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Mo,va,on	
  
§ Safety	
  is	
  the	
  property	
  of	
  a	
  system	
  that	
  will	
  not	
  endanger	
  human	
  
life	
  or	
  the	
  environment	
  

§ A	
  safety-­‐related	
  system	
  needs	
  to	
  be	
  cer,fied	
  
	
  
§ A	
  Safety	
  Integrity	
  Level	
  (SIL)	
  is	
  assigned	
  to	
  each	
  safety	
  related	
  
funcBon,	
  depending	
  on	
  the	
  required	
  level	
  of	
  risk	
  reducBon	
  

§ There	
  are	
  4	
  SILs:	
  
§ SIL4	
  (most	
  criBcal)	
  	
  
§ SIL1	
  (least	
  criBcal)	
  
§ SIL0	
  (non-­‐criBcal)	
  –	
  not	
  covered	
  by	
  standards	
  

§ SILs	
  dictate	
  the	
  development	
  process	
  and	
  cerBficaBon	
  procedures	
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Federated	
  Architecture	
  

Mo,va,on	
  
§  Real	
  Bme	
  applicaBons	
  implemented	
  
using	
  distributed	
  systems	
  

PE	
  
ApplicaBon	
  A	
  1	
  

ApplicaBon	
  A	
  2	
  

ApplicaBon	
  A	
  3	
  

§ Mixed-­‐criBcality	
  applicaBons	
  share	
  the	
  
same	
  architecture	
  

SIL3 

SIL3 

SIL4 

SIL4 

SIL4 SIL1 

SIL2 

SIL1 

SoluBon:	
  parBBoned	
  architecture	
  

Integrated	
  Architecture	
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Separa,on	
  at	
  PE-­‐level	
  

§ ParBBon	
  =	
  virtual	
  dedicated	
  machine	
  
	
  
§ ParBBoned	
  architecture	
  

§ SpaBal	
  parBBoning	
  
§  protects	
  one	
  applicaBon’s	
  memory	
  
and	
  access	
  to	
  resources	
  from	
  another	
  
applicaBon	
  

§ Temporal	
  parBBoning	
  
§  parBBons	
  the	
  CPU	
  Bme	
  among	
  
applicaBons	
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Separa,on	
  at	
  PE-­‐level	
  

§ Temporal	
  parBBoning	
  
§ StaBc	
  parBBon	
  table	
  

§  Repeated	
  with	
  a	
  period	
  MF	
  
§  ParBBon	
  switch	
  overhead	
  
§  Each	
  parBBon	
  can	
  have	
  its	
  own	
  
scheduling	
  policy	
  

§  A	
  parBBon	
  has	
  a	
  certain	
  SIL	
  

ParBBon	
   ParBBon	
  	
  
slice	
  

Major	
  Frame	
  

PE	
  1	
   PE	
  2	
  

PE	
  3	
  

PE	
  1	
  

PE	
  2	
  

PE	
  3	
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Separa,on	
  at	
  Network-­‐level	
  

ES1 

ES2 

NS1 NS2 

ES3 

ES4 

§  Full-­‐Duplex	
  Ethernet-­‐based	
  data	
  network	
  for	
  safety-­‐criBcal	
  applicaBons	
  
§  Compliant	
  with	
  ARINC	
  664p7	
  “Aircraa	
  Data	
  Network”	
  

End	
  System	
  

Network	
  Switch	
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Separa,on	
  at	
  Network-­‐level	
  	
  

NS1 NS2 

vl2	
  

vl1	
  

ES1 
τ1 

ES2 
τ4 

ES3 
τ2 τ5 

ES4 
τ3 

§  Highly	
  criBcal	
  applicaBon	
  A	
  1:	
  τ1, τ2 and	
  τ3	


§  τ1 sends	
  message	
  m1	
  to	
  τ2 and	
  τ3	
  

§  Non-­‐criBcal	
  applicaBon	
  A	
  2:	
  τ4 and	
  τ5	


§  τ4 sends	
  message	
  m2	
  to	
  τ5	
  

virtual	
  link	
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Separa,on	
  at	
  Network-­‐level	
  

NS1 NS2 

dp1	
  

vl1	
  
dp2	
  

l1	
  
l2	
  

l3	
  

l4	
  

ES1 
τ1 

ES2 
τ4 

ES3 
τ2 τ5 

ES4 
τ3 dataflow	
  

path	
  

§  Highly	
  criBcal	
  applicaBon	
  A	
  1:	
  τ1, τ2 and	
  τ3	


§  τ1 sends	
  message	
  m1	
  to	
  τ2 and	
  τ3	
  

§  Non-­‐criBcal	
  applicaBon	
  A	
  2:	
  τ4 and	
  τ5	


§  τ4 sends	
  message	
  m2	
  to	
  τ5	
  

dataflow	
  link	
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TTEthernet	
  

