
Optimization of Time-Partitions for Mixed-Criticality
Real-Time Distributed Embedded Systems

Domiţian Tămaş–Selicean and Paul Pop
DTU Informatics

Technical University of Denmark
Kongens Lyngby, Denmark

Email: dota@imm.dtu.dk and paul.pop@imm.dtu.dk

Abstract—In this paper we are interested in mixed-criticality
embedded real-time applications mapped on distributed hetero-
geneous architectures. The architecture provides both spatial
and temporal partitioning, thus enforcing enough separation
for the critical applications. With temporal partitioning, each
application is allowed to run only within predefined time
slots, allocated on each processor. The sequence of time slots
for all the applications on a processor are grouped within
a Major Frame, which is repeated periodically. We assume
that the safety-critical applications (on all criticality levels)
are scheduled using static-cyclic scheduling and the non-
critical applications are scheduled using fixed-priority preemp-
tive scheduling. We consider that each application runs in a
separate partition, and each partition is allocated several time
slots on the processors where the application is mapped. We are
interested to determine the sequence and size of the time slots
within the Major Frame on each processor such that both the
safety-critical and non-critical applications are schedulable. We
have proposed a Simulated Annealing-based approach to solve
this optimization problem. The proposed algorithm has been
evaluated using several synthetic and real-life benchmarks.

Keywords-mixed-criticality; real-time systems; temporal-
partitioning

I. INTRODUCTION

Depending on the particular application, an embedded
system has certain requirements on performance, cost, de-
pendability, size etc. In a hard real-time embedded system
the “correctness of the system behavior depends not only
on the logical results of the computations, but also on the
physical instant at which these results are produced” [1].
Safety is a property of a system that will not endanger
human life or the environment. Safety-Integrity Levels (SILs)
capture the required protection against failure when building
a safety-critical embedded system, and will dictate the
development processes and certification procedures that have
to be followed. There are four SIL levels, ranging from 4
(most critical) to 1 (least critical).

Many such applications, following physical, modularity
or safety constraints, are implemented using distributed
architectures, composed of several different types of hard-
ware components (called nodes), interconnected in a net-
work. The application software running on such distributed
architectures is composed of several functions. The way

the functions have been distributed on the architecture has
evolved over time. Initially, in automotive and aerospace
applications, for example, each function was running on a
dedicated hardware node, allowing the system integrators to
purchase nodes implementing required functions from differ-
ent vendors, and to integrate them together into their system
(this approach is also called a “federated architecture”).
However, the number of such nodes in the architecture has
exploded, reaching over one hundred in an airplane or a
high-end car, leading to increased wiring, increased costs,
size, weight and power consumption.

These trends have created a huge pressure to reduce
the number of nodes, use the resources available more
efficiently, and thus reduce costs. This is achieved through
the integration of several functions in one node (also called
an “integrated architecture”). The same trends are driving
the integration of several levels of safety-criticality onto
the same node, together with non safety-critical functions.
The “Research Agenda for Mixed-Criticality Systems” [2]
defines a mixed-criticality system as “an integrated suite of
hardware, operating system and middleware services and
application software that supports the execution of safety-
critical, mission-critical, and non-critical software within a
single, secure computing platform”. The current practice to
mixed-criticality systems is to physically separate the differ-
ent criticality functions in different hardware components, so
they cannot influence each other.

In avionics, the proposed integration solution is based on
“Integrated Modular Avionics” (IMA) [3], which allows the
integration of mixed-criticality functions onto the same node
as long as there is enough spatial and temporal partition-
ing [3]. A similar problem is faced in many other industries.
This is coupled with the trend towards using multi-core
systems, where several processors can be integrated onto a
single chip, decreasing the costs, power consumption, size,
and increasing the performance through parallelization [4].
In Europe, multi-cores are addressed through EU projects
such as RECOMP (“Reduced certification cost for trusted
multi-core platforms” [4]), which has the goal to “define a
European standard reference technology for mixed-criticality
multi-core systems supported by the European tool vendors”.

2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops

978-0-7695-4377-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISORCW.2011.11

1

In this paper we consider heterogeneous distributed em-
bedded systems that have to implement hard real-time
applications with different Safety-Integrity Levels (SILs),
including non-critical functions. We assume that the hard-
ware and software architecture provides both spatial and
temporal partitioning, thus enforcing enough separation for
the mixed-criticality applications. The system architecture
is presented in Section III, which includes a discussion on
partitioning. Such partitioned architectures are available not
only in avionics (where IMA is used), but will also be
available in other application areas [4]. We consider that
the mapping of tasks to the processors is given.

There are two basic approaches for handling tasks in real-
time applications [1]. In the event-triggered approach (ET),
activities are initiated whenever a particular event is noted.
In the time-triggered (TT) approach, activities are initiated
at predetermined points in time. There has been a long
debate in the real-time and embedded systems communities
concerning the advantages of TT and ET approaches [5],
[1]. Safety-critical applications are typically designed using
a TT approach to ensure both the predictability of worst-case
behavior, and high resource utilization [1]. One disadvantage
of the TT approaches is their lack of flexibility, which is an
important aspect in non-critical systems.

