
0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

1 

 

Abstract—Routing-based synthesis for digital microfluidic 

biochips yields faster assay execution times compared to module-

based synthesis. We show that routing-based synthesis can lead 

to deadlocks and livelocks in specific cases, and that dynamically 

detecting them and adjusting the probabilities associated with 

different droplet movements can alleviate the situation. We also 

introduce methods to improve the efficiency of wash droplet 

routing during routing-based synthesis, and to support non-

reconfigurable modules, such as integrated heaters and detectors.  

We obtain increases in success rates when dealing with resource-

constrained chips and reductions in average assay execution time. 

 
Index Terms—Digital microfluidic biochip (DMFB), routing-

based synthesis, wash droplets 

I. INTRODUCTION 

OFTWARE-PROGRAMMABLE laboratories-on-a-chip (LoCs) 

offer the potential to automate many laboratory functions 

that are presently performed by hand. The anticipated result is 

a revolution in terms of productivity and miniaturization that 

is poised to positively affect the biological sciences. 

Established applications of LoC technology include DNA 

sequencing, immunoassays, point-of-care diagnostics, and 

many others [1]. Electrowetting-on-dielectric (EWoD) is an 

emerging LoC technology that manipulates discrete droplets 

[2-4]. Fig. 1 illustrates the electrowetting effect: applying an 

electrical potential to a liquid droplet resting on a hydrophobic 

surface reduces the contact angle, causing the droplet to 

deflect. In essence, the application of an electrostatic force 

increases the amount of surface area that is in contact with 

(i.e., wetted by) the droplet; hence the name: electrowetting. 
 

Manuscript received April 10, 2015; revised September 29, 2015 and 

March 12, 2016; accepted April 17, 2016. Date of publication TBD; date of 

current version TBD. This paper was recommended by Associate Editor T-Y. 

Ho. (Corresponding author: Philip Brisk.)  
S. Windh, C. Phung, and P. Brisk are with the Department of Computer 

Science and Engineering, University of California, Riverside, Riverside, CA 

92521 USA (email: {swind001, calvin.phung}@ucr.edu, philip@cs.ucr.edu). 
D. Grissom is with the Dept. of Engineering and Computer Science, Azusa 

Pacific University, Azusa, CA 91702 USA (email: dgrissom@apu.edu). 

 P. Pop is with DTU Compute, Technical University of Denmark, Kongens 
Lyngby, Denmark (email: paupo@dtu.dk) 

Color versions of one or more of the figures in this paper are available 
online at http://ieeexplore.ieee.org 

 
 

 
Fig. 1.  Depiction of the electrowetting principle [2, Fig. 3]: applying an 

electrostatic potential to a droplet at rest reduces the contact angle with the 

surface, thereby increasing the surface area in contact with the droplet. 

 
 (a) (b) 
Fig. 2.  (a) A DMFB is composed of a two-dimensional grid of electrodes. (b) 

a cross-section of a DMFB: activating CE2 holds the droplet in-place; 

activating CE1 and/or CE3 induces droplet motion. 

 
Fig. 3.  The basic set of droplet operations supported by a DMFB. Other 

operations can be added through sensor integration and/or external devices 
affixed to specific regions of the chip.   

 

Fig. 2(a) shows a software-programmable LoC based on the 

EWoD principle; these devices, called Digital Microfluidic 

Biochips (DMFBs), manipulate discrete droplets of liquid on a 

two-dimensional grid. A DMFB comprises a two-dimensional 

array of individually addressable electrodes placed beneath a 

hydrophobic surface and a ground electrode placed atop a 

hydrophobic surface, with a droplet sandwiched in between, as 

shown in Fig. 2(b). Activating a control electrode (CE2) under 

a droplet holds it in-place. Activating adjacent electrode CE1 

(CE3) and deactivating CE2 transports the droplet left (right).  

As shown in Fig. 3, the DMFB instruction set includes 

droplet transport in two dimensions, splitting, merging two 

droplets into one, mixing, and storage in-place. Additionally, 

external devices such as heaters [5], photo-detectors [6, 7], 

capacitance sensors [8], impedance sensors [9], or magnetic 

separators [10] can be affixed to specific regions of the DMFB 

to offer additional functionality: to use one of these external 

devices, a droplet is transported to an appropriate location on-

chip and then stored in-place while the operation is performed. 

Performance Improvements and Congestion 

Reduction for Routing-based Synthesis for 

Digital Microfluidic Biochips  

Skyler Windh, Calvin Phung, Daniel T. Grissom, Paul Pop, Member, IEEE, and Philip Brisk, Member, 

IEEE 

S 

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the 
IEEE by sending an email to pubs-permissions@ieee.org. 

 

mailto:pubs-permissions@ieee.org


0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

2 

There has been interest in the development of programming 

languages and compiler technology targeting DMFBs in recent 

years [11-41]. As shown in Fig. 4, a “program” that executes a 

biological protocol on a DMFB is a sequence of electrode 

activations that execute the protocol one step at a time. The 

activation sequence can be viewed as a linear state machine (a 

Moore machine) in which the output of each state is a bit-

vector, where each ‘1’ represents an electrode that is activated 

and each ‘0’ represents an electrode that is not.  

Most compilation work targeting DMFBs assumes that the 

execution of operations is constrained to a group of adjacent 

electrodes forming a rectangular called “module;” however, 

the reconfigurable operations (e.g., mixing, dilution) can 

execute by routing the droplets on any sequence of electrodes 

on the microfluidic array [11]. One drawback of rectangular 

modules is that the droplets will only occupy a subset of the 

rectangular region dedicated to the operation at any given 

time, which yields poor utilization of spatial resources. A 

second drawback is that module selection and placement are 

inherently tied to the notion of rectangular mixing modules.  

Routing-based synthesis (Fig. 5) is an alternative to module-

based compilation [12]. Routing-based synthesis eliminates 

the concept of “modules” and allows the droplets to move on 

the chip on any route during operation execution. Routing-

based synthesis converts concurrent mixing operations into a 

routing problem: mixing droplets can move anywhere on the 

DMFB as long as they do not inadvertently interfere.  

 

Contribution: Routing-based synthesis, as described in Ref. 

[12], supports mixing and dilution operations, but not droplet 

storage and/or operations that rely on external devices, such as 

heating or detection. Randomly generating droplet movements 

during routing-based synthesis leads to livelock and deadlock 

situations. We introduce new approaches to droplet movement 

generation that significantly reduce the likelihood that these 

catastrophic situations occur. We integrate routing-based 

synthesis with a known effective and efficient scheduling 

heuristic, and introduce modifications to compensate for the 

fact that operation completion times are not known statically 

and are instead determined by the sequence of droplet 

movements generated by the algorithm. Lastly, we reduce 

washing overhead by shortening the length of the paths that 

wash droplets must travel to perform local decontamination. 

The result of this effort is an enhanced routing-based synthesis 

implementation that supports all known protocol operations 

and is less susceptible to failures than the original. 

II. RELATED WORK 

Figs. 6 illustrates a DMFB compiler. The input is an assay 

as a directed acyclic graph (DAG): vertices represent 

operations (e.g., input/dispense, mix, detect, etc.), and edges 

represent dependencies between operations, i.e., an edge (x, y) 

indicates that operation x produces a droplet that will later be 

consumed by operation y. The compiler must solve three 

interdependent NP-complete problems to produce an 

executable program to control the DMFB. The compiler 

assumes that capacitance sensors or real-time video monitors 

detect droplet presence and that droplets are carried in a filler 

fluid (e.g., silicone oil) to prevent evaporation. 

 
Fig. 4.  The output of a DMFB compiler is a linear state machine that outputs 

an electrode activation sequence to execute the protocol. This state machine 

should not be confused with the DAG representation of the protocol (Fig. 6).    

 

 
Fig. 5.  Illustration of routing-based synthesis for a single droplet. 

 

 
Fig. 6.  Illustration of a typical compiler targeting a DMFB: the protocol to 

execute is represented as a DAG. The compiler must schedule, place, and 
route all operations in order to produce an executable sequence of electrode 

activations to automatically run the protocol. 

A. Scheduling 

The compiler must determine the time at which each 

operation starts and finishes [13-18]. All droplet dependency 

constraints, as specified by DAG edges, must be satisfied, i.e., 

for edge (x, y), operation x must finish before y begins. The 

number of operations scheduled to execute at any given time 

cannot exceed the resource capacity of the DMFB (Fig. 6). 

Most schedulers assume that all mixing operations use 

modules of the same size; it can also be integrated with a 

separate module selection step [19-22] mixing and dilution are 

performed by bringing two (or more) droplets together and 

rotating them according to a given pattern [11]. The operation 

completion time varies, depending on the size of the mixer. In 

general, larger mixers yield shorter operation times, but 

consume more on-chip resources, limiting the amount of 

parallelism available to perform other operations concurrently. 

Existing work in scheduling includes fast, greedy heuristics 

[13-16], genetic and metaheuristic-based heuristics [13, 17], 

and optimal algorithms based on integer linear programming 

(ILP), which runs in exponential worst-case time for specific 

application domains (PCR [18] and in-vitro diagnostics [13]).  

The scheduler employed by our implementation of routing-

based synthesis is similar to Path Scheduling [14], which 

performs well when spatial resources are limited.  

Although many DMFB compiler algorithms include module 

selection, it has not been treated as a standalone problem. For 

example, several iterative improvement algorithms randomly 

vary the module assignment for each protocol operation, but 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

3 

solve it in conjunction with scheduling and placement [19-22]. 

Another algorithm performs module selection as a post-

processing phase after scheduling (to reduce latency), but fails 

to account for area constraints of the target chip [17]. Routing-

based synthesis sidesteps module selection by converting 

executable operations into a routing problem.  

B. Placement 

If operation x is scheduled to start at time t1 and finish at 

time t2, a location on the surface of the chip must be reserved 

for x during the time interval; no other operation may occupy 

the same location during this time interval in order to prevent 

accidental merging and cross-contamination of concurrent 

operations [23-32] (Fig. 6). DMFBs are spatially parallel and 

reconfigurable, as the roles played by individual electrodes 

vary over the execution of a protocol (e.g., transport, storage, 

mixing, etc.). An effective placer must represent free space on 

the chip, and allocate and deallocate space as operations start 

and finish; greedy [23, 24], iterative improvement [25], and 

optimal [26] placement algorithms have been proposed. 

