

#### Analysis and Optimization of Mixed-Criticality Applications on Partitioned Distributed Architectures

#### Domițian Tămaș-Selicean, Sorin Ovidiu Marinescu and Paul Pop Technical University of Denmark



Reduced Certification Costs for trusted Multi-core Platforms



#### **DTU Informatics** Department of Informatics and Mathematical Modeling

### Outline

#### Motivation

- Separation of mixed-criticality applications
  - At processing element level
  - At communication level
- Problem formulation and example
- Optimization strategy
- Experimental results
- Conclusions

### **Motivation**

- Safety is the property of a system that will not endanger human life or the environment
- A safety-related system needs to be certified
- A Safety Integrity Level (SIL) is assigned to each safety related function, depending on the required level of risk reduction
- There are 4 SILs:
  - SIL4 (most critical)
  - SIL1 (least critical)
  - SILO (non-critical) not covered by standards
- SILs dictate the development process and certification procedures

# **Motivation**

 Real time applications implemented using distributed systems

- **Federated Architecture** SIL4 SIL1 SIL3 SIL3 SIL2 SIL4 SIL4 SIL1 PF Application  $\mathcal{A}_1$ Application  $\mathcal{A}_2$ Application  $\mathcal{A}_3$
- Mixed-criticality applications share the same architecture

#### Integrated Architecture



Solution: partitioned architecture

# **Separation at PE-level**



- Partition = virtual dedicated machine
- Partitioned architecture
  - Spatial partitioning
    - protects one application's memory and access to resources from another application
  - Temporal partitioning
    - partitions the CPU time among applications

### **Separation at PE-level**



## **Separation at Network-level**



- Full-Duplex Ethernet-based data network for safety-critical applications
- Compliant with ARINC 664p7 "Aircraft Data Network"

## **Separation at Network-level**



- Highly critical application  $\mathcal{A}_1$ :  $\tau_1$ ,  $\tau_2$  and  $\tau_3$ 
  - $\tau_1$  sends message  $m_1$  to  $\tau_2$  and  $\tau_3$
- Non-critical application  $\mathcal{A}_2$ :  $\tau_4$  and  $\tau_5$ 
  - $\tau_4$  sends message  $m_2$  to  $\tau_5$

## **Separation at Network-level**



- Highly critical application  $\mathcal{A}_1$ :  $\tau_1$ ,  $\tau_2$  and  $\tau_3$ 
  - $\tau_1$  sends message  $m_1$  to  $\tau_2$  and  $\tau_3$
- Non-critical application  $\mathcal{A}_2$ :  $\tau_4$  and  $\tau_5$ 
  - $\tau_4$  sends message  $m_2$  to  $\tau_5$

### **TTEthernet**

#### Traffic classes

- Time Triggered (TT)
  - based on static schedule tables
- Rate Constrained (RC)
  - deterministic unsynchronized communication
  - ARINC 664p7 traffic
- Best Effort (BE)
  - no timing guarantees provided

# **Application Model**



|                | $\begin{array}{c c} \mathcal{A}_1 \\ \tau_1 & \tau_2 \end{array}$ |   |             | Я <sub>2</sub> |             |             |  |
|----------------|-------------------------------------------------------------------|---|-------------|----------------|-------------|-------------|--|
|                |                                                                   |   | $\tau_{11}$ | $ \tau_{12} $  | $\tau_{13}$ | $\tau_{21}$ |  |
| N <sub>1</sub> | 2                                                                 | x | 2           | 3              | 3           | 1           |  |
| N <sub>2</sub> |                                                                   |   | 3 5 4       |                | 4           | 2           |  |

WCET and mapping restrictions

- SCS apps transmit TT messages
- FPS apps transmit RC messages

# **Problem formulation**

#### Given

- A set of applications
- The criticality level (or SIL) of each task
- A set of N processing elements (PEs) and topology of the network
- The set of TT and RC frames
- The set of virtual links
- The size of the Major Frame and of the Application Cycle

#### Determine

- The mapping of tasks to PEs
- The sequence and length of partition slices on each processor
- The assignment of tasks to partitions
- The schedule for all the tasks and TT frames in the system
- Such that
  - All applications meet their deadline
  - The response times of the FPS tasks and RC frames is minimized

#### Mapping and partitioning optimization



Mixed-criticality applications

WCET and mapping restrictions



Optimal mapping, without considering partitions.





