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Abstract

The regularizing properties of Lanczos bidiagonalization are pow-
erful when the underlying Krylov subspace captures the dominating
components of the solution. In some applications the regularized solu-
tion can be further improved by augmenting the Krylov subspace with
a low-dimensional subspace that represents specific prior information.
Inspired by earlier work on GMRES we demonstrate how to carry these
ideas over to the Lanczos bidiagonalization algorithm.

1 Introduction

We are concerned with iterative Krylov subspace methods for solving large
ill-conditioned systems on linear equations, arising from discretization of
inverse problems, of the form

min
x
‖Ax− b‖22, A ∈ Rm×n. (1)

To compute a stable solution to such problems, one must incorporate prior
information about the desired solution. One often chooses a variational
formulation known as Tikhonov regularization,

min
x

{
‖Ax− b‖22 + λR(x)

}
.

Here R(x) is a regularization or smoothness term that penalizes unwanted
features in the solution, and λ is a user-chosen regularization parameter.

Instead of enforcing smoothness conditions on the solution, one may have
prior information that can be specified in the form of a low-dimensional
subspace in which the solution must lie, cf. [9]. This leads to a projection
formulation of the form

min
x
‖Ax− b‖22 s.t. x ∈ Sk , (2)
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where the signal subspace Sk is a linear subspace of dimension k. If the
basis of Sk = span{v1, v2, . . . , vk} is chosen such that it captures the main
features in the solution, then this approach can be very useful.

The latter approach is particularly attractive for large-scale problems,
where the signal subspace can take the form of a Krylov subspace, such as:

Kk =span{AT b, ATAAT b, (ATA)2AT b, . . .}
for the CGLS and LSQR algorithms [9], [13],

K̄k =span{b, A b,A2 b, . . .}
for the GMRES and MINRES algorithms [3], [11],

~Kk =span{Ab,A2b, A3b, . . .}
for the RRGMRES and MR-II algorithms [2], [7],

where k is the number of iterations. Depending on the application, one
or more of these subspaces may be well suited to compute a good regu-
larized solution, i.e., a good approximation that is only little sensitive to
perturbations of the data, cf. [10]. Moreover, it is possible to combine the
projection formulation with Tikhonov regularization; this leads to so-called
hybrid methods [9].

We can further improve the regularized solution by incorporating addi-
tional specific prior information. In this work we assume that the solution
has a significant component in a given subspace Wp of dimension p � k
(e.g., chosen to represent known features in the solution). In connection
with the above Krylov subspace methods, it was proposed in [1] and [4] to
decompose the solution into a component in Wp and another component
in the orthogonal complement W⊥p , which leads to the idea of augmented
Krylov subspace methods. See also [12].

Recently we presented an algorithm R3GMRES [6] based on the range-
restricted GMRES (RRGMRES) method [2] and the corresponding Krylov
subspace ~Kk. In the present work we consider a similar approach based on
the LSQR method and the corresponding Krylov subspace Kk. Specifically,
we compute regularized solutions in a signal subspace Sp,k that is the direct
sum of the two subspaces Wp and Kk,

Sp,k =Wp +Kk ≡ {y + z | y ∈ Wp ∧ z ∈ Kk}, (3)

which itself is a linear subspace.
An efficient and stable algorithm Enriched CGNR for this problem,

based on the CGLS algorithm, was already published in [4]. In this work we
present an alternative algorithm, called LBAS (Lanczas Bidiagonalization
with Augmented Subspace), that takes its basis in the LSQR algorithm
and the underlying bidiagonalization process. Due to this formulation, our
algorithm lends itself easily to extensions to hybrid algorithms, and our
explicit use of reorthogonalization makes is numerically stable.
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2 Formulation of the Algorithm

We want to solve the problem

min
x
‖Ax− b‖22 s.t. x ∈ Wp +Kk . (4)

In principle we could use, say, a Hessenberg decomposition

A [Wp , A
T b , ATAAT b , · · · , (ATA)k−1AT b ] = Vp+k+1Hp+k

and compute the solution as

x(k) = [Wp , A
T b , ATAAT b , . . . , (ATA)k−1AT b ] y(k) ,

y(k) = argminy‖Hp+1y − V T
p+k+1b‖22 .

But we prefer to use a stable and efficient “standard” algorithm. Hence
we use the Lanczos bidiagonalization algorithm to compute an orthonormal
basis of Kk, and augment it by Wp in each step of the algorithm. This may
seem cumbersome – but the overhead is, in fact, favorably small.