Virtual topologies [27-30] partition a DMFB into regions that 

perform operations with dedicated routing channels between 

them; this converts placement into a simpler binding problem.  

In contrast, routing-based synthesis converts placement into 

a routing problem. Combined scheduling and placement can 

be modeled as a 3D placement problem, (the third dimension 

is time) [31, 32]. This approach is incompatible with routing-

based synthesis, which does not employ any notion of 

rectangular (2D) or cuboid (3D) modules.  

C. Routing 

When droplets are produced/consumed by operations, they 

are transported from one location on the chip to another, in 

accordance with the schedule and placement results [33-38]. 

During transport, droplets must maintain appropriate spacing 

(Fig. 7) and may not inadvertently intersect regions of the chip 

performing mixing and storage operations [33]. Routing may 

be integrated with washing [39-41] to clean residue left by 

other droplets and completed operations (Fig. 8).  

 

    
 (a) (b) 

Fig. 7.  The interference region for a droplet at rest (a) and during transport 
(b). If any droplet enters the interference region of another, then they will 

merge inadvertently [33]. 

 
 

 
 (a) (b) 

Fig. 8.  Illustration of cross-contamination: (a) droplets leave residue behind 
when traveling across the surface of the chip; (b) when two droplet routes 

intersect, a wash droplet (W) must clean the intersection point before the 

second droplet can proceed.  

To reduce cross-contamination, these algorithms try to route 

droplets along disjoint paths; wash droplets are only 

introduced when disjoint paths cannot be found. In contrast, 

Routing-based synthesis moves droplets randomly without 

pre-defined starting and ending points; one contribution of this 

work is to reduce the likelihood that deadlock or livelock 

occurs; our implementation also incorporates wash droplets. 

III. ROUTING-BASED SYNTHESIS 

This section summarizes routing-based synthesis as 

described by Maftei et al. [12]; the limitations of their 

approach are described, setting the stage for our corrections, 

which are presented in Section IV. 

A. Rectangular Mixing Modules 

Paik et al. [11] studied the mixing times of rectangular 

modules of varying dimensions, as reported in Table I; these 

results assume a 1.5 mm electrode pitch, 600 μm gap height, 

16 Hz switching frequency, and 1.4 μL droplets for mixing.  

Linear array mixers (1xN) move a merged droplet in one 

dimension (e.g., left/right). Reversing direction causes flow 

reversibility, which works against effective mixing; the ratio 

of forward to reversing movements is R = (N-2)/(N-1), e.g., 

2/3 for a 1x4 mixer. Increasing N increases R, but at the 

expense of consuming more on-chip area.  

In a 2x2 mixer, the merged droplet is mixed via rotation 

about a pivot; all rotations follow one angular direction 

(clockwise/counterclockwise); the angular direction does not 

reverse. Although the 2x2 mixer eliminates flow reversal 

effects, a portion of the droplet near the pivot mixes slower 

than the rest of the droplet, which slows overall mixing times.  

The 2x3 mixer eliminates the static pivot, and includes 

forward motions in addition to (counter-)clockwise turns. It 

offers a significant improvement over the 2x2 mixer, and 

eliminates the flow reversibility of the 1x4 mixer, although it 

is still slower than the 1x4 mixer. This suggests that increase 

the ratio of forward movements to both turns and reversals 

will have the greatest possible effect on total mixing time. 

The 2x4 mixer combines the benefits of the 1x4 and 2x3 

mixers, yielding the best overall mixing time. With a 2x4 

mixer, a droplet may take many different paths, as shown in 

Fig. 9(a) and (b). In effect, the routing paths within the 

modules have been optimized via routing based synthesis.  
 

TABLE I 
TIMES FOR DMFB OPERATIONS INCLUDING MIXING/DILUTIONS USING 

VARYING RECTANGULAR DIMENSIONS 

 
Operation Area Time (s) 

Mix/Dilute 
Mix/Dilute 
Mix/Dilute 
Mix/Dilute 
Dispense 
Detect 

2x2 
2x3 
1x4 
2x4 
---- 
1x1 

9.95 
6.1 
4.6 
2.9 
2 
30 

 

 
 (a) (b) 

Fig. 9. Two mixing paths within a 2x4 array mixer that yield optimal mixing 
times of 2.9s as reported by Paik et al. [11]. 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

4 

B. Routing-based Mixing 

Maftei et al. [12] examined the results of rectangular mixing 

modules [11] and determined the percentage of mixing 

achieved by decomposing the routes within the modules into 

basic movements: p
0
 denotes the percentage of mixing 

obtained by moving a droplet forward; p
90

 denotes the 

percentage of mixing obtained by turning a droplet left or 

right; and p
180

 denotes the percentage obtained by reversing 

the direction of the droplet. Maftei et al. further decomposed 

p
0
 into two separate values, p1

0
 when the forward move is one 

cell, and p2
0
 when the forward movement is two or more cells.  

Let μ = {p1
0
, p2

0
, p

90
, p

180
} be the set of percentages; Maftei 

et al. [12] empirically determined the following values for μ: 

p1
0
 = 0.29%, p2

0
 = 0.58%, p

90
 = 0.1%, and p

180
 = -0.5%, which 

accounts for negative mixing affects due to flow reversibility. 

Any sequence of droplet movements that adds up to 100% can 

mix two droplets; there is no requirement to constrain these 

movements to a rectangular sub-region of the DMFB. 

C. Application Model 

An assay is represented as a DAG G = (V, E), as shown in 

Fig. 4. Each vertex vi∈V is an operation, e.g., mix, dilute, split, 

detect, dispense, output, etc. Edge (vi, vj)∈E is a dependency, 

i.e., operation vi produces a droplet that is used by subsequent 

operation vj; vj must wait for all constituent droplets to arrive 

before it can start execution. A droplet not used immediately 

after it is produced (per the schedule) must be stored on-chip, 

consuming spatial area that would be otherwise be allocated to 

operations that drive the protocol toward completion [14].  

D. Routing-based Synthesis Algorithm 

Fig. 10 shows pseudocode for routing-based synthesis [12], 

which is limited to reconfigurable operations (e.g., mixing) 

and wash droplet transport. Non-reconfigurable operations, 

which are not supported, include fluid I/O and the usage of 

external devices (e.g., heaters, detectors, etc.), where a droplet 

must be routed to a specific on-chip region and held in-place; 

the latter is mentioned in passing but the algorithms to support 

it are not discussed. Likewise, production of waste droplets 

and routing droplets off-chip is not addressed. 

The inputs to the routing-based synthesis are the DAG 

representation of the protocol to execute (G), an array 

representing the DMFB (C), the set of mixing percentages (μ), 

and two parameters representing properties of wash droplets 

(maxelectrodes and nopart). Each wash droplet has a finite capacity 

for contamination removal [12]: it can clean maxelectrodes cells 

of the DMFB, after which it must be discarded and replaced 

with a new wash droplet. Routing-based synthesis, as 

described by Maftei et al., partitions the DMFB into a set of 

nopart distinct regions: one wash droplet is allocated to each 

region, and that wash droplet removes all contamination 

within its region and that region alone; when its capacity is 

exceeded, it is replaced with a new wash droplet. 

A DMFB operates at 100Hz, meaning that it takes 10ms to 

move a droplet from one electrode to a neighbor. Assuming 

fully synchronized droplet movements at equal velocities, we 

refer to each 10ms interval as a time-step. The algorithm starts 

at time-step 0. Variable tcurrent tracks the current time-step. For 

each protocol operation vi, ti
start

 and ti
finish

 represent the start 

and end times, as computed by the algorithm. 

RoutingBasedSynthesis(G = (V, E), C, μ, maxelectrodes, nopart) 

1. tcurrent = 0 

2. for each operation vi∈V do 

3.  ti
start

 = ti
finish

 = 0 

4. end for 

5. Lmerge = ConstructMergeList(G) 

6. Lmix = ∅ 

7. Lwash = ConstructWashList(maxelectrodes, nopart) 

8. PartitionChip(C, nopart) 

9. while ∃vi∈V ∧ ti
finish

 = 0 

10.  for all vi∈Lmerge ∪ Lmix do 

11.   Ri = PerformMove(vi, C, μ, R, tcurrent) 

12.   if vi causes contamination then 

13.    SetElectrodeContaminated(vi, Ri, Lwash) 

14.   end if 

15.  end for 

16.  for all vi∈Lmerge such that vi is merged do 

17.   Remove(vi, Lmerge) 

18.   ScheduleSuccessors(vi, Lmix) 

19.  end for 

20.  for all vi∈Lmix such that vi has completed mixing do 

21.   ti
finish

 = tcurrent 

22.   Remove(vi, Lmix) 

23.   if vi has successor operations then 

24.    ScheduleSuccessors(vi, Lmerge) 

25.   end if 

26.  end for 

27.  for all vi∈Lwash do 

28.   Ri = PerformMove(vi, C, μ, R, tcurrent) 

29.   if Ri is contaminated then 

30.    SetElectrodeCleaned(Ri, Lwash) 

31.    UpdateWashCapabilities(vi) 

32.    if vi has exhausted its washing capacity then 

33.     RemoveFromWashList(vi, Lwash) 

34.     CreateNewWashDroplet(vi, Lwash) 

35.     SetRouteTarget(vi, Waste) 

36.    end if 

37.   end if 

38.  end for 

39.  tcurrent = tcurrent + 1 

40. end while 

41. Return R // set of routes 

 
Fig. 10. Pseudocode for routing-based synthesis [12]. Operations that support 

cross-contamination removal are shown in blue.  

 

 Considering only reconfigurable operations, active droplets 

are either the merge or mix state. An active droplet is in the 

merge state if it is ready to mix with another droplet, but the 

two have not yet merged; it is in the mix state during mixing. 

Lists Lmerge and Lmix denote the sets of active droplets in these 

states respectively; Lwash is the set of active wash droplets.  

 

Lines 1-8: The first eight lines initialize the algorithm. Lmerge 

contains all droplets that can be dispensed immediately, Lmix is 

empty, and Lwash contains one droplet per partition (Line 8). 

 

Lines 9-40: The algorithm proceeds until all droplets are 

processed, indicated by a non-zero completion time; droplets 

are processed in topological order.  