Partitioning, using the previously obtained mapping.  $\tau_3$  and  $\tau_{14}$  miss their deadline.



#### Optimization of TT message schedules



|                                     | period (us) | deadline (us) | C <sub>i</sub> (us) | ${\mathcal M}$  |
|-------------------------------------|-------------|---------------|---------------------|-----------------|
| $f1 \in \mathcal{F}^{\mathcal{RC}}$ | 300         | 300           | 75                  | $vl_1$          |
| f2 $\in \mathcal{F}^{TT}$           | 200         | 200           | 50                  | $vl_2$          |
| f3 $\in \mathcal{F}^{TT}$           | 300         | 300           | 50                  | vl <sub>3</sub> |

#### Initial TT schedule





|                                     | period<br>(us) | deadline<br>(us) | C <sub>i</sub> (us) | ${\mathcal M}$ |
|-------------------------------------|----------------|------------------|---------------------|----------------|
| $f1 \in \mathcal{F}^{\mathcal{RC}}$ | 300            | 300              | 75                  | $vl_1$         |
| f2 $\in \mathcal{F}^{TT}$           | 200            | 200              | 50                  | $vl_2$         |
| $f3 \in \mathcal{F}^{TT}$           | 300            | 300              | 50                  | vl3            |

#### Optimized TT schedule





|                                     | period<br>(us) | deadline<br>(us) | C <sub>i</sub> (us) | ${\mathcal M}$ |
|-------------------------------------|----------------|------------------|---------------------|----------------|
| $f1 \in \mathcal{F}^{\mathcal{RC}}$ | 300            | 300              | 75                  | $vl_1$         |
| $f2 \in \mathcal{F}^{TT}$           | 200            | 200              | 50                  | $vl_2$         |
| $f3 \in \mathcal{F}^{TT}$           | 300            | 300              | 50                  | $vl_3$         |

# **Optimization Strategy**

- Tabu Search meta-heuristic
  - Task mapping and partition slice optimization (TO)
    - Considering TT frame schedules fixed
  - TT frame schedules optimization (TM)
    - Considering the task mapping and partition slices fixed
- Tabu Search
  - Minimizes the cost function
  - Explores the solution space using design transformations

## **Optimization Strategy**

#### Degree of schedulability

 Captures the difference between the worst-case response time and the deadline

Cost Function

$$Cost(\Psi) = \begin{cases} c_1 = \sum_{\mathcal{A}_i \in \Gamma} \max(0, R_i - D_i) & ifc_1 > 0\\ c_2 = \sum_{\mathcal{A}_i \in \Gamma} (R_i - D_i) & ifc_1 = 0 \end{cases}$$

- Partition slice moves
  - resize partition slice
  - swap two partition slices
  - join two partition slices
  - split partition slice into two
- Task moves
  - re-assign task to another partition













#### Task re-assignment move

- To another partition of the same application
- To a partition of another application
- To a newly created partition
- Empty partitions are deleted

#### TT frame moves

- advance frame transmission time
- advance frame predecessors transmission time
- postpone frame transmission time
- postpone frame successors transmission time

#### RC frame moves

- reserve space for RC frame
- resize reserved space for RC frame
- remove reserved space for RC frame

#### **Frame Representation for Moves**





#### **Design transformations: Postpone move**



#### **Design transformations: Advance move**



### **Design transformations: Reserve space for RC**



### **Design transformations: Resize RC reserved space**



## **RC Frame End-to-End Analysis**

- On a dataflow link, a RC frame can be delayed by:
  - scheduled TT frames
  - queued RC frames
  - technical latency
  - policy specific:
    - timely block
    - pre-emption

### **RC Frame End-to-End Analysis**



ES<sub>1</sub>

 $NS_2$ 

## **RC Frame End-to-End Analysis**

- Approaches for analysis of ARINC 644p7 network traffic:
  - Network Calculus, (Boyer, 2008)
  - Finite State Machine, (Saha, 2007)
  - Timed Automata, (Adnan, 2010)
  - Trajectory Approach, (Bauer, 2009)
- We use the method proposed in (Steiner, 2011)
  - it takes into account also the TT traffic
  - it is pessimistic:
    - does not ignore frames that already delayed a RC frame on a previous link
    - assumes uniformly distributed intervals of equal length reserved for RC traffic

