
Regularization by Spectral Filtering

We know already that filtering is needed when noise is present, since the
solution xnaive = A−1b is typically too contaminated by noise to be useful.
Now we take a closer look at the filtering.

Filtering is also called regularization because it can be interpreted as
enforcing certain regularity conditions on the solution.

The degree of regularization is governed by a regularization parameter
which should be chosen carefully.

We focus on two candidate regularization methods

TSVD,

Tikhonov,

and three candidate ways to compute the regularization parameter

the discrepancy principle,

generalized cross validation,

the L-curve criterion.
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Spectral Filtering

The singular value decomposition is used for “small” general
problems, or problems with Kronecker structure, and the filtered
solution takes the form

xfilt =
N∑
i=1

φi
uTi b

σi
vi .

The spectral decomposition is used for problems where we can use
the FFT and DCT algorithms:

xfilt =
N∑
i=1

φi
ũTi b

λi
ũi ,

where ũi are the FFT or DCT basis vectors.

We need to choose the filter factors φi to control the spectral contents of
the deblurred images.
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The Spectral Coordinate System

To simplify things, we use only the SVD in this discussion:

xfilt =
N∑
i=1

φi
uTi b

σi
vi

Note that we have a coordinate system determined by A:

The data b is expressed in the coordinates uTi b for the basis vectors
ui (i = 1, . . . ,N).

The solution xfilt is expressed in coordinates for the basis vectors vi
(i = 1, . . . ,N).

This is the spectral coordinate system, since these vectors are the
eigenvectors of ATA and AAT respectively.

Our goal is to scale the solution component in the direction vi by the filter
factor φi in order to reduce the effect of error in the component uTi b.
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Method 1: The Truncated SVD (TSVD) Method

For this method, we define the filter factors to be

one for large singular values,

and zero for the rest.

More precisely,

φi ≡

{
1, i = 1, . . . , k

0, i = k + 1, . . . ,N.

The parameter k is called the truncation parameter and it determines the
number of SVD components maintained in the regularized solution. Note
that k always satisfies 1 ≤ k ≤ N.

This is the method we used in Chapter 1 to improve upon the naive
method.
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Method 2: The Tikhonov Method

For this method we define the filter factors to be

φi =
σ2
i

σ2
i + α2

, i = 1, . . . ,N,

where α > 0 is called the regularization parameter. This choice of filter
factors yields the solution vector xα for the minimization problem

min
x

{
‖b− Ax‖2

2 + α2‖x‖2
2

}
.

This choice keeps ‖b− Axα‖2 small, but not so small that

‖xα‖2
2 =

N∑
i=1

φ2
i

(uTi b)2

σ2
i

.

is too big. Thus, our minimization problem ensures that both the norm of
the residual b−Axα and the norm of the solution xα are somewhat small.
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How Does α Affect the Tikhonov Solution?

Suppose σi � α – which is the case for the first filter factors.

Then, using the Taylor expansion

(1 + ε)−1 = 1− ε+ ε2 + O(ε3),

we obtain

φi =
σ2
i

σ2
i + α2

=
1

1 + α2/σ2
i

= 1− α2

σ2
i

+
α4

σ4
i

+ . . .
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Affect on Components for Small Singular Values

Suppose σi � α – which is the case for the last filter factors.

Again using the Taylor expansion of (1 + ε)−1, we obtain

φi =
σ2
i

σ2
i + α2

=
σ2
i

α2

1

1 + σ2
i /α

2
=
σ2
i

α2

(
1−

σ2
i

α2
+
σ4
i

α4
+ · · ·

)
.

Thus we can conclude that the Tikhonov filter factors satisfy

φi =


1−

(
α

σi

)2

+ O

((
α

σi

)4)
, σi � α

(σi
α

)2
+ O

((σi
α

)4
)
, σi � α.
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Answer to How α Affects the Tikhonov Solution

φi ≈ 1 when α� σi ,

φi ≈ σ2
i /α

2 when α� σi .

Therefore, α determines the breakpoint at which the filter factors change
nature: the point at which σi ≈ α

The Tikhonov filter factors φi = σ2
i /(σ2

i + α2) versus σi for three different
values of the regularization parameter α.
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Implementation of Filtering Methods

If all of the singular values of A are nonzero, then the naive solution can
be written as

xnaive = A−1b = VΣ−1UTb .

