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Convenient Expansions of Functions

= Expansions of signals f of finite energy, i.e.,
feLPRY) = {f :RY - C: {pu | f(2)]* dz < o0}

f(x) = Z crpr(r) = c1o1(w) + copa(z) + ...

in terms of convenient building blocks ¢ € L#(R9).

= Shearlet analysis: An alternative to Fourier analysis, where the building blocks
{¢r} are dilations (scales), shears and translations of a single function
e L?(R?):
{@k} ~ {233/4¢(2Jx1 + k2‘7/2$2 —my, 2j/2x2 - m2)}j€Z,k€Z,m€Z2

= Frames: A generalization of orthonormal bases (ONB) with more flexibility and
freedom.
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Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

= Problems:

= Non-existence of Gabor ONB with good time-frequency localization
= Non-existence of ONB sensitive to curvilinear singularities
= Non-resilience to erasures/noise of expansions in an ONB
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Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

= Problems:

= Non-existence of Gabor ONB with good time-frequency localization
= Non-existence of ONB sensitive to curvilinear singularities
= Non-resilience to erasures/noise of expansions in an ONB

= Solution: Frames — a standard tools in applied mathematics and engineering.

= Key Property of Frames:

Redundancy!
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What is a Frame?

M

Definition

A sequence {©k}ren is a frame for a separable Hilbert space X if

[e0]
JAB>0: A|fIP< D Kf el <B|fI?  forall feX.
k=1

If the upper bound holds, then {¢} is said to be a Bessel sequence.

Definition

Two Bessel sequences {p} and {1y} are said to be dual frames if

¥ = Z<f780k>¢k for all f e X.
k=1
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Operators associated with Frames/Bessel sequences

For ® = {¢k }ken, define the Analysis operator:

Co: X > *(N), Cof = {{for)}ken

and the Synthesis operator:

o0]
D¢ : *(N) > X,  De{cp}ren = Z CkPk
k=1
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For ® = {¢k }ken, define the Analysis operator:
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and the Synthesis operator:

o0]
D¢ : *(N) > X,  De{cp}ren = Z CkPk
k=1

= & = {pg}ren is Bessel & Cg is a bounded operator. Here: (Cg)* = Dg.
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Operators associated with Frames/Bessel sequences

For ® = {¢k }ken, define the Analysis operator:

Co: X > *(N), Cof = {{for)}ken

and the Synthesis operator:

o0]
D¢ : *(N) > X,  De{cp}ren = Z CkPk
k=1

= & = {pg}ren is Bessel & Cg is a bounded operator. Here: (Cg)* = Dg.
» The frame inequalities mean A||f|* < ||Caf|* < B f|” for all f e X.
= ® and ¥ are dual frames < DyCo = Ix, ie., f =Y, {froitr VfeX

= A frame has at least one dual frame: the canonical dual {(DsCas) ¢k }ren-
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The Picture of Frame Expansions

The Picture of Frame Expansions:

—h
—h

Analysis . ¢ Synthesis>
Decomp. Reconstr.

Signal f Coefficients ¢, = (f,pr) Signal f =), crxti

= Want: Analysis & synthesis to be linear and continuous operations, often
assuming some structure on @y, and/or i
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Structered Frames in L*(R?)

M

Generalized Shift-invariant (GSI) systems are of the form: {7, 19y} 4ezd pep,
where g, € L2(R%),C, € GL(d,R), P a countable index set.
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Structered Frames in L*(R?)

M

Generalized Shift-invariant (GSI) systems are of the form: {7, 19y} 4ezd pep,
where g, € L2(R%),C, € GL(d,R), P a countable index set.

Necessary condition for Frame (covering of frequency domain)

If the GSI system is a frame with bounds A and B, then

1 2 d
A< E — g < B a.e. R
|deth| |gP(7)| a.e ’76
peP

Here we ignore a technical Local Integrability Condition. Result for d = 1
due to [Christensen, Hasannasab, L.] and for general d € N by [Fiihr,
Jakobsen, L.]
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Structered Frames in L*(R?)

M

Generalized Shift-invariant (GSI) systems are of the form: {7, 19y} 4ezd pep,
where g, € L2(R%),C, € GL(d,R), P a countable index set.

