

Routing algorithm for the

control layer of flow-based

biochips

Pathfinder

Tinna Schmidt Rasmussen

103440

Technical University of Denmark

Department of Informatics and Mathematical Modelling (IMM)

Supervisor: Paul Pop

26
th

 June 2014

Tinna Schmidt Rasmussen

Side 2 af 38

Abstract

Routing channels on the control layer of a flow-based biochip is a troublesome problem standing in the way

of biochips living up to their real potential. A manual design approach is labour intensive and error prone as

the amount of channels that needs to be routed can be very high. Therefore algorithms that can do most of

the work in the design process is very helpful.

This paper contains theory about a routing algorithm for the control layer of flow-based biochips called

Pathfinder. I discuss the implementation of the algorithm in Java and looks at how the algorithm can

improve the routing of the control channels.

Tinna Schmidt Rasmussen

Side 3 af 38

Contents

Abstract ... 2

Introduction ... 5

Preliminaries and theory background ... 6

The design process .. 6

Routing of the channels ... 6

Algorithms ... 7

Analyses of the problem .. 8

Pseudo code .. 8

Explanation .. 8

Examples with text .. 9

Placement of valves ... 11

Mixer .. 11

Storage ... 11

Switch .. 12

Detector ... 12

Heater .. 12

Filter ... 13

Rotation of components .. 13

Implementation ... 14

The overall structure ... 14

Class: Driver ... 14

Class: Grid .. 14

Class: Listener .. 16

Class: Node .. 16

Class: RoutingAlgorithm .. 16

Class: SortedNodeList .. 18

Class: View ... 18

Reading XML files .. 19

Placement of valves ... 20

Displaying the result .. 20

The Pathfinder algorithm .. 21

How and when to change the cost of a node .. 21

Tinna Schmidt Rasmussen

Side 4 af 38

Evaluation .. 24

Discussion .. 25

Benefits .. 25

Improvements ... 25

Two control layers ... 25

Let valves share inlets .. 26

More precision... 26

A smart algorithm .. 27

Conclusion ... 27

References ... 28

Appendix .. 29

Arch10-1s ... 29

Arch10-2s ... 31

ArchIvd2 ... 33

ArchSB2.. 35

ArchSB2s .. 37

Tinna Schmidt Rasmussen

Side 5 af 38

Introduction

As an alternative to the conventional biochemical laboratories, different biochips have emerged over the

past couple of years. Compared to traditional laboratory work, micro fluidic biochips can decrease the

consumption of reagent used. Such biochips are already in use in many areas. One of the main alternatives

is the continuous flow-based micro fluidic biochip. The technology behind the creation of continuous flow-

based biochips is microfluidic Very Large Scale Integration, or mVLSI for short.

Continuous flow-based microfluidic biochips are customized biochips designed for a given task. The task is

carried out by manipulating liquid as a continuous flow from an inlet through closed flow channels to

components placed on the biochip. Both the flow channels and the components are placed on the layer of

the biochip called the flow layer. The biochip contains several valves that can be opened or closed in order

to guide the liquids in the right direction. The valves are controlled by the control layer using air pressure. A

biochip can have just a single control layer or two, one at the top and one at the bottom of the flow layer.

Small biochips have the potential to revolutionize bioscience. However, there is an obstacle that needs to

be overcome in order for the field to really advance move forward; the design process. Even though some

automated tools are emerging, the design and fabrication process is still mostly manual. This is usually done

by manually placing components on the flow layer, manually drawing lines representing the flow channels

as well as placing the valves and drawing the lines representing the control channels. The manual design

process is both labour intensive and often error prone. In order to design the infrastructure of the biochip,

an extensive knowledge of the application of the chip being design is required.

In this paper I will describe different algorithms, which may help easing the customized labour-intensive

design process of the control layer of a flow-based biochip. I will analyse and implement one of these

algorithms, called Pathfinder and discuss its advantages and how it can be improved.

Tinna Schmidt Rasmussen

Side 6 af 38

Preliminaries and theory background

The design process

The design process is divided into a number of different steps.

