Regularization by Spectral Filtering

We know already that filtering is needed when noise is present, since the solution $\mathbf{x}_{naive} = \mathbf{A}^{-1}\mathbf{b}$ is typically too contaminated by noise to be useful. Now we take a closer look at the filtering.

Filtering is also called *regularization* because it can be interpreted as enforcing certain regularity conditions on the solution.

The degree of regularization is governed by a *regularization parameter* which should be chosen carefully.

We focus on two candidate regularization methods

- TSVD,
- Tikhonov,

and three candidate ways to compute the regularization parameter

- the discrepancy principle,
- generalized cross validation,
- the L-curve criterion.

Spectral Filtering

• The **singular value decomposition** is used for "small" general problems, or problems with Kronecker structure, and the *filtered solution* takes the form

$$\mathbf{x}_{\mathsf{filt}} = \sum_{i=1}^{N} \phi_i \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \, \mathbf{v}_i.$$

 The spectral decomposition is used for problems where we can use the FFT and DCT algorithms:

$$\mathbf{x}_{\mathsf{filt}} = \sum_{i=1}^{N} \phi_i \frac{\tilde{\mathbf{u}}_i^T \mathbf{b}}{\lambda_i} \, \tilde{\mathbf{u}}_i,$$

where $\tilde{\mathbf{u}}_i$ are the FFT or DCT basis vectors.

We need to choose the filter factors ϕ_i to control the spectral contents of the deblurred images.

The Spectral Coordinate System

To simplify things, we use only the SVD in this discussion:

$$\mathbf{x}_{\mathsf{filt}} = \sum_{i=1}^{N} \phi_i \frac{\mathbf{u}_i^\mathsf{T} \mathbf{b}}{\sigma_i} \, \mathbf{v}_i$$

Note that we have a coordinate system determined by A:

- The data **b** is expressed in the coordinates $\mathbf{u}_i^T \mathbf{b}$ for the basis vectors \mathbf{u}_i (i = 1, ..., N).
- The solution x_{filt} is expressed in coordinates for the basis vectors v_i (i = 1,..., N).

This is the *spectral* coordinate system, since these vectors are the eigenvectors of $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ respectively.

Our goal is to scale the solution component in the direction \mathbf{v}_i by the filter factor ϕ_i in order to reduce the effect of error in the component $\mathbf{u}_i^T \mathbf{b}$.

Method 1: The Truncated SVD (TSVD) Method

For this method, we define the filter factors to be

- one for large singular values,
- and zero for the rest.

More precisely,

$$\phi_i \equiv \begin{cases} 1, & i = 1, \dots, k \\ 0, & i = k + 1, \dots, N. \end{cases}$$

The parameter k is called the *truncation parameter* and it determines the number of SVD components maintained in the regularized solution. Note that k always satisfies $1 \le k \le N$.

This is the method we used in Chapter 1 to improve upon the naive method.

Method 2: The Tikhonov Method

For this method we define the filter factors to be

$$\phi_i = \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2}, \qquad i = 1, \dots, N,$$

where $\alpha > 0$ is called the regularization parameter. This choice of filter factors yields the solution vector \mathbf{x}_{α} for the minimization problem

$$\min_{\mathbf{x}} \left\{ \|\mathbf{b} - \mathbf{A} \mathbf{x}\|_{2}^{2} + \alpha^{2} \|\mathbf{x}\|_{2}^{2} \right\}.$$

This choice keeps $\|\mathbf{b} - \mathbf{A} \mathbf{x}_{\alpha}\|_2$ small, but not so small that

$$\|\mathbf{x}_{\alpha}\|_{2}^{2} = \sum_{i=1}^{N} \phi_{i}^{2} \frac{(\mathbf{u}_{i}^{T} \mathbf{b})^{2}}{\sigma_{i}^{2}}.$$

is too big. Thus, our minimization problem ensures that both the norm of the residual $\mathbf{b} - \mathbf{A} \mathbf{x}_{\alpha}$ and the norm of the solution \mathbf{x}_{α} are somewhat small.

How Does α Affect the Tikhonov Solution?