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

5 

Lines 10-15: This for all loop moves all assay droplets in lists 

Lmerge and Lmix. Each droplet has at most 5 possible moves: 

{up, down, left, right, hold}. In the case of a hold, the droplet 

does not move. The algorithm considers only legal move 

operations. If a droplet is at the perimeter of the chip, it is not 

allowed to move off of the chip; a droplet cannot make a move 

that causes it to inadvertently merge with another droplet, i.e., 

droplets have to observe the well-established spacing rules 

[33] (Fig. 7); lastly, a droplet cannot move onto a region of the 

chip that has been contaminated by residue left by another 

droplet.  

All legal moves are ranked in terms of their profitability. 

For a droplet d in Lmerge, profitability is determined based on 

whether a given move is toward, neutral, or away from the 

droplet d’ with which d is supposed to merge. For droplets in 

Lmix profitability is determined by the mixing percentages 

stored in set μ (the mixing percentage of a hold is 0%). The 

most profitable move is randomly selected with a probability 

of 50%, the second most profitable move is randomly selected 

with a probability of 33.3%, and the third most profitable 

move is randomly selected with a probability of 16.7% (Line 

11). Any time a droplet moves onto a new cell, it contaminates 

that cell with residue (Lines 12-14).  

 

Lines 16-19: When two droplets in Lmerge merge, they form a 

single droplet, represented by a successor vertex in the DAG. 

The droplets are removed from Lmerge and the successor is 

added to Lmix; mixing commences during the next time-step.  

 

Lines 20-26: If a droplet in Lmix completes its mixing 

operation, then it finishes its operation at the current time-step 

(Line 22), and is removed from Lmix (Line 23). Any successor 

operations may commence if all of their predecessors have 

finished; if so, they are added to the set Lmerge (Lines 23-25). 

 

Lines 27-38: Wash droplets are moved randomly as well; 

profitability is computed based on the Manhattan distance 

between the current position of the wash droplet and the first 

electrode to be cleaned (Line 28). If the wash droplet moves 

onto a contaminated cell (Lines 29-37), then the cell is 

updated to reflect the fact that it has been decontaminated 

(Line 30) and the wash capacity of the wash droplet is reduced 

by one (Line 31). If the wash droplet’s wash capacity is 

reduced to zero (Lines 32-35), then the wash droplet is 

removed from Lwash (Line 33), a new wash droplet is dispensed 

to take its place (Line 34), and the original wash droplet is set 

on a path to a waste reservoir (Line 35). Maftei et al. do not 

describe precisely how the wash droplet travels to the waste 

reservoir; we assume that the mechanism is similar in 

principle to the way droplets in Lmerge are handled.  

 One final implementation option, not discussed above and 

omitted from the pseudocode, is to partition the chip [12] so 

that each mixing operation occurs in a different partition; 

mixing droplets move about randomly within their partitions, 

but cannot cross the partition boundary. Individual droplets 

may cross partition boundaries to merge, and/or to leave the 

chip. This modification prevents cross-contamination between 

mixing operations. Depending on the size and dimensions of 

each partition, the scheme may degenerate into a traditional 

rectangular module-based synthesis scheme. 

IV. IMPROVEMENTS TO ROUTING-BASED SYNTHESIS 

This section highlights several limitations of routing-based 

synthesis as described by Maftei et al. [12], as well as a set of 

practical improvements that overcome these limitations.  

A. I/O Reservoir Blockage 

We have observed specific situations where droplet I/O 

operations can lead to deadlocks that cannot be reconciled. 

The solution to this problem is to prevent other droplets from 

entering a small set of cells around each port, so that droplets 

can always have the opportunity to enter/exit the chip.  

 

Input Reservoir Blockage: Contaminated cells near an input 

reservoir can cause an unfixable deadlock. In Fig. 11(a), the 

green droplet has contaminated all cells next to an input 

reservoir, except for the cell into which a droplet is dispensed. 

In Fig. 11(b), the dispensed droplet cannot move because all 

adjacent cells are contaminated (we assume that the droplet 

cannot be un-dispensed back into the input reservoir). 

Cleaning any of the contaminated adjacent cells would 

inadvertently merge the wash droplet with the green droplet. 

Fig. 11(c) depicts a solution. Before dispensing a droplet, 

all cells within the 2x3 region adjacent to the reservoir must be 

contamination-free and contain no other droplets. If so, the 

dispense operation may proceed; otherwise, it is delayed until 

the aforementioned criteria are satisfied. This situation only 

occurs with respect to input reservoirs dispensing droplets. It 

is impossible for one droplet to trap another that is already on 

the chip in the same manner, as contaminating the adjacent 

cells would merge them in violation of spacing rules [33]. 

 

Wash Droplet Input Reservoir Blockage: Fig. 12(a) 

illustrates a situation in which contamination left by a green 

droplet traps an orange droplet in the 2x3 region adjacent to a 

wash droplet reservoir. The input reservoir cannot dispense the 

wash droplet because it would inadvertently merge with the 

orange droplet at any position in the 2x3 region. The problem 

here arises due to the finite capacity of wash droplets. Unlike 

Fig. 11, the location of the orange droplet does not prevent 

wash droplets from cleaning cells that the green droplet 

contaminated. If all wash droplets on the chip have infinite 

washing capacity, then eventually all cells will be cleaned; 

however, with finite capacities, all wash droplets on may reach 

their respective capacities before they can clean these cells. If 

a wash droplet is at its capacity, it is routed to a waste 

reservoir for disposal. If all wash droplets are removed, then 

the assay deadlocks, as it is impossible to inject another wash 

droplet because the input reservoir is blocked.   

One solution is to employ multiple wash droplet dispense 

reservoirs; however, the possibility remains that all reservoirs 

could be simultaneously blocked under the same scenario 

(although the probability of this goes down with each 

additional wash droplet reservoir). A second solution is to 

move the orange droplet out of blocked region, contaminating 

it; the orange droplet is no longer usable and must be sent to a 

waste reservoir for disposal. An error recovery procedure can 

then be invoked to re-generate the orange droplet [7]; 

however, this incurs non-negligible performance overhead and 

would lengthen the execution time of the assay significantly. 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

6 

 
 (a) (b) (c) 

Fig. 11. (a) The cell adjacent to the input reservoir is not contaminated, so the 

input reservoir can safely dispense a droplet. (b) The orange droplet cannot 

move since all neighboring cells are contaminated. The wash droplet W cannot 
clean the contaminated cells adjacent to the orange droplet without 

inadvertently merging the two droplets. (c) To rectify the situation, a droplet 

can only be dispensed if all cells in the 2x3 region adjacent to the input 
reservoir are free of contamination and do not contain any other droplets.    

 

 
 (a) (b) 

Fig. 12. (a) A droplet is trapped in a 2x3 region adjacent to a wash droplet 

input reservoir, blocking it. (b) The solution is to immediately inject the next 
wash droplet W and store it next to the input reservoir; this ensures that no 

other droplets can enter the 2x3 region, blocking the wash droplet input 
reservoir. If another wash droplet reaches its capacity, W is transported away 

from the input reservoir to replace it; a new droplet can be dispensed 

immediately, ensuring that no other droplet enters the 2x3 region.  

  

 
 (a) (b) (c) 
Fig. 13. (a) The orange droplet blocks the green droplets that are trying to exit 

the chip; the green droplets block the orange droplet’s path out of the way, 

while the orange droplet blocks all of the green droplets’ paths to the output 
reservoir. (b) Reserving a 2x3 region adjacent to the output reservoir ensures 

that one orange droplet cannot cause a blockage; (c) however, multiple orange 

droplets can still block access to the output reservoir.  

 

Fig. 12(b) shows our solution. Each wash droplet reservoir 

immediately dispenses a new wash droplet and holds it in-

place until it is needed. When a wash droplet is needed, it is 

transported to its decontamination region, and the next wash 

droplet is immediately dispensed and held. This eliminates the 

deadlock situation shown in Fig. 12(a): contamination could 

still trap an assay droplet in a larger region that subsumes the 

wash droplet entry point, however, that droplet would be 

trapped with an otherwise unused wash droplet, which ensures 

that the contamination can and will be removed eventually.  

Output Reservoir Blockage: Fig. 13(a) illustrates a situation 

where a one droplet (orange) blocks several droplets (green) 

trying to exit the chip. This situation is difficult to detect and 

rectify with 100% certainty, because it can scale up to an 

arbitrary number of droplets in the most general case. In Fig. 

13(b), we reserve a 2x3 region adjacent to the output reservoir; 

the only droplets that may enter the region are those in the 

process of exiting the chip; thus, one orange droplet cannot 

block a set of green droplets that want to exit; however, as 

shown in Fig. 13(c), a group of 5 orange droplets could still 

cause a similar blockage, although the likelihood of this 

situation occurring is much lower than the single-droplet 

blockage in Fig. 13(a). Further techniques to rectify this 

situation will be discussed in the following subsections.  

B. Support for Non-Reconfigurable Operations 

Maftei et al. [12] categorize I/O and the usage of external 

devices (e.g., heaters and detectors) as non-reconfigurable 

operations, because they must occur at specific locations on 

the DMFB; transport, mixing, splitting, and merging can occur 

anywhere on the device—hence, they are reconfigurable. 

Maftei et al. mention that non-reconfigurable operations 

involve routing a droplet to a specific (subset of) location(s) 

on the DMFB, which can be handled probabilistically (e.g., a 

move toward the target is favorable); however, we have 

uncovered several issues left unaddressed by their work. 

 Without loss of generality, suppose that routing-based 

synthesis wants to use a heater H to increase the temperature 

of droplet d. H is an m x n sub-region of the DMFB. Two 

things must happen: (1) all droplets other than d must be 

routed out of H and may not return into H until the heating 

operation completes; and (2) d must be routed onto H. Maftei 

et al.’s description addresses the second requirement, but not 

the first. Here, we consider droplet output, and operations that 

use external modules at pre-specified locations on the chip.  

 

Output Operations: A droplet d is removed from the DMFB 

by routing it to an output reservoir for collection or a waste 

reservoir for disposal. Suppose that d becomes ready for 

output when it holds a position at DMFB location (x, y).  

