
The ASTRA Tomography Toolbox
5April 2016

Advanced topics

Today

• Introduction to ASTRA

• Exercises

• More on ASTRA usage

• Exercises

• Extra topics

• Hands-on, questions, discussion

GPU Usage

GPU Usage

• Besides the 2D CPU code you’ve used, ASTRA has accelerated
GPU code for 2D and 3D tomography for NVIDIA GPUs.

• Usage of the 2D GPU code is very similar to what you’ve seen.
Look at the GPU samples for more information.

• One difference is that there is currently no choice of
discretization, and the backprojection is not the exact
mathematical transpose of the forward projection for GPU code.

• 3D in ASTRA is currently GPU-only.

3D Geometries

Flexible geometries

• ASTRA supports:

• 2D: Parallel beam, fan beam

• 3D: Parallel beam, cone beam

• All with fully flexible source/detector positioning

3D Geometries – basic

angles = linspace2(0, 2*pi, 180);

% Parallel

proj_geom = astra_create_proj_geom('parallel3d', 1.0, 1.0, ...

256, 256, angles);

% Cone

proj_geom = astra_create_proj_geom('cone', 1.0, 1.0, ...

256, 256, angles, 2000, 0);

Fan beam – vector form

Three 2D parameters

per projection:

s, d, u

These form a 6

element row vector.

(dx,dy)

(0,0)

(sx,sy)

(ux,uy)

Cone beam – vector form

vectors consists of a 12 element row vector per projection.

Four 3D parameters per projection:

• s: source location

• d: detector center

• u: horizontal detector pixel basis vector

• v: vertical detector pixel basis vector

% Cone - vector form

proj_geom = astra_create_proj_geom('cone_vec', ...

256, 256, vectors);

Cone beam – vector form

vectors = [192, 30, 192, 0, 0, 0, 1, 0, 0, 0, 1, 0 ;

192, 90, 192, 0, 0, 0, 1, 0, 0, 0, 1, 0];

Parallel beam – vector form

vectors consists of a 12 element row vector per projection.

Four 3D parameters per projection:

• r: Ray direction

• d: detector center

• u: horizontal detector pixel basis vector

• v: vertical detector pixel basis vector

% Parallel beam - vector form

proj_geom = astra_create_proj_geom(‘parallel3d_vec', ...

256, 256, vectors);

Large 3D data sets

ASTRA for large data sets

Historically, a major limitation of ASTRA has been the requirement
that data fits in GPU memory.

With ASTRA 1.7, we’ve started removing this limit.

Current status:

• 3D Forward and backprojection transparently handle this.

• Reconstruction algorithms don’t (yet)

ASTRA for large data sets

For FP, BP this works transparently:

proj_geom = astra_create_proj_geom(‘parallel3d', 1.0, 1.0, 1024, 1024, angles);

vol_geom = astra_create_vol_geom(1024, 1024, 1024);

[x, projdata] = astra_create_sino3d_cuda(voldata, proj_geom, vol_geom);

[y, voldata] = astra_create_backprojection3d_cuda(projdata, proj_geom, vol_geom);

Also works transparently with Spot operator

Upcoming feature (next release, “soon”):

• Multi-GPU support for 3D FP/BP

astra_mex(‘set_gpu_index’, [0 1]);

Distributed ASTRA

Major new feature in ASTRA 1.7 (Dec 2015):

Distributed ASTRA: run ASTRA on a (GPU) cluster

• Process larger data sets faster

• A toolbox of building blocks for your (and our) own algorithms

• (Most of) the flexibility of ASTRA

• Python interface (only)

Developed by Jeroen Bédorf at CWI.

Distributed ASTRA

Our approach:

Data objects are distributed, and (some) 3D algorithms will
automatically run distributed:

• SIRT

• CGLS

• Forward projection

• Backprojection

Distributed ASTRA

(Un)distributed ASTRA – (Python!)