Suppose $\sigma_i \gg \alpha$ – which is the case for the first filter factors.

Then, using the Taylor expansion

$$(1+\epsilon)^{-1} = 1 - \epsilon + \epsilon^2 + O(\epsilon^3),$$

we obtain

$$\phi_i = \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2} = \frac{1}{1 + \alpha^2 / \sigma_i^2} = 1 - \frac{\alpha^2}{\sigma_i^2} + \frac{\alpha^4}{\sigma_i^4} + \dots$$

Affect on Components for Small Singular Values

Suppose $\sigma_i \ll \alpha$ – which is the case for the last filter factors. Again using the Taylor expansion of $(1 + \epsilon)^{-1}$, we obtain

$$\phi_i = \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2} = \frac{\sigma_i^2}{\alpha^2} \frac{1}{1 + \sigma_i^2/\alpha^2} = \frac{\sigma_i^2}{\alpha^2} \left(1 - \frac{\sigma_i^2}{\alpha^2} + \frac{\sigma_i^4}{\alpha^4} + \cdots\right).$$

Thus we can conclude that the Tikhonov filter factors satisfy

$$\phi_{i} = \begin{cases} 1 - \left(\frac{\alpha}{\sigma_{i}}\right)^{2} + O\left(\left(\frac{\alpha}{\sigma_{i}}\right)^{4}\right), & \sigma_{i} \gg \alpha \\ \left(\frac{\sigma_{i}}{\alpha}\right)^{2} + O\left(\left(\frac{\sigma_{i}}{\alpha}\right)^{4}\right), & \sigma_{i} \ll \alpha. \end{cases}$$

Answer to How α Affects the Tikhonov Solution

- $\phi_i \approx 1$ when $\alpha \ll \sigma_i$,
- $\phi_i \approx \sigma_i^2 / \alpha^2$ when $\alpha \gg \sigma_i$.

Therefore, α determines the breakpoint at which the filter factors change nature: the point at which $\sigma_i \approx \alpha$

The Tikhonov filter factors $\phi_i = \sigma_i^2 / (\sigma_i^2 + \alpha^2)$ versus σ_i for three different values of the regularization parameter α .

Implementation of Filtering Methods

If all of the singular values of ${\boldsymbol{\mathsf{A}}}$ are nonzero, then the naive solution can be written as

$$\mathbf{x}_{\mathsf{naive}} = \mathbf{A}^{-1} \mathbf{b} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathcal{T}} \mathbf{b}$$
 .

Similarly, the spectral filter solution can be written as

$$\mathbf{x}_{filt} = \mathbf{V} \mathbf{\Phi} \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{b}$$

where Φ is a diagonal matrix consisting of the filter factors ϕ_i for the particular method:

- 1's and 0's for TSVD, and
- $\sigma_i^2/(\sigma_i^2 + \alpha^2)$ for Tikhonov.

Ditto, Spectral Decomposition

If all of the eigenvalues of $\boldsymbol{\mathsf{A}}$ are nonzero, then the naive solution can be written as

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \widetilde{\mathbf{U}}\Lambda^{-1}\widetilde{\mathbf{U}}^*\mathbf{b}$$
 .

Similarly, the spectral filter solution can be written as

$$\mathbf{x}_{\mathsf{filt}} = \widetilde{\mathbf{U}} \mathbf{\Phi} \mathbf{\Lambda}^{-1} \widetilde{\mathbf{U}}^* \mathbf{b}$$

where Φ is a diagonal matrix consisting of the filter factors ϕ_i for the particular method:

• 1's and 0's for TSVD, and

•
$$|\lambda_i|^2/(|\lambda_i|^2 + \alpha^2)$$
 for Tikhonov.

Computational issues include:

- Exploiting structure in A (BCCB, etc.).
- Specifying the regularization parameter (k or α).
- Avoiding divide-by-zero in " Σ^{-1} ".

Exploiting Structure in A

Recall:

- Structured matrices arise in image deblurring problems: e.g., Kronecker products, BTTB, etc.
- The SVD or spectral decomposition of such matrices can be computed efficiently.
- The "naive" inverse solution is also easy.

