
(a) Initial TT schedule

(b) Optimized TT schedule

Figure 5: Worst-case scenario for RC frame f1

disturbing the scheduled TT frames. We denote these “blocked”
time intervals with hatched boxes. The first big enough interval
starts only at time 500, right after f2,3 is received by ES3, which is
too late.

However, if we instead schedule the TT frame f3 such that its
second instance f3,2 will be sent by ES2 to NS1 at 350 µs, the worst
case end-to-end delay for f1 is reduced to 275, hence f1 is schedu-
lable. Such a solution is depicted in Fig. 5b, where we also depict
the worst-case scenario for f1.

This example shows that by considering the RC traffic when
scheduling the TT frames, the impact of the TT schedule on the
latency of the RC frames can be greatly reduced.

7. SCHEDULE OPTIMIZATION
The problem presented in Section 4 is NP-complete [38]. In or-

der to solve this problem, we will use the “TTEthernet Schedule
Optimization” (TTESO) strategy from Fig. 7. TTESO takes as in-
put the topology of the network G , the set of TT and RC frames
F T T ∪F RC (including the size, period/rate and deadline), the set
of virtual links V L and the mapping of frames to virtual links M ,
and returns the schedules S for the TT frames.

Our synthesis strategy uses a tree model to represent each frame
fi. Each frame fi is assigned to a virtual link vli. A virtual link
is a tree structure, where the sender is the root and the receivers
are the leafs. In the case of a virtual link, the ESes and NSes are
the nodes, and the dataflow links are the edges of the tree. How-
ever, in our tree model of a frame, the dataflow links are the nodes
and the edges are the precedence constraints. A periodic frame fi
has several frame instances. We denote with fi,x the xth instance

of frame fi, and with f
[ν j ,νk]
i,x the instance sent on the dataflow link

[ν j,νk]. Fig. 6 presents the tree model of a frame instance f1,1
transmitted on virtual link vl1, from ES1 to ES3 and ES4 consid-

Figure 6: Representation of a frame as a tree

ering the topology from Fig. 1. Naturally, frame instance f1,1 on
dataflow link [NS2,ES3] cannot be sent before it is transmitted on
[NS1,NS2] and received in NS2. Such a precedence constraint is

captured in the model using an edge, e.g., f
[NS1,NS2]
1,1 → f

[NS2,ES3]
1,1 .

We denote with pred(f
[ν j ,νk]
i,x) the set of predecessor frame in-

stances of the frame instance fi,x on dataflow link [ν j,νk].

In Fig. 6, pred(f
[NS2,ES3]
1,1) = { f

[ES1,NS1]
1,1 , f

[NS1,NS2]
1,1 }. We denote

with succ(f
[ν j ,νk]
i,x) the set of successor frame instances of the frame

instance f
[ν j ,νk]
i,x . In Fig. 6, succ(f

[NS1,NS2]
1,1)= { f

[NS2,ES3]
1,1 , f

[NS2,ES4]
1,1 }.

Our strategy has 2 steps:
(1) In the first step, we determine an initial set of TT schedules S◦,
line 1 in Fig. 7. The initial schedules S◦ are built without using
the analysis of RC traffic, and with the goal of minimizing the end-
to-end response time of the TT frames. In this step we use a List
Scheduling (LS) based heuristic to construct the static schedules
S◦. Before LS is called, we merge [27] all the trees representing the
frames (which can have different periods) into a single graph cov-
ering the least common multiple of all the periods. The graph has
a dummy source node to which all root nodes are connected, and a
dummy sink node to which all leafs are predecessors. LS schedules
this graph onto the given architecture considering the given virtual
link topology. The ESes, NSes and dataflow links are considered
the resources onto which the frame instances have to “execute”.

(2) In the second step, we use a Tabu Search meta-heuristic (see
Section 7.1) to determine the TT schedules S , such that the TT and
RC frames are schedulable, and the end-to-end delay of RC frames
is minimized.

7.1 Tabu Search
Tabu Search (TS) [18] is a meta-heuristic optimization, which

sear- ches for that solution which minimizes the cost function. Tabu
Search takes as input the topology of the network G , the set of
TT and RC frames F T T ∪F RC (including the size, period/rate and
deadline), the set of virtual links V L and the mapping of frames
to virtual links M , and returns at the output the best TT schedules
S found during the design space exploration, in terms of the cost
function. We define the cost function of an implementation as:

Cost = wT T ×δT T +wRC ×δRC (1)

where δT T is the “degree of schedulability” for the TT frames and
δRC is the degree of schedulability for the RC frames. These are
summed together into a single value using the weights wT T and
wRC, given by the designer. In case a frame is not schedulable, its
corresponding weight is a very big number, i.e., a “penalty” value.
This allows us to explore unfeasible solutions (which correspond
to unschedulable frames) in the hope of driving the search towards

TTESO(G , F T T ∪F RC, V L, M)

1 S◦ = InitialSolution(G , F T T ∪F RC, V L, M)
2 S = TabuSearch(G , F T T ∪F RC, V L, M , S◦)
3 return S

Figure 7: TTEthernet Schedule Optimization strategy