Necessary condition for Frame (covering of frequency domain)

If the GSI system is a frame with bounds A and B, then

1 N 2 d
A< g —_ < B a.e. R
|detcp| |gp('7)| a.e ’}/E
peP

Sufficient condition for Bessel (not too much overlap)

= +C¥ < o0
5= 3 3 gy 0l + OF)

then the GSI system is Bessel with bounds B.  Here C# := (CT)™!
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An Inverse Problem

M

Setup: Let X,Y be separable (inf. dim.) Hilbert spaces. Let

K:D(K)—Y,X =D(K),Y = R(K)

be an injective, closed operator (typically, it is compact).

Problem
Given ge Y and e > 0s.t. ||[Kf —g|y <e, recover f.
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= It holds (K—1)* = (K*)~1; for short, we write this operator as K * : X — Y.
* D(K~*) = X < K~! bounded. If K is compact, K~! is unbounded.



Inversion Formula based on Dual Frames

= Take dual frames {¢x} and {¢x} for X s.t. o € D(K~*):

=Y omxtn forall feX.
k=1

= Note that
<f7 ¢k>X = <fa K*K_*Sﬁ’k>X = <Kfa K_*¢k>y

= This gives the inversion formula:

f= Z<Kf, K7*¢k>y1/)k for all fe X.
k=1
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Regularization Strategy based on Dual Frames |

= Set wy, = kK *pg. Pick weights x > 0 s.t. W = {wy }ken is a Bessel
sequence in X.

This is indeed always possible:
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Let {61} be a sequence of positive numbers such that ), 0 < 0. Take
Kk = VOi/ || K *¢k|ly. Then W = {wy}, oy is Bessel with bound B =Y., _ 0.
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= Set wy, = kK *pg. Pick weights x > 0 s.t. W = {wy }ken is a Bessel
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Let {61} be a sequence of positive numbers such that ), 0 < 0. Take
Kk = VOi/ || K *¢k|ly. Then W = {wy}, oy is Bessel with bound B =Y., _ 0.

= The inversion formula is now:
o0
1
=Y —(Efwyyvr  forall fe D(K).
o1 vk

= Or in terms of analysis, synthesis and multiplication operators:
f=DyM,,,CwKf

where M, is a (often unbounded) multiplication operator on ?2(N) defined by
Ml/n {Ck}keN = {Ck/ﬂk}keN'



Regularization Strategy based on Dual Frames Il

= We define the recovery operator R = Dy M, . Cyy:

1
R:D(R) > X, Rg= > —{g, wi)yi
jen ok

where the domain is determined by a Picard condition:
2
D(R) = {geY: ZW<OO}.
keN Rk
= The recovery strategy from | K f — g|| < ¢ is:
Dy M, ;.SCwg

where S : (2(N) — ¢?(N) is a threshold procedure.

S
e
=

M



Shearlet Systems in L*(R?)

Anisotropic scaling A:

2
a-

0
21/2 ’

Shearing Sy, (direction parameter < rotations):

e

1 k
0 1

The shearlet system generated by 1 € L?(R?) is

Frequency localization of :

forsome C >0, a« >0 >3

13/23

{%‘,k,m = Dg, 4iTrtp = 259/*4p(S, A7 - —m) :je Z ke Z,me ZZ}

N . o . -3 . -5
[¥(n,72)] < Cmin(1,[2y:|*) min(L, [v1]7°) min(L, 2] ")
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

e THY
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Y km for j =0,k =0,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Y km for j =1,k =0,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Y km for j =2,k =0,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Y km for j =1,k =0,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Yjkm for j=1,k=0,m=(1,-1)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Y km for j =1,k =0,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Yjkm for j =1,k =—1,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Yjkm for j =1,k =—-2,m = (0,0)
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DTU
Action of Anisotropic Scaling, Shearing, and Translation in 20=

Y km for j =1,k =—-3,m = (0,0)
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Cone-adapted Shearlet systems

= Problem: “Length” of supp ij’k,m goes to o as |k| — .
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Cone-adapted Shearlet systems

M

= Problem: “Length"” of suppqﬁj,k,m goes to o as |k| — .

