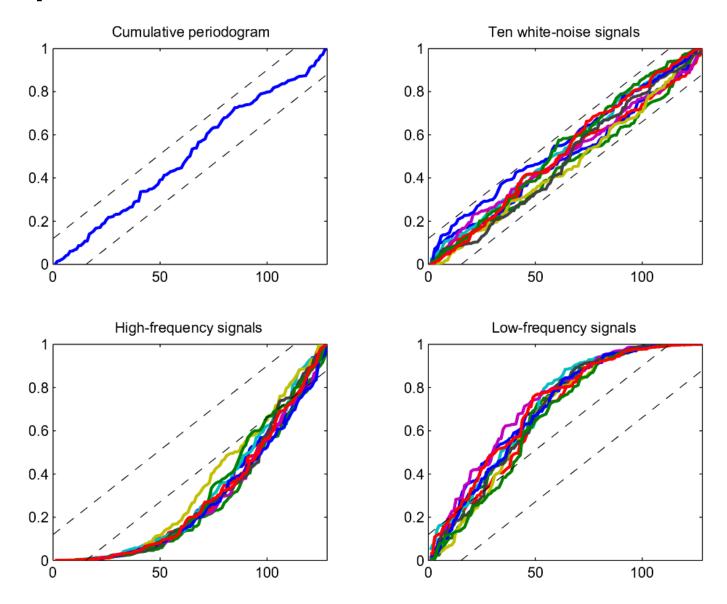
For 5 percent significance level, the K-S limits are

1D: 
$$\pm 1.36 \, q^{-1/2}$$

2D: 
$$\pm 1.36 \, q^{-1}$$

### **Examples of NCPs with K-S Limits**





#### The 2D NCP



### Don't read this - it's only here to show that we can treat 2D!

Define the matrix  $P \in \mathbb{R}^{q \times q}$  (the 2D power spectrum) by

$$P = |F_{\triangleright}^H X \operatorname{conj}(F_{\triangleright})|^2.$$

Let  $\Pi$  be a permutation matrix such that the elements of the vector

$$\hat{p} = \Pi \operatorname{vec}(P) \in \mathbb{R}^{q^2}$$

are ordered in increasing spatial frequency.

Then the 2D NCP for X is vector c(X) with entries

$$c(X)_k = \frac{\|\hat{p}(2:k+1)\|_1}{\|\hat{p}(2:q^2)\|_1}, \quad k = 1, \dots, q^2 - 1.$$

This extension to 2D problems is (to our knowledge) new.

# **Properties of the Residual**



Recall that the residual vector for  $x_{\lambda}$  is

$$r_{\lambda} = b - A x_{\lambda} = U(I - A A_{\lambda}^{\dagger}) U^{T} b.$$

**Key idea.** Choose  $\lambda$  so that all pure signal has been removed from  $r_{\lambda}$  and only noise is left in the residual; design a test for this transition.

Recall that

$$Cov(F^H e) = \eta^2 I$$

while

$$Cov(F^H r_{\lambda}) = \eta^2 F^H U (I - A A_{\lambda}^{\dagger})^2 U^T F.$$

Notice the "mixing" of Fourier and SVD coefficients due to  $F^HU$ .

What can we say about the matrix  $F^HU$  that will allow us to liken the Fourier analysis and the spectral filtering methods?

### The Fourier Transform of the Residual



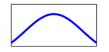
We skip technical details here - see the paper:

P. C. Hansen, M. Kilmer, and R. H. Kjeldsen, Exploiting residual information in the parameter choice for discrete ill-posed problems, BIT, 46 (2006), pp. 41–59.

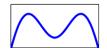
The singular functions share characteristics with the Fourier basis  $\rightarrow$  increasing oscillations as the singular values decrease.