To route d to the output reservoir, there are two options: (1) 

pre-compute a routing path from (x, y) to the output reservoir, 

similar to traditional DMFB routing algorithms [12], and 

move d along this path (pausing to prevent interference with 

other droplets; or (2) transport d from (x, y) to the output 

reservoir probabilistically using routing-based synthesis, 

similar in principle to the way that droplets in Lmerge are 

handled in Fig. 10. A move is profitable if it transports the 

droplet toward the output reservoir, unprofitable if it transports 

the droplet away, and neutral if the droplet holds its position.  

We chose the latter option because: (1), it allows us to 

maintain uniformity with the routing procedure applied to 

other droplets on the chip; and (2) it allows us to back out of 

the output blockage situation shown in Fig. 13(a). Although 

unlikely, one or more green droplets could back away from the 

congested region by the output reservoir, providing a path for 

the orange droplet to leave the area, freeing up space for the 

green droplets exit the chip. We can also selectively increase 

the probability to accept unprofitable moves, increasing the 

likelihood of recovering from output reservoir deadlocks.  



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

7 

External Modules: In principle, mixing or dilution can occur 

anywhere on the DMFB, including on top of an external 

device, e.g., a heater, when not in use; however, at some point, 

a droplet d may need to use the external device. Then (1) all 

droplets other than d must be moved away from the region 

affected by the device; and (2) d must be routed to the region. 

We refer to an m x n sub-region of a DMFB that is affected 

by an external device as a module, denoted by M. One solution 

is to lock M so that only droplets bound to operations that use 

the external device associated with M; the drawback is that 

doing so reduces the available on-chip area when external 

devices are not used, which limits parallelism. The alternative 

is to leave M open for use by reconfigurable operations when 

the external device is not in use, and then evict all ongoing 

operations from M when the external device is used. We have 

taken this approach in our implementation of routing-based 

synthesis; we describe the eviction process in detail here.  

When no non-reconfigurable operations execute on M 

droplets undergoing mixing and transport may enter and exit 

M without restriction. When a non-reconfigurable operation vi 

executes on M all droplets not bound to M and currently 

residing on M must be moved out; no droplets other than those 

needed for operation vi may enter M until vi completes. 

We tried two schemes to remove droplets from M. The first 

forces droplets to move directly out of M, temporarily 

bypassing the randomized process of routing-based synthesis. 

We observed empirically that this could lead to deadlocks if 

there was high congestion surrounding M. The second scheme 

employs randomization to remove unwanted droplets from M. 

Each cell cj within M is assigned a positive integer value 

called the depth of cj, which represents the distance from cj to 

the perimeter of M, as shown in Fig. 14(a). For each unwanted 

droplet, we temporarily change the objective from minimizing 

operation completion time to routing away from M; once the 

droplet is removed, the objective then reverts. A droplet that 

exits M cannot re-enter M until the non-reconfigurable 

operation completes, avoiding deadlocks while clearing M.  

During the escape process, a favorable move is one that 

moves a droplet within M from a cell having higher depth to 

one having lower depth (i.e., toward the perimeter); moving a 

droplet from one cell to a neighbor having the same depth is a 

neutral move; negative moves, i.e., moving a droplet from a 

lower-depth cell to a higher depth cell (i.e., toward the center) 

are not permitted. Fig. 14(b) shows an example: one positive 

move is followed by four neutral moves, and then two positive 

moves, after which, the droplet fully escapes from M.  

Similar to the case of output operations, any droplet that 

will use the external device associated with M is transported 

probabilistically to M using routing-based synthesis; the 

droplet may enter M at any time, even while other droplets are 

still escaping from M. Probabilistic transport maintains 

uniformity with the routing procedure as applied to other 

droplets, and prevents deadlock from occurring.  

C. Dynamic Adjustment of Droplet Movement Probabilities 

The scenario illustrated in Fig. 13(a) can be viewed as either 

a deadlock or a livelock, depending on how routing is 

implemented. If the green droplets exiting the board travel 

along pre-computed paths without the ability to backtrack, 

then the situation is a deadlock, as no droplet can move.  

 
 (a) (b)  

 

Fig. 14. (a) The assignment of depth values to a detection module M. (b) The 
red droplet randomly exits the detection module, while the orange droplet 

enters the module for detection. Note that the maroon droplet traverses the 

module counter-clockwise at depth level 2, before discovering an exit point. 

 

If the green droplets travel probabilistically according to the 

principles of routing-based synthesis, then the situation is 

more of a livelock: probabilistically, a droplet may accept an 

unprofitable move away from the congested region; however, 

the following move will most likely be profitable (toward the 

exit), thereby restoring the congested state. This is a livelock 

because droplets can move, but the congestion is not resolved. 

Our solution is to dynamically estimate localized congestion 

on the DMFB and to use this information to adjust the 

probabilities of accepting profitable, neutral, and unprofitable 

moves. The estimate must be computationally efficient and 

should not significantly increase assay execution time.    

In Maftei et al.’s implementation of routing-based synthesis, 

all droplets in lists Lmix and Lmerge are moved randomly. All 

legal moves are enumerated, the profitability of each move is 

estimated, and the top three legal moves in terms of 

profitability are ranked in-order; one of the top three is then 

chosen randomly with probabilities p = (50%, 33.3%, 16.7%). 

Statically changing the probability values was unsuccessful. 

Empirically, we observed that increasing the probability that 

the most profitable movement is chosen tends to reduce the 

completion time of protocol operations when there is ample 

space on the chip, but stalls progress when the board becomes 

congested. The best way to reduce congestion is for many 

droplets on the perimeter of the congested area to back away; 

however, reversing direction is unprofitable because of 

unmixing [11, 12]. Meanwhile, increasing the likelihood of 

selecting a less profitable move tends to reduce congestion, 

but does not favor fast protocol completion times. 

We achieved a favorable tradeoff between performance 

(protocol execution time) and congestion avoidance through 

dynamically adjusting the priority scheme by which moves are 

selected. We consider three probability sets as follows: 

 

pA = (85%, 10%, 5%),             (2) 

pB = (50%, 33%, 17%), and           (3) 

pC = (34%, 33%, 33%).            (4) 

 

Our first approach was to adjust the probabilities based on 

the number of droplets on the board at a given time; increasing 

the number of droplets tends to increase the likelihood of 

congestion, deadlocks/livelocks being the most extreme form.  



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

8 

The problem with this approach is that a relatively small 

number of droplets can form a localized deadlock/livelock, as 

is the case in Fig. 13(a). It is computationally inefficient to 

enumerate different sub-regions of the chip and/or subsets of 

droplets to estimate local congestion. Instead, we turned to a 

more effective approach based on operation completion times. 

 

Operation-driven Profitability: This scheme assigns the 

probability set based on an estimate of the number of time-

steps required to complete each operation. For example, if 

droplets d1 and d2 need to merge, then half of the Manhattan 

Distance between them is a reasonable estimate of the number 

of movements required to merge the two droplets. For an 

ongoing mixing operation, we can estimate the number of 

movements required to complete it based on an expected 

distribution of droplet movements, each of which contributes 

(positively or negatively) to the total mixing time.  

A droplet that is effectively stuck due to a deadlock or 

livelock will not advance toward completion of its operation; 

thus, we can use the disparity between the expected 

completion time and the progress obtained thus far as a proxy 

for deadlock or livelock detection. If we suspect that a droplet 

is deadlocked or livelocked, we increase the randomness in the 

probability set to increase the likelihood of mitigating the 

deadlock or livelock; otherwise, we favor movements that lead 

to the fastest possible completion time for the operation.   

The scheme is implemented as follows: let Oi be the 

operation in question, tcurrent be the current time-step, ti
start

 be 

the time at which operation Oi started (ti
start

 < tcurrent), and 

ti
predicted

 be the estimated length to complete operation Oi. As 

there will be some natural variation in operation completion 

time due to the random selection of moves, many operations 

will complete after ti
predicted

. The longer any given operation 

takes to complete, the more severe we assume that the 

congestion must be. In response, we dynamically between the 

probability sets, pA , pB  and pC to increase the likelihood that 

the droplet successfully moves out of the congested area. 

We estimate that congestion occurs when the latency of an 

ongoing operation exceeds twice its predicted latency:  

 

if tcurrent <= ti
start

 + 2*ti
predicted

 

p = pA 

else if tcurrent <= ti
start

 + 3*ti
predicted

 

  p = pB 

else 

p = pC 

end if  
 

A smaller constant value could enable more rapid transitions 

between probability sets, but could also lead to more false 

positives and increased assay execution times. 

D. Congestion-Aware Scheduling 

The pseudocode in Fig. 10 dispatches each assay operation 

as soon as all of its predecessors complete (except, 

presumably, dispensing operations) [12]. This approach may 

be ineffective when targeting small chips with limited spatial 

resources. The introduction of wash droplets, which perform a 

useful and necessary function, also reduce the availability of 

spatial resources for assay operations. 

To mitigate congestion due to resource limits, we modified 

the operation dispatcher (Fig. 10, Line 24) to consider the 

impact of each operation on resource demand at future points 

in the schedule. Motivated by Path Scheduling [14], which 

was shown to be effective when targeting resource-constrained 

DMFBs [14, 15], we delay the execution of assay operations 

whose completion increases demand for spatial resources. 

The independent path priority (IPP) of a DAG vertex v, 

denoted ipp(v), is the number of leaf vertices reachable from v; 

Fig. 15 shows two examples, where each vertex is labeled 

with its IPP value [14, Fig. 6]. The IPP estimates the increase 

in resource demand that will occur as a result of executing the 

operation. Let R be represent a DMFB’s available spatial 

resources, let U be a set of executing operations, S be a set of 

operations that are presently stored (presumably consuming 1 

spatial resource) and let 𝐼𝑃𝑃(𝑈) = ∑ 𝑖𝑝𝑝(𝑢)𝑢∈𝑈 .  

The scheduler dispatches a ready-to-execute operation v if 

ipp(v) + IPP(U) + |S| < R; in other words, v may execute if 

the scheduler believes that present and future demands for 

spatial resources from all ongoing operations, plus v, are 

within the chip’s capacity. Otherwise, v is delayed until more 

resources are available. Ready-to-execute operations are 

processed in increasing order of IPP value, which favors the 

dispatch of operations whose fanout trees have low resource 

demands; execution of those fanout trees clears space on the 

DMFB to execute operations with higher resource demands. 