The TSVD and Tikhonov solutions can also be computed efficiently, using computations similar to those for the naive solutions.

A Convenient Rewrite

Old equation:

$$\mathsf{x}_{\mathsf{filt}} = \mathsf{V} \mathbf{\Phi} \Sigma^{-1} \mathsf{U}^{\mathsf{T}} \mathsf{b}$$

New equation:

$$\mathbf{x}_{\mathsf{filt}} = \mathbf{V} \mathbf{\Sigma}_{\mathsf{filt}}^{-1} \mathbf{U}^T \mathbf{b}$$

where $\Sigma_{\text{filt}}^{-1} = \Phi \Sigma^{-1}$.

Thus, given the filter factors, it is simple to to compute \mathbf{x}_{filt} .

Filtered Solutions for Structured Matrices

Given:

```
P = PSF array
center = [row, col] = center of PSF
B = blurred image
BC = string denoting boundary condition (e.g., 'zero')
Phi = filter factors
```

For periodic boundary conditions, use:

```
S = fft2( circshift(P, 1 - center) );
Sfilt = Phi ./ S;
Xfilt = real( ifft2( fft2(B) .* Sfilt ) );
```

Matlab's Image Processing Toolbox has two implementations deconvreg and deconvwnr of this procedure for Tikhonov reg. For reflexive boundary conditions, with doubly symmetric PSF, use:

```
e1 = zeros(size(P));, e1(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(e1);
Sfilt = Phi ./ S;
Xfilt = idct2( dct2(B) .* Sfilt );
```

For a *separable PSF*, use:

```
[Ar, Ac] = kronDecomp(P, center, BC);
[Uc, Sc, Vc] = svd(Ac);
[Ur, Sr, Vr] = svd(Ar);
S = diag(Sc) * diag(Sr)';
Sfilt = Phi ./ S;
Xfilt = Vc * ( (Uc' * B * Ur) .* Sfilt ) * Vr';
```

These methods do not have similar implementations in the IPT.

Specifying the Regularization Parameter

- The TSVD truncation index should satisfy $1 \le k \le N$.
- The Tikhonov parameter should satisfy $\sigma_n \leq \alpha \leq \sigma_1$.

Later we discuss *automatic* methods for estimating good choices for these parameters, but for now we can try to choose them experimentally. In the case of TSVD, we might specify a tolerance below which all singular (spectral) values are truncated. In this case the filter factors can be computed very easily as:

Phi = (abs(S) >= tol);

By experimenting with various values of tol, and displaying the computed filtered solution Xfilt, we can see the effects of regularization.

In the case of Tikhonov regularization, we can specify a value for α , and compute the filter factors from the singular (spectral) values as follows:

Phi = abs(S).^2 ./ (abs(S).^2 + alpha^2);

Note that the use of abs is necessary in the case when FFTs are used.

Again, we can experiment with various values of alpha and display the filtered solution to see the effects of regularization.

Avoiding Divide-by-Zero

In computing the quantity

Sfilt = Phi ./ S

we will commit divide-by-zero if any singular (spectral) value is zero. This will cause some values of Sfilt to be set to Inf (or to NaN).

To avoid this, perform the computation only for nonzero values of S, and set all other Sfilt values to 0.

```
idx = (S ~= 0);
Sfilt = zeros(size(Phi));
Sfilt(idx) = Phi(idx) ./ S(idx);
```

Very Important Points

- Spectral filtering amounts to modifying the spectral components of the naive solution.
- Different methods have different filter factors, but their purpose is always to filter out those components dominated by noise.
- There are efficient implementations whose complexity is identical to that of naive inversion.
- Robust implementation requires a minimum of overhead.

Next: how do we choose α and k (or tol) automatically?

Regularization Errors and Perturbation Errors

Recall: \mathbf{x}_{filt} can always be written in the SVD framework as

$$\mathbf{x}_{\mathsf{filt}} = \mathbf{V} \, \mathbf{\Phi} \, \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{b},$$

where ${f \Phi}$ is a diagonal matrix consisting of the spectral filters ϕ_i

0s and 1s for TSVD, $\sigma_i^2/(\sigma_i^2 + \alpha^2)$ for Tikhonov, etc.