Therefore, in this paper, we assume that the safety-
critical (SC) applications are scheduled using static-cyclic
scheduling (SCS) and the non-critical (NC) applications
are scheduled using a fixed-priority preemptive scheduling
(FPS) policy. For the bus we use the Universal Commu-
nication Model [6], which can model both TT and ET
traffic. Section II presents the application model. Note that
our model, based on [7], is more general and allows any
assignment of scheduling policies to applications (i.e., FPS
for SC applications), including a combination of TT and ET
tasks within the same application. Moreover, although we
assume that NC applications are hard real-time, soft real-
time functions can also be integrated with fixed-priority pre-
emptive scheduling using a technique such as the Constant
Bandwidth Server (CBS) [8], where the server is seen as a
hard task providing a desired level of service to soft tasks,
issue discussed by us in [9].

Safety-critical real-time applications have to function cor-
rectly and meet their timing constraints even in the presence
of faults. Fault tolerance can be addressed with hardware
architecture solutions, such as TTA [1], or software-based
solutions such as re-execution, replication and checkpoint-
ing. In [10] we have shown how checkpointing and active
replication can be combined in an optimized implementation
that leads to a schedulable fault-tolerant application without
increasing the amount of employed resources. Hence, in this
paper we do not address the issue of fault-tolerance (which is
orthogonal to our problem), and we assume that the designer
has developed the SC applications such that they provide the
required level of fault-tolerance.

A. Contribution

In this paper we consider that each application runs in
a separate partition, and we are interested to determine the
sequence and length of the time partitions on each processor
such that both the SC and NC applications are schedulable.
The exact problem formulation is presented in Section IV
and illustrated in Fig. 1. This is the first time, to our
knowledge, that such a problem has been addressed.

We have proposed a Simulated Annealing-based approach
(SA) to solve this optimization problem, which is presented
in Section V, and evaluated using several benchmarks in
Section VI. SA decides the sequence (order) of partitions
and their length, for each processor.

For each tentative solution produced by SA (consisting of
the sequence and length of partition slices) we determine, as
follows, if the deadlines are satisfied and how much slack is
available (for future upgrades, for example). We first run a
List Scheduling-based algorithm (Section V-B) for the SCS
applications, to obtain the schedule tables within the defined
partitions, and then a Response-Time Analysis (Section V-C)
for the FPS applications, which we have extended to obtain
the worst-case response times considering the interruption
from other time-partitions.

This our is first attempt to solve the problem of opti-
mizing the time-partitions, hence we have decided to use
SA because of its simplicity, although, in our experience,
a Tabu Search meta-heuristic may produce better results.
The right choice of optimization approach depends on the
particular problem, and we plan to investigate which is the
best approach in our future work. Note that an approach
based on Integer Linear Programming can also be used to
determine the partitions, but it may be difficult to integrate
with the schedulability analysis.

B. Related Work

Lee et al. [11] consider an IMA-based system where all
tasks are scheduled using FPS. The time-partition optimiza-
tion problem is formulated as a static cyclic scheduling
problem, where the partitions are statically scheduled such
that the FPS tasks are schedulable. A similar approach to
IMA is used in the DEOS operating system [12], with the
difference that FPS is used for scheduling both the partitions
(which are normally scheduled using SCS) and the tasks.
Binns [12] has proposed several slack-stealing approaches,
where the unused time in one partition is given to the other
partitions, thus the partitions are implicitly adjusted online.

The problem of the optimization of time-partitions has
been addressed at the bus level, but without considering par-
titions at the processor level, mixed-criticality applications
and different scheduling policies. Researchers have shown
how a Time-Division Multiple Access bus such as the TTP
[13] and a mixed TT/ET bus such as FlexRay [14] can be
optimized to decrease the end-to-end delays.

2

In the context of mixed TT/ET non-critical systems, Pop
et al. [7] have shown how the static schedules can be
optimized such that both the TT applications (scheduled
using SCS) and the ET applications (scheduled using FPS)
are schedulable.

There are several works where mixed-criticality tasks
are addressed, but researchers assume that tasks of dif-
ferent criticality share the same processor with little or
no separation (i.e., there is no spatial-partitioning). Baruah
et al. [15] propose a task model that can capture mixed-
criticality functions, together with an associated schedula-
bility analysis. Niz et al. [16] discuss the issue of “criticality
inversion”, similar to the classical priority inversion problem,
and propose a “zero-slack scheduling” scheme for such a
context.

We have addressed the optimization of CBS-server capac-
ity in the context of mixed hard and soft real-time tasks [9],
such that the hard tasks are schedulable and the quality of
service for the soft tasks is maximized. CBS-servers provide
a time-partitioning between hard and soft tasks.

II. APPLICATION MODEL

The set of all applications in the system is denoted with
G. A function F : G ! {SC,NC} captures if an application
Ai 2 G is safety-critical (SC) or non-critical (NC). We do not
distinguish among different criticality levels for the safety-
critical applications. We assume that each SC application has
been developed according to the certification requirements
for the particular SIL. We model an application as a directed,
acyclic graph G(V ,E). The graph is polar, which means
that there is a source node, which is a node that has no
predecessors and a sink node that has no successors. Each
node ti 2 V represents one task.

The tasks are mapped on a distributed heterogeneous
architecture, described in the next section. The mapping of
each task ti is denoted by the function M : A ! N , where
N is the set of processing elements (PEs) in the architecture.
Each task ti is characterized by a worst-case execution time
Ci (on the PE that is assigned to for execution).

