
Real-Time Syst (2017) 53:254–287
DOI 10.1007/s11241-016-9265-0

Timing analysis of rate-constrained traffic in
TTEthernet using network calculus

Luxi Zhao1 · Paul Pop2 · Qiao Li1 ·
Junyan Chen1 · Huagang Xiong1

Published online: 7 January 2017
© Springer Science+Business Media New York 2017

Abstract TTEthernet is a deterministic, synchronized and congestion-free network
protocol based on theEthernet standard and compliantwith theARINC664p7 standard
network. It supports safety-critical real-time applications by offering different traffic
classes: static time-triggered (TT) traffic, rate-constrained (RC) traffic with bounded
end-to-end latencies and best-effort traffic, for which no guarantees are provided.
TTEthernet uses three integration policies for sharing the network among the traffic
classes: shuffling, preemption and timely block. In this paper, we propose an analysis
based on network calculus (NC) to determine the worst-case end-to-end delays of
RC traffic in TTEthernet. The main contribution of this paper is capturing the effects
of all the integration policies on the latency bounds of RC traffic using NC, and the
consideration of relative frame offsets of TT traffic to reduce the pessimism of the RC
analysis. The proposed analysis is evaluated on several test cases, including realistic
applications (e.g., Orion Crew Exploration Vehicle), and compared to related works.

B Luxi Zhao
zhaoluxi@buaa.edu.cn

Paul Pop
paupo@dtu.dk

Qiao Li
avionics@buaa.edu.cn

Junyan Chen
chenjy83@hotmail.com

Huagang Xiong
hgxiong@buaa.edu.cn

1 School of Electronics and Information Engineering, Beihang University, Beijing, China

2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Copenhagen, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-016-9265-0&domain=pdf
http://orcid.org/0000-0003-2361-9239

Real-Time Syst (2017) 53:254–287 255

Keywords TTEthernet · Timing analysis · Network calculus · Upper bound · Delay

1 Introduction

Ethernet (IEEE 802.3 2012), although it is low cost and has high speeds (e.g., up to
10 Gbps), is known to be unsuitable for real-time and safety-critical real-time applica-
tions (Decotignie 2005; Lee et al. 2005). For example, in half-duplex implementations,
frame collision is unavoidable, leading to unbounded transmission times. Decotignie
(2005) presents the requirements for a real-time network and how Ethernet can be
improved to comply with these requirements. Several real-time communication solu-
tions based on Ethernet have been proposed, such as FTT-Ethernet (Pedreiras et al.
2005), ARINC 664 Specification Part 7 (ARINC 664p7, for short) (ARINC 2009),
TTEthernet (SAE 2011), EtherCAT (ETG 2013) and IEEE Audio Video Bridging
(AVB) (IEEE 802.1BA 2011). Schneele and Geyer (2012), Cummings et al. (2012)
andDanielis et al. (2014) describe and compare several of the proposed Ethernet-based
real-time communication protocols. FTT-Ethernet is a flexible time-triggered protocol
integrating event-triggered (ET) and time-triggered (TT) traffic. The main advantage
of FTT-Ethernet is that it provides dynamic quality-of-service (QoS) management at
some time with guaranteed timeline for the TT traffic. Its disadvantage is that it is an
academic protocol, not yet available on the market. ARINC 664p7 extends Ethernet
for the avionics area providing timing guarantees for ET traffic and enforcing the sep-
aration of mixed-criticality flows through the concept of virtual links. However it does
not support TT traffic. EtherCAT is specialized for industrial automation based on a
master/slave approach. It provides high-performance for real-time applications, how-
ever, its scalability is limited due to the logical ring topology. AVB does not support
TT traffic with strict timing requirements but it is intended to provide QoS guarantees
for lower latency communication, especially for multimedia flows. In this paper, we
are interested in the TTEthernet protocol (SAE 2011).

TTEthernet (SAE 2011; Kopetz and Grunsteidl 2005) is a deterministic, synchro-
nized and collision-free network protocol based on the IEEE 802.3 Ethernet standard
and compliant with ARINC 664p7. TTEthernet is suitable for several safety-critical
application areas, including automotive (Steinbach et al. 2012), avionics (Suen et al.
2013), space (Fletcher 2009) and industrial (Steiner and Dutertre 2010). Although cur-
rent work on Time Sensitive Networking (TSN) (IEEE P802.1Qbv 2015) is intended
to extend Ethernet for use in several application areas, existing Ethernet variants will
still remain in certain niche areas. TTEthernet will continue to be used, for exam-
ple, in the aerospace market since it provides fault-tolerance services not available
in TSN, which are very relevant for avionics applications (Steiner 2016). ARINC
664p7 (ARINC 2009) is a full-duplex Ethernet network, which provides predictable
event-triggered communication through the concept of rate-constrained (RC) traffic. In
addition to the functionality offered by Ethernet (best-effort or BE traffic) and ARINC
664p7 (with RC traffic), TTEthernet supports time-triggered (TT) communication,
especially suitable for applications with highest criticality requirements.

Thus, TTEthernet classifies flows into the three traffic classes (Steiner et al. 2009):
time-triggered (TT) traffic, rate-constrained (RC) traffic and best-effort (BE) traffic.

123

256 Real-Time Syst (2017) 53:254–287

TT traffic uses time-triggered communication implemented using static schedules
relying on a synchronized time base by arranging TT frames in predetermined time
slots along the transmission path. RC traffic has a lower priority than TT, uses event-
triggered communication and has bounded end-to-end latencies. Both TT and RC
traffic can be used for hard real-time applications with strict timing constraints, and
the choice depends on the particularities of the application, legacy constraints and the
experience of the system engineer (Gavrilut et al. 2015). BE traffic has the lowest
priority and it is used for applications that do not require any timing guarantees.

The schedulability of the TT traffic is determined by the TT schedules, which
have to be synthesized such that all frames meet their deadlines. For the RC traffic,
which is event-triggered, a RC flow is schedulable if its worst-case end-to-end delay
(WCD) is smaller than its deadline. Although latency analysis methods have been
successfully applied to RC traffic in ARINC 664p7 networks (Frances et al. 2006;
Bauer et al. 2010; Li et al. 2010; Scharbarg et al. 2009; Adnan et al. 2010; Mauclair
and Durrieu 2013), they cannot be directly applied for the timing analysis of RC traffic
in TTEthernet due to the static TT schedules. The earliest analysis approach for RC
traffic (Steiner 2011) in TTEthernet assumes pessimistically that all RC frames in an
outgoing port of a switch will delay the current frame under analysis, and considers
that the TT schedules contain periodically alternating phases for TT traffic and for RC
traffic. However, realistic schedules do not necessarily contain such periodic phases.
Later, we (Zhao et al. 2014) proposed a network calculus (NC)-based analysis to
compute the WCD of RC frames by considering a variable size of TT frames and
focusing on the shuffling integration policy. But the protocol uses fixed size frames
and also has preemption and timely block integration policies, which we have not
considered. A recent analysis for RC flows in TTEthernet has been proposed in Tamas-
Selicean et al. (2015b). The authors use a response-time analysis based on the concept
of “busy period” and show that they are able to significantly reduce the pessimism
compared to previous approaches. However, their analysis computes the latencies for
each time instance in the TT schedule, which is time-consuming. As we will see in the
experimental results (Sect. 8), their method does not scale for large problem sites. In
addition, another potential drawback of the work in Tamas-Selicean et al. (2015b) is
that it is based on a response-time analysis instead of network calculus (Cruz 1991).
This is a drawback because there has been a strong investment by the industry in
NC, which is a well-established theory, supported by academic and industrial tools
(Le Boudec and Thiran 2001; Mabille et al. 2013; Wanderler and Thiele 2006). For
example, NC has been used for ARINC 667p7 for the design and certification of
the Airbus A380 (Frances et al. 2006; Boyer and Fraboul 2008). No such tools and
certification approaches exist for the type of analysis employed in Tamas-Selicean et
al. (2015b).

The contribution of this paper is the modeling of TT traffic flows in NC to reduce
the pessimism of the RC analysis. By capturing the effects of different integration
policies on the latency bounds of RC flows, we extend the existing NC approaches to
analyze the RC traffic for all the three integration policies of TTEthernet. In addition,
this paper evaluates the proposedmethod on several test cases, including large realistic
applications (e.g., Orion Crew Exploration Vehicle) and compares the latency upper
bounds and runtimes with the results from the previous work, Zhao et al. (2014),

123

Real-Time Syst (2017) 53:254–287 257

Steiner (2011) and Tamas-Selicean et al. (2015b). In this paper, we do not address the
BE traffic since it has no timing requirements.

The reminder of this paper is organized as follows. Section 2 presents the architec-
ture and application models. Section 3 introduces the TTEthernet protocol in detail.
Section 4 briefly describes the network calculus theory. Section 5 presents the problem
formulation and overall analysis strategy. Section 6 describes the worst-case latency
analysis of RC traffic in the shuffling integration policy. In Sect. 7, the influence
of timely block integration on RC traffic is given. Section 8 evaluates the proposed
analysis and Sect. 9 concludes this paper.

2 System model

2.1 Architecture model

A TTEthernet network is composed of a set of clusters. Each cluster consists of end
systems (ESes) interconnected by links and switches (SWs). Each ES has a buffer
for the output port and is connected to exactly one input port of SW. Each SW has
no input buffers on input ports and a buffer for each output port. The output port of
SW is connected to one ES or another switch input port. The links are full duplex,
allowing thus communication in both directions, and the networks can be multi-hop.
An example cluster is presented in Fig. 1, where we have 4 ESes, ES1 to ES4, and 3
SWs, SW1 to SW3. In the following we use “node” to represent an ES or a SW, and
use “node output port” to represent an output port of an ES or a SW.