Equipped with this formulation, we can now easily separate the *two different types of errors* in a regularized solution

$$\begin{aligned} \mathbf{x}_{\mathsf{filt}} &= \mathbf{V} \Phi \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{b} \\ &= \mathbf{V} \Phi \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{b}_{\mathsf{exact}} + \mathbf{V} \Phi \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{e} \\ &= \mathbf{V} \Phi \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{A} \, \mathbf{x} + \mathbf{V} \Phi \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{e} \\ &= \mathbf{V} \Phi \, \mathbf{V}^{\mathsf{T}} \mathbf{x} + \mathbf{V} \Phi \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{e}. \end{aligned}$$

$$\mathbf{x} - \mathbf{x}_{\mathsf{filt}} = (\mathbf{x} - \mathbf{V} \, \boldsymbol{\Phi} \, \mathbf{V}^{\mathsf{T}} \mathbf{x}) - (\mathbf{V} \, \boldsymbol{\Phi} \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{e}).$$

Two Contributions to the Errors:

- Regularization error $(\mathbf{I}_N \mathbf{V} \Phi \mathbf{V}^T) \mathbf{x}$, caused by using a regularized inverse $\mathbf{V} \Phi \Sigma^{-1} \mathbf{U}^T$ in order to obtain the filtering.
- Perturbation error $\mathbf{V} \Phi \Sigma^{-1} \mathbf{U}^T \mathbf{e}$, which consists of the inverted and filtered noise.

Changing the *regularization parameter* (k or α) changes the size of the errors.

- When too many filter factors ϕ_i are close to one, then
 - regularization error is small / perturbation error is large. The solution is *under-smoothed*.
- When too few filter factors are close to one, then
 - regularization error is large / perturbation error is small.

The solution is *over-smoothed*.

A proper choice of k or α balances the two types of errors.

Example

Consider TSVD as the regularization method.

We see that the two types of errors are balanced for $k \approx 200$.

The 2-norms of the regularization error $(\mathbf{I}_N - \mathbf{V} \Phi \mathbf{V}^T) \mathbf{x}$ and the perturbation error $\mathbf{V} \Phi \Sigma^{-1} \mathbf{U}^T \mathbf{e}$ versus the truncation parameter k for the TSVD method.

The Resolution Matrix

The matrix $\mathbf{V} \Phi \mathbf{V}^{T}$ is called the *resolution matrix* for the regularized solution; it describes the mapping between the exact solution and the filtered component in \mathbf{x} .

- The closer the resolution matrix is to the identity, the smaller the regularization error, but the inverted noise will dominate.
- On the other hand, when most of the filter factors are small (or zero), then the inverted noise is heavily damped (the perturbation error is small) – but the resolution matrix is far from the identity and the regularization error is large.

The Importance of the Discrete Picard Condition

The reason why we are able to compute regularized approximations to the exact solution, in spite of the large condition number, is that spectral filtering suppresses much of the inverted noise while – at the same time – keeping the regularization error small.

This is possible because the deblurring problem satisfies the *discrete Picard condition:* the exact right-hand side exhibits decaying expansion coefficients when expressed in the spectral basis.

As a consequence, the *noise* affects primarily the *high-frequency components* which are associated with the *smaller* singular values, and which are damped by the spectral filtering method.

What is left in the regularized solution is primarily the *low-frequency* SVD components associated with the larger singular values, and these components are dominated by the contributions from the *exact* right-hand side.

