
(a) Postpone move on f
[NS1,ES2]
2,3 from Fig. 5b

(b) Advance move on f
[ES2,NS1]
3,2 from Fig. 8a

Figure 8: Moves for TT traffic

a feasible region. Once the TT frames are schedulable we set the
weight wT T to zero, since we are interested to minimize the end-
to-end delays for the RC frames. The degree of schedulability is
calculated as:

δT T/RC =

{

c1 = ∑i max(0,R fi
− fi.deadline) ifc1 > 0

c2 = ∑i(R fi
− fi.deadline) ifc1 = 0

(2)

If at least one frame is not schedulable, there exists one R fi
greater

than the deadline fi.deadline, and therefore the term c1 will be
positive. However if all the frames are schedulable, this means
that each R fi

is smaller than fi.deadline, and the term c1 = 0. In
this case, we use c2 as the degree of schedulability, since it can
distinguish between two schedulable solutions.

Tabu Search explores the design space by using design transfor-
mations (or “moves”) applied to the current solution in order to
generate neighboring solutions. As it is practically impossible to
exhaustively evaluate the whole design space, in order to increase
the efficiency of the Tabu Search, and to drive it intelligently to-
wards the solution, these “moves” are not performed random, but
chosen based on a candidate list of moves that may improve the
search. Each candidate is evaluated. If the currently explored solu-
tion is better than the best known solution, it is saved as the “best-
so-far” solution. To escape local minima, TS incorporates an adap-
tive memory (called “Tabu list”), to prevent the search from revis-
iting previous solutions. Thus, moves that improve the search are
saved as “Tabu”. In case there is no improvement in finding a better
solution for a number of iterations, we use diversification, i.e., we
visit previously unexplored regions of the search space. In case the
search diversification is unsuccessful, we restart the search from
the best known solution.

We use four types of moves applied to TT frame instances: ad-
vance, advance predecessors, postpone and postpone successors.
The advance move will advance the scheduled send time of a TT

frame instance fi,x from a node ν j on a dataflow link [ν j,νk] to
an earlier moment in time. The advance predecessors applied to

a frame instance f
[ν j ,νk]
i,x , will advance the scheduled send time for

all its predecessors, pred( f
[ν j ,νk]
i,x ). Similarly the postpone move

will postpone the schedule send time of a TT frame instance from
a node, while postpone successors will postpone the send time for
all the successors of that frame instance.

The maximum amount of time a frame instance is advanced or
postponed at a node ν j ∈ V is computed such that the frame in-
stance will not be sent before it is received, or sent too late to
meet its deadline. Also, after each move we may need to adjust
the schedules (move other frame instances later or earlier) to keep
the solution valid, i.e., the schedules respect the precedence and
resource constraints.

Let us illustrate these moves using the example presented in Sec-
tion 6. The setup from Fig. 4 shows the architecture model in
Fig. 4a and the application model in Fig. 4b. Fig. 5a presents a
possible solution for synthesizing the TT schedule. In this case,
the worst-case end-to-end delay R f1

for the RC frame f1 is 470
µs. Fig. 5b shows the result of a postpone successors move applied
to the frame instance f3,2 from Fig. 5a on dataflow link [ES2,NS1].

Consequently, frame instance f
[NS1,ES3]
3,2 is also postponed, thus cre-

ating sufficient space for f1,1 to execute. The latency of frame in-
stance f1,2 can be further reduced by applying a postpone move to

f
[NS1,ES3]
2,3 from Fig. 5b, as shown in Fig. 8a. Fig. 8b presents the

result of an advance move applied to f3,2 from Fig. 8a on dataflow
link [NS1,ES3], with no effect on the latencies of any of the frames
involved.

For situations when there are several TT frames scheduled for
transmission back-to-back on a dataflow link [ν j,νk] which may
lead to large delays for RC frames, our optimization applies an

add blank move, which adds a blank interval bi
[ν j ,νk]
i on dataflow

link [ν j,νk], which is reserved for RC traffic. Blank spaces will
also be introduced by advance/postpone moves. The difference be-
tween an add blank and these moves is that the blank interval intro-
duced through advance/postpone may be used by other TT frames,
while the space introduced by an add blank move is reserved for
RC frames only. In case a TT frame instance misses its deadline

due to a certain blank interval bi
[ν j ,νk]
i on dataflow link [ν j,νk], the

optimization will either remove or resize the blank interval, by per-
forming a remove blank move or a resize blank move, respectively.

Let us consider the situation presented in Fig. 9. We assume the
topology presented in Fig. 4a, and we consider dataflow links [ES1,
NS1] and [NS1,ES2]. We assume that the dataflow links have equal
transmission speeds. For this example, we have one RC frame, f10

sent by ES1 to ES2, with the transmission duration Cf10
= 100 µs,

and 5 TT frames f1 to f5 to be forwarded by NS1 to ES2. The
transmission durations for the TT frames f1 to f5 are 100 µs, 75 µs,
100 µs, 50 µs and 125 µs, respectively. Let us consider the TT
schedule presented in Fig. 9a, where the TT frames are sched-
uled back-to-back on dataflow link [NS1,ES2], starting at time 150
µs. In this case, the worst-case delay for the RC frame f10 is 725
µs. The network implements the timely block approach (see Sec-
tion 5.2), and we represent with a hatched box the time interval RC
frame is blocked to transmit so it does not disturb the TT frames.

For situations such as the one presented in Fig. 9a, where an RC
frame is blocked from transmission due to TT frames scheduled
back-to-back, the candidate list will contain an add blank move to
reduce the delay of the RC frame. By applying an add blank move
to dataflow link [NS1,ES2], as shown in Fig. 9b, the algorithm re-
serves a time interval of 175 µs for RC traffic, marked by a green
box on the schedule. In this case, the worst-case delay for f10 is of
only 550 µs.