Similarly, the spectral filter solution can be written as

xfilt = VΦΣ−1UTb

where Φ is a diagonal matrix consisting of the filter factors φi for the
particular method:

1’s and 0’s for TSVD, and

σ2
i /(σ2

i + α2) for Tikhonov.
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Ditto, Spectral Decomposition

If all of the eigenvalues of A are nonzero, then the naive solution can be
written as

x = A−1b = ŨΛ−1Ũ∗b .

Similarly, the spectral filter solution can be written as

xfilt = ŨΦΛ−1Ũ∗b

where Φ is a diagonal matrix consisting of the filter factors φi for the
particular method:

1’s and 0’s for TSVD, and

|λi |2/(|λi |2 + α2) for Tikhonov.
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Computational Issues

Computational issues include:

Exploiting structure in A (BCCB, etc.).

Specifying the regularization parameter (k or α).

Avoiding divide-by-zero in “Σ−1”.
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Exploiting Structure in A

Recall:

Structured matrices arise in image deblurring problems: e.g.,
Kronecker products, BTTB, etc.

The SVD or spectral decomposition of such matrices can be
computed efficiently.

The “naive” inverse solution is also easy.

The TSVD and Tikhonov solutions can also be computed efficiently, using
computations similar to those for the naive solutions.
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A Convenient Rewrite

Old equation:
xfilt = VΦΣ−1UTb

New equation:
xfilt = VΣ−1

filtU
Tb

where Σ−1
filt = ΦΣ−1.

Thus, given the filter factors, it is simple to to compute xfilt.
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Filtered Solutions for Structured Matrices

Given:

P = PSF array
center = [row, col] = center of PSF
B = blurred image
BC = string denoting boundary condition (e.g., ’zero’)
Phi = filter factors

For periodic boundary conditions, use:

S = fft2( circshift(P, 1 - center) );

Sfilt = Phi ./ S;

Xfilt = real( ifft2( fft2(B) .* Sfilt ) );

Matlab’s Image Processing Toolbox has two implementations deconvreg

and deconvwnr of this procedure for Tikhonov reg.
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For reflexive boundary conditions, with doubly symmetric PSF, use:

e1 = zeros(size(P));, e1(1,1) = 1;

S = dct2( dctshift(P, center) ) ./ dct2(e1);

Sfilt = Phi ./ S;

Xfilt = idct2( dct2(B) .* Sfilt );

For a separable PSF, use:

[Ar, Ac] = kronDecomp(P, center, BC);

[Uc, Sc, Vc] = svd(Ac);

[Ur, Sr, Vr] = svd(Ar);

S = diag(Sc) * diag(Sr)’;

Sfilt = Phi ./ S;

Xfilt = Vc * ( (Uc’ * B * Ur) .* Sfilt ) * Vr’;

These methods do not have similar implementations in the IPT.
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Specifying the Regularization Parameter

The TSVD truncation index should satisfy 1 ≤ k ≤ N.

The Tikhonov parameter should satisfy σn ≤ α ≤ σ1.

Later we discuss automatic methods for estimating good choices
for these parameters, but for now we can try to choose them
experimentally.
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Specifying the TSVD Parameter

In the case of TSVD, we might specify a tolerance below which all singular
(spectral) values are truncated. In this case the filter factors can be
computed very easily as:

Phi = ( abs(S) >= tol );

By experimenting with various values of tol, and displaying the computed
filtered solution Xfilt, we can see the effects of regularization.
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Specifying the Tikhonov Parameter

In the case of Tikhonov regularization, we can specify a value for α, and
compute the filter factors from the singular (spectral) values as follows:

Phi = abs(S).^2 ./ (abs(S).^2 + alpha^2);

Note that the use of abs is necessary in the case when FFTs are used.

Again, we can experiment with various values of alpha and display the
filtered solution to see the effects of regularization.
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Avoiding Divide-by-Zero

In computing the quantity

Sfilt = Phi ./ S

we will commit divide-by-zero if any singular (spectral) value is zero.

This will cause some values of Sfilt to be set to Inf (or to NaN).

To avoid this, perform the computation only for nonzero values of S, and
set all other Sfilt values to 0.

idx = (S ~= 0);

Sfilt = zeros(size(Phi));

Sfilt(idx) = Phi(idx) ./ S(idx);
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Very Important Points

Spectral filtering amounts to modifying the spectral components of
the naive solution.

Different methods have different filter factors, but their purpose is
always to filter out those components dominated by noise.

There are efficient implementations whose complexity is identical to
that of naive inversion.