Communication between tasks mapped to different PEs
is performed by message passing over the bus. We assume
that the message sizes smi of each message mi are known.
An edge ei j 2 E from ti to t j indicates a synchronous
communication: t j waits for the output of ti. Tasks can
also communicate asynchronously through buffers, i.e., a
reader task will block if the buffer is empty and a writer
task will block if the buffer is full. In this case, we assume
that the buffer sizes have been determined such that there
is no overflow or underflow. Such a communication is not
captured explicitly in our model.

For SCS applications, a deadline DGi  TGi , where TGi
is the period of Gi, is imposed on each task graph Gi. If
dependent tasks are of different periods, they are combined

into a merged graph capturing all activations for the hyper-
period (LCM of all periods). Release times of some tasks as
well as multiple deadlines can be easily modeled by inserting
dummy nodes between certain tasks and the source or the
sink node respectively. These dummy nodes represent tasks
with a certain execution time but which are not allocated to
any PE. Thus, by meeting the global deadline, all the local
deadlines and release times are guaranteed [17].

Regarding FPS tasks, we use the model from [7], which
considers arbitrary deadlines and release times, and also
takes into account dependencies. The tasks’ priorities are
specified by the designer. Thus, for each task ti we assume
that we know its period Ti and deadline Di.

III. SYSTEM MODEL

We consider architectures composed of a set N of PEs
which share a broadcast communication channel. Every
PE Ni 2 N consists, among others, of a communication
controller and a CPU. We assume that the applications are
separated using a temporal- and space-partitioning scheme
similar to IMA. Space partitioning uses mechanisms such
as a Memory Management Unit (MMU) to ensure that, for
example, applications running on different partitions cannot
corrupt the memory for the other applications. A detailed
discussion about space-partitioning is available in [3].

Each application A j is allowed to execute only within its
defined partition Pj. Although each SC application is running
on a different partition to ensure separation, we assume that
tasks from the NC applications can share the same partition.
On a processing element Ni, a partition Pj is defined as the
sequence Pi j of k partition slices pk

i j, k � 1. A partition slice
pk

i j is a predetermined time interval in which the tasks of
application A j mapped to Ni are allowed to use the PE. All
the slices on a processor are grouped within a Major Frame
(MF), that is repeated periodically. The period TMF of the
major frame is given by the designer and is the same on
each node. Several MFs are combined together in a system
cycle that is repeated periodically, with a period Tcycle.

In Fig. 1d we have 2 PEs, N1 and N2, and 3 applications,
A1, A2 and A3. Application A2 has 3 tasks, t5, t6 and t7.
Task t6 executes in partition slices p1

12 and p2
12 allocated

on N1. When a task does not complete during the allocated
slice, as it is the case with t6, its execution is suspended.
The time overhead due to partition switching is denoted with
tO. Our approach takes into account the partition switching
overheads. Tasks t5 and t7 execute in partition slices p1

22
and p2

22, respectively, allocated on N2. The sequence and
length of the partition slices in a MF are the same (on a
given PE), but the contents of the slices can differ. In the
example in Fig. 1d all application tasks execute within one
MF. However, an application can extend its execution over
several MFs, as long as the deadlines are satisfied.

Each partition can use its own scheduling policy. We
assume that SC applications are scheduled using non-

3

preemptive static-cyclic scheduling, whereas NC applica-
tions are scheduled using preemptive fixed-priority schedul-
ing. The start time of each SC task ti in the schedule table is
denoted by ti. The NC tasks have unique priorities denoted
by prioi.

We consider that processing elements are interconnected
using a broadcast bus. We assume that the communication
protocol has mechanisms to enforce partitioning at the
bus level. For example, space partitioning is attained in
SAFEBus [18] by mapping the messages to unique loca-
tions in the inter-module memory, protected by a memory-
mapping hardware in the host, while temporal partitioning is
achieved in TTP [1] by enforcing a Time-Division Multiple
Access scheme.

We have shown how realistic bus protocols such as
TTP [17] and FlexRay (that combines TT and ET traf-
fic) [14] can be taken into account during the design.
However, in this paper we assume a more general bus access
scheme, called Universal Communication Model (UCM) [6],
where the communication cycle is partitioned into static
and dynamic phases, see [7] for more details. The SC
applications will transmit messages in the static phases,
whereas the NC applications use the dynamic phases.

IV. PROBLEM FORMULATION

The problem we are addressing in this paper can be
formulated as follows: given (1) a set G of applications of
mixed criticality levels, (2) an architecture consisting of a set
N of processing elements, (3) the size of the major frame
TMF and (4) the application cycle Tcycle, we are interested
to find an implementation Y such that all applications
meet their deadlines. Deriving an implementation Y means
deciding on (1) the set P of partition slices on each processor
and (2) the set of schedules S for the SC applications.

Let us illustrate the problem using the example in Fig. 1
where we have two SC applications, A1 and A2, and one NC
application, A3 (see Fig. 1e). For the SC applications, each
task has next to it the PE it is mapped to and the worst-case
execution time. The period and deadline for the applications
are presented under the application graph. The NC tasks
are scheduled using FPS and thus have their worst-case
execution time Ci, deadline Di, period Ti, priority and their
PE, specified in the table. We have set TMF =Tcycle=120 ms.
To simplify the discussion, we assume that all NC tasks are
released at time 0, that there is no partition switch overhead
and the communication costs are ignored.

