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Nonlinear least squares problems

This lecture is based on the book

P. C. Hansen, V. Pereyra and G. Scherer,

Least Squares Data Fitting with Applications,

Johns Hopkins University Press, to appear

(the necessary chapters are available on CampusNet)

and we cover this material:

• Section 8.1: Intro to nonlinear data fitting.

• Section 8.2: Unconstrained nonlinear least squares problems.

• Section 9.1: Newton’s method.

• Section 9.2: The Gauss-Newton method.

• Section 9.3: The Levenberg-Marquardt method.



02610 Optimization and Data Fitting – Nonlinear Least-Squares Problems 2

Non-linearity

A parameter α of the function f appears nonlinearly if the

derivative ∂f/∂α is a function of α.

The model M(x, t) is nonlinear if at least one of the parameters in

x appear nonlinearly.

For example, in the exponential decay model

M(x1, x2, t) = x1e
−x2t

we have:

• ∂M/∂x1 = e−x2t which is independent of x1,

• ∂M/∂x2 = −t x1e
−x2t which depends on x2.

Thus M is a nonlinear model with the parameter x2 appearing

nonlinearly.
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Fitting with a Gaussian model
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The non-normalized Gaussian function:

M(x, t) = x1e
−(t−x2)

2/(2x2
3), x =

x1

x2

x3

 ,

where x1 is the amplitude, x2 is the time shift, and x3 determines

the width of the Gaussian function.

The parameters x2 and x3 appear nonlinearly in this model.

Gaussian models also arise in many other data fitting problems.
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The nonlinear least squares problem

Find a minimizer x∗ of the nonlinear objective function f :

minx f(x) ≡ minx
1
2 ∥r(x)∥

2
2 = minx

1
2

m∑
i=1

ri(x)
2,

where x ∈ Rn and, as usual,

r(x) =


r1(x)

...

rm(x)

 ∈ Rm,

ri(x) = yi −M(x, ti), i = 1, . . . ,m .

Here yi are the measured data corresponding to ti.

The nonlinearity arises only from M(x, t).
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The Jacobian and the gradient of f(x)

The Jacobian J(x) of the vector function r(x) is defined as the

matrix with elements

[J(x)]ij =
∂ri(x)

∂xj
= −∂M(x, ti)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n.

The ith row of J(x) equals the transpose of the gradient of ri(x):

[J(x)]i,: = ∇ri(x)
T = −∇M(x, ti)

T , i = 1, . . . ,m.

Thus the elements of the gradient of f(x) are given by

[∇f(x)]j =
∂f(x)

∂xj
=

m∑
i=1

ri(x)
∂ri(x)

∂xj

and it follows that the gradient is the vector

∇f(x) = J(x)Tr(x) .
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The Hessian matrix of f(x)

The elements of the Hessian of f , denoted ∇2f(x), are given by

[∇2f(x)]kℓ =
∂2f(x)

∂xk∂xℓ
=

m∑
i=1

∂ri(x)

∂xk

∂ri(x)

∂xℓ
+

m∑
i=1

ri(x)
∂2ri(x)

∂xk∂xℓ
,

and it follows that the Hessian can be written as

∇2f(x) = J(x)TJ(x) +
m∑
i=1

ri(x)∇2ri(x),

where [
∇2ri(x)

]
kℓ

= −
[
∇2M(x, ti)

]
kℓ

= −∂2M(x, ti)

∂xk∂xℓ
, k, ℓ = 1, . . . ,m .
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The optimality conditions

First-order necessary condition:

∇f(x) = J(x)Tr(x) = 0 .

Second-order sufficient condition:

∇2f(x) = J(x)TJ(x) +
m∑
i=1

ri(x)∇2ri(x) is positive definite.

The first – and often dominant – term J(x)TJ(x) of the Hessian

contains only the Jacobian matrix J(x), i.e., only first derivatives!

In the second term, the second derivatives are multiplied by the

residuals. If the model is adequate then the residuals will be small

near the solution and this term will be of secondary importance.

In this case one gets an important part of the Hessian “for free” if

one has already computed the Jacobian.
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Local linear LSQ problem

If we introduce a Taylor expansion around the LSQ solution x∗,

the local least squares problem for x close to x∗ can be written

min
x

∥J(x∗) (x− x∗) + r(x∗)∥2 =

min
x

∥∥J(x∗)x−
(
J(x∗)x∗ + r(x∗)

)∥∥
2
.

It follows from the results in Chapter 1 that:

Cov(x∗) ≃ J(x∗)†Cov
(
J(x∗)x∗ − r(x∗)

)
(J(x∗)†)T

= J(x∗)†Cov
(
r(x∗)− J(x∗)x∗)(J(x∗)†)T

= J(x∗)†Cov(y)(J(x∗)†)T .

This provides a way to approximately assess the uncertainties in

the least squares solution x∗ for the nonlinear problem.
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Newton’s method

If f(x) is twice continuously differentiable then we can use

Newton’s method to solve the nonlinear equation

∇f(x) = J(x)Tr(x) = 0

which provides local stationary points for f(x). This version of the

Newton iteration takes the form, for k = 0, 1, 2, . . .

xk+1 = xk −
(
∇2f(xk)

)−1 ∇f(xk)

= xk −
(
J(xk)

TJ(xk) + S(xk)
)−1

J(xk)
Tr(xk),

where S(xk) denotes the matrix

S(xk) =
m∑
i=1

ri(xk)∇2ri(xk).