This paper focuses on the step with routing of the control channels, but will also touch the subject of

routing the flow channels.

Routing of the channels

Routing of channels on the flow layer and control layer are similar. In both cases the channels needs to be

routed from a source to a sink, while avoiding obstacles such as other channels.

On the flow layer the channels needs to go from a specific source (e.g. an output on one component) to a

specific sink (e.g. an input on another component). The flow channels have to move around components. It

is possible for flow channels to intersect with one another, which can either be done to shorten the total

length of flow channels or because it is necessary in order to be able to route the flow channel at all. This is

done by introducing a switch, which needs to be controlled with valves. There are two kinds of switches,

the T switch and the X switch, which can be seen in Figure 1.

Figure 1 showing an illustration of a T switch and an X switch on the flow layer

The flow channels intersect and needs valves, marked with a red cross, to open and close them in order to

guide the liquid in the right direction. If possible it is better to have one X switch instead of two T switches.

An example of two T switches that could be replaced by a single X switch is shown if Figure 2. This reduces

the number of valves by 2. However, the length of the flow channel has to be taken into consideration and

sometimes it might be preferred to have a shorter route length and introduce more valves.

Tinna Schmidt Rasmussen

Figure 2 showing an example of two T switches which could be replaced by a single X switch

On the control layer the channels need to go from a source, being a valve, to a sink, being the inlets for the

air. A specific valve doesn’t necessary need to be connected to a specific inlet. The control channels have to

avoid running into other control channels and valves, but they are

channels located on the flow layer.

the placement of the valves and air inlets into consideration. Control channels are not allowed to intersect,

since there isn’t a way to control a control channel the same way the flow channels can be cont

the T and X switch. However it is possible that some valves can share the same inlet, in which case their

control channels are allowed to intersect. This will be discussed further in the section “Improvements”

under “Let valves share inlets”.

Algorithms

There exist several algorithms that have been used to solve similar problems to the routing of the control

channels on a biochip. Some of these make use of a rip up and retry method, where routes are ripped up if

they conflict with other routes and then rerouted.

be just the routes that are conflicting which needs to be ripped up in order to find a solution, and in this

case ripping up conflicting routes and rerouting them won’t always be able

The pathfinder algorithm is created to route signals on FPGAs.

control channels on a biochip as the problems are similar.

same nodes for a while, but eventually this node becomes more expensive to use. All of the routes keep

being rerouted until a solution is found.

Side 7 af 38

showing an example of two T switches which could be replaced by a single X switch

On the control layer the channels need to go from a source, being a valve, to a sink, being the inlets for the

valve doesn’t necessary need to be connected to a specific inlet. The control channels have to

avoid running into other control channels and valves, but they are not affected by the component

 This means that the routing of the control channels only have to take

the placement of the valves and air inlets into consideration. Control channels are not allowed to intersect,

since there isn’t a way to control a control channel the same way the flow channels can be cont

the T and X switch. However it is possible that some valves can share the same inlet, in which case their

control channels are allowed to intersect. This will be discussed further in the section “Improvements”

There exist several algorithms that have been used to solve similar problems to the routing of the control

Some of these make use of a rip up and retry method, where routes are ripped up if

then rerouted. The problem with this method is that it might not always

be just the routes that are conflicting which needs to be ripped up in order to find a solution, and in this

case ripping up conflicting routes and rerouting them won’t always be able to solve the problem.

is created to route signals on FPGAs. However, it can be applied to routing of the

control channels on a biochip as the problems are similar. The pathfinder’s method is to let routes use the

same nodes for a while, but eventually this node becomes more expensive to use. All of the routes keep

being rerouted until a solution is found.

