
What is Image Deblurring?
When we use a camera, we want the recorded image to be a faithful
representation of the scene that we see – but every image is more or less
blurry, depending on the circumstances.

Image deblurring is the task of processing the image to make it a better
representation of the scene – sharper and more useful.

Deblurring is model based, in contrast to image enhancement techniques
used, e.g., in PhotoShop and movie restoration.
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Sources of Blurry Images
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Case: Motion Blur

Motion blur arises frequently in several applications.

The two images are examples of spatially variant blur, where the blurring
depends on the location in the image.
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Why are Images Blurry?

Some blurring always arises in the recording of a digital image, because it
is unavoidable that scene information “spills over” to neighboring pixels.

Some blurring arises within the camera:

The optical system in a camera lens may be out of focus, so that the
incoming light is smeared out.

The lens is not perfect, and light rays with different wavelengths
follow slightly different paths (aberration).

Other kinds of blurring come from outside the camera:

The camera or the object moved during the exposure.

In astronomical imaging the incoming light in the telescope is slightly
bent by turbulence in the atmosphere.
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Errors in Digital Images

In addition to the unavoidable blur, there are errors in our data.

1 False light, background radiation, etc.

2 Defects in the recording process, e.g., slight variations in the film or
slight differences in the digital recording device.

3 Approximation/truncation errors due to the resolution level
of the pixels, i.e., recording an integer approximation to a continuous
quantity (typically uniformly distributed noise).

8-bit image with 28 = 256 graylevels: ±0.5 error → 0.3%.

4 Noise generated during the conversion of the light to an electrical
signal (typically Gaussian noise).

5 Photon noise due to the nature of the light itself, in the form
of photons (typically Poisson noise).
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Why is Image Deblurring Important?

It is a useful tool for our vacation pictures (^_^)

More importantly, it enables us to extract maximal information in
cases where it is expensive – or even impossible – to obtain an image
without blur:

astronomical images,
medical images, etc.

It has important applications in our daily life: for example, bar-code
readers used in stores and by shipping companies must be able to
compensate for imperfections in the scanner optics.

Also important applications in biometrics:

iris or retina scanning,
fingerprint identification, etc.
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How Can Blur be Reduced or Eliminated?

Use photo editing software (e.g., PhotoShop) to perform “cosmetic”
improvements: sharpen, filter, etc.

Image deblurring is the scientific approach, where we seek to recover the
original, sharp image by using a mathematical model of the blurring
process.

Key issue 1: Some information on the lost details is indeed still present in
the blurred image – but this information is “hidden” and can only be
recovered if we know the details of the blurring process.

Key issue 2: Unfortunately there is no hope that we can recover the
original image exactly due to the error in our data.
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Our Challenge:

Devise efficient and reliable algorithms for recovering as much information
as possible from the given (imperfect) data.

This process involves several key ingredients:

1 A study of the mathematical model.

2 Derivation of the corresponding matrix structure.

3 Efficient implementation (large-scale problem).

4 Understanding the conditioning of the problem (ill-posed).

5 The choice of stabilization parameter.

6 The treatment of more general deblurring problems by iterative
methods and other deblurring algorithms.
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Images Are Arrays of Numbers = Pixels

Images are typically recorded by a CCD (charge-coupled device), an array
of tiny detectors arranged in a rectangular grid, able to record the amount,
or intensity, of the light that hits each detector.

A digital image is composed of picture elements called pixels.

Each pixel is assigned an intensity, meant to characterize the color of a
small rectangular segment of the scene. The intensity can be binary
(black&white image), an integer (grayscale image) or a vector of integers
(color/multispectral image).

A small image typically has around 2562 = 65, 536 pixels while a high-
resolution image often has 5 to 10 million pixels.

We need to represent images as arrays of numbers in order to use
mathematical techniques for deblurring.
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Grayscale Images

Think of a grayscale digital image as a rectangular m × n array, whose
entries represent light intensities captured by the detectors.
Consider the following 9× 16 array:

X =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 8 0 0 0 0 4 4 0 0 0 0 0 0 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 8 8 8 0 4 4 0 3 3 3 3 3 0
0 8 8 8 8 8 0 4 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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If we enter X into Matlab and display the array with the commands
imagesc(X), axis image, colormap(gray) then we obtain

Notice:

8 is displayed as white

0 is displayed as black.

Values in between are shades of gray.
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Color Images
Color images are usually stored as three components, which represent their
intensities on the red, green, and blue scales. Examples:

(1; 0; 0) is red (0; 0; 1) is blue (1; 1; 0) is yellow.

Other colors can be obtained with different choices of intensities.

For such RGB images, we need three arrays (of the same size) or, more
practically, a single 3D-array, to represent a color image.
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An Example of a Color Image
Let X be a three-dimensional Matlab array of dimensions 9× 16× 3:

The command imagesc(X) gives the picture
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How do We Model the Blurring Process?

We must devise a mathematical model that relates the given blurred
image to the unknown true image.