Note that, we consider the mapping of tasks to processing
elements as fixed, and given as indicated in the figure. Very
often, the mapping decision is taken based on the experience
and preferences of the designer, considering aspects such as
the functionality implemented by the task and the type of
processing elements available, legacy constraints, proximity
to sensors and actuators. This could be the reason, for
example, that tasks t1 and t2 of A1 are mapped to different

Figure 1: Motivational example

processing elements. Many tasks, however, do not exhibit
certain particular features or requirements which lead to an
obvious mapping decision. We plan to address the problem
of mapping optimization in our future research.

A simple way to do the partitioning is to divide the major
frame equally among the 3 applications and to use the same
partitioning slices on each PE, as depicted in Fig. 1a. The
thin light grey lines are the borders for the partitions slices.
Above, respectively under, each partition slice is specified
the application it is assigned to. In this case, none of the
applications meet their deadlines. Tasks t3 and t4 from A1
and t7 from A2 do not even fit into the system cycle. Note
that the deadlines for the NC tasks are measured from their
release time. Task t8 is released twice during the MF, at
time 0 and 60. Task t11 is released every second MF. The
scheduling of SC tasks and the schedulability analysis for
the NC tasks are presented in the next section.

In order to better accommodate the SC applications, we
can try to adjust the size of the slices and introduce a new

4

TPO(G, N)
1 P � = InitialSolution(G, N)
2 P = SimulatedAnnealing(G, N , P �)
3 S = ListScheduling(G, N , P)
4 return Y =< P ,S >

Figure 2: Optimization strategy

slice for A1 on N1 and for A2 on N2, as shown in Fig. 1b.
The SC applications meet their deadlines, but the NC tasks
t8 and t9 miss in this case theirs. Note that although the
slices have the same sizes on the two PEs, they are assigned
to different applications.

Fig. 1c presents a way to make the NC task t8 on N1 meet
its deadline. The extra space from the first partition slice
associated to A1 on N1 is assigned to A3, and the second
partition slice of A1 is shifted to the right. In this case, both
jobs of t8 will meet their deadlines. However the NC task
t9 on N2 still has a deadline miss.

With the solution proposed in Fig. 1d the partitioning has
been optimized such that all deadlines are met. In addition,
we have also created 3 unused partition slices, depicted with
a light grey rectangle, which can be used, for example, for
future upgrades. This was managed by moving the time
partition slice for the NC task t9 at the beginning of the
partition table on PE N2 and by splitting the SC task t6 on
PE N1 to execute in two different partition slices.

This example shows that the sequence and length of the
partition slices has to be carefully optimized in order to find
schedulable implementations.

V. OPTIMIZATION OF TIME-PARTITIONS

The problem presented in the previous section is NP-
complete [19]. Its complexity depends not only on the
number of tasks and processors, but also on the number
of partition slices on each processor. In order to solve
this problem, we will use the optimization strategy Time-
Partitioning Optimization (TPO) from Fig. 2. TPO takes
as input a set of applications G and the set of processing
elements N , and returns the implementation Y consisting
of the set of partitions slices P on each processor and the
schedules S for the SC applications. Our strategy has 3 steps:

(1) in the first step, we determine an initial set of partition
slices P �, line 1 in Fig. 2. P � consists of a simple straight
forward partitioning scheme which allocates for each appli-
cation A j a total time on PE Ni proportional to the utilization
of the tasks of A j mapped to Ni. The partitions Pi j thus
allocated have the same length and they are distributed with
a period equal to the smallest period of a task from A j
mapped to Ni.

(2) In the second step, we use a Simulated Annealing
meta-heuristic to determine the set of partition slices P
such that the applications are schedulable and the unused
partition space (potentially used for future upgrades) is

maximized (Section V-A). The alternatives provided by
Simulated Annealing are evaluated using RTA (Section V-C)
and List Scheduling (Section V-B).

(3) Finally, given the optimized partitions P obtained in
line 2 in Fig. 2, we use a List Scheduling heuristic (presented
in Section V-B) to determine the schedule tables for the SC
applications.

A. Simulated Annealing

Simulated Annealing (SA) is an optimization meta-
heuristic that tries to minimize the cost function in order
to find the global optimum by randomly selecting neigh-
boring solutions of the current solution [20]. The algorithm
presented in Fig. 3 takes as input the set of application G, the
architecture N and the initial partitioning P �, and returns the
best solution found P best , i.e., with the smallest cost function
(see line 8 in Fig. 3). In order to escape local minima,
worse solutions are sometimes accepted with a probability
depending on a control parameter called temperature and on
the deterioration of the cost function (see lines 10 to 13 in
Fig. 3). Before we call SA we merge all NC tasks into a
single application, since the NC tasks are allowed to share
a partition.

The algorithm is inspired by the process of annealing
metals, a thermal process in which a metal is heated past
its melting point and then carefully cooled down so that
the particles arrange themselves with lower internal energy
than the initial solution [20]. The cooling rate of the process
influences the quality of the result. The cooling schedule of
SA is defined by the initial temperature T I, the temperature
length T L, the cooling ratio e and the stopping criterion.
The temperature length T L and the cooling ratio e decide
how fast will the temperature drop. We use a time limit as
a stopping criterion (line 17).