We model a TTEthernet cluster as an undirected graphG(V,E), where V = ES∪
SW is the set of end systems (ES) and switches (SW), and E is the set of physical
links. For Fig. 1, V = ES ∪ SW = {ES1, ES2, ES3, ES4} ∪ {SW1, SW2, SW3}, and
the physical links E are depicted with thick, black, double arrows.

A dataflow link dli = [
v j , vk

] ∈ L, where L is the set of dataflow links in a cluster,
is a directed communication connection from v j to vk , where v j and vk ∈ V can be
ESes or SWs. A dataflow path dpi ∈ DP is an ordered sequence of dataflow links

Fig. 1 TTEthernet cluster example

123

258 Real-Time Syst (2017) 53:254–287

connecting one sender to one receiver. For example, in Fig. 1, dp1 connects the source
end system ES1 to the destination end system ES3, while dp2 connects ES1 to ES4
(the dataflow paths are depicted with green arrows). Moreover, dp1 in Fig. 1 can be
denoted as [[ES1, SW1] , [SW1, SW2] , [SW2, ES3]].

The space partitioning between messages of different criticality transmitted over
physical links and network switches is achieved through the concept of virtual link.
Virtual links are defined by ARINC 664p7 (ARINC 2009), which is implemented by
the TTEthernet protocol, as a “logical unidirectional connection from one source end
system to one or more destination end systems”. We denote the set of virtual links in
a cluster with VL. A virtual link vli ∈ VL is a directed tree, with the sender as the root
and receivers as leafs. For example, vl1, depicted in Fig. 1 using dot-dash red arrows,
is a tree with the root ES1 and leafs ES3 and ES4. Each virtual link is composed of
a set of dataflow paths, one such dataflow path for each root-leaf connection. More
formally, we denote with RV L(vli) = {∀dp j ∈ DP

∣∣dpi ∈ vli } the routing of virtual
link vli . For example, in Fig. 1, RV L(vl1) = {dp1, dp2}.

Let us assume that in Fig. 1 we have two applications, A1 and A2. A1 is a high
criticality application consisting of tasks φa to φc mapped on ES1, ES3 and ES4,
respectively.A2 is a non-critical application, with tasks φd and φe mapped on ES2 and
ES3, respectively. φa sends message m1 to φb and φc. Task φd sends message m2 to
φe. With TTEthernet, a message has a single sender and may have multiple receivers.
The flow of these messages will intersect in the physical links and switches. Virtual
links are used to separate the highly critical messagem1 from the non-critical message
m2. Thus, m1 is transmitted over virtual link vl1, which is isolated from virtual link
vl2, on which m2 is sent, through protocol-level temporal and spatial mechanisms,
which are presented in detail in Tamas-Selicean et al. (2012b).

2.2 Application model

TTEthernet transmits data using flows (in this paper we use the term “flow” to denote
a “frame” in the TTEthernet protocol). The TTEthernet frame format fully complies
with the ARINC 664p7 (ARINC 2009). Messages are transmitted in the payload of
frames.

The size mi .si ze for each message mi ∈ ω is given, where ω is the set of all
messages. As mentioned, TTEthernet supports three traffic classes: TT, RC and BE.
We assume that the designer has decided the traffic classes for eachmessage.We define
the sets ωT T , ωRC and ωBE , respectively, with ω = ωT T ∪ ωRC ∪ ωBE . Similarly,
we define τT T , τRC and τBE , with τ = τT T ∪ τRC ∪ τBE is the set of all the flows
in cluster. Knowing the size mi .si ze for each message mi , we can compute the frame
size li of the flow τi packing mi . In addition, for the TT and RC flows we know their
periods/rate and deadlines, pTT i and rRCi , and τi .deadline, respectively. The routing
of virtual links and the assignment of flows to virtual links are given.

TT flows τT T are transmitted according to offline computed schedules. Note that
due to the implementation of TTEthernet schedules, the sending time offset of a TT
flow τT Ti is identical in all periods. The complete set of local schedules in a cluster
are denoted by S, and the TT schedule for a dataflow link dl j is denoted by S j ∈ S.

123

Real-Time Syst (2017) 53:254–287 259

Several approaches (Steiner 2010a; Steiner and Dutertre 2010; Steiner 2011; Tamas-
Selicean et al. 2012b; Tamas-Selicean et al. 2015a) to the synthesis of schedules S for
a cluster have been proposed.

RC flows τRC are not necessarily periodic, but have a minimum inter-arrival time.
For each virtual link vli carrying a RC flow τRCi the designer decides the Bandwidth
AllocationGap (BAG).A BAGRCi isminimum time interval between two consecutive
frames of a RC flow τRCi and may take fixed values of 2i ms, i = 0, . . . , 7. The
BAG is set in such a way to guarantee that there is enough bandwidth allocated for
the transmission of a flow on a virtual link, with BAGRCi ≤ 1/rRCi . The BAG is
enforced by the sending ES. Thus, an ES will ensure that each BAGRCi interval will
contain at most one frame of τRCi . The maximum bandwidth used by a virtual link vli
transmitting a RC flow τRCi is ρRCi = lRCi /BAGRCi , where lRCi is the frame size of
τRCi . The BAG for each RC flow is computed offline, based on the requirements of
the messages it packs.

3 TTEthernet protocol

3.1 Time triggered transmission

In this section we present how TT flows are transmitted by TTEthernet, using the
example in Fig. 2, where the TT message m2 is sent from task φ2 on ES1, to task φ4
on ES2. We mark each step of the TT transmission in Fig. 2 with a letter from (a) to
(n) on a blue background.

Thus, in the first step denoted with (a), task φ2 packs m2 into flow τT T2 and in the
second step (b), τT T2 is placed into buffer B1,T x for transmission. Conceptually, there
is one such buffer for every TT frame sent from ES1. As mentioned, the TT commu-
nication is done according to static communication schedules determined offline and
stored into the ESes and SWs. Thus, the sending schedule SS contains the sending
times for all the TT flows transmitted during an application cycle Tcycle. A periodic
flow τT Ti may contain several frames within Tcycle. We denote the x th frame of τT Ti
with f xT Ti . In step (d), the TT scheduler task T TS will send τT T2 to SW1 at the time
specified in the sending schedule SS stored in ES1 (c). Often, TT tasks are used in
conjunction with TT frames, and the task and TT schedules are synchronized such
that the task is scheduled to finish before the frame is scheduled for transmission

Fig. 2 TT and RC traffic transmission example

123

260 Real-Time Syst (2017) 53:254–287

(Obermaisser 2011). Moreover, the TT scheduler task T TS provides the separation
mechanisms implemented by TTEthernet to isolate mixed-criticality flows (such as
τRC1 and τT T2 in our example) and implements fault-tolerance services to protect the
network e.g., by only transmitting frames as specified in the schedule table SS , even
if a task such as φ2 becomes faulty and sends more frames than scheduled.

Next, τT T2 is sent on a dataflow link to SW1 (e). The Filtering Unit (FU) task is
invoked every time a frame is received by an SW to check the integrity and validity of
the flow, e.g., for τT T2 see step (f). After τT T2 is checked (f), it is forwarded to the TT
receiver task T TR (h). T TR relies on a receiving schedule SR (g) stored in the switch to
check if a TT flow has arrived within a specified receiving window and drop the faulty
frames arriving outside the receiving window. This window is determined based on
the sending times in the sending schedules (schedule SS on ES1 for the case of flow
τT T2), the precision of the clock synchronizationmechanism and the integration policy
used for integrating the TT traffic with the RC and BE traffic (see next subsection for
details). Then, the switching fabric forwards (i) the TT flow τT T2 into the sending
buffer B1,T x for later transmission (j). Next, τT T2 is sent by the TT scheduler task T TS
in SW1 to ES2 at the time specified in the TT sending schedule SS in SW1.

When τT T2 arrives at ES2 (l), the FU task will store the frame into a dedicated
receive buffer B2,Rx (m). Finally, when task φ4 is activated, it will read τT T2 from the
buffer (n).

3.2 Rate constrained transmission

This section presents how RC traffic is transmitted using the example of flow τRC1 in
Fig. 2 sent from φ1 on ES1 to φ3 on ES2. Similarly to the discussion of TT traffic, we
mark each step in Fig. 2 using numbers from (1) to (14), on a green background.

Thus, φ1 packs message m1 into flow τRC1 (1) and inserts it into a queue Q1,T x
(2). Conceptually, there is one such queue for each RC virtual link. RC traffic consists
of event-triggered messages. The separation of RC traffic is enforced through BAG,
which is the minimum time interval between two consecutive frames of a RC flow
τRCi . The BAG is enforced by the traffic regulator (TR) task. For example, T R1 in
ES1 in Fig. 2 will ensure that each BAG1 interval will contain at most one frame of
τ1 (3). Therefore, even if a flow is sent in bursts by a task, it will leave the TR task
within a specified BAG.