At step k we have the decomposition

A [Vk , Wp ] =
[
Uk+1 , Ũk

] [ Bk Gk
0 Fk

]
(5)

where the blue quantities are associated with the classical bidiagonaliza-
tion algorithm, while the red and pink quantities are associated with the
augmentation. Specifially:

• AVk = Uk+1Bk is obtained after k steps of the bidiag. process.

• Vk ∈ Rn×k has orthonormal columns that span Kk.

• Uk+1 ∈ Rm×(k+1) has orthonormal columns, u1 = b/‖b‖2.

• Ũk ∈ Rm×p: range(AWp) = range(Uk+1Gk + ŨkFk) and ŨTk Uk+1 = 0.

• Bk ∈ R(k+1)×k is a lower bidiagonal matrix.

• Fk ∈ Rp×p and changes in every iteration.

• Gk is (k + 1)× p and is updated along with Bk.

The columns of [Vk , Wp ] form a basis for Sp,k. Now recall that

A [Vk , Wp ] =
[
Uk+1 , Ũk

] [ Bk Gk
0 Fk

]
. (6)

The matrices Gk ∈ R(k+1)×p and Fk ∈ Rp×p are composed of the coefficients
of AWp with respect to basis of range(Uk+1) and range(Ũk), respectively:

Gk = UTk+1AWp, Fk = ŨTk AWp . (7)
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Then the iterate x(k) ∈ Sp,k is given by x(k) = [Vk , Wp ] y(k), where

y(k) = argminy

∥∥∥∥∥
[
Bk Gk

0 Fk

]
y −

[
UTk+1

ŨTk

]
b

∥∥∥∥∥
2

2

. (8)

The above derivation leads to the following generic formulation:

Algorithms LBAS

1. Set U1 = b/‖b‖2, V0 = [ ], B0 = [ ], G0 = UT1 AWp, and k = 1.

2. Use the bidiagonalization process to obtain vk and uk+1

such that AVk = Uk+1Bk, where

Vk = [Vk−1, vk], Uk+1 = [Uk, uk+1 ], Bk =

 Bk−1
0
×

0 ×

 .

3. Compute Gk =

[
Gk−1

uTk+1AWp

]
∈ R(k+1)×p.

4. Orthonormalize AWp with respect to Uk+1 to obtain Ũk ∈ Rm×p.

5. Compute Fk = ŨTk AWp ∈ Rp×p.

6. Solve miny

∥∥∥∥∥
[
Bk Gk

0 Fk

]
y −

[
UTk+1

ŨTk

]
b

∥∥∥∥∥
2

2

to obtain y(k).

7. Then x(k) = [Vk , Wp ] y(k).

8. Stop, or set k := k + 1 and return to step 2.

We note that we need to recompute the skinny m × p matrix Ũk and the
small p×p matrix Fk in each step, but the dimension p of the augmentation
subspace is small so this overhead is negligible.

In each step we update the orthogonal factorization:

[
Bk Gk

0 Fk

]
= Q


T
(11)
k T

(12)
k

0 T
(22)
k

0 0

 ,
T
(11)
k ∈ Rk×k and T

(22)
k ∈ Rp×p are upper triangular, Q is orthogonal. We

update T
(11)
k via Givens rotations that are also applied to Gk and UTk+1b. The

matrix Ũk is already orthogonal to Uk, hence (in principle) we can perform
the update Ũk+1 = (Im − uk+1u

T
k+1) Ũk, where Im is the identity matrix of

order m. For numerical stability, we must reorthogonalize the columns of
Vk, Uk+1, and Ũk. This is an acceptable approached used in many similar
algorithms, such as the algorithm HyBR [5]. The MATLAB code for LBAS
is listed below.
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function [X,rho,eta] = lbas(A,b,W,k,reorth)
%LBAS Lanczos bidiagonalization solver with augmented subspace
%
% [X,rho,eta] = lbas(A,b,W,k,reorth)
%
% A - coeffient matrix
% b - right-hand side
% W - a matrix with orthonormal columns (or a positive integer)
% k - the number of iterations
% reorth - 0: no reorthogonalization, 1: MGS ditto (default)
%
% X - matrix with k columns, each column holds an iteration vector
% rho - residual norms
% eta - solution norms
%
% If W is a positive integer p, then W has p columns corresponding
% to the polynomials of degree 0,1,...,p-1.