The Regularization Error

Consider the norm of the regularization error:

$$\begin{aligned} \| (\mathbf{I}_N - \mathbf{V} \, \mathbf{\Phi} \, \mathbf{V}^T) \, \mathbf{x} \|_2^2 &= \| (\mathbf{I}_N - \mathbf{\Phi}) \, \mathbf{V}^T \mathbf{x} \|_2^2 \\ &= \| (\mathbf{I}_N - \mathbf{\Phi}) \, \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{b}_{\text{exact}} \|_2^2 \\ &= \sum_{i=1}^N \left((1 - \phi_i) \, \frac{\mathbf{u}_i^T \mathbf{b}_{\text{exact}}}{\sigma_i} \right)^2. \end{aligned}$$

On the next slide we analyze this expression

$$\|(\mathbf{I}_N - \mathbf{V} \, \mathbf{\Phi} \, \mathbf{V}^T) \, \mathbf{x}\|_2^2 = \sum_{i=1}^N \left((1 - \phi_i) \, \frac{\mathbf{u}_i^T \mathbf{b}_{\text{exact}}}{\sigma_i} \right)^2$$

- Due to the discrete Picard condition, the coefficients |**u**_i^T**b**_{exact}/σ_i| decay (on average).
- Since the first filter factors ϕ_i (for i = 1, 2, ...) are close to one, the factors $(1 \phi_i)$ dampen the contributions to the error from the larger coefficients $\mathbf{u}_i^T \mathbf{b}_{\text{exact}} / \sigma_i$.
- Moreover, the small filter factors φ_i (for i = N, N − 1,...) correspond to factors (1 − φ_i) close to one, which are multiplied by small coefficients u^T_i b_{exact}/σ_i.
- Hence we conclude that if the filters are suitably chosen, then the norm of the regularization error cannot be large.

Parameter Choice Methods

We describe three important parameter choice methods:

- the discrepancy principle (Morozov),
- generalized cross-validation (Wahba),
- **()** the L-curve criterion (Hansen).

Effects of Parameter Choice

$$\|\mathbf{x}_{\text{filt}}\|_2^2 = \sum_{i=1}^N \left(\phi_i \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i}\right)^2$$
$$\|\mathbf{b} - \mathbf{A} \mathbf{x}_{\text{filt}}\|_2^2 = \sum_{i=1}^N \left((1 - \phi_i) \mathbf{u}_i^T \mathbf{b}\right)^2$$

.

For the TSVD method:

- the norm of the solution x_{filt} = x_k is a monotonically nondecreasing function of k,
- the residual norm is monotonically nonincreasing.
- For the Tikhonov method,
 - the norm of the solution $\mathbf{x}_{\mathsf{filt}} = \mathbf{x}_{\alpha}$ is a monotonically nonincreasing function of α ,
 - the residual norm is monotonically nondecreasing.

The Discrepancy Principle

Required information: a good estimate of δ , the expected value of $\|\mathbf{e}\|_2$ (the error in the observations **b**).

This is powerful information, but often it is hard to obtain a reliable estimate of $\delta.$

Idea: The regularization parameter should be chosen so that the norm of the residual is approximately δ .

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}_{\mathsf{filt}}\|_2 = \tau \delta,$$

where $\tau > 1$ is some predetermined real number.

As $\delta \rightarrow 0$, the filtered solution satisfies $\mathbf{x}_{filt} \rightarrow \mathbf{x}$.

How to compute the solution: Systematically try different values of k or α to satisfy the equation. Use an optimization routine.

Cost: Given the SVD, the filter factors, and $\mathbf{U}^T \mathbf{b}$, the cost is 2*N* mults. and adds. for each trial to compute the residual norm.

Generalized Cross-Validation (GCV)

Required information: In contrast to the discrepancy principle, the parameter choice in GCV does not depend on a priori knowledge about the noise variance.

Idea: If we omit a data value, then a good value of the parameter should be able to predict the missing data point well.

How to compute the solution: Determine the parameter α that minimizes the GCV function

$$G(\alpha) = \frac{\|(\mathbf{I}_N - \mathbf{A} \mathbf{V} \mathbf{\Phi} \boldsymbol{\Sigma}^{-1} \mathbf{U}^T) \mathbf{b}\|_2^2}{(\operatorname{trace}(\mathbf{I}_N - \mathbf{A} \mathbf{V} \mathbf{\Phi} \boldsymbol{\Sigma}^{-1} \mathbf{U}^T))^2},$$

where

- α is the Tikhonov parameter or, abusing notation, $\alpha=1/k$ where k is the TSVD cutoff.
- $\mathbf{V} \Phi \Sigma^{-1} \mathbf{U}^{T}$ is the matrix that maps the right hand side **b** onto the regularized solution \mathbf{x}_{α} .

