
Task	
  Mapping	
  and	
  Par..on	
  Alloca.on	
  for	
  
Mixed-­‐Cri.cality	
  Real-­‐Time	
  Systems	
  
	
  
Domițian	
  Tămaș-­‐Selicean	
  and	
  Paul	
  Pop	
  
Technical	
  University	
  of	
  Denmark	
  



2	
  

Outline 	
  	
  

§ Mo@va@on	
  

§ System	
  and	
  applica@on	
  models	
  

§ Problem	
  formula@on	
  and	
  example	
  

§ Op@miza@on	
  strategy	
  

§ Experimental	
  results	
  

§ Conclusions	
  



3	
  

Mo.va.on	
  
§ Safety	
  is	
  the	
  property	
  of	
  a	
  system	
  that	
  will	
  not	
  endanger	
  human	
  
life	
  or	
  the	
  environment	
  

§ A	
  safety-­‐related	
  system	
  needs	
  to	
  be	
  cer.fied	
  
	
  
§ A	
  Safety	
  Integrity	
  Level	
  (SIL)	
  is	
  assigned	
  to	
  each	
  safety	
  related	
  
func@on,	
  depending	
  on	
  the	
  required	
  level	
  of	
  risk	
  reduc@on	
  

§ There	
  are	
  4	
  SILs:	
  
§ SIL4	
  (most	
  cri@cal)	
  	
  
§ SIL1	
  (least	
  cri@cal)	
  
§ SIL0	
  (non-­‐cri@cal)	
  –	
  not	
  covered	
  by	
  standards	
  

§ SILs	
  dictate	
  the	
  development	
  process	
  and	
  cer@fica@on	
  procedures	
  	
  



4	
  

Federated	
  Architecture	
  

Mo.va.on	
  
§  Real	
  @me	
  applica@ons	
  implemented	
  
using	
  distributed	
  systems	
  

PE	
  
Applica@on	
  A	
  1	
  

Applica@on	
  A	
  2	
  

Applica@on	
  A	
  3	
  

§ Mixed-­‐cri@cality	
  applica@ons	
  share	
  the	
  
same	
  architecture	
  

SIL3 

SIL3 

SIL4 

SIL4 

SIL4 SIL1 

SIL2 

SIL1 

Solu@on:	
  par@@oned	
  architecture	
  

Integrated	
  Architecture	
  



5	
  

System	
  Model	
  

§ Par@@on	
  =	
  virtual	
  dedicated	
  machine	
  
	
  
§ Par@@oned	
  architecture	
  

§ Spa@al	
  par@@oning	
  
§  protects	
  one	
  applica@on’s	
  memory	
  
and	
  access	
  to	
  resources	
  from	
  another	
  
applica@on	
  

§ Temporal	
  par@@oning	
  
§  par@@ons	
  the	
  CPU	
  @me	
  among	
  
applica@ons	
  



6	
  

System	
  Model	
  

§ Temporal	
  par@@oning	
  
§ Sta@c	
  par@@on	
  table	
  

§  Repeated	
  with	
  a	
  period	
  MF	
  
§  Par@@on	
  switch	
  overhead	
  
§  Each	
  par@@on	
  can	
  have	
  its	
  own	
  
scheduling	
  policy	
  

§  A	
  par@@on	
  has	
  a	
  certain	
  SIL	
  

Par@@on	
   Par@@on	
  	
  
slice	
  

Major	
  Frame	
  

PE	
  1	
   PE	
  2	
  

PE	
  3	
  

PE	
  1	
  

PE	
  2	
  

PE	
  3	
  



7	
  

Applica.on	
  Model 	
  	
  
§ Sta@c	
  Cyclic	
  Scheduling	
  



8	
  

Problem	
  formula.on	
  	
  
§ Given	
  

§  A	
  set	
  of	
  applica@ons	
  
§  The	
  cri@cality	
  level	
  (or	
  SIL)	
  for	
  each	
  task	
  
§  A	
  set	
  of	
  N	
  processing	
  elements	
  (PEs)	
  
§  The	
  size	
  of	
  the	
  Major	
  Frame	
  and	
  of	
  the	
  Applica@on	
  Cycle	
  