We have defined our cost function as follows:

CostF(P) = wSC ⇥dSC +wNC ⇥dNC (1)

where dSC is the degree of schedulability for SC applications
and dNC is the degree of schedulability for NC applica-
tions. These are summed together into a single value using
the weights wSC and wNC. In case an application is not
schedulable, its corresponding weight is a very big number,
i.e., a “penalty” value. This allows us to explore unfeasible
solutions (which correspond to unschedulable applications)
in the hope of driving the search towards a feasible region. In
case an application Ai is schedulable, we use for the weight
a value given by the designer, depending on the importance
of the application. For example, in our experiments we have
used weights for the SC application which are several times
greater than those for the NC applications. The degree of
schedulability is calculated as:

dSC/NC =

⇢
c1 = Âi max(0,Ri �Di) i f c1 > 0
c2 = Âi(Ri �Di) i f c1 = 0 (2)

5

SimulatedAnnealing(G,N ,P �)
1 temperature = initial temperature T I
2 P now = P best = P �

3 repeat
4 for i = 1 to temperature length T L do
5 generate a random neighbor solution P 0 of P now

6 delta = CostF(P 0) - CostF(P now)
7 if delta < 0 then
8 P now = P best = P 0

9 else
10 generate q = random (0, 1)
11 if q < e�delta/temperature then
12 P now = P 0

13 end if
14 end if
15 end for
16 temperature = e⇥ temperature
17 until stopping criterion is met
18 return P best

Figure 3: The Simulated Annealing algorithm

For SC applications dSC is computed at application level,
and thus Ri is the response time of the application (i.e.,
the finishing time of the sink node) as resulted from List
Scheduling (see Section V-B), while Di is the deadline of
the application. dNC is computed at task level. Thus, Ri is
the worst-case response time and Di is the deadline of each
task. The response time for each task is computed according
to the response time analysis presented in Section V-C.

If at least one NC task (or SC application) is not schedu-
lable, there exists one Ri greater than the deadline Di, and
therefore the term c1 will be positive. However if all the
tasks (applications) are schedulable, this means that each Ri
is smaller than Di, and the term c1 = 0. In this case, we use
c2 as the degree of schedulability, since it can distinguish
between two schedulable solutions.

The neighboring solutions of the current solution P now are
generated using design transformations (or “moves”) applied
to P now. There are 4 types of moves: resize, swap, join and
split. The moves are applied to a randomly selected partition
slice from a randomly chosen PE.

The resize move, as its name implies, resizes the selected
partition slice. This is done either by increasing the size of
the partition slice at the expense of a neighboring partition
slice, or by decreasing it and giving the extra space to
a neighboring slice. The amount with which the partition
can be resized is randomly chosen, but we have imposed
an upper limit (half the size of the partition). The swap
move swaps the chosen partition slice with another randomly
chosen partition slice. The join move joins two partition
slices belonging to the same application, while the split
move splits a partition slice into two, and adds the second

Figure 4: Move examples

slice to the end of the MF. Together with the 4 types of basic
moves, we also apply “improved moves”. An “improved
move” is intended to accelerate the search by performing
several basic moves at once.

Fig. 4 depicts the basic moves as they are sequentially
performed on a single PE, namely N1. As mentioned, the
notation pk

i j means the kth partition slice of the application
A j on the processing element Ni. There are 4 applications,
numbered from 1 to 4, and the first application has 2 partition
slices, p1

11 and p2
11. The current solution P now is presented

in Step 1 in Fig. 4. The first move is the split move,
which is performed on the partition slice p1

13 belonging to
A3. The slice is split in two equal parts, and the resulting
slice is added to the end of the MF. The second move is
a resize with 10 ms, which affects p1

11 at the expense of
p1

12. The third move is a swap of slices p1
12 and p2

13. The
result is shown in the 4th step. The last move is a join
move and as previously mentioned, it can be applied only
to partition slices belonging to the same application. For
this move we chose the p1

11 and p2
11 slices. Once a move

has been performed on the partition set P now, the resulted
partition set P 0 is evaluated using the cost function from (1),
which is executed using List Scheduling and Response Time
Analysis, presented in the next two sections, respectively.

B. List Scheduling algorithm

SC applications are scheduled using static-cycling non-
preemptive scheduling. Given a partition set P , we use
a List Scheduling (LS)-based heuristic to determine the
schedule tables S for each SC application. LS heuristics use
a sorted priority list, Lready, containing the tasks ready to
be scheduled. A task ti is ready if all the predecessor tasks
have finished executing and all the incoming messages are
received. We use the Modified Partial Critical Path priority
function [17] to sort Lready.

We define the response time Ri of an application Ai as the
time difference between the finishing time of the sink node
and the start time of the application. Thus, LS is applied
to each SC application. We have modified the classical LS
algorithm to take into account the time partitions. Thus, each
application is scheduled separately and its tasks are allowed
to use only the corresponding partitions slices from P . If

6

a partition slice finishes before a SC task has completed its
execution (as is the case with t6 2A2 in Fig. 1d), we assume
that the task is suspended and will continue its execution in
the next partition slice allocated to its application. Our LS
implementation takes into account the partition switching
overhead tO. The suspension of the task will take place
online, based on the partition scheme P loaded into the
kernel and tO contains the time needed to do a context switch
to another partition. LS also schedules the messages on the
static segment of the UCM bus.

