
Analysis	
 and	
 Op,miza,on	
 of	
 	

Mixed-­‐Cri,cality	
 Applica,ons	
 on	
 	

Par,,oned	
 Distributed	
 Architectures	

Domițian	
 Tămaș-­‐Selicean,	
 Sorin	
 Ovidiu	
 Marinescu	
 	
 and	
 Paul	
 Pop	

Technical	
 University	
 of	
 Denmark	

2	

Outline 	
 	

§ MoBvaBon	

§ SeparaBon	
 of	
 mixed-­‐criBcality	
 applicaBons	

§ At	
 processing	
 element	
 level	

§ At	
 communicaBon	
 level	

§ Problem	
 formulaBon	
 and	
 example	

§ OpBmizaBon	
 strategy	

§ Experimental	
 results	

§ Conclusions	

3	

Mo,va,on	

§ Safety	
 is	
 the	
 property	
 of	
 a	
 system	
 that	
 will	
 not	
 endanger	
 human	

life	
 or	
 the	
 environment	

§ A	
 safety-­‐related	
 system	
 needs	
 to	
 be	
 cer,fied	

	

§ A	
 Safety	
 Integrity	
 Level	
 (SIL)	
 is	
 assigned	
 to	
 each	
 safety	
 related	

funcBon,	
 depending	
 on	
 the	
 required	
 level	
 of	
 risk	
 reducBon	

§ There	
 are	
 4	
 SILs:	

§ SIL4	
 (most	
 criBcal)	
 	

§ SIL1	
 (least	
 criBcal)	

§ SIL0	
 (non-­‐criBcal)	
 –	
 not	
 covered	
 by	
 standards	

§ SILs	
 dictate	
 the	
 development	
 process	
 and	
 cerBficaBon	
 procedures	
 	

4	

Federated	
 Architecture	

Mo,va,on	

§  Real	
 Bme	
 applicaBons	
 implemented	

using	
 distributed	
 systems	

PE	

ApplicaBon	
 A	
 1	

ApplicaBon	
 A	
 2	

ApplicaBon	
 A	
 3	

§ Mixed-­‐criBcality	
 applicaBons	
 share	
 the	

same	
 architecture	

SIL3

SIL3

SIL4

SIL4

SIL4 SIL1

SIL2

SIL1

SoluBon:	
 parBBoned	
 architecture	

Integrated	
 Architecture	

5	

Separa,on	
 at	
 PE-­‐level	

§ ParBBon	
 =	
 virtual	
 dedicated	
 machine	

	

§ ParBBoned	
 architecture	

§ SpaBal	
 parBBoning	

§  protects	
 one	
 applicaBon’s	
 memory	

and	
 access	
 to	
 resources	
 from	
 another	

applicaBon	

§ Temporal	
 parBBoning	

§  parBBons	
 the	
 CPU	
 Bme	
 among	

applicaBons	

6	

Separa,on	
 at	
 PE-­‐level	

§ Temporal	
 parBBoning	

§ StaBc	
 parBBon	
 table	

§  Repeated	
 with	
 a	
 period	
 MF	

§  ParBBon	
 switch	
 overhead	

§  Each	
 parBBon	
 can	
 have	
 its	
 own	

scheduling	
 policy	

§  A	
 parBBon	
 has	
 a	
 certain	
 SIL	

ParBBon	
 ParBBon	
 	

slice	

Major	
 Frame	

PE	
 1	
 PE	
 2	

PE	
 3	

PE	
 1	

PE	
 2	

PE	
 3	

7	

Separa,on	
 at	
 Network-­‐level	

ES1

ES2

NS1 NS2

ES3

ES4

§  Full-­‐Duplex	
 Ethernet-­‐based	
 data	
 network	
 for	
 safety-­‐criBcal	
 applicaBons	

§  Compliant	
 with	
 ARINC	
 664p7	
 “Aircraa	
 Data	
 Network”	