Robust implementation requires a minimum of overhead.

Next: how do we choose α and k (or tol) automatically?
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Regularization Errors and Perturbation Errors

Recall: xfilt can always be written in the SVD framework as

xfilt = VΦΣ−1UTb,

where Φ is a diagonal matrix consisting of the spectral filters φi

0s and 1s for TSVD, σ2
i /(σ2

i + α2) for Tikhonov, etc.

Equipped with this formulation, we can now easily separate the two
different types of errors in a regularized solution

xfilt = VΦΣ−1UTb

= VΦΣ−1UTbexact + VΦΣ−1UTe

= VΦΣ−1UTAx + VΦΣ−1UTe

= VΦVTx + VΦΣ−1UTe.

x− xfilt = (x− VΦVTx)− (VΦΣ−1UTe).
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Two Contributions to the Errors:

Regularization error (IN − VΦVT ) x, caused by using a regularized
inverse VΦΣ−1UT in order to obtain the filtering.

Perturbation error VΦΣ−1UTe, which consists of the inverted and
filtered noise.

Changing the regularization parameter (k or α) changes the size of the
errors.

When too many filter factors φi are close to one, then

regularization error is small / perturbation error is large.

The solution is under-smoothed.

When too few filter factors are close to one, then

regularization error is large / perturbation error is small.

The solution is over-smoothed.

A proper choice of k or α balances the two types of errors.
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Example

Consider TSVD as the regularization method.

We see that the two types of errors are balanced for k ≈ 200.

The 2-norms of the regularization error (IN − VΦVT ) x and the
perturbation error VΦΣ−1UTe versus the truncation parameter k for the
TSVD method.
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The Resolution Matrix

The matrix VΦVT is called the resolution matrix for the regularized
solution; it describes the mapping between the exact solution and the
filtered component in x.

The closer the resolution matrix is to the identity, the smaller the
regularization error, but the inverted noise will dominate.

On the other hand, when most of the filter factors are small (or zero),
then the inverted noise is heavily damped (the perturbation error is
small) – but the resolution matrix is far from the identity and the
regularization error is large.
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The Importance of the Discrete Picard Condition

The reason why we are able to compute regularized approximations to the
exact solution, in spite of the large condition number, is that spectral
filtering suppresses much of the inverted noise while – at the same time –
keeping the regularization error small.

This is possible because the deblurring problem satisfies the discrete Picard
condition: the exact right-hand side exhibits decaying expansion
coefficients when expressed in the spectral basis.

As a consequence, the noise affects primarily the high-frequency
components which are associated with the smaller singular values, and
which are damped by the spectral filtering method.

What is left in the regularized solution is primarily the low-frequency SVD
components associated with the larger singular values, and these compo-
nents are dominated by the contributions from the exact right-hand side.
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The Regularization Error

Consider the norm of the regularization error:

‖(IN − VΦVT ) x‖2
2 = ‖(IN −Φ)VTx‖2

2

= ‖(IN −Φ)Σ−1UTbexact‖2
2

=
N∑
i=1

(
(1− φi )

uTi bexact

σi

)2

.

On the next slide we analyze this expression . . .
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‖(IN − VΦVT ) x‖2
2 =

N∑
i=1

(
(1− φi )

uTi bexact

σi

)2

Due to the discrete Picard condition, the coefficients |uTi bexact/σi |
decay (on average).

Since the first filter factors φi (for i = 1, 2, . . .) are close to one, the
factors (1− φi ) dampen the contributions to the error from the larger
coefficients uTi bexact/σi .

Moreover, the small filter factors φi (for i = N,N − 1, . . .) correspond
to factors (1− φi ) close to one, which are multiplied by small
coefficients uTi bexact/σi .

Hence we conclude that if the filters are suitably chosen, then the
norm of the regularization error cannot be large.
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Parameter Choice Methods

We describe three important parameter choice methods:

1 the discrepancy principle (Morozov),

2 generalized cross-validation (Wahba),

3 the L-curve criterion (Hansen).
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Effects of Parameter Choice

‖xfilt‖2
2 =

N∑
i=1

(
φi

uTi b

σi

)2

‖b− Axfilt‖2
2 =

N∑
i=1

(
(1− φi )uTi b

)2
.

For the TSVD method:

the norm of the solution xfilt = xk is a monotonically nondecreasing
function of k ,

the residual norm is monotonically nonincreasing.