Several flows will be sent from an ES. Let us first discuss how RC flows are
multiplexed, and then we will discuss the integration with the TT traffic. In an ES,
the RC scheduler task RCS (such as the one in ES1) will multiplex several RC flows
(4) coming from the traffic regulator tasks, T Ri , such as T R1 and T R2 in ES1.
Figure 3 depicts how this multiplexing is performed for the flow τRCx and τRCy with
the sizes and BAGs in a output port h as specified in Fig. 3a and b, respectively.
Figure 3c shows one of the possible output scenarios, in the case two flows attempt
to transmit frames at the same time. How they will be sent on the outgoing dataflow
link [ES1, SW1] is non-deterministic and selected by the RCS task. The jitter for the
frame f h,0

RCy
equals to the transmission duration of τRCx . RC traffic also has to be

integrated with TT traffic, which has higher priority. Thus, RC flows are transmitted

123

Real-Time Syst (2017) 53:254–287 261

Fig. 3 Multiplexing two RC flows

Fig. 4 Integration policies of
TT and RC traffic

only when there is no TT traffic on the dataflow link. Hence, for our example on
ES1, the T TS task on ES1 will transmit flow τRC1 (5) to NS1 on the dataflow link
[ES1, SW1] only when there is no TT traffic (6). There are three integration policies
in TTEthernet (Steiner et al. 2009; SAE 2011): (i) shuffling, (ii) preemption and (iii)
timely block, as shown in Fig. 4. (i) With shuffling, the higher priority TT frame is
delayed until the RC frame finishes the transmission. In the case (ii) of preemption, the
RC frame is preempted, and its transmission is restarted from the beginning after theTT
frame finished transmitting. In the case (iii) of timely block, the RC frame is blocked
(postponed) from transmission on a dataflow link if a TT frame is scheduled to be sent
before the RC frame would complete its transmission. The timely block integration
policy is used when the TT frames have very strict timing requirements, and no delays
can be accepted compared to the scheduled transmission times. However, this comes
at the expense of wasted bandwidth (no other frames can be transmitted in the blocked
interval) and increased delays for RC frames. In case TT frames can tolerate slight
variations in their transmission times, the shuffling is a good option since it is able to
make use of the previously blocked intervals, which increases bandwidth usage and
reduces RC delays.

When the RC flow τRC1 arrives at NS1, the filtering unit (FU) task (7) will check its
validity and integrity. Fault-containment at the level of RC virtual links is provided by
the traffic policing (TP) task, see NS1 in Fig. 2. TP implements an algorithm known
as leaky bucket (ARINC 2009; SAE 2011), which checks the time interval between
two consecutive frames on the same virtual link. After passing the checks of the TP
task (8), τRC1 is forwarded by the switching fabric to the outgoing queue QTx (9). In
this paper we assume that all the RC flows have the same priority, thus the T TS (11)

123

262 Real-Time Syst (2017) 53:254–287

will send RC frames in QTx in a FIFO order, but only when there is no scheduled TT
traffic. At the receiving ES, after passing the FU (12) checks, τRC1 is copied in the
receiving Q2,Rx queue (13). Finally, when φ3 is activated, it will take τRC1 (14) from
this queue.

4 Network calculus background

Network calculus (Cruz 1991; Le Boudec and Thiran 2001; Chang 2000) is a mature
theory proposed for deterministic performance analysis, such as the computation of
the worst-case latency of a flow transmitted over a network. The approach in network
calculus is to construct appropriate arrival and service curvemodels for the investigated
flows and network nodes, such as an ES or a SW. The arrival and service curves are
defined by means of the min-plus convolution (Le Boudec and Thiran 2001).

An arrival curve α(t) is a model constraining the arrival process R(t) of a flow, in
which R(t) represents the input cumulative function counting the total data bits of the
flow that has arrived in the network node up to time t . We say that R(t) is constrained
by α(t) if

R(t) ≤ in f
0≤s≤t

{R(s) + α(t − s)} = (R ⊗ α)(t), (1)

where in f means infimum (greatest lower bound) and ⊗ is the notation of min-plus
convolution. A typical example of an arrival curve is the “leaky bucket” (Cruz 1991)
model and given by,

ασ,ρ(t) =
{

ρt + σ, t ≥ 0

0, t < 0,

where σ represents the maximum burst tolerance of the flow and ρ is the upper bound
of the long-term average rate of the flow.

A service curve β(t) models the processing capability of the available resource.
Assume that R∗(t) is the departure process, which is the output cumulative function
that counts the total data bits of the flow departure from the network node up to time
t . We say that the network node offers the service curve β(t) for the flow if

R∗(t) ≥ in f
0≤s≤t

{R(s) + β(t − s)} = (R ⊗ β)(t). (2)

A typical example of the service curve is the rate-latency service curve and given by,

βR,T (t) = R[t − T]+,

where R represents the service rate, T represents the service latency and the notation
[x]+ is equal to x if x ≥ 0 and 0 otherwise.

Let us assume that the flow constrained by the arrival curve α(t) traverses the
network node offering the service curve β(t). Then, the latency experienced by the
flow in the network node is bounded by the maximum horizontal deviation between
the graphs of two curves α(t) and β(t),

h(α, β) = sup
s≥0

{in f {τ ≥ 0 | α(s) ≤ β(s + τ)}} , (3)

123

Real-Time Syst (2017) 53:254–287 263

Fig. 5 A simple analysis
example by using network
calculus

where sup means supremum (least upper bound). Consider a flow constrained by the
leaky bucket ασ,ρ(t) and served in a node with the rate-latency service curve βR,T (t).
The worst-case latency is shown using the green line labelled h(α, β) in Fig. 5. With
these definitions, the worst-case end-to-end delay of the flow is the sum of latency
bounds in network nodes along its virtual link.

5 Problem formulation and overall analysis strategy

In this paper we are interested in determining the worst-case end-to-end latency DRCi

of RC flow τRCi along each path of the virtual link in a TTEthernet cluster, considering
all three traffic integration policies, (i) shuffling, (ii) preemption and (iii) timely block.

Considering a RC flow, the source of delays are as follows: (1) queueing latency in
the output ports of each node (both ESes and SWs) along its path from its source to
its destinations, (2) the technological latency due to switches and (3) the transmission
latencies on the physical links.

As in previous work, we assume an upper bound dtech on the technological latency
(2), which captures the latencies due to the FU and TP tasks and the switching fabric
in a SW, see Sect. 3. The transmission latency (3) is determined by the frames size
lRCi and the physical link rate C . The focus of the paper is on using network calculus
to determine (1) the worst-case latencies at the output port h of a node. To compute
the worst-case latency in a node port h, it is necessary to obtain the aggregate arrival
curve αh

RC (t) and remaining service curve βh
RC (t) of the intersecting RC flows. Figure

6 shows an overview of the network calculus model used to determine the worst-case
latencies at the output port h, for two cases. Figure 6a for the shuffling traffic integration

Fig. 6 Analysis model of a node output port

123

264 Real-Time Syst (2017) 53:254–287

Fig. 7 An example of a TT schedule in a node port

policy, and Fig. 6b for timely block. From the definition of integration policies in
Sect. 3, we can see that the worst-case latency with the preemption is the same with
the timely block. This is because in the current TTEthernet protocol implementation,
a RC frame that is preempted will restart its transmission from the beginning, and
for the timely block all the intersecting RC flows are in FIFO order thus the service
during blocked time cannot be used for other RC flows. These two cases of shuffling
and timely block are presented separately in Sects. 6 and 7, respectively.

For the aggregate arrival curve αh
RC (t) of the RC traffic, we use the model from the

related work on ARINC 664p7 (Frances et al. 2006). This will be briefly described in
Sect. 6.3. However, for the remaining service curve βh

RC (t) of RC traffic, we cannot
use the related work on strict priority policy, since the TT traffic with higher priority
is scheduled in fixed time slots, which is particular to TTEthernet. Therefore, with
our approach, the remaining service curve for RC traffic is calculated by removing
the service required by all TT flows going through h. The definition for βh

RC (t) is
presented in Sect. 6.2 for the shuffling integration policy, βh

RC_S(t), and in Sect. 7.2

for the timely block integration policy, βh
RC_T (t).

Hence, we first have to capture the aggregate arrival curve αh
T T (t) of intersecting

TT flows going through an output port h. First, we model the arrival curve αh
T Ti

(t)
for the single TT flow τT T i . Then we put these together into an the aggregate arrival
curve αh

T T (t) for all intersecting TT flows in h by considering the relative offsets,
based on its sending schedule SS for the output port h. The re-ordering capability of
the TTEthernet switches will not effect the worst-case timing analysis for RC traffic
since the TT frames are re-ordered according to sending schedules. We present our
approach to determine αh

T T (t) for shuffling in Sect. 6.1. Section 7.1 presents how we
consider the effect of additional waiting time (named as timely block curve γ h

T T (t))
during which the node does not forward a RC frame when a TT frame is scheduled
to be sent before the RC frame would complete its transmission, where we also need
determine αh

T T (t) (Sect. 6.1) for timely block.

123

Real-Time Syst (2017) 53:254–287 265

6 Worst-case latency analysis of RC traffic with shuffling integration
policy

6.1 Impact of TT traffic on RC traffic (αh
TT (t))

In this section we discuss the aggregate arrival curve of TT traffic flows multiplexing
in a node output port h to show its impact on the service of RC traffic. Recall that TT
flows are transmitted according to sending static schedules SS , determined offline as
discussed in Sect. 3.1. For example, in Fig. 7a, there are three TT traffic flows on an
output port h, τT T1 , τT T2 and τT T3 . They are respectively with periods pTT1 = 2 ms,
pTT2 = 4 ms and pTT3 = 8 ms. In our analysis, the sending times in the SS schedule
for a given output port h are captured using the concept of “relative offsets”, see
the later discussion in this section. For example, considering τT T1 as a reference, the
sending time of τT T2 is captured by oh2,1(0).