% Per Christian Hansen, DTU Compute and Kuniyoshi Abe, Gifu Shotoku
% Gakuen University, Sept. 4, 2015.

if nargin < 4, error('Too few input arguments'), end
if nargin < 5, reorth = 1; end
[m,n] = size(A);
[nW,p] = size(W);
if nW == 1 && p == 1 && W > 0 && ~rem(W,1); % Set W.

p = W;
W = ones(n,p);
for i = 1:p-1

W(:,i+1) = (1:n).ˆi;
end
W = orth(W);

elseif nW ~= size(A,2);
error('No. rows in W must equal no. columns in A');

end

% Initialize.
X = zeros(n,k);
U = zeros(m,k+1);
V = zeros(n,k);
Bk = zeros(k+1,k);
Gk = zeros(k+1,p);
g = zeros(k+p+1,1);

% Prepare for iterations.
beta = norm(b);
u = b/beta;
U(:,1) = u;
v = zeros(n,1);
AW = A*W;
Gk(1,:) = u'*AW;
normb = beta;
g(1) = normb;
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% Commence iterations.
for j = 1:k

% Next (rightmost) column in lower bidiagonal part of matrix
% via Lanczs bidiagonalization process.
r = A'*u - beta*v;
if reorth==1

for i=1:j-1, r = r - (V(:,i)'*r)*V(:,i); end
end
alpha = norm(r); v = r/alpha;
V(:,j) = v;
Bk(j,j) = alpha;

pp = A*v - alpha*u;
if reorth==1

for i=1:j, pp = pp - (U(:,i)'*pp)*U(:,i); end
end
beta = norm(pp); u = pp/beta;
U(:,j+1) = u;
Bk(j+1,j) = beta;

% Apply stored orthog. transf. to new column of Bk.
if j>1

Bk(j-1:j,j) = [-si;conj(co)]*Bk(j,j);
end

% Determine new orthog. transf. to make Bk upper triangular.
nu = norm(Bk(j:j+1,j));
if nu==0 , error('Breakdown'), end
co = Bk(j,j)/nu;
si = -Bk(j+1,j)/nu;
Bk(j,j) = co*Bk(j,j) - si*Bk(j+1,j);
Bk(j+1,j) = 0;

% Apply the orthog. transf. to updated G and to rhs.
if j>1

Gk(j,:) = saveG;
g(j) = saveg;
g(j+1:j+p) = 0;

end
Gk(j+1,:) = u'*AW;
Gk(j:j+1,:) = [co,-si;si,conj(co)]*Gk(j:j+1,:);
saveG = Gk(j+1,:); % To be used in next iteration.
g(j:j+1) = [co,-si;si,conj(co)]*g(j:j+1);
saveg = g(j+1); % Ditto.

% Needed for bottom right block Fk.
if j==1

Utilde = ort(U(:,1:j+1),AW);
else

%Utilde = ort(U(:,j+1),Utilde);
Utilde = ort(U(:,1:j+1),Utilde);

end
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% QR factorization of bottom right block.
[qq,rr] = qr([Gk(j+1,:);Utilde'*AW]);
Gk(j+1,:) = rr(1,:);
Fk = rr(2:end,:);
g(j+1:j+1+p) = qq'*g(j+1:j+1+p);

% Compute solution.
y = [Bk(1:j+1,1:j) Gk(1:j+1,:); zeros(p,j) Fk] \ g(1:j+p+1);
X(:,j) = [V(:,1:j),W]*y;
% svd([Bk(1:j+1,1:j) Gk(1:j+1,:); zeros(p,j) Fk])'
disp(y')

end

if nargout > 1
rho = sqrt(sum(abs(A*X-repmat(b,1,k)).ˆ2));

end
if nargout > 2

eta = sqrt(sum(abs(X).ˆ2));
end

% Subfunction ==================================================

function Vw = ort(V,W)
% Orthonormalize W with respect to V (remove components along V).
% Henrik Garden & Per Chr. Hansen, DTU Compute, July 30, 2013.

k = size(V,2)-1;
p = size(W,2);
for s = 1:p

w = W(:,s);
for i = 1:k+s

vi = V(:,i);
w = w-vi'*w*vi;

end
w = w/norm(w);
V(:,k+s+1) = w;

end
Vw = V(:,end-p+1:end);

3 Numerical Examples

To illustrate the performance of our LBAS algorithm we use the following
approach:

1. Generate a noise-free system: Axexact = bexact.

2. Add noise: b = bexact+e where e is a random vector of Gaussian white
noise scaled such that ‖e‖2/‖bexact‖2 = η.

3. We show the best solution within the iterations plus:
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• the relative error ‖xexact − x(k)‖2/‖xexact‖2,

• the relative residual norm ‖b−Ax(k)‖2/‖b‖2.