Cost:

1

- $\bullet\,$ The numerator is just $\| {\bm b} {\bm A}\, {\bm x}_{filt} \|_2^2,$ for which we already have a formula.
- We evaluate the denominator by noting that the trace of a matrix is the sum of its main diagonal elements, and the trace is invariant under orthogonal transformation, so

$$\begin{aligned} \mathsf{trace}(\mathbf{I}_N - \mathbf{A} \mathbf{V} \, \mathbf{\Phi} \, \boldsymbol{\Sigma}^{-1} \mathbf{U}^T) &= \operatorname{trace}(\mathbf{I}_N - \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Phi} \boldsymbol{\Sigma}^{-1} \mathbf{U}^T) \\ &= \operatorname{trace}(\mathbf{U}(\mathbf{I}_N - \mathbf{\Phi}) \mathbf{U}^T) \\ &= \operatorname{trace}(\mathbf{I}_N - \mathbf{\Phi}) \\ &= N - \sum_{i=1}^N \phi_i \,, \end{aligned}$$

In particular, for the TSVD method we have $G(k) = \|\mathbf{b} - \mathbf{A}\mathbf{x}_k\|_2^2 / (N - k)^2$.

Given the SVD, the filters and U^Tb we can therefore compute G(α) in 2N multiplications and 3N additions.

The GCV functions $G(k) = \|\mathbf{b} - \mathbf{A}\mathbf{x}_k\|_2^2/(N-k)^2$ for TSVD (left) and $G(\alpha)$ for Tikhonov regularization (right), applied to the same problem.

The L-Curve Criterion

Required information: None.

Idea: The L-curve is a log-log plot of the norm of the regularized solution versus the corresponding residual norm for each of a set of regularization parameter values.

This plot often is in the shape of the letter L, from which it draws its name. The log-log scale emphasizes the L shape.

02625 SCI

Intuitively, the best regularization parameter should lie at the corner of the L, since

- for values higher than this, the residual increases rapidly while the the norm of the solution decreases only slowly,
- for values smaller than this, the norm of the solution increases rapidly without much decrease in residual.

Hence, we expect a solution near the corner to balance the regularization and perturbation errors.

How to compute the solution. In practice, only a few points on the L-curve need to be computed, and the corner is located by estimating the point of maximum curvature.

Cost. Computing a point on the L-curve costs only 3N multiplications and additions and N divisions.

Choosing an appropriate regularization parameter is very difficult.

Every parameter choice method, including the three we discussed, has severe flaws:

- either they require more information than is usually available,
- or they fail to converge to the true solution as the error norm goes to zero.

Specific Difficulties/Flaws

The *Discrepancy Principle* is convergent as the noise goes to zero, but it relies on information that is often unavailable or erroneous. Even with a correct estimate of the variance, the solutions tend to be over-smoothed.

For *GCV*, the solution estimates fail to converge to the true solution as the error norm goes to zero.

Another noted difficulty with GCV is that the graph for G can be very flat near the minimizer, so that numerical methods have difficulty in determining a good value of α .

The *L*-Curve Criterion is usually more tractable numerically, but its limiting properties are far from ideal. The solution estimates fail to converge to the true solution as $N \rightarrow \infty$ or as the error norm goes to zero.

Implementation of GCV

We want to minimize

$$G(\alpha) = \frac{||(\mathbf{I}_N - \mathbf{A}\mathbf{V}\boldsymbol{\Phi}\boldsymbol{\Sigma}^{-1}\mathbf{U}^T)\mathbf{b}||_2^2}{(\operatorname{trace}(\mathbf{I}_N - \mathbf{A}\mathbf{V}\boldsymbol{\Phi}\boldsymbol{\Sigma}^{-1}\mathbf{U}^T))^2}$$

so we need to evaluate it efficiently.