First, we discuss the arrival curve for a single TT flow τT Ti . Its arrival process on
each node along its virtual link can be described as periodic transmission with the
period pTTi , see Fig. 8 for an example.

Theorem 1 The arrival curve of the single TT flow τT Ti in an node port h along its
transmission is given by the staircase function

αh
T Ti (t) =

⎧
⎨

⎩
lT Ti ·

⌈
t

pT Ti

⌉
, t > 0

0, t ≤ 0,
(4)

where lT Ti is the size of the TT frame from τT Ti and pT Ti is its period, see Fig. 8, for
an illustration.

Proof For an arbitrary interval (s, t	, there are atmostnhT Ti (s, t) frames of τT Ti travers-
ing an arbitrary node port h along its transmission path,

nhT Ti (s, t) =
⌈
t − s

pT Ti

⌉
· (5)

Assume that Rh
TTi

(t) be the arrival process of the TT flow τT Ti in the node port h, we
have

Rh
TTi (t) − Rh

TTi (s) ≤ lT Ti · nhT Ti (s, t) = lT Ti ·
⌈
t − s

pT Ti

⌉
= αh

T Ti (t − s). (6)

Fig. 8 Arrival curve of a single TT flow

123

266 Real-Time Syst (2017) 53:254–287

Fig. 9 Example of single arrival
curves of three TT flows

Thus, the arrival curve for a single TT flow τT Ti in the node port h is given by

αh
T Ti

(t) = lT Ti ·
⌈

t

pT Ti

⌉
for t > 0 and 0 otherwise.
�

Figure 9 depicts the arrival curves of each single TT flow τT T1 , τT T2 and τT T3 for the
example in Fig. 7a.

However, there may be more than one TT flow, i.e., τT Ti = {τT T1 , τT T2 , . . . , τT Tn },
traversing the same output port h of a node. And, different from flows in asynchronous
networks, these intersectingTTflows cannot arrive at the same time. Their arrival times
are determined by the schedule tables,which are created such that there is no contention
between TT flows. Hence, it would be very pessimistic to simply sum arrival curves
of each single TT flow τT Ti , (i = 1, . . . , n) intersecting. In the following, we propose
how to construct the aggregate arrival curve αh

T T (t) of these intersecting TT flows
passing through h.

Even though the transmission of a single TT flow satisfies the property of strict
periodicity, several TT flows passing through the same node port h, will not satisfy
such a periodicity property. Since the schedule of the TT traffic is known a priori, we
will know the schedule of the TT frames in an interval (s,t] relative to a given TT
frame as reference. Conversely, any interval (s, t] can be traversed if we consider all
TT frames as a reference. This will lead to different possible aggregate arrival curves of
intersecting TT flows in the node port h. Moreover, the number of benchmark frames
is limited by Nh

TT , which is given by the following Eq. (8). Now, let us define the
LCM cycle phT T as the least common multiple (LCM) of periods of the intersecting
TT flows sharing the output port h of a node,

phT T = LCM
(
pTT1 , pT T2 , . . . , pT Tn

)
. (7)

Then, we can then say that the arrangement of intersecting TT flows passing through
the node port h is repeated in phT T . In an interval [0, phT T) of LCM cycle length, there
are

Nh
TT =

n∑

i=1

Nh
TTi =

n∑

i=1

phT T
/
pTTi (8)

TT frames from these intersecting TT flows, where Nh
TTi

is the number of frames of
τT Ti in such LCM cycle. By considering one of the TT frames as a reference, there will
be Nh

TT possible aggregate arrival curves. Here, let us define such a reference TT frame

as the “benchmark frame” b f h,k
T Ti

, in which the subscript T Ti represents the TT flow

123

Real-Time Syst (2017) 53:254–287 267

that such benchmark frame belongs to and the superscript k (k = 0, . . . , Nh
TTi

− 1 =
phT T

/
pTTi − 1) is an index of frames of τT Ti in the LCM cycle traversing through the

node port h. In addition, we define f h,g
T Tj ,i(k)

as the frame g (g = 0, 1, · · · , Nh
TTj

) of

τT Tj arriving after the benchmark frame b f h,k
T Ti

, and g is the relative index with respect

to k. This means that specifically f h,0
T Tj ,i(k)

represents the benchmark frame b f h,k
T Ti

if

j = i . Moreover, we use the concept of “relative offset” ohj,i(k) to define the arrival

interval between the benchmark frame b f h,k
T Ti

of τT Ti and the first frames f h,0
T Tj ,i(k)

of

TT flows τT Tj (j ∈ [1, n]) coming after b f h,k
T Ti

. Note that ohj,i(k) equals to 0 if j = i .

For example, when the frame b f h,0
T T1

of τT T1 is considered as the benchmark frame

in Fig. 7a, the relative offset oh2,1(0) (resp. o
h
3,1(0)) is as shown in Fig. 7a. However, if

b f h,0
T T2

is considered as the benchmark frame as depicted in Fig. 7b, then the relative

offset oh1,2(0) (resp. o
h
3,2(0)) is the interval between b f

h,0
T T2

and f h,0
T T1,2(0)

(resp. f h,0
T T3,2(0)

)

arrived immediately after b f h,0
T T2

.

Theorem 2 The possible aggregate arrival curve of intersecting TT flows
{τT T1 , . . . , τT Tn } in an arbitrary node port h considering the benchmark frame b f h,k

T Ti
is given by

αh
T T,i(k)(t) =

n∑

j=1

αh
T Tj

(
t − ohj,i(k)

)
, (9)

where αh
T Tj

(t) is the arrival curve of the single TT flow τT Tj and o
h
j,i(k) is the relative

offset between the benchmark frame b f h,k
T Ti

and the adjacent frame f h,0
T Tj ,i(k)

of τT Tj .

Note that ohi,i(k) = 0.

Proof Since b f h,k
T Ti

is considered as the benchmark frame, for any conditional arbitrary

interval (s, t] that b f h,k
T Ti

is the first encountered frame, there are at most nhT Tj ,i(k)
(s, t)

frames of τT Tj (j = 1, . . . , n) arriving in node port h,

nhT Tj ,i(k)
(s, t) =

⎧
⎪⎨

⎪⎩

⌈
t − s − ohj,i(k)

pTTj

⌉

, t − s > ohj,i(k)

0, t − s ≤ ohj,i(k).

(10)

Let Rh
TT,i(k)(t) be the arrival process of intersecting TT flows in the node port h, then

we have

Rh
TT,i(k)(t) − Rh

TT,i(k)(s) ≤
n∑

j=1

lT Tj · nhT Tj ,i(k)
(s, t) =

n∑

j=1

lT Tj ·
⌈
t − s − ohj,i(k)

pTTj

⌉

=
n∑

j=1

αh
T Tj

(
t − s − ohj,i(k)

)
. (11)

123

268 Real-Time Syst (2017) 53:254–287

Fig. 10 Example of possible overall arrival curves of TT flows

Thus, the possible aggregate arrival curve based on b f h,k
T Ti

is given by αh
T T,i(k)(t) =

n∑

j=1
αh
T Tj

(
t − ohj,i(k)

)
.
�

Considering the TT flows from Figs. 7a and 10a shows one possible aggregate arrival
curve if we consider b f h,0

T T1
of τT T1 as the benchmark frame. The red dotted line

represents the arrival curve of single flow τT T1 , and yellow and blue dotted lines,
respectively, represent the arrival curves of single flow τT T2 and τT T3 shifted to the
right by relative offsets oh2,1(0) and o

h
3,1(0) according to the schedule considered in Fig.

7a. Similarly, Fig. 10b is another possible aggregate arrival curve considering b f h,0
T T2

of τT T2 as the benchmark frame. For our example, there are at most
∑3

i=1 N
h
TTi

= 7
possible aggregate arrival curves in Fig. 11.

Then the worst-case aggregate arrival curve αh
T T (t) for the intersecting TT flows is

the supremum or upper envelope of all these possible aggregate arrival curves, given

123

Real-Time Syst (2017) 53:254–287 269

Fig. 11 Example of the overall arrival curve of TT flows

by

αh
T T (t) = max

i∈[1,n]

⎧
⎨

⎩
max

k∈[0,Nh
T Ti

−1]

{
αh
T T,i(k)(t)

}
⎫
⎬

⎭
, (12)

where αh
T T,i(k)(t) is given by Theorem 2. An example is shown in Fig. 11 in the

red staircase curve. As mentioned, the number of possible aggregate arrival curves is
limited by Nh

TT , thus it is feasible to enumerate.

6.2 Service curve βh
RC_S(t) for aggregate RC flows with shuffling integration

policy

With the shuffling integration, since a RC frame is non-preemptive, the service for the
aggregate RC frames in a node port h is affected only by the time slots occupied by
TT frames.

Theorem 3 Assume that αh
T T (t) is the aggregate arrival curve of TT flows, as deter-

mined in Sect. 6.1, in the node port h. Then, the service curve βh
RC_S(t) for the

aggregate RC flows in h with shuffling is given by

βh
RC_S(t) =

[

sup
0≤s≤t

{
C · s − αh

T T (s)
}
]+

(13)

where C is the physical link rate for the node output port h.