End	
 System	

Network	
 Switch	

8	

Separa,on	
 at	
 Network-­‐level	
 	

NS1 NS2

vl2	

vl1	

ES1
τ1

ES2
τ4

ES3
τ2 τ5

ES4
τ3

§  Highly	
 criBcal	
 applicaBon	
 A	
 1:	
 τ1, τ2 and	
 τ3	

§  τ1 sends	
 message	
 m1	
 to	
 τ2 and	
 τ3	

§  Non-­‐criBcal	
 applicaBon	
 A	
 2:	
 τ4 and	
 τ5	

§  τ4 sends	
 message	
 m2	
 to	
 τ5	

virtual	
 link	

9	

Separa,on	
 at	
 Network-­‐level	

NS1 NS2

dp1	

vl1	

dp2	

l1	

l2	

l3	

l4	

ES1
τ1

ES2
τ4

ES3
τ2 τ5

ES4
τ3 dataflow	

path	

§  Highly	
 criBcal	
 applicaBon	
 A	
 1:	
 τ1, τ2 and	
 τ3	

§  τ1 sends	
 message	
 m1	
 to	
 τ2 and	
 τ3	

§  Non-­‐criBcal	
 applicaBon	
 A	
 2:	
 τ4 and	
 τ5	

§  τ4 sends	
 message	
 m2	
 to	
 τ5	

dataflow	
 link	

10	

TTEthernet	

§ Traffic	
 classes	

§  Time	
 Triggered	
 (TT)	

§  based	
 on	
 staBc	
 schedule	
 tables	

§  Rate	
 Constrained	
 (RC)	

§  determinisBc	
 unsynchronized	
 communicaBon	

§  ARINC	
 664p7	
 traffic	

§  Best	
 Effort	
 (BE)	

§  no	
 Bming	
 guarantees	
 provided	

	

11	

Applica,on	
 Model 	
 	

§ SCS	
 apps	
 transmit	
 TT	
 messages	

§ FPS	
 apps	
 transmit	
 RC	
 messages	

12	

Problem	
 formula,on	
 	

§ Given	

§  A	
 set	
 of	
 applicaBons	

§  The	
 criBcality	
 level	
 (or	
 SIL)	
 of	
 each	
 task	

§  A	
 set	
 of	
 N	
 processing	
 elements	
 (PEs)	
 and	
 topology	
 of	
 the	
 network	

§  The	
 set	
 of	
 TT	
 and	
 RC	
 frames	

§  The	
 set	
 of	
 virtual	
 links	

§  The	
 size	
 of	
 the	
 Major	
 Frame	
 and	
 of	
 the	
 ApplicaBon	
 Cycle	

§ Determine	

§  The	
 mapping	
 of	
 tasks	
 to	
 PEs	

§  The	
 sequence	
 and	
 length	
 of	
 parBBon	
 slices	
 on	
 each	
 processor	

§  The	
 assignment	
 of	
 tasks	
 to	
 parBBons	

§  The	
 schedule	
 for	
 all	
 the	
 tasks	
 and	
 TT	
 frames	
 in	
 the	
 system	

§ Such	
 that	

§  All	
 applicaBons	
 meet	
 their	
 deadline	

§  The	
 response	
 Bmes	
 of	
 the	
 FPS	
 tasks	
 and	
 RC	
 frames	
 is	
 minimized	

13	

Mo,va,onal	
 Example	
 1	

§ Mapping	
 and	
 parBBoning	
 opBmizaBon	

	

14	

Mo,va,onal	
 Example	
 1	

15	

Mo,va,onal	
 Example	
 1	

16	

Mo,va,onal	
 Example	
 2	

ES1

ES2

NS1 ES3

vl3	

vl1	

vl2	

period	
 (us)	
 deadline	
 (us)	
 Ci	
 (us)	
 M

f1	
 ∈	
 FRC 300	
 300	
 75	
 vl1

f2	
 ∈	
 FTT 200	
 200	
 50	
 vl2

f3	
 ∈	
 FTT 300	
 300	
 50	
 vl3

§  	
 OpBmizaBon	
 of	
 TT	
 message	
 schedules	

	