Configure geometry

angles = np.linspace(0, 2*np.pi, nAngles, False)

proj_geom = astra.create_proj_geom('cone', 1.0, 1.0,

detectorRowCount, detectorColCount, angles,

originToSource, originToDetector)

vol_geom = astra.create_vol_geom(vx, vy, vz)

Data objects for input, output

proj_id = astra.data3d.create('-proj3d', proj_geom, P)

rec_id = astra.data3d.create('-vol', vol_geom)

Configure algorithm

cfg = astra.astra_dict('SIRT3D_CUDA')

cfg['ReconstructionDataId'] = rec_id

cfg['ProjectionDataId'] = proj_id

alg_id = astra.algorithm.create(cfg)

Run

astra.algorithm.run(alg_id, 100)

rec = astra.data3d.get(rec_id)

Distributed ASTRA

Configure geometry

angles = np.linspace(0, 2*np.pi, nAngles, False)

proj_geom = astra.create_proj_geom('cone', 1.0, 1.0,

detectorRowCount, detectorColCount, angles,

originToSource, originToDetector)

vol_geom = astra.create_vol_geom(vx, vy, vz)

Set up the distribution of data objects

proj_geom, vol_geom = mpi.create(proj_geom, vol_geom)

Data objects for input, output

proj_id = astra.data3d.create('-proj3d', proj_geom, P)

rec_id = astra.data3d.create('-vol', vol_geom)

Configure algorithm

cfg = astra.astra_dict('SIRT3D_CUDA')

cfg['ReconstructionDataId'] = rec_id

cfg['ProjectionDataId'] = proj_id

alg_id = astra.algorithm.create(cfg)

astra.algorithm.run(alg_id, 100)

rec = astra.data3d.get(rec_id)

Distributed ASTRA

It is also possible to run your own functions on distributed data:

def addScaledArray(src_id, dst_id, value):

dataS = astra.data3d.get_shared_local(src_id)

dataD = astra.data3d.get_shared_local(dst_id)

dataD[:] = dataD + value*dataS2

mpi.run(addScaledArray, [tmp_id, vol_id, lambda])

Also functions that return output are possible, such as for
example taking norms or inner products over the full volume.

Distributed ASTRA

Running your own functions on distributed data:

• Many possibilities:
basic arithmetic, segmentation, inner products, norms, file I/O,
…

• Some operations, such as edge detection, blurring, etc,
look at multiple pixels at once, which can be in neighbouring
volume blocks.

We handle this by (optionally) letting the volume blocks overlap
slightly.

Distributed ASTRA – Limitations

Limitations:

• Python only

• Linux only

• Currently, we always only split volumes in slabs along the z-axis.
For this to work, the projection geometry must (approximately)
rotate around the z-axis.

Distributed benchmarks

TomoPy

TomoPy

TomoPy provides

``a collaborative framework for the analysis of synchrotron
tomographic data that has the goal to unify the effort of different
facilities and beamlines performing similar tasks.’’

Developed by APS at Argonne National Laboratory (USA).

TomoPy

TomoPy + ASTRA

With APS, Daniel Pelt (CWI) has integrated TomoPy and ASTRA.

This provides, from TomoPy:

• Data import/export

• Pre-/post-processing

• Finding center of rotation, ring artefact correction, …

• Parallelization of large data sets in parallel slices

And from ASTRA:

• GPU acceleration

• Building blocks for your own reconstruction algorithms

• …

TomoPy + ASTRA

This interface is currently available for testing.

See the TomoPy documentation on how to get and install the
necessary modules. (Search for TomoPy astra)

TomoPy gridrec TomoPy preproc +
ASTRA GPU SIRT

The Future

Plans

• More support for larger data sets

• Including for reconstruction algorithms

• Improved performance, smarter automatic subdivision of data

• Support for more projection kernels / discretizations on GPU

• Better support for block algorithms on top of ASTRA

• More flexible volume geometries (in progress)

• Not necessarily centered around the origin

• Not necessarily square/cubic voxels

Useful links

• Webpage, for downloads, docs:

http://www.astra-toolbox.com/

• Github, for source code, issue tracker:

https://github.com/astra-toolbox/

• Email:

astra@uantwerpen.be

willem.jan.palenstijn@cwi.nl

https://sourceforge.net/p/astra-toolbox/
https://github.com/astra-toolbox/
mailto:astra@uantwerpen.be
mailto:astra@uantwerpen.be

Today

• Introduction to ASTRA

• Exercises

• More on ASTRA usage

• Exercises

• Extra topics

• Hands-on, questions, discussion