Proof Assume that Rh
TT (t) and Rh∗

T T (t) (resp. RRC (t) and Rh∗
RC (t)) are the arrival and

departure process of n TT flows τT T1 , …, τT Tn (resp. m RC flows τRC1 , …, τRCm)
crossing through the node port h. Let s be the start of the busy period1 for TT traffic

1 A busy period for level L is defined by an interval [s, t) such that s and t are both idle times for level L
and there is no idle time for level L in (s, t). An idle time s for level L is a time such that all frames with a
priority greater than or equal to L generated before s have been processed at time s.

123

270 Real-Time Syst (2017) 53:254–287

(Steven and Minet 2006). The amount of service for RC flows is lower bounded by
the total output service minus the service for TT frames during [s, t) in h,

Rh∗
RC (t) − Rh∗

RC (s) ≥ C · (t − s) − (
Rh∗
T T (t) − Rh∗

T T (s)
)
, (14)

Since s is the beginning of the busy period, we have Rh∗
T T (s) = Rh

TT (s) and Rh∗
RC (s) =

Rh
RC (s). Then

Rh∗
RC (t) − Rh∗

RC (s) ≥ C · (t − s) −
(
Rh∗
T T (t) − Rh∗

T T (s)
)

= C · (t − s) −
(
Rh∗
T T (t) − Rh

TT (s)
)

, (15)

and obviously due to Rh∗
T T (t) ≤ Rh

TT (t),

Rh∗
RC (t)− Rh∗

RC (s) ≥ C · (t − s) −
(
Rh
TT (t) − Rh

TT (s)
)

≥ C · (t − s) − αh
T T (t − s),

(16)
where αh

T T (t) represents the arrival constraint of aggregate TT flow up to time t in the
node port h. Since Rh∗

RC (t) is a wide-sense increasing function, we have

Rh∗
RC (t) ≥ Rh∗

RC (s) +
[

sup
0≤s≤t

{
C · (t − s) − αh

T T (t − s)
}]+

= Rh
RC (s) + βh

RC_S(t − s)

≥ inf
0≤s≤t

{
Rh
RC (s) + βh

RC_S(t − s)
}

=
(
Rh
RC ⊗ βh

RC_S

)
(t). (17)

�
Considering the aggregate arrival curve of TT flows from Fig. 11, the remaining
service curve for RC flows is given by the blue solid line labeled βh

RC_S(t) in Fig. 12.

In addition, the dotted line represents the function C · t − αh
T T (t).

6.3 Worst-case end-to-end latency of RC flows with shuffling

Since RC traffic is compatible with ARINC 664p7, the arrival curve of each τRCi in
the source ES node port is constrained by the leaky bucket (Bauer et al. 2010),

α
h0
RCi

= σ
h0
RCi

+ ρ
h0
RCi

· t (18)

where h0 represents the output port of the first node (source ES) along the path, σ
h0
RCi

=
lRCi and ρ

h0
RCi

= lRCi

/
BAGRCi . In addition, since RC flows are asynchronous, they

123

Real-Time Syst (2017) 53:254–287 271

Fig. 12 Example of the service curve for RC flows in the shuffling integration policy

may simultaneously arrive and queue up in a node port. The aggregate arrival curve
of competing RC flows is the sum of their respective arrival curves,

αh
RC (t) =

∑

RCi∈h
αh
RCi

(t) =
∑

RCi∈h
σ h
RCi

+
∑

RCi∈h
ρh
RCi

· t, (19)

where αh
RCi

(t) is the input arrival curve (Le Boudec and Thiran 2001) of τRCi in the

node port h. If h �= h0, αh
RCi

(t) is given by

αh
RCi

(t) = αh′
RCi

(
t + Dh′

RCi

)
(20)

where h′ is the previous node port along the virtual link of τRCi , and Dh′
RCi

is the
worst-case queuing latency of τRCi in the node port h

′, which is given by Eq. (21).
According to the network calculus theory, the upper bound latency of a RC flow

τRCi in the node port h is given by the maximum horizontal deviation between the
arrival curve αh

RC (t) and the service curve βh
RC_S(t) of the RC flows intersecting the

node port h,

Dh
RCi_S = h

(
αh
RC , βh

RC_S

)
(21)

An example of such horizontal deciation is shown in Fig. 13.
By disseminating the computation of latency bounds along a path dpi of the virtual

link vli of the flow τRCi , the worst-case end-to-end latency with the shuffling integra-
tion policy is obtained by the sum of delays from its source ES to its destination ES,

DRCi_S =
∑

h

Dh
RCi_S + (h − 1) · dtech (22)

where h ∈ dpi and dtech is the technological latency in a switch.

123

272 Real-Time Syst (2017) 53:254–287

Fig. 13 Upper bound latency of RC flows in a node port in the shuffling integration

7 Worst-case latency analysis of RC traffic with timely block integration
policy

7.1 Impact of timely block integration on RC traffic (γ h
TT (t))

For the timely block integration policy (see Sect. 3.2 for the definition of timely block),
we should not only consider the arrival impact of TT traffic on RC traffic as we have
done in Sect. 6.1, but also the impact of the waiting time before each TT frames. We
define the blocking interval BI hT T to represent the worst-case waiting time before a
TT frame due to the timely block integration. It is related to the maximum frame size
lhRCmax = max

1≤i≤m
{lRCi } of RC flows traversing the output port h and the interval I hT T

which is the distance between such TT frame and its previous adjacent TT frame.
If I hT T is larger than or equal to the maximum transmission time of RC frames, i.e.,
I hT T ≥ lhRCmax

/
C , the blocking interval BI hT T equals to lhRCmax

/
C , otherwise I hT T .

Let us consider the example in Fig. 14, where for simplicity, we assume that traversing
RC flows and TT flows have the same frame size. Since the schedule table is repeated
with theLCMcycle phT T , the adjacent frame before f h,0

T T1
is f h,3

T T1
. Then the interval I h,0

T T1

between the first TT frame f h,0
T T1

of τT T1 and its previous adjacent frame f h,3
T T1

is larger

than the transmission time of a RC frame f hRC , and the worst-case blocking interval

before f h,0
T T1

is BI h,0
T T1

= lhRCmax

/
C . However, the worst-case blocking interval before

the second TT frame f h,1
T T1

of τT T1 equals to BI h,1
T T1

= I h,1
T T1

since I h,1
T T1

< lhRCmax

/
C .

Different from the discussion of arrival curve of a single TT flow in Sect. 6.1, the
impact of a timely block before each TT frame of a single TT flow is not periodic in a
LCMperiod, due to the fact that the blocking intervals BI hT T may not equal to the same
length (as mentioned in Fig. 14). Therefore, in order to traverse all the situations and
easily discuss, we will consider different TT frames, the number of which is bounded

123

Real-Time Syst (2017) 53:254–287 273

Fig. 14 Time interval between two adjacent TT frames

in a LCM cycle, as a benchmark frame b f h,k
T Ti

in the following. Now, we will give two
Lemmas first.

Lemma 1 The interval I h,g
T Tj ,i(k)

between any TT frame f h,g
T Tj ,i(k)

(g = 0, . . . , Nh
TTj

−
1, j = 1, . . . , n) and its previous adjacent TT frame by considering b f h,k

T Ti
(k =

0, . . . , Nh
TTi

− 1, i = 1, . . . , n) as the benchmark frame in the node port h is,

I h,g
T Tj ,i(k)

= g · pTTj + phT T + ohj,i(k)

− max
1≤m≤n

{(⌈
g · pTTj + phT T + ohj,i(k) − ohm,i(k)

pTTm

⌉

− 1

)

·pTTm + ohm,i(k) + lT Tm
}

. (23)

Proof Without loss of generality, let us assume that benchmark frame b f h,k
T Ti

arrives

at time zero. Therefore, the first frame of τT Tj arrives at o
h
j,i(k) after the benchmark

frame. Then, the gth frame of τT Tj arrives at o
h
j,i(k) + g · pTTj .

The adjacent TT frame arriving before f h,g
T Tj ,i(k)

may be from any TT flows
τT Tm (m = 1, . . . , n) traversing the node port h. In order to ensure that there

exists at least one frame from τT Tm before f h,g
T Tj ,i(k)

after the time zero, we con-

sider that the frame of τT Tj arrives at ohj,i(k) + g · pTTj + phT T . And this is the

same with the frame f h,g
T Tj ,i(k)

arrives at ohj,i(k) + g · pTTj since the TT sched-

ule for the node port h is repeated by the LCM cycle phT T . Then, there will

be Nh, j (g)
T Tm ,i(k) =

⌈(
g · pTTj + phT T + ohj,i(k) − ohm,i(k)

)/
pTTm

⌉
TT frames of τT Tm

before f h,g
T Tj ,i(k)

. Thus, the nearest TT frame of τT Tm finishes its transmission at
(
Nh, j (g)
T Tm ,i(k) − 1

)
· pTTm + ohm,i(k) + lT Tm . By considering all the nearest TT frames

from different TT flows, the adjacent TT frame before f h,g
T Tj ,i(k)

finishes transmission

at max
1≤m≤n

{(
Nh, j (g)
T Tm ,i(k) − 1

)
· pTTm + ohm,i(k) + lT Tm

}
.
�

Lemma 2 The worst-case blocking interval B I h,g
T Tj ,i(k)

before a TT frame f h,g
T Tj ,i(k)

(g = 0, . . . , Nh
TTj

− 1) of the TT flow τT Tj (j = 1, . . . , n) by considering b f h,k
T Ti

as
the benchmark frame in the node port h is

123

274 Real-Time Syst (2017) 53:254–287

Fig. 15 Example of blocking intervals based on b f h,k
T Ti

B I h,g
T Tj ,i(k)

= min

(
lhRCmax

C
, I h,g

T Tj ,i(k)

)

, (24)

where lRCmax is the maximum frame size of RC flows sharing the output port h and
I h,g
T Tj ,i(k)

is given by Lemma 1.