This reduces congestion on-chip, which has two favorable 

benefits: (1) it reduces the likelihood of global deadlocks and 

livelocks; and (2) alleviating congestion increases the 

likelihood that ongoing operations select profitable, rather 

than neutral or unprofitable, moves, thereby favoring faster 

assay execution times. With respect to Fig. 15(a), and similar 

to Path Scheduler [14], this approach favors continuing 

execution along existing paths that have already been started, 

as opposed to starting execution of vertices along a new path. 

E. Wash Queue Optimization 

To facilitate cross-contamination removal, Maftei et al. [12] 

partition the DMFB into regions, with one wash droplet 

allocated to each region. Within a region, each droplet 

movement that leaves residue behind is recorded and 

appended to a list of cells (a queue) that require washing. 

 

 
 
Fig. 15. A 3-level colorimetric protein dilution tree (left) and a PCR mixing 

tree (upper right). Vertices are labeled with their IPP values. 

 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

9 

The wash droplet is then routed to each contaminated cell in 

the order in which they appear in the list. This approach works 

well if at most one droplet at a time contaminates a region: the 

list stores the cells along the path taken by the droplet. 

However, if multiple contaminating droplets travel through the 

region at the same time, the wash droplet route computed by 

this algorithm may be inefficient. For example, Fig. 16(a) 

shows two droplets moving along the left and right perimeter. 

Based on the scheme outlined by Maftei et al., the wash 

droplet repeatedly crisscrosses the region, washing one 

contaminated cell, per side. Fig. 16(b) depicts a more efficient 

wash droplet route that eliminates unnecessary crisscrossing. 

Let P be a partition and wp be its corresponding wash 

droplet. If no cells in P are contaminated, the corresponding 

wash droplet is routed to the center of the partition, where it 

rests until a protocol droplet enters the partition. P maintains a 

list Lwash(d) of cells within the partition that have been 

contaminated by protocol droplet d; we assume that a cell 

becomes contaminated when d leaves it by moving to a 

neighbor. To avoid redundancy, cell c is only added to Lwash(d) 

when it becomes contaminated; if d returns to c after several 

time-steps (e.g., due to a reversal of direction), but before c 

has been decontaminated by wp, then c is not added to Lwash(d) 

a second time, because it only needs to be cleaned once.  

Let d be the only protocol droplet in partition P. Once the 

first contaminated cell c is added to Lwash(d), wash droplet wp 

selects c as its destination and is routed there probabilistically. 

Upon arriving, wp decontaminates c; wp then follows d based 

on the ordering of cells in Lwash(d): c, the first entry in Lwash(d) 

is removed, and wp selects the following cell in Lwash(d) (an 

adjacent neighbor of c) as its next target. To reduce the 

likelihood of deadlock wp follows the cells in Lwash(d) 

probabilistically. A movement toward the first cell in Lwash(d), 

as per the Manhattan distance from d’s location, is a positive 

move; neutral and negative moves are handled similarly.  

If d eventually leaves P, wp will decontaminate all cells in 

Lwash(d). If d stalls within P (e.g., due to congestion), then wp 

may stall as well, as it cannot enter a congested cell adjacent 

to d, as per droplet spacing rules [33]. To reduce congestion, it 

may be necessary to move wp away from d, which provides d 

with the opportunity to backtrack. Hence, wp uses probabilistic 

routing to clean the cells in Lwash(d); if wp followed the path of 

cells in Lwash(d), exclusively, then it would not be possible to 

back off, and deadlocks would be far more likely to occur. 

If droplets, d and d’ enter P, then the algorithm must choose 

whether to first decontaminate cells in Lwash(d) or Lwash(d’), 

and whether or not to decontaminate all cells in one list before 

moving on to the other. If wp follows d, and then pauses due to 

congestion, it can be beneficial to switch to cleaning the cells 

in Lwash(d’) while removing d from the congestion region. 

Fig. 17 provides an illustrative example. In Fig. 17(a), there 

is no congestion, so the wash droplet can clean all cells 

contaminated by the orange droplet before cleaning the cells 

contaminated by the green droplet. In Fig. 17(b), congestion 

stops the orange droplet at the partition exit. Rather than 

waiting for the orange droplet to move, the wash droplet 

cleans the cells contaminated by the green droplet, as shown in 

Fig. 17(c); this opens up a path by which the orange droplet 

can move out of the congested region; the wash droplet then 

cleans the remaining cells contaminated by the orange droplet.  

 
 (a) (b)  

Fig. 16. (a) When multiple droplets travel concurrently through a region 

allocated to a wash droplet, the washing scheme proposed by Maftei et al. [12] 
may yield highly inefficient routes due to the order in which cells to wash are 

inserted into a list. (b) a shorter and more concise droplet route as obtained by 

our enhanced implementation of washing for routing-based synthesis. 

 
 (a) (b)  (c) 
Fig. 17. Wash droplet routing when multiple droplets contaminate a partition. 

(a) The ideal case, in which the wash droplet can wash one path, followed by 

the other; (b) a more complex case, where the wash droplet cannot fully wash 
one path because the droplet that causes the contamination is blocked due to 

congestion; (c) after partially decontaminating one path, the wash droplet 

cleans the other, allowing the stuck droplet to escape from the congested area. 

 

We consider wp to be congested if it follows a path of cells 

in Lwash(d), but does not advance for T time-steps, where T is a 

threshold. If wp is congested, then it becomes free to select 

another list of contaminated cells Lwash(d’) to follow. If there 

are multiple available lists, the one whose first cell is closest 

to wp’s current position, in terms of Manhattan distance, is 

chosen. This approach readily generalizes to any number of 

protocol droplets in a partition.   

V. SIMULATION RESULTS 

We implemented our routing-based synthesis algorithms in 

a publicly available open source DMFB synthesis tool [42]. 

All simulations were run on a 15x9 DMFB with six 3x4 

detection modules. We assume a 100 Hz actuation frequency 

for droplet movements; in other words, it takes 10ms to move 

a droplet from its current position to a neighboring cell. When 

washing is enabled, we use 9 wash droplets with capacity of 

1024, unless stated otherwise; when washing is disabled, the 

simulator ignores contamination and droplets may cross paths 

at-will. Starting with the baseline method we offer five 

enhancements that can be independently enabled or disabled, 

yielding 2
5
 = 32 algorithmic configurations when washing is 

enabled, and 2
4
 = 32 configurations when washing is disabled.  

 

Base: The baseline routing-based synthesis algorithm [12] 

(Fig. 10) extended to utilize the six detectors (Section IV.B).  

 

In: Input reservoir congestion alleviation (Figs 11 and 12); a 

2x3 region surrounding each input reservoir is reserved to 

ensure that droplets can safely enter the board; this reduces the 

amount of spatial parallelism on the chip.  



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

10 

Out: Output reservoir congestion alleviation (Fig. 13); a 2x3 

region surrounding each output reservoir is reserved to reduce 

the likelihood of congestion-induced deadlock; this also 

reduces the amount of spatial parallelism on the chip. 

 

OdP: Dynamic adjustment of droplet movement probabilities 

based on Operation-driven Profitability (Section IV.C).  

 

IPP: Independent path priority (IPP)-based congestion-aware 

scheduling (Section IV.D).  

 

WQ: Wash Queue optimization (Section IV.E). 

 

For example, In-Out-OdP represents a run with the In, Out, 

and OdP enhancements enabled, and IPP and WQ disabled. 

 For each experiment (assay/algorithmic configuration), we 

perform multiple runs (1000, 100, or 50, depending on the size 

of the assay) with different random number seeds. First, we 

report the success rate (the percentage of runs that execute to 

completion). For the successful runs, we report the average 

assay execution time (time-steps), the standard deviation, and 

the minimum and maximum execution times. 

 The overall quality of results depends on the context in 

which the algorithm is employed. In an offline context, there 

may be ample time to perform hundreds or thousands of runs 

using multiple algorithmic configurations, in search of one 

solution that minimizes the overall execution time. In an 

online context, where computation time is limited and the user 

expects real-time execution of an assay, the most important 

metrics are the success rate, average execution time, and 

standard deviation. Presumably, large variations in assay 

execution time for successful runs are due to the probabilistic 

occurrence of localized congestion, and the average overhead 

due to detection and recovery (e.g., OdP). Without OdP, 

deadlocks are much more likely, as reported in our results. 

In principle, online deadlock recovery could be achieved by 

merging and contaminating some droplets, moving the 

contaminated droplets to a waste reservoir, and invoking an 

error recovery procedure [7]; however, this would increase 

execution time significantly. We do not investigate this here. 

A. PCR Mixing Tree 

The first experiment evaluates routing-based synthesis on a 

7-node, 3-level PCR mixing tree assay (PCR) [18]; see Fig. 18 

(right). We performed 1000 runs for each configuration with 

washing disabled, none of which deadlocked, due to the small 

size of the assay relative to the spatial area of the DMFB.  

Table II presents the results of this experiment. The PCR 

mixing tree is relatively small, so there is minimal competition 

for spatial DMFB resources. As a result: IPP offers no 

improvement over the baseline; OdP alleviates some localized 

congestion, thus improving all metrics; IPP-OdP and In-Out-

IPP-OdP offers comparable results to OdP.  

Table III presents similar results when washing is enabled: 

IPP is ineffective; OdP-WQ reduces the average execution 

time and best/worst-case results, but increases the standard 

deviation, as the best-case results are significantly better than 

for IPP; IPP-OdP-WQ and In-Out-IPP-OdP-WQ yield 

comparable results to OdP-WQ. Even with 9 droplets on the 

board, there were no significant resource constraints. 

TABLE II 

ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT ALGORITHMIC 

CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE PCR ASSAY 

(WASHING DISABLED); ALL RUNS COMPLETED SUCCESSFULLY. 

 
 

TABLE III 

ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT ALGORITHMIC 

CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE PCR ASSAY 

(WASHING ENABLED)  

 
 

To summarize, the results reported in Tables II and III show 

indicate that only OdP is effective in the absence of resource 

constraints, as it detects and alleviates localized congestion. 

B. 5-Level Exponential Protein Dilution Assay 

The second experiment considers a colorimetric protein 

dilution tree with 5-levels of splitting at the top (PS-5) [14]; 

for reference, the tree in Fig. 15 only has 3 levels. The PS-5 

DAG has 543 vertices: 256 inputs, 32 splits, 224 mix/dilution 

operations, and 32 detection operations. Referring back to Fig. 