For the Tikhonov method,

the norm of the solution xfilt = xα is a monotonically nonincreasing
function of α,

the residual norm is monotonically nondecreasing.
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The Discrepancy Principle
Required information: a good estimate of δ, the expected value of ‖e‖2

(the error in the observations b).

This is powerful information, but often it is hard to obtain a reliable
estimate of δ.

Idea: The regularization parameter should be chosen so that the norm of
the residual is approximately δ.

‖b− Axfilt‖2 = τδ,

where τ > 1 is some predetermined real number.

As δ → 0, the filtered solution satisfies xfilt → x.

How to compute the solution: Systematically try different values of k or α
to satisfy the equation. Use an optimization routine.

Cost: Given the SVD, the filter factors, and UTb, the cost is 2N mults.
and adds. for each trial to compute the residual norm.
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Generalized Cross-Validation (GCV)
Required information: In contrast to the discrepancy principle, the
parameter choice in GCV does not depend on a priori knowledge about the
noise variance.

Idea: If we omit a data value, then a good value of the parameter should
be able to predict the missing data point well.

How to compute the solution: Determine the parameter α that minimizes
the GCV function

G (α) =
‖(IN − AVΦΣ−1UT )b‖2

2

(trace(IN − AVΦΣ−1UT ))2
,

where

α is the Tikhonov parameter or, abusing notation, α = 1/k where k
is the TSVD cutoff.

VΦΣ−1UT is the matrix that maps the right hand side b onto the
regularized solution xα.
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Cost:

The numerator is just ‖b− Axfilt‖2
2, for which we already have a

formula.

We evaluate the denominator by noting that the trace of a matrix is
the sum of its main diagonal elements, and the trace is invariant
under orthogonal transformation, so

trace(IN − AVΦΣ−1UT ) = trace(IN −UΣVTVΦΣ−1UT )

= trace(U(IN −Φ)UT )

= trace(IN −Φ)

= N −
∑N

i=1φi ,

In particular, for the TSVD method we have
G (k) = ‖b− Axk‖2

2/(N − k)2.

Given the SVD, the filters and UTb we can therefore compute G (α)
in 2N multiplications and 3N additions.

02625 SCI Chapter 6 32 / 45



The GCV functions G (k) = ‖b− Axk‖2
2/(N − k)2 for TSVD (left) and

G (α) for Tikhonov regularization (right), applied to the same problem.
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The L-Curve Criterion
Required information: None.

Idea: The L-curve is a log-log plot of the norm of the regularized solution
versus the corresponding residual norm for each of a set of regularization
parameter values.

This plot often is in the shape of the letter L, from which it draws its
name. The log-log scale emphasizes the L shape.
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Intuitively, the best regularization parameter should lie at the corner of the
L, since

for values higher than this, the residual increases rapidly while the the
norm of the solution decreases only slowly,

for values smaller than this, the norm of the solution increases rapidly
without much decrease in residual.

Hence, we expect a solution near the corner to balance the regularization
and perturbation errors.

How to compute the solution. In practice, only a few points on the
L-curve need to be computed, and the corner is located by estimating the
point of maximum curvature.

Cost. Computing a point on the L-curve costs only 3N multiplications and
additions and N divisions.
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Which Choice Is Best?

Choosing an appropriate regularization parameter is very difficult.

Every parameter choice method, including the three we discussed, has
severe flaws:

either they require more information than is usually available,

or they fail to converge to the true solution as the error norm goes to
zero.
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Specific Difficulties/Flaws

The Discrepancy Principle is convergent as the noise goes to zero, but it
relies on information that is often unavailable or erroneous. Even with a
correct estimate of the variance, the solutions tend to be over-smoothed.

For GCV, the solution estimates fail to converge to the true solution as the
error norm goes to zero.

Another noted difficulty with GCV is that the graph for G can be very flat
near the minimizer, so that numerical methods have difficulty in
determining a good value of α.

The L-Curve Criterion is usually more tractable numerically, but its
limiting properties are far from ideal. The solution estimates fail to
converge to the true solution as N →∞ or as the error norm goes to zero.
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Implementation of GCV

We want to minimize

G (α) =
||(IN − AVΦΣ−1UT )b||22

(trace(IN − AVΦΣ−1UT ))2

so we need to evaluate it efficiently.

Specifically, in the case we are using the SVD, we obtain

G (α) =
||b− Axfilt||22

(trace(IN −Φ))2
.

A similar simplification can be done for spectral decompositions.