Theorem 4 The possible overall timely block curve of all TT flows {τT T1 , . . . , τT Tn }
in a node port h by considering the benchmark frame b f h,k

T Ti
is

γ h
T T,i(k)(t) =

n∑

j=1

Nh
TTj

−1
∑

g=0

C · BI h,g
T Tj ,i(k)

· nh,g
T B j ,i(k)

(t), (25)

where

nh,g
T B j ,i(k)

(t)

=

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎢

t − ohj,i(k) − g · pT T j + BI h,g
T Tj ,i(k)

phT T

⎤

⎥⎥
⎥

, t > max{0, ohj,i(k) + g · pTT j − BI h,g
T Tj ,i(k)

}

0, t ≤ max{0, ohj,i(k) + g · pTT j − BI h,g
T Tj ,i(k)

}.
(26)

Proof For any conditional arbitrary interval (s, t] that taking b f h,k
T Ti

as the benchmark
frame, the worst-case effect of timely block is related to the encountered TT frames
during (s, t]. Asmentioned before, since the blocking intervals before frames f h,g

T Tj ,i(k)

(g = 0, . . . , Nh
TTj

−1) belonging to the sameTTflow τT Tj maydifferentwithin aLCM
cycle, as shown in Fig. 15, we will discuss each of them separately. In the worst-case,

there are at most nh,g
T B j ,i(k)

(s, t) =
⌈
(t − s − ohj,i(k) − g · pTT j + BI h,g

T Tj ,i(k)
)
/
phT T

⌉

blocking intervals with the maximum interval length BI h,g
T Tj ,i(k)

before f h,g
T Tj ,i(k)

in the

node port h if t − s > max{0, ohj,i(k) + g · pTT j − BI h,g
T Tj ,i(k)

}, and 0 otherwise. Let

Rh
T B,i(k)(t) be the blocked process due to intersecting TT flows in the node port h, by

123

Real-Time Syst (2017) 53:254–287 275

Fig. 16 Example of a possible overall timely block curve based on b f h,0
T T1

considering the maximum number of blocking intervals within (s, t] from each TT
frame of τT Tj and all the intersecting TT flows, we have

Rh
T B,i(k)(t) − Rh

T B,i(k)(s) ≤
n∑

j=1

Nh
TTj

−1
∑

g=0

C · BI h,g
T Tj ,i(k)

· nh,g
T B j ,i(k)

(s, t) (27)

Thus, the possible overall timely block curve based on b f h,k
T Ti

is given by

γ h
T T,i(k)(t) =

n∑

j=1

Nh
TTj

−1
∑

g=0

C · BI h,g
T Tj ,i(k)

· nh,g
T B j ,i(k)

(t). (28)

�
The grey staircase curve in Fig. 16 shows a possible timely block curve γ h

T T,1(0)(t)

for the benchmark frame b f h,0
T T1

from Fig. 7.

The worst-case overall timely block curve γ h
T T (t) in the node port h is the upper

envelope of all the possible timely block curves γ h
T T,i(k)(t), an example is shown in

Fig. 17 with a solid line,

γ h
T T (t) = max

i∈[1,n]

⎧
⎨

⎩
max

k∈[0,Nh
T Ti

−1]

{
γ h
T T,i(k)(t)

}
⎫
⎬

⎭
. (29)

7.2 Worst-case end-to-end latency of RC flows with timely block

Theorem 7 gives the service curve βh
RC_T (t) of aggregate RC flows in a node port h

with the timely block integration policy.

Theorem 7 The service curve βh
RC_T (t) for the aggregate RC flows in h in the timely

block integration policy is

123

276 Real-Time Syst (2017) 53:254–287

Fig. 17 Example of the overall timely block curve

Fig. 18 Example of the service curve for RC flows in the timely block integration

βh
RC_T (t) =

[

sup
0≤s≤t

{
C · s − αh

T T (s) − γ h
T T (s)

}]+
, (30)

where αh
T T (t) is the aggregate arrival curve of TT flows and γ h

T T (t) is the timely block
curve in the node port h. An example of the remaining service curve for RC flows is
given by the blue solid line in Fig. 18, by considering the aggregate arrival curve of
TT flows from Fig. 11 and the timely block curve from Fig. 17.Moreover, the dotted
line represents the function C · t − αh

T T (t) − γ h
T T (t).

Similarly, the worst-case latency of a RC flow τRCi in a node port h is given as
shown in Fig. 19 by

Dh
RCi_T = h

(
αh
RC , βh

RC_T

)
. (31)

123

Real-Time Syst (2017) 53:254–287 277

Fig. 19 Upper bound latency of RC flows in a node port

8 Experimental evaluation

In this section, for the evaluation of our approach, we used three synthetic test cases,
TC1 to TC3, and one realistic test case, Orion Crew Exploration Vehicle (CEV),
named here TC4 adapted from Tamas-Selicean (2014a), Paulitsch et al. (2011). Our
proposed analysis was implemented in C++ combined with the dynamic link library
of RTC toolbox (Wanderler and Thiele 2006), running on a computer with Intel Core
i7-3520M CPU at 2.90 GHz and 4 GB of RAM.

The comparison of configurations of four test cases is given by Table 1. As we can
see, TC1 is from Tamas-Selicean et al. (2015b) and has a topology of 12 ESes, 4 SWs,

Table 1 Configurations of four test cases

Test case Number of
ESes

Number of
SWs

Number of
VLs

Number of
dataflow
paths

Number of
TT flows

Number of
RC flows

TC1 12 4 19 36 20 26

(Tamas-Selicean
et al. 2015b)

TC2 10 5 55 99 58 51

(Tamas-Selicean
et al. 2015b)

TC3 35 8 91 141 91 81

(Tamas-Selicean
et al. 2015b)

TC4 31 15 100 190 100 87

Orion CEV
(Paulitsch et al.
2011)

123

278 Real-Time Syst (2017) 53:254–287

Table 2 Parameters of traffic in
TC1

Periods and frame sizes of TT traffic

Flow Size Period Flow Size Period
(B) (ms) (B) (ms)

TT1 1097 25 TT11 756 25

TT2 1167 10 TT12 86 2.5

TT3 1194 10 TT13 901 2.5

TT4 393 2 TT14 1339 5

TT5 43 2.5 TT15 1324 2.5

TT6 499 3.125 TT16 898 2

TT7 869 25 TT17 1420 6.25

TT8 1098 2.5 TT18 629 25

TT9 1077 25 TT19 195 10

TT10 1229 3.125 TT20 143 5

BAGs and frame sizes of RC traffic

Flow Size BAG Flow Size BAG
(B) (ms) (B) (ms)

RC1 1021 4 RC14 1360 16

RC2 1395 16 RC15 1332 8

RC3 134 4 RC16 728 16

RC4 1078 2 RC17 1127 16

RC5 590 8 RC18 156 4

RC6 946 2 RC19 378 8

RC7 784 16 RC20 1443 2

RC8 1120 2 RC21 1367 2

RC9 1361 8 RC22 519 16

RC10 20 4 RC23 522 2

RC11 1262 8 RC24 309 16

RC12 926 4 RC25 411 2

RC13 879 4 RC26 406 16

19 VLs and 36 dataflow paths (due to VL multicast reason), connected by dataflow
link transmitting at 100 Mbps, running 20 TT flows and 26 RC flows. The details of
the TT and RC flows are presented in Table 2. We use the same schedule tables from
Tamas-Selicean’s work (2015b) which were generated using the method from Tamas-
Selicean et al. (2015a). In Table 3 we compare our method using network calculus for
TTEthernet (called NC/TTE) with three other methods from related work. For each
RC flow in TC1, Table 3 shows the WCDs obtained with each method, considering
the timely block integration policy. The most recent WCD analysis method for RC
traffic is the trajectory approach from Tamas-Selicean et al. (2015b), which we denote
with Tam15. The method from Steiner (2011) is denoted with Ste11. None of these
methods use network calculus. As we have argued in the introduction, using NC has
the advantage of a well-established theory supported by certified tools used in the

123

Real-Time Syst (2017) 53:254–287 279

Table 3 Comparison of different approaches for TC1

Flow Ste11 (ms) NC/SP (ms) NC/TTE (ms) Tam15 (ms)