§ Determine	
  
§  The	
  mapping	
  of	
  tasks	
  to	
  PEs	
  
§  The	
  sequence	
  and	
  length	
  of	
  par@@on	
  slices	
  on	
  each	
  processor	
  
§  The	
  assignment	
  of	
  tasks	
  to	
  par@@ons	
  
§  The	
  schedule	
  for	
  all	
  the	
  tasks	
  in	
  the	
  system	
  

§ Such	
  that	
  
§  All	
  applica@ons	
  meet	
  their	
  deadline	
  



9	
  

Mo.va.onal	
  Example	
  	
  



10	
  

Mo.va.onal	
  Example	
  	
  



11	
  

Mo.va.onal	
  Example	
  	
  



12	
  

Op.miza.on	
  Strategy	
  
§ Mapping	
  and	
  Time-­‐Par@@oning	
  Op@miza@on	
  (MTPO)	
  strategy:	
  

§ Tabu	
  Search	
  meta-­‐heuris@c	
  
§  The	
  mapping	
  of	
  tasks	
  to	
  processors	
  
§  The	
  sequence	
  and	
  length	
  of	
  par@@on	
  slices	
  on	
  each	
  PE	
  
§  The	
  assignment	
  of	
  tasks	
  to	
  par@@ons	
  

§ List	
  scheduling	
  
§  The	
  schedule	
  for	
  the	
  applica@ons	
  

§ Tabu	
  Search	
  
§ Minimizes	
  the	
  cost	
  func@on	
  
§ Explores	
  the	
  solu@on	
  space	
  using	
  design	
  transforma@ons	
  



13	
  

Op.miza.on	
  Strategy	
  

§ Degree	
  of	
  schedulability	
  
§ Captures	
  the	
  difference	
  between	
  the	
  worst-­‐case	
  response	
  @me	
  
and	
  the	
  deadline	
  

§ Cost	
  Func@on	
  

the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(⇥) =

⇢
c1 = ⇤Ai⇥� max(0,Ri �Di) i f c1 > 0
c2 = ⇤Ai⇥�(Ri �Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.



14	
  

Op.miza.on	
  Strategy:	
  Design	
  Transforma.ons	
  



15	
  

Op.miza.on	
  Strategy:	
  Design	
  Transforma.ons	
  



16	
  

Op.miza.on	
  Strategy:	
  Design	
  Transforma.ons	
  



17	
  

Op.miza.on	
  Strategy:	
  Design	
  Transforma.ons	
  



18	
  

Op.miza.on	
  Strategy:	
  Design	
  Transforma.ons	
  

§ Task	
  re-­‐assignment	
  
	
  



19	
  

Experimental	
  Results	
  
§ Benchmarks	
  

§ 5	
  synthe@c	
  	
  
§ 3	
  real	
  life	
  test	
  cases	
  from	
  E3S	
  

§ MTPO	
  compared	
  to:	
  
§ MO+TPO	
  	
  

§  Op@miza@on	
  where	
  first	
  we	
  do	
  a	
  mapping	
  op@miza@on,	
  	
  
	
  without	
  considering	
  par@@oning	
  (MO),	
  and	
  then	
  we	
  perform	
  	
  
	
  a	
  par@@oning	
  op@miza@on,	
  considering	
  the	
  mapping	
  	
  
	
  obtained	
  previously	
  as	
  fixed	
  (TPO)	
  



20	
  

Experimental	
  Results	
  



21	
  

Conclusions	
  

§ Mixed-­‐cri@cality	
  systems,	
  with	
  applica@ons	
  of	
  different	
  	
  
	
  cri@cali@es	
  running	
  on	
  the	
  same	
  processors,	
  are	
  implemented	
  
using	
  a	
  par@@oned	
  architecture.	
  

	
  	
  
§ Op@mizing	
  the	
  @me	
  par@@ons	
  and	
  the	
  task	
  alloca@on	
  to	
  par@@ons	
  
leads	
  to	
  schedulable	
  solu@ons	
  with	
  improved	
  resource	
  u@liza@on.	
  

§ We	
  proposed	
  a	
  Tabu	
  Search	
  based	
  op@miza@on	
  algorithm.	
  



22	
  

Thank	
  you!	
  
	
  
	
  
	
  
	
  
	
  
Domițian	
  Tămaș-­‐Selicean	
  	
  
dota@imm.dtu.dk	
  