Consider now specific regularization methods . . .
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GCV for TSVD

G (k) =

N∑
i=k+1

(uTi b)2

(N − k)2
.

This is a discrete function. The truncation index is found by evaluating
G (k) for k = 1, 2, . . . ,N − 1, and finding the index at which G (k) attains
its minimum.

GCV for Tikhonov

G (α) =

N∑
i=1

(
uTi b

σ2
i + α2

)2

(
N∑
i=1

1

σ2
i + α2

)2
.

To find the minimum of this continuous function we can use Matlab’s
built-in routine fminbnd.
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For example, if we implement the GCV function as:

function G = GCV(alpha, bhat, s)

t = 1 ./ (s.^2 + alpha^2);

G = sum((bhat .* t).^2)/(sum(t)^2);

Then the “optimal” α can be found using:

alpha = fminbnd(@GCV,min(s),max(s),[ ],bhat,s);

where s = diag(Σ) and bhat = UTb.

If the spectral decomposition is used instead of the SVD, the values in s

and bhat may be complex, and so absolute values must be included with
the squaring operations.

See gcv tik and gcv tsvd for details on exploiting matrix structure in
these computations.
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A Few More Details on the Statistics of the Error

Consider the SVD analysis of the noise and the inverted noise.

We first note that the coefficients uTi b in the spectral expansion are the
elements of the vector

UTb = UTbexact + UTe.

Assume that the elements of the vector e are statistically independent,
with zero mean and identical standard deviation.

Then the expected value of e is the zero vector, while its covariance
matrix is a scaled identity matrix,

E(e) = 0, Cov(e) = E(e eT ) = η2IN ,

where η > 0 is the standard deviation.
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Then it follows that the expected value of the vector UTe is also the zero
vector, E(UTe) = 0, and that the covariance matrix for UTe is given by

Cov(UTe) = UTCov(e)U = η2UTU = η2IN .

Hence the coefficients uTi e behave, statistically, like the elements of the
noise vector e. The expected value of (uTi b)2 is

E
(
(uTi b)2

)
= E

(
(uTi bexact + uTi e)2

)
= E

(
(uTi bexact)

2 + 2uTi bexact u
T
i e + (uTi e)2

)
= (uTi bexact)

2 + η2

(because E(uTi e) = 0), and

E
(
|uTi b|

)
≈
√
E
(
(uTi b)2

)
=
√

(uTi bexact)2 + η2 .

For any index i where |uTi bexact| is somewhat larger than η we have
uTi b ≈ uTi bexact, while E(|uTi b|) ≈ η when |uTi bexact| is smaller than η.
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Recall this plot:

Plots of singular values σi (colored lines) and coefficients |uTi b| (black
dots) for the three blurring matrices A defined by various PSFs, and two
different noise levels in B = Bexact + E.
Top row: ‖E‖F = 3 · 10−4; bottom row: ‖E‖F = 3 · 10−2.

For small indices i the quantities uTi b are indeed dominated by the
component uTi bexact (with overall decreasing behavior).

For larger indices we have uTi b ≈ uTi e ≈ η whose statistical behavior
is identical to that of e.
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Assuming again that η2 IN is the covariance matrix for the errors e in the
right-hand side, the covariance matrix for the errors in the naive solution
xnaive = A−1b and the filtered solution xfilt = VΦΣ−1UTb are

Cov(xnaive) = η2 A−1A−T = η2VΣ−2VT = η2
N∑
i=1

1

σ2
i

vi v
T
i ,

Cov(xfilt) = η2VΦ−2VT = η2
N∑
i=1

φ2
i

σ2
i

vi v
T
i ,

showing that the elements in the latter covariance matrix are much smaller
in magnitude than those in the former.
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Summary

For TSVD regularization, we choose the truncation parameter k so
that the residual ‖b− Ax‖2 is reasonably small but the solution x
does not include components corresponding to small singular values
σk+1, . . . , σN .

Exploit structure in A when computing the TSVD or Tikhonov
solutions.

Practical implementations of filtering methods should avoid possible
division by zero.

Regularization by means of spectral filtering requires:

Choosing a suitable filter and a corresponding Φ so that the resolution
matrix VΦVT is sufficiently close to the identity matrix.
Finding a suitable balance between the regularization error and the
perturbation error.

No parameter choice method is perfect, and the choice between the
Discrepancy Principle, GCV, the L-Curve, and other methods is
dependent on what information is available about the problem.
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