RC1 4.44 3.59 0.82 0.77

RC2 19.94 6.53 2.30 1.81

RC3 20.68 4.33 1.32 1.10

RC4 10.16 4.93 1.72 1.53

RC5 13.04 5.24 1.70 1.35

RC6 14.62 6.17 2.14 1.68

RC7 3.12 3.13 0.76 0.79

RC8 14.09 4.43 1.68 1.22

RC9 8.43 5.79 1.84 1.38

RC10 17.81 5.87 2.19 1.48

RC11 11.30 4.43 1.50 1.34

RC12 15.30 5.06 1.59 1.17

RC13 12.86 6.32 2.25 1.43

RC14 16.69 6.76 2.48 1.80

RC15 14.62 6.37 2.09 1.60

RC16 13.67 6.23 1.80 1.61

RC17 18.52 6.07 2.01 1.70

RC18 5.57 3.56 1.19 0.86

RC19 20.73 4.33 1.32 1.08

RC20 20.07 6.44 1.80 1.75

RC21 20.52 6.71 2.55 1.85

RC22 13.24 5.37 1.51 1.32

RC23 19.74 5.64 1.99 1.33

RC24 11.15 5.37 1.44 1.23

RC25 11.11 2.99 0.65 0.65

RC26 7.47 5.58 1.66 1.35

safety-critical area. Without using our NC method NC/TTE, the only option with
NC is to model the TT flows as high-priority periodic RC traffic that inherit their
periods from TT schedule tables. We call such a method NC with strict priority, or
NC/SP, and we have implemented NC/SP by using the NC approach for RC from
Frances et al. (2006) extended to consider TT flows as high priority RC traffic using
the method from Schmitt et al. (2003). Such a NC/SP method is the best that can
be achieved with NC without considering the particularities of TTEthernet, as we
do in this paper. In addition, in order to compare clearly, we also show the results
of four methods in Fig. 20. We use NC/TTE as the baseline (the red “+” symbols
forming a vertical line), i.e., the values on the x-axis show the percentage deviation
of WCDs from the WCD obtained with our method NC/TTE, which is normalized
to 100. The upper bounds calculated by NC/SP, Tam15 and Ste11 are normalized
by

123

280 Real-Time Syst (2017) 53:254–287

Fig. 20 Comparison of upper bounds by NC/TTE, NC/SP and Tam15

Norx = 100 −
(
DNC/T T E

RCi_T
− Dx

RCi_T

DNC/T T E
RCi_T

× 100

)

. (32)

where x represents one of the other methods, NC/SP, Tam15 and Ste11.
As we can see from Table 3 and Fig. 20, Ste11 obtains the largest WCDs, which

is expected, since it pessimistically assumes that all RC frames in an output port
will delay the RC frame under analysis. Tam15 obtains the best results, and it can
improve the WCDs obtained by our NC/TTE method with 19% on average for TC1
(36% maximum). However, this improvement costs computation time: Tam15 needs
6 minutes for TC1 whereas our NC/TTE method completes in 7.94 s. As we will see
for the larger test cases, Tam15 does not scale well, and is unable to obtain results for
the largest test case we have used. This is because the time necessary of Tam15 to
compute theWCDs depends on both the number of RC flows and on the size of the TT
schedules. Also, Tam15 is not based on NC, which makes it impossible to integrate
into the existing certified tool-chains. The results obtained with NC without using our
method, i.e., NC/SP, are more pessimistic (larger WCDs) than our results. As we can
see, our proposed analysis reduces the pessimism compared to NC/SP and Ste11 on
average by 68 and 86%, respectively (78 and 94% maximum). The computation time
of TC1 for NC/SP is 1.98 s. Note that in Table 3 we have considered timely block in
order to perform a fair comparison, since this is the only integration policy handled
by Ste11 and Tam15.

To show the scalability of our method, we apply it to larger test cases TC2 and
TC3, which are having increasing complexity, as shown in Table 1. The compared
worst-case end-to-end delays computed by NC/TTE, NC/SP and Tam15 on these two
test cases are respectively presented in Fig. 21a and b. In Table 3 we have presented the
WCD values for the different methods. Since these test cases are larger, and due to a
lack of space, we present the WCDs visually in the figures. On the y-axis we have the
RCflows, fromRC1 toRC51 in Fig. 21a and fromRC1 toRC81 in Fig. 21b. Each data-
point in the figure corresponds to a WCD value. The results from Fig. 21 (TC2 and
TC3) confirm the results from TC1. We can see that our network calculus approach
NC/TTE, significantly reduces the pessimism compared with NC/SP. Our approach
takes 17.26 and 31.62 s on TC2 and TC3, respectively, compared to Tam15 and
NC/SP, which need 164 minutes and 446 minutes, and 2.02 s and 2.58 s, respectively.

In the last experiment, we use the real-life case study Orion CEV (TC4), derived
from Tamas-Selicean (2014a), Paulitsch et al. (2011). The topology for the case study
is shown in Fig. 22. The Orion CEV case has 31 ESes, 15 SWs, 100 VLs and 190

123

Real-Time Syst (2017) 53:254–287 281

(a) test case TC2

(b) test case TC3

Fig. 21 Comparison of upper bounds by NC/TTE, NC/SP and Tam15

dataflow paths, connected by dataflow link transmitting at 100Mbps, and running 100
TT flows and 87 RC flows, with parameters presented in Paulitsch et al. (2011). In
the last set of experiments, we were interested to determine how our method handles
the two traffic integration policies, namely, shuffling and timely block. We have run
NC/TTE on TC4 and obtainedWCDs for both cases. The compared results are shown
in Fig. 23, where the upper bounds with timely block integration are normalized to
100. Our analysis has successfully computed on this large test case, for all traffic
integration policies. We were unable to run Tam15 on TC4, since it reported that it
runs out of memory, which, together with the large runtimes on TC1 and TC3, shows

123

282 Real-Time Syst (2017) 53:254–287

Fig. 22 Network topology of the Orion CEV, derived from Paulitsch et al. (2011)

Fig. 23 Comparison of upper
bounds of shuffling and timely
block by NC/TTE

that their method is not scalable. As expected, the latency bounds with the shuffling
integration are lower than the bounds with timely block integration, since for the
timely block integration, a RC frame will not be forwarded until there is an enough

123

Real-Time Syst (2017) 53:254–287 283

idle time interval for such the whole RC frame, and for the shuffling integration the
higher priority TT frame is delayed until the RC frame finishes the transmission. On
average, timely block leads to 40% largerWCDs for TC4. This number is related to the
“porosity” of TT schedules. The porosity concept is introduced by Steiner (2011) and
is related to the density (intensive or sparse) of TT scheduling slots. If TT frames are
scheduled back-to-back without any intervals (pores) in-between, the RC frames will
experience large delays. These delays can be reduced by introducing more porosity in
the schedules.

9 Conclusions

This paper has proposed a network calculus approach for the TTEthernet to analyze the
worst-case end-to-end latency of RC traffic. TTEthernet is suitable for mixed-critical
systems as it offers three types of traffic classes, time-triggered, rate-constrained and
best-effort.

The contribution of this paper is capturing the effects of all the integration policies,
shuffling, preemption and timely block, on the latency bounds of RC traffic using net-
work calculus, and the consideration of relative frame offsets of TT traffic to reduce the
pessimism of the RC analysis. We construct the aggregate arrival curve for intersect-
ing TT flows by considering the fixed offsets among TT flows, and the overall timely
block curve due to the blocking interval before each TT frame. The experimental
results and the comparison to the previously proposed analysis methods show that the
network calculus approach is a viable approach for the analysis of TTEthernet, with
the extensions proposed in the paper. Our NC/TTE method is scalable and can handle
large problem sites, without a significant increase in pessimism compared to Tam15.
In addition, our NC/TTE method reduces the pessimism of worst-case delay calcu-
lated by the traditional network calculus approach NC/SP for strict priority without a
significant increase in computation time.

Acknowledgements This study is co-supported by the National Natural Science Foundation of China
(61073012 and 61301086) and the Fundamental Research Funds for the Central Universities of China
(YWF-14-DZXY-023 and YWF-15-GJSYS-055).

References

Adnan M, Scharbarg JL, Ermont J, Fraboul C (2010) Model for worst case delay analysis of an AFDX
network using timed automata. In: IEEE conference on emerging technologies and factory automation,
Bilbao, pp 1–4

ARINC (2009) ARINC 664P7: Aircraft data network, Part 7. Avionics full-duplex switched Ethernet net-
work

Bauer H, Scharbarg JL, Fraboul C (2010) Improving the worst-case delay analysis of an AFDX network
using an optimized trajectory approach. IEEE Trans Ind Inform 6(4):521–533

Boyer M, Fraboul C (2008) Tightening end to end delay upper bound for AFDX network calculus with rate
latency FIFO servers using network calculus. In: IEEE international workshop on factory communi-
cation systems, Dresden, pp 11–20

Chang CS (2000) Performance guarantees in communication networks, 1st edn. Springer, London
Cruz C (1991) A calculus for network delay, part I, network elements in isolation. IEEE Trans Inform

Theory 37(1):114–131

123

284 Real-Time Syst (2017) 53:254–287

CummingsR,RichterK, Ernst R,Diemer J, GhosalA (2012) Exploring use of Ethernet for in-vehicle control
applications: AFDX, TTEthernet, EtherCAT, and AVB. SAE Int J Passeng Cars Electron Electr Syst
5(1):72–88

Danielis P, Skodzik J, Altmann V et al (2014) Survey on real-time communication via Ethernet in indus-
trial automation environments. In: Proceedings of the 2014 IEEE emerging technology and factory
automation (ETFA), IEEE, pp 1–8

Decotignie JD (2005) Ethernet-based real-time and industrial communications. Proc IEEE93(6):1102–1117
ETG (2013) ETG.1000.1 EtherCAT Specification. EtherCAT Technology Group
Frances F, FraboulC,Grieu J (2006)Using network calculus to optimize theAFDXnetwork. In: Proceedings

of 3rd European congress embedded real-time software, Toulouse, France
Fletcher M (2009) Progression of an open architecture: from Orion to Altair and LSS. White paper S65-

5000-20-0, Honeywell, International
Gavrilut VM, Tamas-Selicean D, Pop P (2015) Fault-tolerant topology selection for TTEthernet networks.