17	

Mo,va,onal	
 Example	
 2	
 	

ES1

ES2

NS1 ES3

vl3	

vl1	

vl2	

period	
 	

(us)	

deadline	

(us)	
 Ci	
 (us)	
 M

f1	
 ∈	
 FRC 300	
 300	
 75	
 vl1

f2	
 ∈	
 FTT 200	
 200	
 50	
 vl2

f3	
 ∈	
 FTT 300	
 300	
 50	
 vl3

§  IniBal	
 TT	
 schedule	

18	

Mo,va,onal	
 Example	
 2	
 	

ES1

ES2

NS1 ES3

vl3	

vl1	

vl2	

period	
 	

(us)	

deadline	

(us)	
 Ci	
 (us)	
 M

f1	
 ∈	
 FRC 300	
 300	
 75	
 vl1

f2	
 ∈	
 FTT 200	
 200	
 50	
 vl2

f3	
 ∈	
 FTT 300	
 300	
 50	
 vl3

§ OpBmized	
 TT	
 schedule	

19	

Op,miza,on	
 Strategy	

§ Tabu	
 Search	
 meta-­‐heurisBc	

§ Task	
 mapping	
 and	
 parBBon	
 slice	
 opBmizaBon	
 (TO)	

§  Considering	
 TT	
 frame	
 schedules	
 fixed	

§ TT	
 frame	
 schedules	
 opBmizaBon	
 (TM)	

§  Considering	
 the	
 task	
 mapping	
 and	
 parBBon	
 slices	
 fixed	

§ Tabu	
 Search	

§ Minimizes	
 the	
 cost	
 funcBon	

§ Explores	
 the	
 soluBon	
 space	
 using	
 design	
 transformaBons	

20	

Op,miza,on	
 Strategy	

§ Degree	
 of	
 schedulability	

§ Captures	
 the	
 difference	
 between	
 the	
 worst-­‐case	
 response	
 Bme	

and	
 the	
 deadline	

§ Cost	
 FuncBon	

the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(⇥) =

⇢
c1 = ⇤Ai⇥� max(0,Ri �Di) i f c1 > 0
c2 = ⇤Ai⇥�(Ri �Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.

21	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

§ ParBBon	
 slice	
 moves	

§  resize	
 parBBon	
 slice	

§ swap	
 two	
 parBBon	
 slices	

§  join	
 two	
 parBBon	
 slices	

§ split	
 parBBon	
 slice	
 into	
 two	

§ Task	
 moves	

§  re-­‐assign	
 task	
 to	
 another	
 parBBon	

22	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

23	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

24	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

25	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

26	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

27	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,on	

§ Task	
 re-­‐assignment	
 move	

§ To	
 another	
 parBBon	
 of	
 the	

same	
 applicaBon	

	
 § To	
 a	
 parBBon	
 of	
 another	

applicaBon	

§ To	
 a	
 newly	
 created	

parBBon	

§ Empty	
 parBBons	
 are	

deleted	

28	

Op,miza,on	
 Strategy:	
 Design	
 Transforma,ons	

§ TT	
 frame	
 moves	

§ advance	
 frame	
 transmission	
 Bme	

§ advance	
 frame	
 predecessors	
 transmission	
 Bme	

§ postpone	
 frame	
 transmission	
 Bme	

§ postpone	
 frame	
 successors	
 transmission	
 Bme	

§ RC	
 frame	
 moves	

§  reserve	
 space	
 for	
 RC	
 frame	

§  resize	
 reserved	
 space	
 for	
 RC	
 frame	

§  remove	
 reserved	
 space	
 for	
 RC	
 frame	

29	

Frame	
 Representa,on	
 for	
 Moves	

ES1

ES2

NS1 NS2

ES3

ES4
vl1	

f1,1	

[ES1,	
 NS1]	
 f1,1	

[NS1,	
 NS2]	

f1,1	

[NS1,	
 NS2]	

f1,1	

[NS1,	
 NS2]	

30	

Design	
 transforma,ons:	
 Postpone	
 move	

31	

Design	
 transforma,ons:	
 Advance	
 move	

32	

Design	
 transforma,ons:	
 Reserve	
 space	
 for	
 RC	

33	

Design	
 transforma,ons:	
 Resize	
 RC	
 reserved	
 space	

34	

RC	
 Frame	
 End-­‐to-­‐End	
 Analysis	

§ On	
 a	
 dataflow	
 link,	
 a	
 RC	
 frame	
 can	
 be	
 delayed	
 by:	

§ scheduled	
 TT	
 frames	

§ queued	
 RC	
 frames	

§  technical	
 latency	

§ policy	
 specific:	

§ Bmely	
 block	
 	
 	