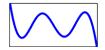


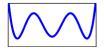














The result is that the covariance matrix for the residual vector is

$$\operatorname{Cov}(F^H r_{\lambda}) \approx \eta^2 \begin{pmatrix} I_{\frac{m-k}{2}} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_{\frac{m-k}{2}} \end{pmatrix}.$$

Unless k is large, the residual's noise component is white-noise like.

### The New Parameter-Choice Rule



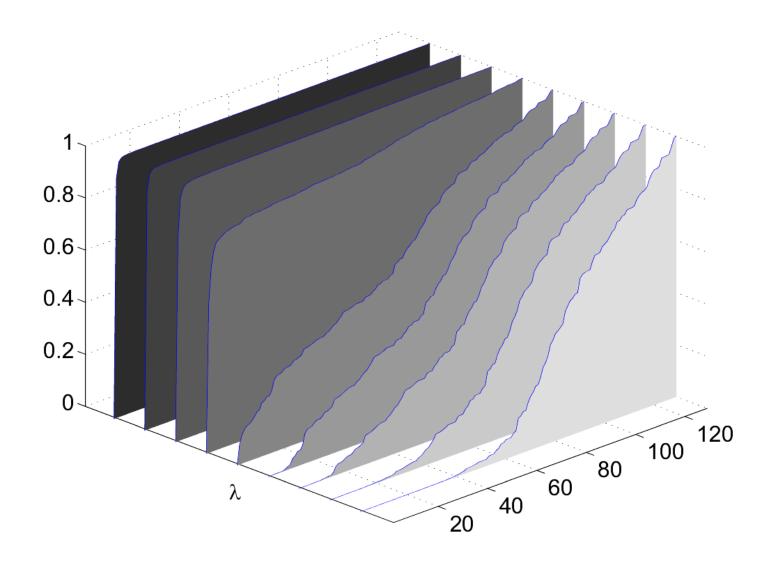
Choose the regularization parameter for which the residual vector transitions from being dominated by signal to white-noise like.



- 1. We have shown that this transition occurs in the SVD basis, when all relevant SVD components have been extracted.
- 2. Due to the similarity between the SVD and Fourier bases, we can use tests based on *Fourier analysis* and *NCP*.
- 3. Computational advantage: the FFT is fast!

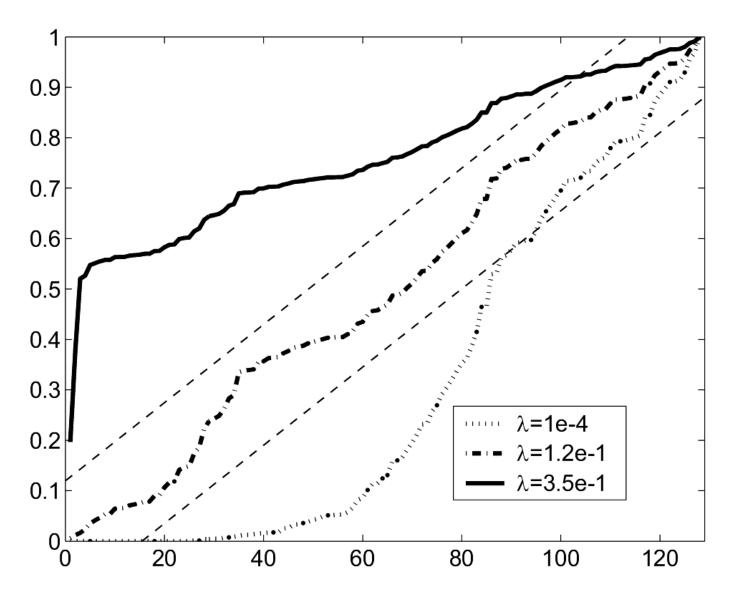
# NCPs for deriv2 Test Problem





# NCPs for phillips Test Problem



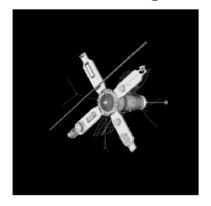


# Image Deblurring Example

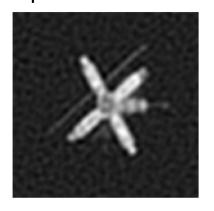


Noise level  $||e||_2/||\bar{b}||_2 = 3 \cdot 10^{-2}$ . CGLS – regularizing iterations.