Convergence. Quadratic convergence, but expensive – requires

mn2 derivatives to evaluate S(xk).
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The Gauss-Newton method

If the problem is only mildly nonlinear or if the residual at the

solution is small, a good alternative is to neglect the second term

S(xk) of the Hessian altogether.

The resulting method is referred to as the Gauss-Newton method,

where the computation of the step ∆xGN
k involves the solution of

the linear system(
J(xk)

TJ(xk)
)
∆xGN

k = −J(xk)
Tr(xk).

Note that in the full-rank case this is actually the normal equations

for the linear least squares problem

min
∆xGN

k

∥∥J(xk)∆xGN
k − (−r(xk))

∥∥2
2
.

This is a descent step if J(xk) has full rank.
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Damped Gauss-Newton = G-N with line search

Implementations of the G-N method usually perform a line search

in the direction ∆xGN
k , e.g., requiring the step length αk to satisfy

the Armijo condition:

f(xk + αk∆xGN
k ) < f(xk) + c1 αk∇f(xk)

T∆xGN
k

= f(xk) + c1 αkr(xk)
TJ(xk)

T∆xGN
k ,

with a constant c1 ∈ (0, 1).

This ensures that the reduction is (at least) proportional to both

the parameter αk and the directional derivative ∇f(xk)
T∆xGN

k .

Line search make the algorithm (often) globally convergent.

Convergence. Can be quadratic if the neglected term in the

Hessian is small. Otherwise it is linear.
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Algorithm: Damped Gauss-Newton

• Start with the initial point x0, and iterate for k = 0, 1, 2, . . .

• Solve min∆x ∥J(xk)∆x+ r(xk)∥2 to compute the step

direction ∆xGN
k .

• Choose a step length αk so that there is enough descent.

• Calculate the new iterate: xk+1 = xk + αk∆xGN
k .

• Check for convergence.
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The Levenberg-Marquardt method

Very similar to G-N, except that we replace the line search with a

trust-region strategy where the norm of the step is limited.

min ∥J(xk)∆x+ r(xk)∥22 subject to ∥∆x∥2 ≤ bound.

Constrained optimization is outside the scope of this course (it is

covered in 02612).
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Computation of the L-M Step

The computation of the step in Levenberg-Marquardt’s method is

implemented as:

∆xLM
k = argmin∆x

{
∥J(xk)∆x+ r(xk)∥22 + λk ∥∆x∥22

}
where λk > 0 is a so-called Lagrange parameter for the constraint

at the kth iteration.

The L-M step is computed as the solution to the linear LSQ

problem

min
∆x

∥∥∥∥∥∥
 J(xk)

λ
1/2
k I

∆x−

 −r(xk)

0

∥∥∥∥∥∥
2

2

.

This method is more robust, in case of an ill conditioned Jacobian.
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Algorithm: Levenberg-Marquardt

• Start with the initial point x0 and iterate for k = 0, 1, 2, . . .

• At each step k choose the Lagrange parameter λk.

• Solve the linear LSQ problem

min
∆x

∥∥∥∥∥∥
 J(xk)

λ
1/2
k I

∆x−

 −r(xk)

0

∥∥∥∥∥∥
2

2

to compute the step ∆xLM
k .

• Calculate the next iterate xk+1 = xk +∆xLM
k .

• Check for convergence.

Note: there is no line search (i.e., no αk-parameter), its role is

taken over by the Lagrange parameter λk.
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The role of the Lagrange parameter

Consider the L-M step, which we formally write as:

∆xLM
k =

(
J(xk)

TJ(xk) + λkI
)−1

J(xk)
Tr(xk).

The parameter λk influences both the direction and the length of

the step.

Depending on the size of λk, the step ∆xLM
k can vary from a

Gauss-Newton step for λk = 0, to a short step approximately in the

steepest descent direction for large values of λk.
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How to choose the Lagrange parameter

A strategy developed by Marquardt. The underlying principles are:

1. The initial value λ0 ≈ ∥J(x0)
TJ(x0)∥2.

2. For subsequent steps, an improvement ratio is defined as:

ρk =
actual reduction

predicted reduction
=

f(xk)− f(xk+1)
1
2 (∆xLM

k )T (J(xk)Tr(xk)− λk∆xLM
k )

.

Here, the denominator is the reduction in f predicted by the local

linear model.

If ρk is large then the pure Gauss-Newton model is good enough, so

λk+1 can be made smaller than at the previous step. If ρk is small

(or even negative) then a short steepest descent step should be

used, i.e., λk+1 should to be increased.
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Algorithm: Marquardt’s Parameter Updating

• If ρk > 0.75 then λk+1 = λk/3.

• If ρk < 0.25 then λk+1 = 2λk.

• Otherwise use λk+1 = λk.

• If ρk > 0 then perform the update xk+1 = xk +∆xLM
k .

As G-N, the L-M algorithm is (often) globally convergent.

Convergence. Can be quadratic of the neglected term in the

Hessian is small. Otherwise it is linear.
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G-N without damping (top) vs. L-M (bottom)
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MATLAB Optimization Toolbox: lsqnonlin

[x,resnorm] = lsqnonlin(fun,x0) requires an initial point x0

and a function fun that computes the vector-valued function

f(x) =


f1(x)

...

fm(x)


and solves the problem

min
x

∥f(x)∥22 = min
x

(
f1(x)

2 + · · ·+ fm(x)2)
)
.

Use optimset to choose between different optimization methods.

E.g., ’LargeScale’=’off’ and ’LevenbergMarquardt’=’off’

give the standard G-N method, while ’Jacobian’=’on’ and

’Algorithm’=’levenberg-marquardt’ give the L-M algorithm.