§ pre-­‐empBon	

35	

RC	
 Frame	
 End-­‐to-­‐End	
 Analysis	

ES1

NS2

NS1 ES4

vl3	

vl2	

vl1	

NS3

NS2 → NS1
f3,j

0 100 200 300 400 500 600

f4,1 NS3 → NS1

NS1 → ES4

f2,1 ES1 → NS1
f1,i

f2,1 f4,1 f1,i f3,j

C [NS1, ES4]
f1

QTT

[NS1, ES4] QRC
[NS1, ES4]

QTL
NS1

R f1

vl4	

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M (fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M (fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-

36	

RC	
 Frame	
 End-­‐to-­‐End	
 Analysis	

§ Approaches	
 for	
 analysis	
 of	
 ARINC	
 644p7	
 network	
 traffic:	

§ Network	
 Calculus,	
 (Boyer,	
 2008)	

§ Finite	
 State	
 Machine,	
 (Saha,	
 2007)	

§ Timed	
 Automata,	
 (Adnan,	
 2010)	

§ Trajectory	
 Approach,	
 (Bauer,	
 2009)	

§ We	
 use	
 the	
 method	
 proposed	
 in	
 (Steiner,	
 2011)	

§  it	
 takes	
 into	
 account	
 also	
 the	
 TT	
 traffic	

§  it	
 is	
 pessimisBc:	

§  does	
 not	
 ignore	
 frames	
 that	
 already	
 delayed	
 a	
 RC	
 frame	
 	

	
 on	
 a	
 previous	
 link	

§  assumes	
 	
 uniformly	
 distributed	
 intervals	
 of	
 equal	
 length	
 	

	
 reserved	
 for	
 RC	
 traffic	

37	

Experimental	
 Results:	
 TO	

§ Benchmarks	

§ 5	
 syntheBc	
 	

§ 2	
 real	
 life	
 test	
 cases	
 from	
 E3S	

§ TO	
 compared	
 to:	

§ Straighnorward	
 SoluBon	
 for	
 Tasks	
 (SST)	

§  Simple	
 parBBoning	
 scheme,	
 each	
 applicaBon	
 Ai	
 is	
 allocated	
 a	
 total	
 Bme	

proporBonal	
 to	
 the	
 uBlizaBon	
 of	
 tasks	
 of	
 Ai	
 on	
 the	
 processor	
 they	
 are	

mapped	
 to	

38	

Experimental	
 Results:	
 TO	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

39	

Experimental	
 Results:	
 TO	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

40	

Experimental	
 Results:	
 TM	

§ Benchmarks	

§ 7	
 syntheBc	
 	

§ 1	
 real	
 life	
 test	
 case	
 based	
 on	
 the	
 SAE	
 AutomoBve	
 benchmark	

§ TM	
 compared	
 to:	

§ Straighnorward	
 SoluBon	
 for	
 Messages	
 (SSM)	

§  Builds	
 TT	
 schedules	
 with	
 the	
 goal	
 to	
 opBmize	
 the	
 end-­‐to-­‐end	
 response	

Bme	
 of	
 the	
 TT	
 frames	
 without	
 considering	
 the	
 RC	
 traffic	

41	

Experimental	
 Results:	
 TM	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

42	

Experimental	
 Results:	
 TM	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

43	

Experimental	
 Results:	
 TM	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

44	

Conclusions	

§ ApplicaBons	
 of	
 different	
 criBcality	
 levels	
 can	
 be	
 integrated	
 onto	

the	
 same	
 architecture	
 only	
 if	
 there	
 is	
 enough	
 separaBon:	

§  SeparaBon	
 at	
 PE-­‐level	
 achieved	
 with	
 IMA.	

§  SeparaBon	
 at	
 network-­‐level	
 using	
 TTEthernet.	

§ We	
 proposed	
 a	
 Tabu	
 Search	
 based	
 opBmizaBon	
 of	
 task	
 mapping	

and	
 allocaBon	
 to	
 parBBons,	
 and	
 of	
 Bme	
 parBBons.	

§ Only	
 by	
 opBmizing	
 the	
 implementaBon	
 of	
 the	
 applicaBons,	
 taking	

into	
 account	
 the	
 parBculariBes	
 of	
 IMA	
 and	
 TTEthernet,	
 are	
 we	

able	
 to	
 support	
 the	
 designer	
 in	
 obtaining	
 schedulable	

implementaBons.	
 	

45	