15, the detection operations are the leaf nodes of the DAG, 

i.e., those without successors. We performed 100 runs, with 

and without washing, for each algorithmic configuration. 

Tables IV and V report the results of this experiment.  

With washing enabled (Table V), Base achieved a 

miserable 10% success rate; adding IPP and OdP in isolation 

increased the success rate to 25% and 80% respectively. 

Adding Input and Output reservoir congestion alleviation 

increased the success rates to 100%, and, once again, the 

combination of all four enhancements (other than WQ) 

yielded the best results in terms of assay execution time; a 

detailed analysis of WQ is deferred to the next subsection. 
 

TABLE IV 

SUCCESS RATE AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT 

ALGORITHMIC CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE PS-5 

ASSAY (WASHING DISABLED) 

 

TABLE V 

SUCCESS RATE AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT 

ALGORITHMIC CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE PS-5 

ASSAY (WASHING ENABLED) 

 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

11 

The introduction of wash droplets (9 in this experiment) 

increased competition for limited spatial resources; a separate 

experiment using the In configuration (not shown in Table V) 

achieved a 100% success rate, indicating that the situations 

shown in Figs. 11 and 12 cause a significant number of 

deadlocks; the situation shown in Fig. 13 did not occur in 

these experiments (an unreported experiment using the Out 

configuration had an 8% success rate); however, we did 

observe this situation at many points during the process of 

developing and refining the enhancements reported here. 

Unlike Table IV, OdP, rather than IPP, was responsible for 

the most significant reductions in the standard deviation and 

maximum assay execution times reported over the 100 runs. 

This result suggests that OdP has a much greater impact when 

there is greater competition for spatial resources (due to the 9 

wash droplets in conjunction with the sufficiently large PS-5 

assay). That being said, IPP still offers some performance 

benefits: for example, In-Out-OdP-IPP reduced the average 

assay execution time by 4.8% compared to In-Out-OdP.  

 OdP (considering only the successful runs) attained the 

lowest average execution time, while IPP obtained the fastest 

individual run. These two algorithms exhibited 80% and 25% 

success rates, respectively, along with very high standard 

deviations, rendering them useful in an offline context. These 

configurations may be capable of finding very good quality 

solutions for probabilistically “lucky” runs where I/O reservoir 

congestion does not occur. For these runs, the In and Out 

configuration options offer no benefit while consuming spatial 

resources that could otherwise be used for operations.  

C. Impact of Wash Queue Optimization 

Our next experiment evaluates the impact of the WQ 

configuration on the success rate and assay execution time of 

PS-5 on a 9x15 DMFB, with 3, 6, and 9 wash droplets using 

two algorithmic configurations: In-Out-IPP-OdP and In-

Out-IPP-OdP-WQ. 100 runs were performed for each 

configuration (algorithmic + number of wash droplets). Table 

VI reports the results of this experiment. 

Success rates of 100% were achieved with 6 and 9 wash 

droplets, regardless of whether or not WQ is enabled. For 6 

wash droplets, enabling WQ reduced the average assay 

execution time by 3.1%; for 9 wash droplets, enabling WQ 

increased the average assay execution time by a statistically 

insignificant factor of 0.76%. As the number of wash droplets 

on-chip increases, the likelihood of multiple assay droplets 

simultaneously traveling through the region assigned to a 

given wash droplet decreases; thus, the impact of WQ lessens; 

at the same time, increasing the number of wash droplets on-

chip benefits all assay execution time metrics, and lowers the 

standard deviation among execution times.  

With 3 wash droplets, WQ improves all reported metrics. 

These results suggest that inefficient washing (without WQ) 

leads to deadlocks that are induced, in part, by reduced spatial 

parallelism, as contaminated cells are unusable; additionally, 

wash droplets may themselves be deadlocked, and are thus 

unable to clean contaminated regions of the chip. 

These results indicate that increasing the number of wash 

droplets on-chip increases overall performance. Clearly, there 

must be a limit to this benefit, as an exorbitant number of 

wash droplets would cause congestion and lead to deadlocks. 

TABLE VI 

SUCCESS RATE AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT 

ALGORITHMIC CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE PS-5 

ASSAY WHILE VARYING THE NUMBER OF WASH DROPLETS. 

(IN-OUT-IPP-ODP VS. IN-OUT-IPP-ODP-WQ) 

 
 

TABLE VII 

SUCCESS RATES AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR A 7-LEVEL 

EXPONENTIAL PROTEIN DILUTION ASSAY (IPP ENABLED/DISABLED)  

 
 

In practice, this limit would depend on the DMFB area and 

the assay’s demand for spatial resources, however, it is not our 

objective to quantify this limit here. Meanwhile, decreasing 

the number of wash droplets increases the favorable impact of 

WQ. As wash droplets are relatively cheap compared to 

samples and reagents [43, 44], we suspect that a typical user 

would opt for a relatively large number of wash droplets on-

chip (i.e., 9 in this case) in order to optimize performance.  

D. 7-Level Exponential Protein Dilution Assay 

This experiment considers a 7-level exponential protein 

dilution assay (PS-7) on a 9x15 DMFB with washing enabled 

to compare the In-Out-OdP-WQ and In-Out-IPP-OdP-WQ 

configurations. We ran each configuration 50 times due to the 

large assay. Table VII reports the result of this experiment.  

The success rate of IPP was 96% in both cases, suggesting 

that it should be viewed as a performance optimization, not a 

deadlock prevention strategy. IPP improved all execution time 

metrics: across the 50 runs, IPP reduced average execution 

time by 19%, the standard deviation by 53%, and the 

minimum and maximum execution times by 13% and 21%, 

respectively. By limiting the number of concurrent operations 

based on the availability of on-chip resources, IPP enables the 

operations that are executing to pick more profitable moves; 

without IPP, more operations execute concurrently, but they 

choose the most profitable moves with much lower frequency, 

thus increasing assay execution time. These results confirm 

the observations about IPP from Subsection V.B.  

E. Impact of Wash Droplet Capacity 

In this experiment, we ran the PS-5 assay on a 9x15 DMFB 

using the In-Out-IPP-OdP-WQ configuration with 9 wash 

droplets using the following wash droplet capacities: {16, 32, 

64, 128, 256, 512, 1024, 2048, 4096}. 100 runs were 

performed for each wash droplet capacity. Fig. 18 reports the 

minimum, average, and maximum, assay execution time for 

each capacity. Four of the 900 runs in this experiment failed: 

one each for capacities of 16 and 512, and two for capacities 

of 64. Failed runs do not contribute to the averages in Fig. 18. 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

12 

 
 

Fig. 18. Impact of wash droplet capacity on execution time (time-steps) on the 
PS-5 assay. 100 runs were using different random number seeds at each wash 

droplet capacity; for each capacity, the maximum, minimum, and average 

assay execution time are reported. 
  

Fig. 18 shows that the wash droplet capacity affects the 

maximum assay execution time, especially at lower capacities 

(16, 32) far more than it affects the average or minimum assay 

execution times at all capacities. For wash droplet capacities 

that exceed 64, the relative impact on minimum or average 

assay execution time is quite small.  

In a realistic deployment scenario, the washing capacity of a 

droplet will depend on physical properties of the DMFB, 

samples and reagents used in the experiment, and the chosen 

washing solution. If the cost of the washing solution is an 

issue, then the benefits of choosing a solution that can clean 

more than 64 cells per droplet is marginal at best.  

F. Comparison with Module-based Synthesis 

Lastly, we perform a scalability study that compares the 

performance of routing-based synthesis with the traditional 

approach of module-based synthesis. The benchmarks used in 

the study are a sequence of exponential protein dilution 

assays, {PS-k | 1 < k < 7} (“PS” stands for “Protein Split”). 

PS-k has k levels of splitting (e.g., the colorimetric protein 

dilution tree in Fig. 15 is PS-3), and produces a tree with 2
k
 

paths emanating from the root node; thus, this particular class 

of assays exhibits exponential growth in terms of parameter k.  

For module-based synthesis, we use Path Scheduling [13], 

placement based on a Virtual Topology [30], and a maze 

routing algorithm introduced by Roy et al. [38]. We selected 

Path Scheduling because it outperformed other heuristics for 

the PS-k family of benchmarks in prior studies [14, 15]. 

We ran routing-based synthesis with and without wash 

droplet routing. With washing disabled, we used the In-Out-

OdP-IPP configuration, and with washing enabled, we used 

the In-Out-OdP-IPP-WQ configuration. We performed 100 

runs for PS-1, PS-2, and PS-3, 75 runs for PS-4, PS-5 and PS-

6, and 50 runs for PS-7; we report the minimum (Min.), 

maximum (Max.) and average (Avg.) execution times for each 

benchmark, with and without washing enabled. Fig. 19 

compares these results with module-based synthesis.  

Module-based synthesis exhibited longer execution times 

than routing-based synthesis without washing for all seven of 

the PS-k benchmarks. The performance gap starts narrow, and 

becomes more pronounced as k increases, with a dramatic 

widening at PS-7.  
 

 
Fig. 19. Comparison between module-based and routing-based synthesis on a 

family of exponential protein dilution trees. 

 

Module-based synthesis approximately tracks the average 

execution time of routing-based synthesis with washing 

enabled for PS-1..3. At PS-3, the execution time curves cross; 

module-based synthesis outperforms routing-based synthesis 

with washing from PS-3..6, with a clear improvement over the 

best routing-based synthesis run (Min.) at PS-6. Cross-

contamination and the presence of wash droplets on-chip 

increase operation latencies for routing-based synthesis in 

three ways: (1) there are more droplets on-chip due to the 9 

wash droplets; (2) operation latencies increase due to pauses 

waiting for contamination removal; and (3) contaminated cells 

reduce the available area for droplet movement. Module-based 

synthesis does not suffer these drawbacks, as contamination is 

removed during routing [39-41], and assay execution time is 

dominated by the schedule, not routing [13, 33].  