C. Response Time Analysis
NC applications are scheduled using FPS. To determine

the schedulability of NC applications we use a response-time
analysis [21] to calculate the worst-case response time Ri of
every NC task ti, which is compared to its deadline Di. The
basic analysis presented in [21] has been extended over the
years. For example, the state-of-the-art analysis from [22]
considers arbitrary arrival times and deadlines, offsets and
synchronous inter-task communication (where a receiving
task has to wait for the input of the sender task). Audsley and
Wellings [23] have proposed a schedulability analysis for
FPS tasks using temporal partitioning (IMA), which, when
analyzing a FPS task in a certain partition, considers the
other time-partitions as higher priority tasks. This analysis
assumes that the deadlines are smaller or equal to the
periods, that the tasks are independent, and that the start
times of partition slices within a major frame are periodic.
Pop et al. [7] have proposed a schedulability analysis for ET
tasks, which extends the schedulability analysis with static
and dynamic offsets in [22] to consider the influence of the
TT tasks on the worst-case response times of the ET tasks.

In this paper, we have extended the analysis from [7] to
consider the influence of time-partitions on the schedulabil-
ity of the NC tasks. In [7], the authors introduce the notion
of ET demand and ET availability, used to compute the
length of the busy window wi, which is needed in order to
compute the worst-case response time Ri of a task ti. The
busy window wi is the longest time interval during which
tasks of priority equal or greater than ti are continuously
executing [24]. The worst-case response time is determined
using (3), considering a certain length of the busy window
wi, and all the higher priority tasks:

Ri = wi �ji � (p�1)⇥Ti +fi (3)

where p is the number of activations of task ti in the busy
window wi, Ti is the period of ti, the offset fi is the earliest
activation of ti relative to the occurence of the triggering
event and the phase ji is the time interval between the
critical instant and earliest time of the first activation of
ti. The worst-case response time Ri for the task ti is the
maximum value of the result in (3), considering all the
critical instants initiated by higher priority tasks and by ti
and also all the job instances. During the calculation, if the

available time does not satisfy the demand of ti then the
algorithm increases iteratively the length of the busy window
wi which is analyzed [7].

Similar to the notion of ET demand from [7], we intro-
duce NC demand, associated with a NC task ti on a time
interval t, as the maximum amount of CPU time which can
be demanded by higher or equal priority NC tasks and by ti.
Fig. 5 shows the analysis for a task ti, considering the busy
window that starts at the critical instant qTi+ tc, initiated by
task ta and ends at the moment qTi + tc +wi, when all the
higher priority tasks (ta and tb) and ti itself have finished
execution, and when all the partition slices interrupting ti
have finished.

During the busy window wi, the demand Hi associated
with task ti scheduled in a partition Pk is equal with
the length of the busy window which would result when
considering that Pk would be the only partition on the
processor. Thus, similar to [7] and [22], the NC demand
is:

Hi(wi) = Bi +(p� p0,i +1)⇥Ci +

Wi(ti,wi)+ Â
8(a2Aa 6=Ai)

W ⇤
a (ti,wi) (4)

where Bi is the maximum blocking time for ti. The job
activations of task ti during wi are denoted with p and
positive values are assigned to instances arriving after tc,
while zero and negative values indicate the instance arrived
before tc. Thus, p0,i is the index of the first pending instance
of ti and is computed as follows:

p0,i = 1�nia = 1�
�

Ji +ji

Ti

⌫
, (5)

where nia is the number of pending ti jobs at tc, during the
busy window wi initiated by ta. Wi(ti,wi) is the interference
from higher priority tasks hp(ti) in the same application Ai
as ti:

Wi(ti,wi) = Â
j2hp(ti)

(

�
Jj +ji

Ti

⌫
+

⇠
wi �ji

Ti

⇡
)⇥Cj (6)

Figure 5: Availability and demand

7

and W ⇤
a (ti,wi) is the worst-case interference from higher

priority hpa(ti) tasks from other applications than the ap-
plication Ai that ti belongs to:

W ⇤
a (ti,wi) = max(Wk(ti,wi)),8k 2 hpa(ti) (7)

Fig. 5 shows that the NC demand of task ti during the busy
window wi is the sum of the worst case execution times of
the higher priority NC tasks, Ca and Cb, and the worst-case
execution time Ci of ti.

We extend the concept of availability from [7] as the
processing time available during wi for Pk. Considering we
are using time partitions and that task ti can execute only
during its own partition Pk, the availability is computed
by subtracting from wi the time reserved for the “other
partitions”. In Fig. 5 the other partitions are illustrated with
hashed rectangles and their duration denoted with s1 and s2.

The response time analysis also determines the worst-case
response time Rm of each message m transmitted on the
dynamic segment of the UCM bus. For details, see [7].

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm we used 10
synthetic benchmarks and 2 real life case studies. The Time-
Partition Optimization (TPO) algorithm was implemented in
Java (JDK 1.6), running on SunFire v440 computers with
UltraSPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed TPO strategy in terms of its ability
to find schedulable implementations. Thus, we have used 5
synthetic benchmarks with 3 to 5 SC applications (with a
total of 15 to 53 SC tasks). All the NC tasks have been
merged into a single NC application, with 5 to 9 tasks.
The resulted mixed-criticality system has been mapped on
architectures ranging from 2 to 6 processing elements. The
mapping has been done such that the utilization on the
PEs is balanced and the communication over the bus is
minimized. The execution times and message lengths were
assigned randomly within the 1 to 19 ms and 1 to 5
bytes ranges, respectively. The weights used for computing
the cost function were wSC = 400 for SC applications and
wNC = 100 for NC tasks (see Section V-A).

We have used two time limits for the experiments: 10
minutes and 120 minutes. The results obtained with TPO
using a time limit of 120 minutes are presented in Table I,
under the heading “TPO, 120 min. time limit”.