§ Traffic	
  classes	
  
§  Time	
  Triggered	
  (TT)	
  

§  based	
  on	
  staBc	
  schedule	
  tables	
  
§  Rate	
  Constrained	
  (RC)	
  

§  determinisBc	
  unsynchronized	
  communicaBon	
  
§  ARINC	
  664p7	
  traffic	
  

§  Best	
  Effort	
  (BE)	
  
§  no	
  Bming	
  guarantees	
  provided	
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Applica,on	
  Model 	
  	
  

§ SCS	
  apps	
  transmit	
  TT	
  messages	
  
§ FPS	
  apps	
  transmit	
  RC	
  messages	
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Problem	
  formula,on	
  	
  
§ Given	
  

§  A	
  set	
  of	
  applicaBons	
  
§  The	
  criBcality	
  level	
  (or	
  SIL)	
  of	
  each	
  task	
  
§  A	
  set	
  of	
  N	
  processing	
  elements	
  (PEs)	
  and	
  topology	
  of	
  the	
  network	
  
§  The	
  set	
  of	
  TT	
  and	
  RC	
  frames	
  
§  The	
  set	
  of	
  virtual	
  links	
  
§  The	
  size	
  of	
  the	
  Major	
  Frame	
  and	
  of	
  the	
  ApplicaBon	
  Cycle	
  

§ Determine	
  
§  The	
  mapping	
  of	
  tasks	
  to	
  PEs	
  
§  The	
  sequence	
  and	
  length	
  of	
  parBBon	
  slices	
  on	
  each	
  processor	
  
§  The	
  assignment	
  of	
  tasks	
  to	
  parBBons	
  
§  The	
  schedule	
  for	
  all	
  the	
  tasks	
  and	
  TT	
  frames	
  in	
  the	
  system	
  

§ Such	
  that	
  
§  All	
  applicaBons	
  meet	
  their	
  deadline	
  
§  The	
  response	
  Bmes	
  of	
  the	
  FPS	
  tasks	
  and	
  RC	
  frames	
  is	
  minimized	
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Mo,va,onal	
  Example	
  1	
  
§ Mapping	
  and	
  parBBoning	
  opBmizaBon	
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Mo,va,onal	
  Example	
  1	
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Mo,va,onal	
  Example	
  1	
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Mo,va,onal	
  Example	
  2	
  

ES1 

ES2 

NS1 ES3 

vl3	
  

vl1	
  

vl2	
  

period	
  (us)	
   deadline	
  (us)	
   Ci	
  (us)	
   M 

f1	
  ∈	
  FRC 300	
   300	
   75	
   vl1 

f2	
  ∈	
  FTT 200	
   200	
   50	
   vl2 

f3	
  ∈	
  FTT 300	
   300	
   50	
   vl3 

§  	
  OpBmizaBon	
  of	
  TT	
  message	
  schedules	
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Mo,va,onal	
  Example	
  2	
  	
  

ES1 

ES2 

NS1 ES3 

vl3	
  

vl1	
  

vl2	
  

period	
  	
  
(us)	
  

deadline	
  
(us)	
   Ci	
  (us)	
   M 

f1	
  ∈	
  FRC 300	
   300	
   75	
   vl1 

f2	
  ∈	
  FTT 200	
   200	
   50	
   vl2 

f3	
  ∈	
  FTT 300	
   300	
   50	
   vl3 

§  IniBal	
  TT	
  schedule	
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Mo,va,onal	
  Example	
  2	
  	
  

ES1 

ES2 

NS1 ES3 

vl3	
  

vl1	
  

vl2	
  

period	
  	
  
(us)	
  

deadline	
  
(us)	
   Ci	
  (us)	
   M 

f1	
  ∈	
  FRC 300	
   300	
   75	
   vl1 

f2	
  ∈	
  FTT 200	
   200	
   50	
   vl2 

f3	
  ∈	
  FTT 300	
   300	
   50	
   vl3 

§ OpBmized	
  TT	
  schedule	
  



19	
  

Op,miza,on	
  Strategy	
  

§ Tabu	
  Search	
  meta-­‐heurisBc	
  
§ Task	
  mapping	
  and	
  parBBon	
  slice	
  opBmizaBon	
  (TO)	
  

§  Considering	
  TT	
  frame	
  schedules	
  fixed	
  

§ TT	
  frame	
  schedules	
  opBmizaBon	
  (TM)	
  
§  Considering	
  the	
  task	
  mapping	
  and	
  parBBon	
  slices	
  fixed	
  

§ Tabu	
  Search	
  
§ Minimizes	
  the	
  cost	
  funcBon	
  
§ Explores	
  the	
  soluBon	
  space	
  using	
  design	
  transformaBons	
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Op,miza,on	
  Strategy	
  