For PS-7, the execution latency of module-based synthesis 

is 7.1x longer than the average execution time of routing-

based synthesis with washing enabled. Recall that we use a 

15x9 DMFB for all benchmarks. Routing-based synthesis 

retains two advantages: (i) the module abstraction limits the 

spatial parallelism available to the scheduler for module-based 

synthesis; in contrast, the congestion-aware scheduling 

mechanism employed by routing-based synthesis is more 

aggressive and enables routing-based synthesis to execute 

more operations in parallel; and (ii) routing-based synthesis 

has the probabilistic opportunity to execute faster operations 

by choosing more profitable movements than the limited set of 

movements allowable within a module. Thus, when on-chip 

resource constraints become stringent, routing-based synthesis 

outperforms module-based synthesis.  

VI. CONCLUSION 

Routing-based synthesis, as initially conceived [12], did not 

support non-reconfigurable operations and was susceptible to 

both livelock and deadlock (Figs. 11-13), often occurring in 

locally congestion regions of a DMFB. This paper overcomes 

these drawbacks through: (i) the introduction of algorithms to 

support non-reconfigurable operations; (ii) techniques to 

detect operations slowed by congestion; and (iii) techniques to 

alleviate localized livelock and deadlock by dynamically 

throttling the droplet movement probabilities. Routing-based 

synthesis yields faster assay execution times than module-

based synthesis when parallelism is limited. 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

13 

REFERENCES 

[1] M. J. Jebrail, M.S. Bartsch, and K. D. Patel. (2012, Jul.). Digital 

microfluidics: a versatile tool for applications in chemistry, biology, and 

medicine. Lab-on-a-Chip [Online]. 12(14), pp. 5452-2463. Available: 

http://dx.doi.org/10.1039/C2LC40318H 

[2] M. G. Pollack, A. D., Shenderov, and R. B. Fair. (2002, Mar.). 

Electrowetting-based actuation of droplets for integrated microfluidics. 
Lab-on-a-Chip [Online]. 2(2), pp. 96-101. Available: 

http://dx.doi.org/10.1039/b110474h 

[3] J. H. Noh, J. Noh, E. Kreit, J. Heikenfeld, and P. D. Rack (2012, Feb.) 

Toward active-matrix lab-on-a-chip: programmable electrofluidic 
control enabled by arrayed oxide thin film transistors. Lab-on-a-Chip 

[Online.] 12(2), pp. 353-360. Available: 

http://dx.doi.org/10.1039/c1lc20851a 

[4] B. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R. 
Hector, Y. Kubota, and H. Morgan (May, 2012). Programmable large-

area digital microfluidic array with integrated droplet sensing for 

bioassays. Lab-on-a-Chip [Online.] 12(18), pp. 3305-3313. Available: 
http://dx.doi.org/10.1039/c2lc40273d 

[5] Y. Luo, B. B. Bhattacharya, T-Y. Ho, and K. Chakrabarty, 

“Optimization of polymerase chain reaction on a cyberphysical digital 

microfluidic biochip,” In Proc. ICCAD, San Jose, CA, USA, 2013, pp. 
622-629. Available: http://dx.doi.org/10.1109/ICCAD.2013.6691181 

[6] Y. Luo, K. Chakrabarty, and T-Y. Ho. (2013, Jan.) Error recovery in 

cyberphysical digital microfluidic biochips. IEEE Trans CAD [Online]. 

32(1), pp. 59-72. Available: 
http://dx.doi.org/10.1109/TCAD.2012.2211104 

[7] Y. Zhao, T. Xu, and K. Chakrabarty. (2010, Aug.) Integrated control-

path design and error recovery in the synthesis of digital microfluidic 

biochips. ACM Journal on Emerging Technologies in Computing 
Systems [Online]. 6(3), article #11. Available: 

http://dx.doi.org/10.1145/1777401.1777404 

[8] M. A. Murran, and H. Najjaran. (2012, Mar.). Capacitance-based droplet 

position estimator for digital microfluidic devices. Lab-on-a-Chip 
[Online]. 12(11), pp. 2053-2059. Available: 

http://dx.doi.org/10.1039/c2lc21241b 

[9] S. C. C. Shih, et al. (2013, Apr.). Digital microfluidics with impedance 

sensing for integrated cell culture and analysis. Biosensors and 
Bioelectronics [Online]. 42(4), pp. 314-320. Available: 

http://dx.doi.org/10.1016/j.bios.2012.10.035 

[10] K. Choi, et al. (2013, Aug.). Automated digital microfluidic platform for 

magnetic-particle-based immunoassays with optimization by design of 
experiments. Analytical Chemistry [Online]. 85(20), pp. 9638-9646. 

Available: http://dx.doi.org/10.1021/ac401847x 

[11] P. Paik, V. Pamula, and R. Fair. (2003, Sep.) Rapid droplet mixers for 

digital microfluidic systems. Lab-on-a-Chip [Online]. 3(4), pp. 253–259. 
Available: http://dx.doi.org/10.1039/b307628h  

[12] E. Maftei, P. Pop, and J. Madsen. (2012, Mar.). Routing-based synthesis 

of digital microfluidic biochips. Springer Journal of Design Automation 

for Embedded Systems [Online]. 16(1), pp. 19-44. Available: 
http://dx.doi.org/10.1007/s10617-012-9083-0 

[13] F. Su, and K. Chakrabarty. (2008, Jan). High-level synthesis of digital 

microfluidic biochips. ACM Journal on Emerging Technologies in 
Computing Systems [Online]. 3(4): article #16. Available: 

http://dx.doi.org/10.1145/1324177.1324178 

[14] D. Grissom, and P. Brisk, “Path scheduling on digital microfluidic 

biochips,” in Proc. DAC, San Francisco, CA, USA, 2012, pp. 26-35. 
Available: http://dx.doi.org/10.1145/2228360.2228367 

[15] K. O’Neal, D. Grissom, and P. Brisk, “Force-directed list scheduling for 

digital microfluidic biochips,” in Proc. VLSI-SoC, Santa Cruz, CA, 

USA, 2012, pp. 7-11. Available: http://dx.doi.org/10.1109/VLSI-
SoC.2012.6378997 

[16] C-H. Liu, K-C. Liu, and J-D. Huang, “Latency-optimization synthesis 

with module selection for digital microfluidic biochips,” in Proc. SOCC, 

Erlangen, Germany, 2013, pp. 159-164. Available: 
http://dx.doi.org/10.1109/SOCC.2013.6749681 

[17] A. J. Ricketts, K. Irick, N. Vijaykrishnan, and M. J. Irwin, “Priority 

scheduling in digital microfluidics-based biochips,” in Proc. DATE, 
Munich, Germany, 2006, pp. 1–6. Available: 

http://dx.doi.org/10.1109/DATE.2006.244178 

[18] J. Ding, K. Chakrabarty, and R. B. Fair. (2001, Dec.). Scheduling of 

microfluidic operations for reconfigurable two-dimensional 
electrowetting arrays. IEEE Trans CAD [Online]. 20(12), pp. 1463-

1468. Available: http://dx.doi.org/10.1109/43.969439 

[19] T. Xu and K. Chakrabarty. (2008, Aug.). Integrated droplet routing and 

defect tolerance in the synthesis of digital microfluidic biochips. ACM 
Journal on Emerging Technologies in Computing Systems [Online]. 

4(3), article #11. Available: http://dx.doi.org/10.1145/1389089.1389091 

[20] T. Xu, K. Chakrabarty, and F. Su. (2008, Mar.) Defect-aware high-level 

synthesis and module placement for microfluidic biochips. IEEE Trans. 
Biomedical Circuits and Systems [Online]. 2(1), pp. 50-62. Available: 

http://dx.doi.org/10.1109/TBCAS.2008.918283 

[21] E. Maftei, P. Pop, and J. Madsen (2010, Jul.). Tabu search-based 

synthesis of digital microfluidic biochips with dynamically 
reconfigurable non-rectangular devices. Springer Journal of Design 

Automation for Embedded Systems [Online]. 14, pp. 287–308. 

Available: http://dx.doi.org/10.1007/s10617-010-9059-x 

[22] E. Maftei, P. Pop, and J. Madsen (2013, Feb.) Module-based synthesis 
of digital microfluidic biochips with droplet-aware operation execution. 

ACM Journal on Emerging Technologies in Computing Systems 

[Online]. 4(3), article #11. Available: 
http://dx.doi.org/10.1145/2422094.2422096 

[23] K. Bazargan, R. Kastner, and M. Sarrafzadeh. (2000, Jan.-Mar.). Fast 

template placement for reconfigurable computing. IEEE Design and Test 
of Computers [Online]. 17(1), pp. 68–83. Available: 

http://dx.doi.org/10.1109/54.825678 

[24] C. C-Y. Lin, and Y-W. Chang. (2011, Jun.). Cross-contamination aware 

design methodology for pin-constrained digital microfluidic biochips. 
IEEE Trans CAD [Online]. 30(6), pp. 817-828. Available: 

http://dx.doi.org/10.1145/1837274.1837438 

[25] F. Su and K. Chakrabarty. (2006, Jul.). Module placement for fault-

tolerant microfluidics-based biochips. ACM Trans. Design Autom. 
Electron. Syst [Online]. 11(3), pp. 687-710. Available: 

http://dx.doi.org/10.1145/1142980.1142987 

[26] C. Liao and S. Hu. (2011, Mar.). Multiscale variation-aware techniques 

for high-performance digital microfluidic lab-on-a-chip component 
placement. IEEE Trans. Nanobioscience [Online]. 10(1), pp. 51-58. 

Available: http://dx.doi.org/10.1109/TNB.2011.2129596 

[27] E. J. Griffith, S. Akella, and M. K. Goldberg. (2006, Feb.) Performance 

characterization of a reconfigurable planar-array digital microfluidic 
system. IEEE Trans CAD [Online]. 25(2), pp. 345–357. Available: 

http://dx.doi.org/10.1109/TCAD.2005.859515 

[28] D. Grissom and P. Brisk, “A high-performance online assay interpreter 

for digital microfluidic biochips,” in Proc. GLSVLSI, Salt Lake City, 
Utah, USA, 2012, pp. 103-106. Available: 

http://dx.doi.org/10.1145/2206781.2206808 

[29] D. Grissom and P. Brisk, “A field-programmable pin-constrained digital 

microfluidic biochip,” in Proc. DAC, Austin, TX, USA, 2013, article 
#46. Available: http://dx.doi.org/10.1145/2463209.2488790 

[30] D. Grissom and P. Brisk. (2014, Mar.). Fast online synthesis of digital 

microfluidic biochips. IEEE Trans CAD [Online]. 33(3), pp. 356–369. 