To fix notation:

X ∈ Rm×n represents the desired sharp image,

B ∈ Rm×n denotes the recorded blurred image.
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An Important Special Case

Assume that the blurring of the columns in the image is independent of
the blurring of the rows.

When this is the case, then there exist two matrices Ac ∈ Rm×m and
Ar ∈ Rn×n, such that

AcXAT
r = B.

Left multiplication with the matrix Ac applies the same vertical blurring
operation to all the n columns xj of X, because

AcX = Ac

[
x1 x2 · · · xn

]
=
[
Acx1 Acx2 · · · Acxn

]
.

Right multiplication with AT
r applies the same horizontal blurring to all

the m rows of X.

Since matrix multiplication is associative, (AcX)AT
r = Ac (XAT

r ), it does
not matter in which order we perform the two blurrings.

02625 SCI Chapter 1 15 / 35



What Makes Deblurring Hard?

A First Attempt at Deblurring.

Now, this looks simple! If

AcXAT
r = B,

then
Xnaive = A−1c BA−Tr .

(We use the notation A−Tr = (AT
r )−1 = (A−1r )T .)

So do we already have an algorithm for deblurring . . . ?
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The Results of Our First Algorithm

The “naive” reconstruction of the pumpkin image, obtained by computing
Xnaive = A−1c BA−Tr via Gaussian elimination on both Ac and Ar (in
Matlab: Ac\B/Ar’).

Xnaive is completely dominated by the influence of the noise.
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What Went Wrong?

To understand why this naive approach fails, we take a closer look.

Exact (unknown) image = X

Noise-free blurred version of image = Bexact = AcXAT
r

Unfortunately, we don’t know Bexact!

Small random errors (noise) are present in the recorded data.

Even the representation of the image as an integer (typically with 8–10
bits) introduces small errors.

Let us assume that this noise is additive and statistically uncorrelated with
the image. Then the recorded blurred image B is really given by

B = Bexact + E = AcXAT
r + E,

where the matrix E (of the same dimensions as B) represents the noise in
the recorded image.
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Why Did the Naive Reconstruction Fail?

The naive reconstruction computes

Xnaive = A−1c BA−Tr = A−1c BexactA
−T
r + A−1c EA−Tr

and
Xnaive = X + A−1c EA−Tr .

The term A−1c EA−Tr , which we can informally call inverted noise,
represents the contribution to the reconstruction from the additive noise.

This inverted noise will dominate the solution if A−1c EA−Tr has larger
elements than X. Unfortunately, in many situations, the inverted noise
indeed dominates.

Apparently, image deblurring is not as simple as it first appears.

We will spend this course developing deblurring methods that are able to
correctly handle (or rather suppress) the inverted noise.
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How do We Model More General Blurring?

We assume throughout this course that the blurring, i.e., the operation of
going from the sharp image to the blurred image, is linear.

1 This assumption is (usually) a good approximation to reality.

2 The assumption makes our life much easier!

3 It is almost always made in the literature and in practice.

This one assumption opens a wide choice of methods!

But our first linear model AcXAT
r = B is too limited.
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A General Linear Model

To form a more general model, we must rearrange the elements of the
images X and B into column vectors by stacking the columns of these
images into two long vectors x and b, both of length N = mn. The
notation for this operator is “vec:”

x = vec(X) =

 x1
...
xn

 ∈ RN , b = vec(B) =

 b1
...
bn

 ∈ RN .

Since the blurring is assumed to be a linear operation, there must exist a
large matrix A ∈ RN×N such that x and b are related by the fundamental
linear model of image deblurring:

Ax = b

For now, assume that A is known; we’ll give more details in Chapter 3.
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Recap – What Does Linearity Mean?

Assume that B1 and B2 are the blurred images of the exact images X1

and X2. Then linearity means that

B = αB1 + βB2

is the image of
X = αX1 + βX2.

When this is the case, then there exists a large matrix A such that
b = vec(B) and x = vec(X) are related by the equation

Ax = b.

The matrix A represents the blurring that is taking place in the process of
going from the exact to the blurred image.
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How Can We Solve the Linear Problem?

The linear model
Ax = b

means that
xnaive = A−1b,

but this is just the naive approach again, and we can expect failure due to
the effects of inverted noise.

Let’s develop the machinery to understand why this fails and to cure the
failure.
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Understanding Why the Naive Approach Fails

Again let Xexact and Bexact be, respectively, the exact image and the
noise-free blurred image, and define

bexact = vec(Bexact) = Ax, e = vec(E).

Then the noisy recorded image B is represented by

b = bexact + e, bexact = Ax.

Consequently (ignoring rounding errors) the naive reconstruction is given
by

xnaive = A−1b = A−1bexact + A−1e = x + A−1e,

where the term A−1e is the inverted noise.
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Reflection

Again, the important observation is that the deblurred image
xnaive = x + A−1e consists of two components:

The first component x is the exact image.

The second component A−1e is the inverted noise.