We were interested to determine the quality of our Simu-
lated Annealing-based (SA) TPO strategy. Hence, we have
used an exhaustive search to determine the optimal solutions.
Since the runtime of the exhaustive search is prohibitively
large, we were only able to run it for smaller examples, lines
1, 6 and 7 in Table I. In these cases, our SA-based approach
is capable of obtaining (in 120 minutes) solutions which are
very close to the optimum. For the benchmarks in lines 1,

6 and 7 the difference in term of the cost function is only
4.51%, 0.16% and 1.9%, respectively.

Together with TPO, Table I also presents the results
obtained using a Straightforward Solution (SS), which im-
plements the approach from the InitialSolution function pre-
sented in Section V. SS is an approach that a good designer
would use if TPO would not be available. Columns 2 and 4
in Table I present the number of SC applications, and the NC
tasks, respectively. The number of schedulable applications
and tasks (out of the total) obtained by our proposed TPO
strategy are presented in columns 8 and 9, respectively,
while columns 6 and 7 present the results obtained using
SS. Columns 10 and 11 represent the percentage increase in
the degree of schedulability for SC applications, DSC, and
NC tasks, DNC, (see Section V-A) as obtained by the TPO
strategy compared to the SS, considering a time limit of
120 minutes. A negative value for DNC means that our opti-
mization has decreased the degree of schedulability for the
NC tasks in order to guarantee that all SC applications are
schedulable. Note that the NC tasks are still schedulable in
this case, but their response times have increased, compared
to SS, which over-dimensioned the NC partitions. Column
12 represents the average of the percentage increase in the
degree of schedulability for the whole system.

We have also run TPO with a time limit of 10 min. TPO
is able to obtain schedulable solutions in all cases, except
for the case study in line 4 in Table I. The average deviation
of the percentage increase of the cost function (as captured
by (1)) for the schedulable results, compared to the results
obtained with TPO using a 120 min. time limit, is of 10.48%.

As we can see from “Set 1”, SS which does not perform
optimization, is not able to find schedulable implementa-
tions. For example, for the largest benchmark, with 5 SC
application and 9 NC tasks mapped on 6 PEs only 3 out
of 5 SC applications are schedulable. All the NC tasks
are schedulable. Note that SS leads to schedulable NC
implementations. This is because it distributes the partition
slices to match the smallest period of the tasks. However,
since the slices have equal lengths, there is a lot of wasted
space in the schedules of SC applications, which leads to
missed SC deadlines. However, by applying our proposed
TPO approach, we are able to optimize the time partitions
such that all applications are schedulable. We have measured
the ability of TPO to improve over SS by using a percentage
average increase in the degree of schedulability over all
applications, presented in the last column. As we can see
there is a dramatic increase in the degree of schedulability
over all applications, when using TPO. This means that
we can potentially implement the applications on a slower
(cheaper) architecture.

In the second set of applications, labeled “Set 2”, we were
interested to see how TPO performs as the utilization of the
system increases. We have mapped 2 to 6 applications on
the same architecture of 4 PEs. As we can see, TPO is able

8

Table I: Experimental results for benchmarks

Set SC NC PEs SS TPO, 120 min. time limit
Apps Tasks Tasks Sched. SC

Apps
Sched. NC

Tasks
Sched. SC

Apps
Sched. NC

Tasks
DSC DNC avg. %

increase in d

1

3 15 5 2 1 of 3 All All All 1709.76 -44.00 832.88
3 20 6 3 1 of 3 All All All 107.94 -53.23 27.36
4 34 6 4 None All All All 169.68 7.14 88.41
4 40 10 5 None All All All 147.54 -0.40 73.57
5 53 9 6 3 of 5 All All All 542.78 14.66 278.72

2

1 6 6 4 All All All All 78.38 0.00 39.19
2 12 6 4 All All All All 59.20 -2.87 28.17
3 20 6 4 None 5 of 6 All All 518.06 1453.85 985.96
4 30 6 4 1 of 4 All All All 211.66 0.00 105.83
5 34 6 4 2 of 5 5 of 6 All All 466.36 673.33 569.85

3 3 19 5 3 None All All All 227.33 0.57 113.95
4 19 6 3 All All All All 135.29 -11.56 61.87

to find schedulable implementations even as the utilization
increases.

Finally, we have also used 2 real life benchmarks derived
from the Embedded Systems Synthesis Benchmarks Suite
(E3S) version 0.9 [25]. We have used the telecom-mocsyn
and auto-indust-cowls benchmarks. In the case of telecom-
mocsyn test case, the applications numbered as 0, 1, 2 and
4 were used as SC, and applications numbered as 3, 5, 6
and 7 were merged into one NC application. In the case of
the auto-indust-cowls, the first 3 applications are considered
SC, while the last one is NC. In both cases the applications
are mapped on an architecture of 3 PEs. The results obtained
from these real-life benchmarks confirm the results of the
synthetic benchmarks.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a Simulated Annealing
based algorithm for the optimization of time-partitions for
mixed-criticality real-time distributed embedded systems.
The algorithm considers that the applications are separated
using a temporal- and spatial-partitioning scheme similar to
IMA, that each application runs in a separate time partition,
that the SC applications are scheduled using static-cycling
scheduling, while the NC applications are scheduled using
fixed-priority preemptive scheduling. Two real life examples
have been used, as well as 10 synthetic benchmarks to show
the effectiveness of the proposed algorithm. We have shown
that only by optimizing the sequence and length of the time
partitions we are able to obtain schedulable implementations.