Available: http://dx.doi.org/10.1109/TCAD.2013.2290582 

[31] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. (2007, Nov.) Placement of 
defect-tolerant digital microfluidic biochips using the T-tree 

formulation. ACM Journal on Emerging Technologies in Computing 

Systems [Online]. 3(3), pp. 13.1-13.32. Available: 
http://dx.doi.org/10.1145/1295231.1295234 

[32] Y-H. Chen, C-L. Hsu, L-C. Tsai, T-W. Huang, and T-Y. Ho. (2013, 

Aug.). A reliability-oriented placement algorithm for reconfigurable 

digital microfluidic biochips using 3-D deferred decision-making 
technique.  IEEE Trans CAD [Online]. 32(8), pp. 1151-1162. Available: 

http://dx.doi.org/10.1109/TCAD.2013.2249558 

[33] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthesis 

of digital microfluidic biochips,” in Proc. DATE, Munich Germany, 

http://dx.doi.org/10.1039/C2LC40318H
http://dx.doi.org/10.1039/b110474h
http://dx.doi.org/10.1039/c1lc20851a
http://dx.doi.org/10.1039/c2lc40273d
http://dx.doi.org/10.1109/ICCAD.2013.6691181
http://dx.doi.org/10.1109/TCAD.2012.2211104
http://dx.doi.org/10.1145/1777401.1777404
http://dx.doi.org/10.1039/c2lc21241b
http://dx.doi.org/10.1016/j.bios.2012.10.035
http://dx.doi.org/10.1021/ac401847x
http://dx.doi.org/10.1039/b307628h
http://dx.doi.org/10.1007/s10617-012-9083-0
http://dx.doi.org/10.1145/1324177.1324178
http://dx.doi.org/10.1145/2228360.2228367
http://dx.doi.org/10.1109/VLSI-SoC.2012.6378997
http://dx.doi.org/10.1109/VLSI-SoC.2012.6378997
http://dx.doi.org/10.1109/SOCC.2013.6749681
http://dx.doi.org/10.1109/DATE.2006.244178
http://dx.doi.org/10.1109/43.969439
http://dx.doi.org/10.1145/1389089.1389091
http://dx.doi.org/10.1109/TBCAS.2008.918283
http://dx.doi.org/10.1007/s10617-010-9059-x
http://dx.doi.org/10.1145/2422094.2422096
http://dx.doi.org/10.1109/54.825678
http://dx.doi.org/10.1145/1837274.1837438
http://dx.doi.org/10.1145/1142980.1142987
http://dx.doi.org/10.1109/TNB.2011.2129596
http://dx.doi.org/10.1109/TCAD.2005.859515
http://dx.doi.org/10.1145/2206781.2206808
http://dx.doi.org/10.1145/2463209.2488790
http://dx.doi.org/10.1109/TCAD.2013.2290582
http://dx.doi.org/10.1145/1295231.1295234
http://dx.doi.org/10.1109/TCAD.2013.2249558


0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2557726, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2015-0147 < 

 

14 

2006, pp. 323-328. Available: 

http://dx.doi.org/10.1109/DATE.2006.244177 

[34] K. F. Böhringer. (2006, Feb.). Modeling and controlling parallel tasks in 

droplet-based microfluidic systems. IEEE Trans CAD [Online]. 25(2), 

pp. 334-344. Available:  http://dx.doi.org/10.1109/TCAD.2005.855958 

[35] M. Cho and D. Z. Pan. (2008, Oct.). A high-performance droplet routing 

algorithm for digital microfluidic biochips. IEEE Trans CAD [Online]. 
27(10), pp. 1714-1724. Available: 

http://dx.doi.org/10.1145/1353629.1353672 

[36] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. (2008, Nov.) BioRoute: a 

network flow- based routing algorithm for the synthesis of digital 
microfluidic biochips. IEEE Trans CAD [Online]. 27(11), pp. 1928–

1941. Available: http://dx.doi.org/10.1109/TCAD.2008.2006140 

[37] T. Huang and T. Ho, “A fast routability- and performance-driven droplet 

routing algorithm for digital microfluidic biochips,” in Proc. ICCD, 
Lake Tahoe, CA, USA, 2009, pp. 445–450. Available: 

http://dx.doi.org/10.1109/ICCD.2009.5413119 

[38] P. Roy, H. Rahaman, and P. Dasgupta, “A novel droplet routing 

algorithm for digital microfluidic biochips,” in Proc. GLSVLSI, 
Providence, RI, USA, 2010, pp. 441-446. Available: 

http://dx.doi.org/10.1145/1785481.1785583 

[39] T-W. Huang, C-H. Lin, and T-Y. Ho. (2010, Nov.). A contamination 

aware droplet routing algorithm for the synthesis of digital microfluidic 
biochips. IEEE Trans CAD [Online]. 29(11), pp. 1682–1695. Available: 

http://dx.doi.org/10.1109/TCAD.2010.2062770 

[40] Y. Zhao and K. Chakrabarty. (2012, Jun.). Cross-contamination 
avoidance for droplet routing in digital microfluidic biochips. IEEE 

Trans CAD [Online]. 31(6), pp. 817–830. Available: 

http://dx.doi.org/10.1109/TCAD.2012.2183369 

[41] Q. Wang, Y. Shen, H. Yao, T.-Y. Ho, and Y. Cai. (2014, Jun.) Practical 
functional and washing droplet routing for cross-contamination 

avoidance in digital microfluidic biochips. in Proc. DAC, San Francisco, 

CA, USA, 2014, pp. 1-6. Available: 
http://dx.doi.org/10.1145/2593069.2593189 

[42] D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Dohert, N. Liao, and P. 

Brisk (2012, Oct.) “A digital microfluidic biochip synthesis framework, 

in Proc. VLSI-SoC, Santa Cruz, CA, USA, 2012, pp. 177-182. 

Available: http://dx.doi.org/10.1109/VLSI-SoC.2012.6379026 

[43] Y-L. Hsieh, T-Y. Ho, and K. Chakrabarty. (2012, Nov.). A reagent-

saving mixing algorithm for preparing multi-target biochemical samples 

using digital microfluidics. IEEE Trans CAD [Online]. 31(11), pp. 1556-
1669. Available: http://dx.doi.org/10.1109/TCAD.2012.2202396 

[44] J-D. Huang, C-H. Liu, and T-W. Chiang, “Reactant minimization during 

sample preparation on digital microfluidic biochips using skewed 

mixing trees,” In Proc. ICCAD, San Jose, USA, 2012, pp. 377-383. 
Available: http://dx.doi.org/10.1145/2429384.2429464 

 

Skyler Windh received the B.S. Degree in Computer Science from the 

University of California, Riverside (UCR). He is presently pursuing a Ph.D. 
degree in Computer Science at UCR. His research interests include the usage 

of FPGAs and GPUs to accelerate database and data mining applications. 

 
Calvin Phung received the B.S. Degree in Computer Science from the 

University of California, Riverside (UCR) in 2012. He is presently pursuing a 

Ph.D. degree in Computer Science at UCR. He is the leading engineer for the 
first brain-training game for the Brain Game Center at UCR, a collaborative 

project between the Computer Graphics and the Cognitive Neuroscience Labs. 

His research interests include machine learning to predict the performance in 
future sessions for general cognitive training applications to provide 

challenging, but not overwhelming, application experiences for the user. 

 

Daniel Grissom received the B.S. degree in computer engineering from the 
University of Cincinnati in 2008, and the M.S. and Ph.D. degrees in computer 

science from the University of California, Riverside, in 2011 and 2014 

respectively. He is now an Assistant Professor at Azusa Pacific University. 

 

Paul Pop (M’99) is a professor at DTU Compute, Technical University of 
Denmark (DTU). He has received his Ph.D. degree in computer systems from 

Linköping University in 2003. His main research interests are in the area of 

system-level design of embedded systems. He has published extensively in 
this area, and has received the best paper award at the DATE 2005, RTiS 

2007, CASES 2009 and MECO 2013 conferences and the EDAA Outstanding 

Dissertations Award (co-supervisor) in 2011. Since 2008 he has also 
addressed Computer-Aided Design methods for biochips. His work in this 

area has received the best paper award at the CASES 2009 conference. He has 
co-organized and participated in tutorials and special sessions on CAD for 

biochips at conferences such as SOCC 2011, ESWEEK 2011, EMBC 2015 

and ETS 2015. 

 

Philip Brisk (M’09) received the B.S., M.S., and the Ph.D. degrees, all in 
computer science, from the University of California, Los Angeles, Los 

Angeles, CA, USA, in 2002, 2003, and 2006, respectively. 

From 2006 to 2009, he was a Post-Doctoral Scholar at the Processor 
Architecture Laboratory, School of Computer and Communication Sciences, 

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. He is an 

Associate Professor at the Department of Computer Science and Engineering, 

the University of California, Riverside, Riverside, CA, USA. His current 

research interests include programmable microfluidics, FPGAs, compilers, 

and design automation and architecture for application-specific processors. 
Dr. Brisk was the recipient of the Best Paper Award at CASES, 2007 and 

FPL 2009. He has been a Program Committee Member for several 

international conferences and workshops, including DAC, ASPDAC, DATE, 
VLSI-SoC, FPL, FPT, and so on. He has been a General (co-)Chair of IEEE 

SIES 2009, IEEE SASP 2010, and IWLS 2011, and Program (co-)Chair of 

IEEE SASP 2011, IWLS 2012, ARC 2013, and FPL 2016.  
 

 

http://dx.doi.org/10.1109/DATE.2006.244177
http://dx.doi.org/10.1109/TCAD.2005.855958
http://dx.doi.org/10.1145/1353629.1353672
http://dx.doi.org/10.1109/TCAD.2008.2006140
http://dx.doi.org/10.1109/ICCD.2009.5413119
http://dx.doi.org/10.1145/1785481.1785583
http://dx.doi.org/10.1109/TCAD.2010.2062770
http://dx.doi.org/10.1109/TCAD.2012.2183369
http://dx.doi.org/10.1145/2593069.2593189
http://dx.doi.org/10.1109/VLSI-SoC.2012.6379026
http://dx.doi.org/10.1109/TCAD.2012.2202396
http://dx.doi.org/10.1145/2429384.2429464