If the deblurred image looks unacceptable, it is because the inverted noise
term contaminates the reconstructed image.

Moreover, until now we have ignored rounding errors.

But it is well known that rounding errors in the solution process manifest
themselves as errors in the solutions/reconstructions.

From now on, think of these errors as part of the term A−1e.
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Towards an Improved Method – SVD Analysis

Important tool for insight: the singular value decomposition (SVD).

The SVD of a square matrix A ∈ RN×N is essentially unique:

A = UΣVT

U and V are orthogonal matrices, UTU = IN and VTV = IN .

The columns ui of U are called the left singular vectors, while the
columns vi of V are the right singular vectors.

If i 6= j then uTi uj = 0 and vTi vj = 0.

Σ = diag(σi ) is a diagonal matrix whose elements σi appear in
non-increasing order, σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0.

The quantities σi are called the singular values, and the rank of A is
equal to the number of positive singular values.
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Matlab and the SVD

To compute the SVD in Matlab, use:

[U,S,V] = svd(A);

To compute the k largest singular values and the corresponding left and
right singular vectors, use:

[Uk,Sk,Vk] = svds(A,k);

How Matlab computes the “rank” of a matrix:

function r = rank(A,tol)

s = svd(A);

if nargin==1

tol = max(size(A)) * eps(max(s));

end

r = sum(s > tol);
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Writing A−1 in Terms of the SVD
First representation:

A = UΣVT ⇔ A−1 = VΣ−1UT .

Given the SVD, we can easily multiply a vector by A−1 since Σ is
diagonal, so Σ−1 is also diagonal, with entries 1/σi for i = 1, . . . ,N.
Second representation:

A = UΣVT =
[
u1 · · · uN

]  σ1
. . .

σN


 vT1

...
vTN


= u1σ1v

T
1 + · · ·+ uNσNv

T
N =

N∑
i=1

σi ui v
T
i .

Similarly,

A−1 = VΣ−1UT =
N∑
i=1

1

σi
vi u

T
i .
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Finally: How the Inverted Noise Gets Magnified

Using our second representation,

A−1 =
N∑
i=1

1

σi
vi u

T
i ,

the naive solution to our problem is

xnaive = A−1 b = VΣ−1UTb =
N∑
i=1

uTi b

σi
vi

and the inverted noise contribution to the solution is

A−1 e = VΣ−1UTe =
N∑
i=1

uTi e

σi
vi .
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Why Does the Error Term Dominate?

A−1 e = VΣ−1UTe =
N∑
i=1

uTi e

σi
vi .

The error components |uTi e| are small and typically of roughly the same
order of magnitude for all i .

The singular values decay to a value very close to zero.

When we divide by a small singular value such as σN , we greatly magnify
the corresponding error component uTNe, which in turn contributes a large
multiple of the high frequency information contained in vN to the
computed solution.

The singular vectors corresponding to the smaller singular values typically
represent higher frequency information. That is, as i increases, the vectors
ui and vi tend to have more sign changes. See next slide.
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Reshaped Singular Vectors

A few of the singular vectors for the blur of the pumpkin image. The
“images” shown in this figure were obtained by reshaping the mn × 1
singular vectors vi into m × n arrays.
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Interpreting the Coefficients of the Solution

A−1b = VΣ−1UTb =
N∑
i=1

uTi b

σi
vi .

The quantities uTi b/σi are expansion coefficients for the basis vectors vi .

When these quantities are small in magnitude, the solution has very
little contribution from vi .

But when σi is very small, these quantities can be large due to the
presence of the noise in b = bexact + e.

So in the presence of error, the naive reconstruction appears as a random
image dominated by high frequencies.
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An Improved Solution Through Truncation
Because of the contamination due to the error components, we might be
better off leaving the high frequency components out altogether.

We can replace

xnaive = A−1b = VΣ−1UTb =
N∑
i=1

uTi b

σi
vi

by

xk =
k∑

i=1

uTi b

σi
vi ≡ A†kb

for some choice of k < N. Here, we introduce the pseudoinverse:

A†k =
[
v1 · · · uk

]  σ−11
. . .

σ−1k


 uT1

...
uTk

 .
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Truncation

The reconstruction obtained for the blur of pumpkins by using k = 800
(instead of the full k = N = 412 · 412 = 169 744).

Notice that the computed reconstruction is noticeably better than the
naive solution shown before.
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Summary

1 A digital image is a 2- or 3-dimensional array of numbers representing
intensities on a grayscale or color scale.

2 We model the blurring of images as a linear process characterized by
a blurring matrix A and an observed image B, which, in vector form,
is b.

3 The reason A−1b cannot be used to deblur images is the
amplification of high-frequency components of the noise in the data,
caused by the inversion of very small singular values of A.

4 Algorithms for image deblurring need to avoid this pitfall.

NB: I will not cover Chapter 2 – if you need to recap image processing in
Matlab then read it yourself and try Challenge 5.
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