The most important extension in our future work will
be to consider certification costs. We will extend existing
cost models from literature [26] to take into account the
additional effort required for certification at a given Safety-
Integrity Level. If two applications of different SILs share
a partition, they will have to be certified at the highest SIL
level among the two, increasing thus the overall development
costs. Our future approach will allow the sharing of parti-

tions, which could lead to reduced system costs, and will
consider the increased development costs due to increased
certification efforts. In this paper we have assumed that the
mapping is given, but we plan to include the problem of
assigning tasks to processing elements in the overall parti-
tioning optimization problem. Also, in our future work we
will investigate which is the best optimization approach, for
example using Tabu Search instead of Simulated Annealing.

REFERENCES

[1] H. Kopetz, Real-Time Systems-Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 1997.

[2] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka,
P. Sarathy, J. Scoredos, P. Stanfill, D. Stuart, and R. Urzi,
“A research agenda for mixed-criticality systems,” in Cyber-
Physical Systems Week, April 2009.

[3] J. Rushby, “Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance,” NASA Langley Re-
search Center, NASA Contractor Report CR-1999-209347,
Jun. 1999, also to be issued by the FAA.

[4] R. Ernst, “Certification of trusted mpsoc platforms,” 2010,
10th International Forum on Embedded MPSoC and Multi-
core.

[5] N. Audsley, K. Tindell, and A. Burns, “The end of the line
for static cyclic scheduling,” in Proc. of Euromicro Workshop
on Real-Time Systems, 1993, pp. 36–41.

[6] T. Demmeler and P. Giusto, “A universal communication
model for an automotive system integration platform,” in
Design, Automation and Test in Europe, 2001. Conference
and Exhibition 2001. Proceedings. IEEE, 2002, pp. 47–54.

[7] T. Pop, P. Pop, P. Eles, and Z. Peng, “Analysis and optimi-
sation of hierarchically scheduled multiprocessor embedded
systems,” International Journal of Parallel Programming,
vol. 36, no. 1, pp. 37–67, 2008.

9

[8] L. Abeni and G. Buttazzo, “Integrating multimedia appli-
cations in hard real-time systems,” in Proc. of Real-Time
Systems Symposium, 1998, pp. 4 –13.

[9] P. K. Saraswat, P. Pop, and J. Madsen, “Task mapping
and bandwidth reservation for mixed hard/soft fault-tolerant
embedded systems,” Real-Time and Embedded Technology
and Applications Symposium, IEEE, vol. 0, pp. 89–98, 2010.

[10] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimiza-
tion of time- and cost-constrained fault-tolerant embedded
systems with checkpointing and replication,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 17,
no. 3, pp. 389 –402, march 2009.

[11] Y.-H. Lee, D. Kim, M. Younis, J. Zhou, and J. McEl-
roy, “Resource scheduling in dependable integrated modular
avionics,” in Proc. of Dependable Systems and Networks,
2000, pp. 14 –23.

[12] P. Binns, “A robust high-performance time partitioning algo-
rithm: the digital engine operating system (DEOS) approach,”
in Conf. on Digital Avionics Systems, vol. 1, 2001, pp. 1B6/1
–1B6/12.

[13] P. Pop, P. Eles, and Z. Peng, “Scheduling with optimized
communication for time-triggered embedded systems,” in
Proc. of the Workshop on Hardware/software Codesign, 1999,
pp. 178–182.

[14] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing
analysis of the FlexRay communication protocol,” Real-Time
Systems, vol. 39, no. 1-3, pp. 205–235, 2008.

[15] S. Baruah, H. Li, and L. Stougie, “Towards the design
of certifiable mixed-criticality systems,” in Real-Time and
Embedded Technology and Applications Symp., 2010, pp. 13
–22.

[16] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the
scheduling of mixed-criticality real-time task sets,” in Proc.
of the Real-Time Systems Symposium, 2009, pp. 291–300.

[17] P. Pop, P. Eles, and Z. Peng, Analysis and Synthesis of
Communication-Intensive Heterogenous Real-Time Systems.
Kluwer Academic Publishers, 2004.

[18] K. Hoyme and K. Driscoll, “SAFEbus,” IEEE Aerospace
Electronic Systems Magazine, vol. 8, pp. 34–39, 1993.

[19] J. D. Ullman, “NP-complete scheduling problems,” J. Com-
put. Syst. Sci., vol. 10, no. 3, pp. 384–393, 1975.

[20] E. Burke and G. Kendall, Search Methodologies. Springer
Science + Business Media, 2005, ch. 7.

[21] G. C. Buttazzo, Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 1997.

[22] J. Palencia and M. Gonzalez Harbour, “Schedulability anal-
ysis for tasks with static and dynamic offsets,” in Proc. of
Real-Time Systems Symposium, 1998, pp. 26 –37.

[23] N. Audsley and A. Wellings, “Analysing APEX applications,”
in Real-Time Systems Symp., 1996, pp. 39 –44.

[24] C. Fidge, “Real-time schedulability tests for preemptive mul-
titasking,” REAL-TIME SYSTEMS, vol. 14, no. 1, pp. 61–93,
JAN 1998.

[25] R. Dick, “Embedded system synthesis benchmarks suite,”
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[26] J. Axelsson, “Cost models for electronic architecture trade
studies,” in Proc. of ICECCS, 2000, pp. 229–239.

10