= Solution: Cone-adapted shearlet system

Definition

For ¢, 1,1 € L?(R?), the cone-adapted shearlet system SH(¢, 1), ¢)) is the union:

{Tko}reze v {DSkAJ'me}j;0,|k\<[2j/2]7mez2 U {ngAJ'Tm&}jzong[zj/?-l,mEZ2

\4
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Shearlet systems as GSI| systems

By the commutator relations
Dyig, T =Ts ,a-imDais,,
it follows that
Yikm = Dg, aiTm = Ts_, a~imDais, ¥

Hence, the shearlet system on horizontal is a GSI system {T¢, xgp}gezd
with

,peP

Cp=Clig =S—kA™7 and g, =g = Dais, ¥

p= Y[} 7).

Similar for the vertical cones and the central box.

where
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Necessary and Sufficient Conditions

Necessary condition for Frame (covering of frequency domain)

If the shearlet system SH(¢, v, ) is a frame with bounds A and B, then

~

O ST A + Y Z 1/;~kAJ |*<B
3=0 |k 3=0 |k

<[]

for a.e. v € R2.

v

Sufficient condition for Bessel (not too much overlap)

If

B:= esssup( Z }d) 'y+ o | + Z Z |1/3(SZkAj’Y)7ZJ(STkAj’Y + CV)}

2 2
~y€eR a€Z2 7=0 |k‘<|—2_7‘/2.|

2

+Y Y [RELAIET A +a)]) <o,
7=0|k|<[24/2]

S»

then SH(¢, ), ) is a Bessel system with bounds B. ., Here C# := (CI)!
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What is the weighted system WW?

= Setup: X = L?(R?), Y = L%(S! x R), and

o0

Rf(0,s) :f f(s0 + to+)dt

—00
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What is the weighted system WW?

= Setup: X = L?(R?), Y = L%(S! x R), and
oe]
Rf(0,s) :f f(s0 + to+)dt
—o0

= It can be shown that R™* = A R, where Af = F~'(|]y| f(7)) is a Riesz
potential (here on the s-variable)
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What is the weighted system WW?

= Setup: X = L?(R?), Y = L%(S! x R), and
0
Rf(0,s) = f f(s0 + to+)dt
-
= It can be shown that R™* = A R, where Af = F~'(|]y| f(7)) is a Riesz

potential (here on the s-variable)

= A intertwining relation gives R~* = RA
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What is the weighted system WW?

= Setup: X = L?(R?), Y = L%(S! x R), and
oe]
Rf(0,s) :f f(s0 + to+)dt
—o0

= It can be shown that R™* = A R, where Af = F~'(|]y| f(7)) is a Riesz
potential (here on the s-variable)

= A intertwining relation gives R~* = RA
= Since R is bounded, we only have to make
{K“j,k;mA’(/}j;k:m}jzo,\Ms[21/2],m€Z2

a Bessel system for some choice of ;1 ,m > 0. And similar for the vertical cones
and the central box.



Riesz Potential of a GSI system

= Since A is a Fourier multiplier, it commutes with translation:
AT, kgp = To,kAgp

= Hence, A maps the shearlet system to a GSI system (that is not a shearlet
system!) with generators g, = AD 4igs, V.
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Covering of the Horizontal Cone
Plot of
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Covering of the Horizontal Cone =
Plot of
= 2
2 214 T . o
SO w P ST A, w =2,
7=0k|<[2972]
|' I“W I
10 20 0 -30
g A Frame Theoretic View on Inverse Problems 14.9.2016
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Covering of the Horizontal Cone
Plot of
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Covering of the Horizontal Cone
Plot of

0
Z Z H? ‘7‘2 ’Qp(STkAJ")/)E, Kj = 2—3]/4,

7=0|k|<[29/2]
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Future tasks

M

= We really want the solve the inverse problem under the prior information that
f e C c X for some image class C, e.g., cartoon-like images.

= If {{f, px)}ren belongs (after reordering descending in absolute value) to a weak
£, space for some small p > 0, then so does {(K f, K~ *®k) }ken.

= Understand the role of the weights &y,
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