§ Degree	
  of	
  schedulability	
  
§ Captures	
  the	
  difference	
  between	
  the	
  worst-­‐case	
  response	
  Bme	
  
and	
  the	
  deadline	
  

§ Cost	
  FuncBon	
  

the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(⇥) =

⇢
c1 = ⇤Ai⇥� max(0,Ri �Di) i f c1 > 0
c2 = ⇤Ai⇥�(Ri �Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.
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§ ParBBon	
  slice	
  moves	
  
§  resize	
  parBBon	
  slice	
  
§ swap	
  two	
  parBBon	
  slices	
  
§  join	
  two	
  parBBon	
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§ split	
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  into	
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§ Task	
  moves	
  
§  re-­‐assign	
  task	
  to	
  another	
  parBBon	
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Op,miza,on	
  Strategy:	
  Design	
  Transforma,ons	
  



26	
  

Op,miza,on	
  Strategy:	
  Design	
  Transforma,ons	
  



27	
  

Op,miza,on	
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  Design	
  Transforma,on	
  

§ Task	
  re-­‐assignment	
  move	
  
§ To	
  another	
  parBBon	
  of	
  the	
  
same	
  applicaBon	
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  another	
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§ Empty	
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deleted	
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  Transforma,ons	
  

§ TT	
  frame	
  moves	
  
§ advance	
  frame	
  transmission	
  Bme	
  
§ advance	
  frame	
  predecessors	
  transmission	
  Bme	
  
§ postpone	
  frame	
  transmission	
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§ postpone	
  frame	
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  transmission	
  Bme	
  

§ RC	
  frame	
  moves	
  
§  reserve	
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  for	
  RC	
  frame	
  
§  resize	
  reserved	
  space	
  for	
  RC	
  frame	
  
§  remove	
  reserved	
  space	
  for	
  RC	
  frame	
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  Moves	
  

ES1 

ES2 

NS1 NS2 

ES3 

ES4 
vl1	
  

f1,1	
  
[ES1,	
  NS1]	
   f1,1	
  

[NS1,	
  NS2]	
  

f1,1	
  
[NS1,	
  NS2]	
  

f1,1	
  
[NS1,	
  NS2]	
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§ On	
  a	
  dataflow	
  link,	
  a	
  RC	
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§ scheduled	
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  frames	
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  frames	
  
§  technical	
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§ policy	
  specific:	
  

§ Bmely	
  block	
  	
  	
  
§ pre-­‐empBon	
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RC	
  Frame	
  End-­‐to-­‐End	
  Analysis	
  

ES1 

NS2 

NS1 ES4 

vl3	
  

vl2	
  
vl1	
  

NS3 

NS2 →  NS1 
f3,j 

0 100 200 300 400 500 600 

f4,1 NS3 →  NS1 

NS1 →  ES4 

f2,1 ES1 →  NS1 
f1,i 

f2,1 f4,1 f1,i f3,j 

C [NS1, ES4] 
f1 

QTT 

[NS1, ES4] QRC 
[NS1, ES4] 

QTL 
NS1 

R f1 

vl4	
  

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M ( fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic
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consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
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+
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= 265+ 80 = 345 (µs). Thus, we can compute the
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= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-
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Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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to signigicantly improve the cost function over SSM, even as
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NSes), and 83 frames (with the parameters) generated based
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The results obtained for the real-life benchmark confirms the
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TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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  Results:	
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Tasks

TO Sched.
Tasks

avg. %
increase in d

1
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26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks
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Conclusions	
  

§ ApplicaBons	
  of	
  different	
  criBcality	
  levels	
  can	
  be	
  integrated	
  onto	
  
the	
  same	
  architecture	
  only	
  if	
  there	
  is	
  enough	
  separaBon:	
  
§  SeparaBon	
  at	
  PE-­‐level	
  achieved	
  with	
  IMA.	
  
§  SeparaBon	
  at	
  network-­‐level	
  using	
  TTEthernet.	
  

§ We	
  proposed	
  a	
  Tabu	
  Search	
  based	
  opBmizaBon	
  of	
  task	
  mapping	
  
and	
  allocaBon	
  to	
  parBBons,	
  and	
  of	
  Bme	
  parBBons.	
  

§ Only	
  by	
  opBmizing	
  the	
  implementaBon	
  of	
  the	
  applicaBons,	
  taking	
  
into	
  account	
  the	
  parBculariBes	
  of	
  IMA	
  and	
  TTEthernet,	
  are	
  we	
  
able	
  to	
  support	
  the	
  designer	
  in	
  obtaining	
  schedulable	
  
implementaBons.	
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