Exact image



"Optimal" solution



Blurred noisy image

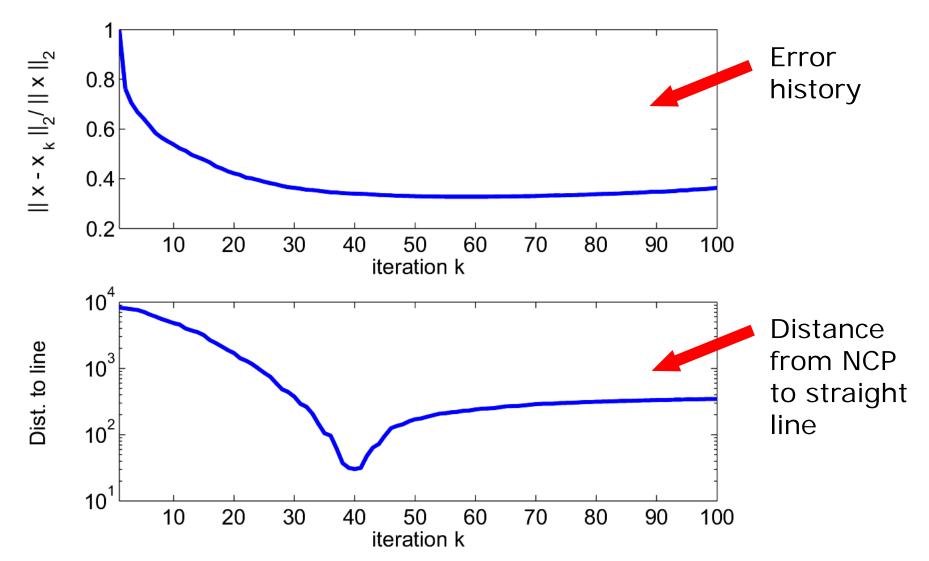


NCP solution



### Does It Work?





# 3D Tomography in Crystallography

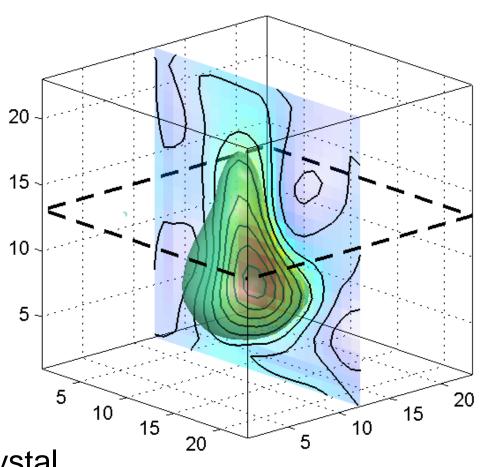


Joint work with **Metals in 4D**, Risø DTU, Denmark.

### Single-ODF reconstruction:

- Data: X-ray diffraction
- Reconstruction: orientation distribution function (ODF)
- □ Smoothing norm:  $|| \nabla^2 f ||^2$ Reconstruction method:
- CGLS regularizing iterations
- NCP stopping criterion.

Solution shows distribution of orientations in imperfect crystal.



#### **Final Comments**



- Our paper demonstrated the often-observed relationship between Fourier and SVD bases.
- Our study gives insight into how to exploit Fourier components of the residual.
- Our insight leads to convenient parameter-choice rule based on the FFT and the NCP.
- Related transforms can be used, such as the DCT.
- Can also be used in the presence of (low frequent) signalcorrelated noise (see our paper).
- Sets the stage for other methods based on statistical analysis of residuals.

### Thank you!