In: Safety and reliability of complex engineered systems: proceedings of the 25th European safety and
reliability conference. CRC Press, London, pp 4001–4010

Grieu J (2005) Analyse et valuation de techniques de com-mutation Ethernet pour l’interconnexion des
systmes avioniques. Ph.D. dissertation, Laboratory Space and Aeronautical Telecommunications,
Toulouse, France

IEEE (2011) IEEE 802.1BA—IEEE standard for local and metropolitan area networks—audio video bridg-
ing (AVB) systems. The Institute of Electrical and Electronics Engineers, Inc

IEEE (2012) IEEE802.3—IEEE standard for Ethernet. The Institute of Electrical andElectronics Engineers,
Inc

IEEE (2015) IEEE P802.1Qbv (Draft 3.1)—enhancements for scheduled traffic, IEEE Time-Sensitive Net-
working Task Group. http://www.ieee802.org/1/pages/802.1bv.html

Kopetz H (1991) Event-triggered versus time-triggered real-time systems. In: Karshmer A, Nehmer J (eds)
Operating systems of the 90s and beyond. Lecture notes in computer science, vol 563. Springer, Berlin,
pp 86–101

Kopetz H, Grunsteidl G (2005) The time-triggered Ethernet (TTE) design. In: 8th IEEE international
symposium on object-oriented real-time distributed computing, Washington DC, pp 22–33

Kopetz H (2011) Real-time systems: design principles for distributed embedded applications. Springer,
Berlin

Le Boudec JY, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the internet.
In: Lecture notes on computer science, 5th edn. Springer, New York

Lee YH, Rachlin E, Scandura PA (2005) Safety and certification approaches for Ethernet-Based Aviation
Databuses. Technical report DOT/FAA/AR-05/52, Federal Aviation Administration

Li XT, Scharbarg J, Fraboul C (2010) Improving end-to-end delay upper bounds on an AFDX network by
integrating offsets in worst-case analysis. In: IEEE conference on emerging technologies and factory
automation, Bilbao, pp 1–8

Mabille E, Boyer M, Fejoz L et al (2013) Towards certifying network calculus. Interactive theorem proving.
Springer, Berlin

Mauclair C, Durrieu G (2013) Analysis of real-time networks with monte carlo methods. EUCASS Proc
Ser 6:501–514

Obermaisser R (2011) Time-triggered communication. CRC Press, London
Paulitsch M, Schmidt E, Gstottenbauer B, Scherrer C, Kantz H (2011) Time-triggered communication

(industrial applications). In: Time-triggered communication. CRC Press, London, pp 121–152
Pedreiras P, Almeida L, Buttazzo G (2005) FTT-Ethernet: a flexible real-time communication protocol that

supports dynamic QoSmanagement on Ethernet-based systems. IEEE Trans Ind Inform 1(3):162–172
SAE (2011) AS6802: Time-triggered Ethernet. SAE International
Scharbarg JL, Ridouard F, Fraboul C (2009) A probabilistic analysis of end-to-end delays on an AFDX

avionic net-work. IEEE Trans Ind Inform 5(1):28–49
Schmitt J, Hurley P, Hollick M et al (2003) Per-flow guarantees under class-based priority queueing. In:

IEEE global telecommunications conference, pp 4169–4174
Schneele S, Geyer F (2012) Comparison of IEEE AVB and AFDX. In: Proceedings of the digital avionics

systems conference, pp 7A1C1–7A1C9
Steinbach T, LimHT, Korf F, Schmidt TC, Herrscher D,Wolisz A (2012) Tomorrows in-car interconnect? A

competitive evaluation of IEEE 802.1 AVB and time-triggered Ethernet (AS6802). In: IEEE vehicular
technology conference. IEEE Press, New York, pp 1C5

123

http://www.ieee802.org/1/pages/802.1bv.html

Real-Time Syst (2017) 53:254–287 285

Steiner W, Bauer G, Hall B, Paulitsch M, Varadarajan S (2009) TTEthernet dataflow concept. In: 8th IEEE
international symposium on network computing and applications, Cambridge, MA, pp 319–322

Steiner W (2010a) An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks.
In: IEEE 31st real-time systems symposium (RTSS), San Diego, CA, pp 375–384

Steiner W, Dutertre B (2010b) SMT-Based formal verification of a TTEthernet synchronization function.
Formal methods for industrial critical systems. Springer, Berlin

Steiner W (2011) Synthesis of static communication schedules for mixed-criticality systems. In: 14th IEEE
international symposiumon object/component/service-oriented real-time distributed computingwork-
shops, Newport Beach, CA, pp 11–18

Steiner W (2016) Deterministic Ethernet for real-time and critical applications. In: 12th IEEE world con-
ference on factory communication systems, Aveiro, Portugal

StevenM,Minet P (2006) Schedulability analysis of flows scheduledwith FIFO: application to the expedited
forwarding class. In: 20th international parallel and distributed processing symposium

Suen J, Kegley R, Preston J (2013) Affordable avionic networks with Gigabit Ethernet assessing the suit-
ability of commercial components for airborne use. In: Proceedings of SoutheastCon, pp 1C6

Tamas-Selicean D, Marinescu SO, Pop P (2012a) Analysis and optimization of mixed-criticality applica-
tions on partitioned distributed architectures. In: 7th IET international conference on system safety,
incorporating the cyber security conference, Edinburgh, pp 21–26

Tamas-Selicean D, Pop P, Steiner W (2012b) Synthesis of communication schedules for TTEthernet-based
mixed-criticality systems. In: Proceedings of the eighth IEEE/ACM/IFIP international conference on
hardware/software codesign and system synthesis, New York, pp 473–482

Tamas-Selicean D (2014a) Design of mixed-criticality applications on distributed real-time systems. PhD
Thesis, Technical University of Denmark

Tamas-Selicean D, Pop P, SteinerW (2015a) Design optimization of TTEthernet-based distributed real-time
systems. Real-Time Syst 51(1):1–35

Tamas-Selicean D, Pop P, Steiner W (2015b) Timing analysis of rate constrained traffic for the TTEthernet
communication protocol. In: International symposium on real-time computing (ISORC)

Wanderler E, Thiele L (2006) Real-time calculus (RTC) toolbox. http://www.mpa.ethz.ch/Rtctoolbox
Zafirov A (2013) Modeling and simulation of the TTEthernet communication protocol. Masters thesis,

Technical University of Denmark
Zhao LX, Xiong HG, Zheng Z, Li Q (2014) Improving worst case latency analysis for rate-constrained

traffic in the Time-Triggered Ethernet Network. IEEE Commun Lett 18(11):1927–1930

Luxi Zhao received the PhD in communication and information sys-
tem from the Beihang University, Beijing, China, in 2017. Since
2017, she will be a postdoc at Technical University of Denmark
(DTU) for two years. Her main research interest concerns worst-case
analysis and performance evaluation on real-time networks.

123

http://www.mpa.ethz.ch/Rtctoolbox

286 Real-Time Syst (2017) 53:254–287

Paul Pop received his Ph.D. degree in computer systems from
Linköping University in 2003, he has been an associate professor at
DTU Compute, Technical University of Denmark, and since 2016 he
is a Professor of Cyber-Physical Systems. His research is focused
on developing methods and tools for the analysis and optimization
of dependable embedded systems. In this area, he has published
over 130 peer-reviewed papers, 3 books and 7 book chapters. He
and has received the best paper award at DATE 2005, RTIS 2007,
CASES 2009, MECO 2013 and DSD 2016. He has also received the
EDAA Outstanding Dissertations Award (co-supervisor) in 2011. His
research has been highlighted as “The Most Influential Papers of 10
Years DATE”. He is the director of DTU’s IoT Research Center and
has coordinated the Danish national InfinIT Safety-Critical Systems
Interest Group. He is the chairman of the IEEE Danish Chapter on
Embedded Systems. He has served as technical program committee
member on several conferences, such as DATE and ESWEEK.

Qiao Li received his Ph.D. degree in communication systems from
Beihang University in 2005, and he has been an associate professor in
School of Electronics and Information Engineering, Beihang Univer-
sity, Beijing, China. His research is focused on digital communication
technology, avionics systems and real-time networks.

Junyan Chen received the Ph.D. degree in Electronic Information
Engineering from Beihang University, Beijing, China, in 2014. His
main research interest is real-time performance evaluation in avion-
ics context.

123

Real-Time Syst (2017) 53:254–287 287

Huagang Xiong received his Ph.D. degree in communication sys-
tems from Beihang University in 1998, and he has been a professor
in School of Electronics and Information Engineering, Beihang Uni-
versity, Beijing, China. His main fields of interest are communication
network theory and avionics system and synthesis.

123

	Timing analysis of rate-constrained traffic in TTEthernet using network calculus
	Abstract
	1 Introduction
	2 System model
	2.1 Architecture model
	2.2 Application model

	3 TTEthernet protocol
	3.1 Time triggered transmission
	3.2 Rate constrained transmission

	4 Network calculus background
	5 Problem formulation and overall analysis strategy
	6 Worst-case latency analysis of RC traffic with shuffling integration policy
	6.1 Impact of TT traffic on RC traffic (αTTh(t))
	6.2 Service curve βRC_Sh(t) for aggregate RC flows with shuffling integration policy
	6.3 Worst-case end-to-end latency of RC flows with shuffling

	7 Worst-case latency analysis of RC traffic with timely block integration policy
	7.1 Impact of timely block integration on RC traffic (γTTh(t))
	7.2 Worst-case end-to-end latency of RC flows with timely block

	8 Experimental evaluation
	9 Conclusions
	Acknowledgements
	References