Specifically, in the case we are using the SVD, we obtain

$$\mathcal{G}(lpha) = rac{||\mathbf{b} - \mathbf{A}\mathbf{x}_{\mathsf{filt}}||_2^2}{(\mathsf{trace}(\mathbf{I}_N - \mathbf{\Phi}))^2} \,.$$

A similar simplification can be done for spectral decompositions. Consider now specific regularization methods . . .

GCV for TSVD

$$G(k) = rac{\displaystyle\sum_{i=k+1}^{N} (\mathbf{u}_i^T \mathbf{b})^2}{(N-k)^2}.$$

This is a *discrete* function. The truncation index is found by evaluating G(k) for k = 1, 2, ..., N - 1, and finding the index at which G(k) attains its minimum.

GCV for Tikhonov

$$G(\alpha) = \frac{\sum_{i=1}^{N} \left(\frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}^{2} + \alpha^{2}}\right)^{2}}{\left(\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2} + \alpha^{2}}\right)^{2}}.$$

To find the minimum of this *continuous* function we can use Matlab's built-in routine fminbnd.

For example, if we implement the GCV function as:

```
function G = GCV(alpha, bhat, s)
t = 1 ./ (s.^2 + alpha^2);
G = sum((bhat .* t).^2)/(sum(t)^2);
```

Then the "optimal" α can be found using:

alpha = fminbnd(@GCV,min(s),max(s),[],bhat,s);

where $s = diag(\Sigma)$ and $bhat = \mathbf{U}^T \mathbf{b}$.

If the spectral decomposition is used instead of the SVD, the values in s and bhat may be complex, and so absolute values must be included with the squaring operations.

See gcv_tik and gcv_tsvd for details on exploiting matrix structure in these computations.

A Few More Details on the Statistics of the Error

Consider the SVD analysis of the noise and the inverted noise.

We first note that the coefficients $\mathbf{u}_i^T \mathbf{b}$ in the spectral expansion are the elements of the vector

$$\mathbf{U}^{\mathsf{T}}\mathbf{b} = \mathbf{U}^{\mathsf{T}}\mathbf{b}_{\mathsf{exact}} + \mathbf{U}^{\mathsf{T}}\mathbf{e}.$$

Assume that the elements of the vector \mathbf{e} are statistically independent, with zero mean and identical standard deviation.

Then the expected value of \mathbf{e} is the zero vector, while its covariance matrix is a scaled identity matrix,

$$\mathcal{E}(\mathbf{e}) = \mathbf{0}, \qquad \operatorname{Cov}(\mathbf{e}) = \mathcal{E}(\mathbf{e} \, \mathbf{e}^{T}) = \eta^{2} \mathbf{I}_{N},$$

where $\eta > 0$ is the standard deviation.

Then it follows that the expected value of the vector $\mathbf{U}^T \mathbf{e}$ is also the zero vector, $\mathcal{E}(\mathbf{U}^T \mathbf{e}) = \mathbf{0}$, and that the covariance matrix for $\mathbf{U}^T \mathbf{e}$ is given by

$$\operatorname{Cov}(\mathbf{U}^{\mathsf{T}}\mathbf{e}) = \mathbf{U}^{\mathsf{T}}\operatorname{Cov}(\mathbf{e})\,\mathbf{U} = \eta^{2}\mathbf{U}^{\mathsf{T}}\mathbf{U} = \eta^{2}\mathbf{I}_{N}.$$

Hence the coefficients $\mathbf{u}_i^T \mathbf{e}$ behave, statistically, like the elements of the noise vector \mathbf{e} . The expected value of $(\mathbf{u}_i^T \mathbf{b})^2$ is

$$\begin{aligned} \mathcal{E}((\mathbf{u}_i^T \mathbf{b})^2) &= \mathcal{E}\left((\mathbf{u}_i^T \mathbf{b}_{\mathsf{exact}} + \mathbf{u}_i^T \mathbf{e})^2\right) \\ &= \mathcal{E}\left((\mathbf{u}_i^T \mathbf{b}_{\mathsf{exact}})^2 + 2 \, \mathbf{u}_i^T \mathbf{b}_{\mathsf{exact}} \, \mathbf{u}_i^T \mathbf{e} + (\mathbf{u}_i^T \mathbf{e})^2\right) \\ &= (\mathbf{u}_i^T \mathbf{b}_{\mathsf{exact}})^2 + \eta^2 \end{aligned}$$