#### Benchmarks

- 5 synthetic
- 2 real life test cases from E3S

#### TO compared to:

- Straightforward Solution for Tasks (SST)
  - Simple partitioning scheme, each application A<sub>i</sub> is allocated a total time proportional to the utilization of tasks of A<sub>i</sub> on the processor they are mapped to

| Set | Tasks | PEs | SST Sched. | TO Sched. | avg. %               |
|-----|-------|-----|------------|-----------|----------------------|
|     |       |     | Tasks      | Tasks     | increase in $\delta$ |
|     | 20    | 2   | 10         | All       | 832.88               |
|     | 26    | 3   | 13         | All       | 27.36                |
| 1   | 40    | 4   | 6          | All       | 88.41                |
|     | 50    | 5   | 10         | All       | 73.57                |
|     | 62    | 6   | 26         | All       | 278.72               |

| Set            | Tasks | PEs | SST Sched. | TO Sched. | avg. %               |
|----------------|-------|-----|------------|-----------|----------------------|
|                |       |     | Tasks      | Tasks     | increase in $\delta$ |
|                | 20    | 2   | 10         | All       | 832.88               |
|                | 26    | 3   | 13         | All       | 27.36                |
| 1              | 40    | 4   | 6          | All       | 88.41                |
|                | 50    | 5   | 10         | All       | 73.57                |
|                | 62    | 6   | 26         | All       | 278.72               |
| $\overline{)}$ | 24    | 3   | 5          | All       | 113.95               |
|                | 25    | 3   | All        | All       | 61.87                |

#### Benchmarks

- 7 synthetic
- I real life test case based on the SAE Automotive benchmark

#### TM compared to:

- Straightforward Solution for Messages (SSM)
  - Builds TT schedules with the goal to optimize the end-to-end response time of the TT frames without considering the RC traffic

| Set | Test case | ES | NS | Messages | Frame instances | $\Delta_{cost}$ [%] |
|-----|-----------|----|----|----------|-----------------|---------------------|
|     | 11        | 13 | 4  | 80       | 12593           | 2.58                |
| 1   | 12        | 25 | 6  | 88       | 1787            | 24.44               |
|     | 13        | 35 | 8  | 103      | 2285            | 20.06               |
|     | 14        | 45 | 10 | 165      | 3299            | 11.90               |

| Set | Test case | ES | NS | Messages | Frame instances | $\Delta_{cost}$ [%] |
|-----|-----------|----|----|----------|-----------------|---------------------|
|     | 11        | 13 | 4  | 80       | 12593           | 2.58                |
| 1   | 12        | 25 | 6  | 88       | 1787            | 24.44               |
|     | 13        | 35 | 8  | 103      | 2285            | 20.06               |
|     | 14        | 45 | 10 | 165      | 3299            | 11.90               |
|     | 21        | 11 | 4  | 115      | 16904           | 9.17                |
| 2   | 22        | 25 | 6  | 179      | 2523            | 20.61               |
|     | 23        | 35 | 8  | 154      | 3698            | 39.34               |

| Set | Test case  | ES | NS | Messages | Frame instances | $egin{array}{c} \Delta_{cost} \ [\%] \end{array}$ |
|-----|------------|----|----|----------|-----------------|---------------------------------------------------|
|     | 11         | 13 | 4  | 80       | 12593           | 2.58                                              |
| 1   | 12         | 25 | 6  | 88       | 1787            | 24.44                                             |
|     | 13         | 35 | 8  | 103      | 2285            | 20.06                                             |
|     | 14         | 45 | 10 | 165      | 3299            | 11.90                                             |
|     | 21         | 11 | 4  | 115      | 16904           | 9.17                                              |
| 2   | 22         | 25 | 6  | 179      | 2523            | 20.61                                             |
|     | 23         | 35 | 8  | 154      | 3698            | 39.34                                             |
| 3   | automotive | 15 | 3  | 170      | 38305           | 50.88                                             |

### **Conclusions**

- Applications of different criticality levels can be integrated onto the same architecture only if there is enough separation:
  - Separation at PE-level achieved with IMA.
  - Separation at network-level using TTEthernet.
- We proposed a Tabu Search based optimization of task mapping and allocation to partitions, and of time partitions.
- Only by optimizing the implementation of the applications, taking into account the particularities of IMA and TTEthernet, are we able to support the designer in obtaining schedulable implementations.