We compare combinations of the following algorithms:

• CGLS is the implementation from Regularization Tools [8].

• RRGMRES is the implementation from Regularization Tools [8].

• R3GMRES is our implementation of the algorithm from [6].

• LBAS is our new algorithm.

3.1 A Large Component in Augmented Subspace

The test problem is deriv2(n,2) from Regularization Tools [8], with
n = 32 and relative noise level η = 10−5. The augmentation subspace is

W2 = span{w1, w2}, w1 = (1, 1, . . . , 1)T , w2 = (1, 2, . . . , n)T .

For this problem we have

‖W2W
T
2 xexact‖2/‖xexact‖2 = 0.99 ,

‖(In −W2W
T
2 )xexact‖2/‖xexact‖2 = 0.035 ,

and we only need to spend effort in capturing the small component of the so-
lution inW⊥2 . This is reflected in the numerical results in Fig. 1 that demon-
strate the feasibility of the methods using the augmented subspace; both
methods give the same accuracy so nothing is lost in going from R3GMRES
to LBAS.

3.2 Capture a Discontinuity

For this test problem we use gravity(n) from Regularization Tools
with n = 100, η = 10−3, but the exact solution changed to include a discon-
tinuity between elements ` = 50 and `+ 1 = 51. The augmentation matrix
W2 allows us to represent this discontinuity:

w1 =

[
ones(`, 1)

zeros(n−`, 1)

]
, w2 =

[
zeros(`, 1)

ones(n−`, 1)

]
.

The results are shown in Fig. 2. As before, LBAS produces a solution of the
same quality as R3GMRES – while the CGLS and RRGMRES solutions are
inferior.
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Figure 1: Results for the test problem with a large solution component in the
augmentation subspace W2. CGLS is not able to produce a good solution
due to the Krylov subspace Kk; RRGMRES performs better but requires
many iterations. R3GMRES as well as our new LBAS perform equally well
and much better than the former two methods.

Figure 2: Numerical results for the test problem with a discontinuity in the
solution. The CGLS and RRGMRES algorithms are not able to reproduce
the discontinuity very well. Both R3GMRES and LBAS give good results
of the equal quality.
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3.3 Fix Boundary Conditions

This test problem is based on the discretization of a first-kind Fredholm
integral equation:∫ π

0
t exp(−s t2) f(t) dt = g(s), 0 ≤ s ≤ π,

and we use

W2 = span{w1, w2}, w1 = (1, 1, . . . , 1)>, w2 = (1, 2, . . . , n)>.

The problem is discretized in such a way that the matrix A corresponds to
zero boundary conditions. The matrixW2 is chosen such that it compensates
for the incorrect boundary conditions implicit in the matrix A, by allowing
the regularized solutions to have nonzero values and nonzero derivatives at
the endpoints. We consider both a square matrix A obtained with m = n =
32 and a rectangular matrix obtained with m = 64 and n = 32. The results
are shown in Fig. 3; here LBAS outperforms the other methods.

3.4 Compute the Spectrum of X-Ray Source

The spectrum of an X-ray source (where accelerated electrons hit an anode)
consists of a continuous spectrum superimposed with line spectra. We know
the frequencies of the line spectral, so we can easily incorporate this infor-
mation through the augmentation subspace and thus estimate the combined
spectrum from measured data.1 We experiment with two choices:

• Wdelta → two delta functions at the right frequencies,

• WGauss → two narrow Gauss functions at the right frequencies.

In Fig. 4 we see that LBAS is very capable of computing a good approxima-
tion to the exact spectrum, especially with the two narrow Gauss functions
in the augmented subspace.

4 Conclusion

We considered how to implement an algorithm LBAS, based on Lanczos
bidiagonalization, that augments the CGLS Krylov subspace with a user-
defined subspace of low dimension that captures desired features of the so-
lution. We formulate the algorithm and demonstrate how to implement it
efficiently. Numerical examples demonstrate the feasibility of our algorithm
and its advantage over related algorithms.

1We than Prof. Jan Sijbers from University of Antwerp for inspiration to this example.
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Figure 3: Test problem where the augmentation subspace compensates for
incorrect boundary conditions in the matrix A. Top: square matrix with
m = n = 32. Bottom: rectangular matrix with m = 64 and n = 32. In both
cases LBAS gives very good solutions.

Figure 4: Reconstruction of a X-ray source’s spectrum consisting of a con-
tinuous spectrum superimposed with line spectra. By representing the line
spectra explicitly in the augmented subspace we are able to compute a good
reconstruction.
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