(because $\mathcal{E}(\mathbf{u}_i^T \mathbf{e}) = 0$), and

$$\mathcal{E}(|\mathbf{u}_i^T \mathbf{b}|) \approx \sqrt{\mathcal{E}((\mathbf{u}_i^T \mathbf{b})^2)} = \sqrt{(\mathbf{u}_i^T \mathbf{b}_{\text{exact}})^2 + \eta^2}$$

For any index *i* where $|\mathbf{u}_i^T \mathbf{b}_{\text{exact}}|$ is somewhat larger than η we have $\mathbf{u}_i^T \mathbf{b} \approx \mathbf{u}_i^T \mathbf{b}_{\text{exact}}$, while $\mathcal{E}(|\mathbf{u}_i^T \mathbf{b}|) \approx \eta$ when $|\mathbf{u}_i^T \mathbf{b}_{\text{exact}}|$ is smaller than η .

Recall this plot:

Plots of singular values σ_i (colored lines) and coefficients $|\mathbf{u}_i^T \mathbf{b}|$ (black dots) for the three blurring matrices **A** defined by various PSFs, and two different noise levels in $\mathbf{B} = \mathbf{B}_{\text{exact}} + \mathbf{E}$. Top row: $\|\mathbf{E}\|_{\mathsf{F}} = 3 \cdot 10^{-4}$; bottom row: $\|\mathbf{E}\|_{\mathsf{F}} = 3 \cdot 10^{-2}$.

- For small indices *i* the quantities u^T_ib are indeed dominated by the component u^T_ib_{exact} (with overall decreasing behavior).
- For larger indices we have u^T_ib ≈ u^T_ie ≈ η whose statistical behavior is identical to that of e.

Assuming again that $\eta^2 \mathbf{I}_N$ is the covariance matrix for the errors \mathbf{e} in the right-hand side, the covariance matrix for the errors in the naive solution $\mathbf{x}_{naive} = \mathbf{A}^{-1}\mathbf{b}$ and the filtered solution $\mathbf{x}_{filt} = \mathbf{V} \mathbf{\Phi} \boldsymbol{\Sigma}^{-1} \mathbf{U}^T \mathbf{b}$ are

$$\mathsf{Cov}(\mathbf{x}_{\mathsf{naive}}) = \eta^2 \, \mathbf{A}^{-1} \mathbf{A}^{-T} = \eta^2 \mathbf{V} \, \boldsymbol{\Sigma}^{-2} \mathbf{V}^T = \eta^2 \sum_{i=1}^N \frac{1}{\sigma_i^2} \, \mathbf{v}_i \, \mathbf{v}_i^T,$$

$$\operatorname{Cov}(\mathbf{x}_{\mathsf{filt}}) = \eta^2 \mathbf{V} \, \boldsymbol{\Phi}^{-2} \mathbf{V}^T = \eta^2 \sum_{i=1}^N \frac{\phi_i^2}{\sigma_i^2} \, \mathbf{v}_i \, \mathbf{v}_i^T,$$

showing that the elements in the latter covariance matrix are much smaller in magnitude than those in the former.

Summary

- For TSVD regularization, we choose the truncation parameter k so that the residual ||**b Ax**||₂ is reasonably small but the solution **x** does not include components corresponding to small singular values σ_{k+1},..., σ_N.
- Exploit structure in **A** when computing the TSVD or Tikhonov solutions.
- Practical implementations of filtering methods should avoid possible division by zero.
- Regularization by means of spectral filtering requires:
 - Choosing a suitable filter and a corresponding Φ so that the resolution matrix $\mathbf{V} \Phi \mathbf{V}^{T}$ is sufficiently close to the identity matrix.
 - Finding a suitable balance between the regularization error and the perturbation error.
- No parameter choice method is perfect, and the choice between the Discrepancy Principle, GCV, the L-Curve, and other methods is dependent on what information is available about the problem.