On the control layer the channels need to go from a source, being a valve, to a sink, being the inlets for the

valve doesn’t necessary need to be connected to a specific inlet. The control channels have to

not affected by the components or flow

routing of the control channels only have to take

the placement of the valves and air inlets into consideration. Control channels are not allowed to intersect,

since there isn’t a way to control a control channel the same way the flow channels can be controlled by

the T and X switch. However it is possible that some valves can share the same inlet, in which case their

control channels are allowed to intersect. This will be discussed further in the section “Improvements”

There exist several algorithms that have been used to solve similar problems to the routing of the control

Some of these make use of a rip up and retry method, where routes are ripped up if

The problem with this method is that it might not always

be just the routes that are conflicting which needs to be ripped up in order to find a solution, and in this

to solve the problem.

However, it can be applied to routing of the

The pathfinder’s method is to let routes use the

same nodes for a while, but eventually this node becomes more expensive to use. All of the routes keep

Tinna Schmidt Rasmussen

Side 8 af 38

Analyses of the problem

The algorithm Pathfinder that is used in this paper is based on the algorithm Negotiated Congestion but

with a few alterations
i
. This implementation of the algorithm considers all channels to be equally important

and will be given the same advantages when routed. The pseudo code the implantation is based on is

shown below.

Pseudo code

While shared resources exist (global router) [1]

 Loop over all signals i (signal router) [2]

 Rip up routing tree RTi [3]

 RTi <- si [4]

 Loop until all sinks tij have been found [5]

 Initialize priority queue PQ to RTi at cost of nodes [6]

 Loop until new tij is found [7]

 Remove lowest cost node m from PQ [8]

 Loop over fanouts n of node m [9]

 Add n to PQ at cost cn + Pim [10]

 End [11]

 End [12]

 Loop over nodes n in path tij to si (backtrace) [13]

 Update cn [14]

 Add n to RTi [15]

 End [16]

 End [17]

 End [18]

End [19]

Explanation

The pathfinder consists of two parts: a global router and a signal router. The global router keeps track of

what nodes/resources are used and by how many signals (channels) at once. The global router calls the

signal router which routes one signal at a time using a breath first search to find the cheapest path from a

source (valve) to a sink (inlet). Seeing as each valve only needs to be connected to one inlet, there is only

one sink for each signal.

Tinna Schmidt Rasmussen

Side 9 af 38

At first all the channels are routed so that they achieve the shortest path possible. However some channels

might be using the same nodes in order for them to get their shortest possible path. Since control channels

aren’t allowed to intersect, this needs to be changed. This is done through several calls to the signal router

that keeps rerouting all the channels until the global router sees that there are no more shared nodes.

In order for the signal router to know which nodes are used by more than one channel, a cost is introduced

to each node. Whenever a node is used by one or more channels, the cost of using said node is increased.

This means that nodes that are used by a lot of channels will be more expensive, and some of these

channels will therefore be rerouted in another direction.

If a node is no longer used by any channels, the cost will slowly decrease so that the node might be

appealing later on.

Examples with text

In this section I will explain how the algorithm works with a small example of first order congestion

(borrowed from the Pathfinder paper
i
).

Assume we have 3 valves: S1, S2 and S3 as well as 3 inlets: D1, D2, D3. It is irrelevant what inlet a valve is

connected to, but it is wanted to get the shortest total length of the channel paths. There are 3 paths

available: A, B and C. All valves can go through B and reach any inlet, however, S1 can’t reach path C and S3

can’t reach path A. The arcs leading to and from the nodes are partial paths that the channels need to go

through before reaching A, B and C. The length of these partial paths is shown in parentheses.

Tinna Schmidt Rasmussen

Side 10 af 38

The pathfinder works by first finding the shortest path for all valves. This means that all channels runs

through path B. Since B is shared by many channels at once, its cost increases and it slowly gets more and

more expensive. Eventually S1 will see that the path through A is cheaper and use that path instead. Later

S3 will see that the path through C is cheaper.

It is important that the cost doesn’t increase too fast. In the above example, if the cost in increased by 1 at

each iteration, that’s how the channels will be routed. However, if the cost is increased by 10 each iteration

then both S1 and S2 will choose to go through A and S3 will go through C. Then A will be overloaded and

the channels need to be rerouted again.

Tinna Schmidt Rasmussen

Side 11 af 38

Placement of valves

All the placements are based on the paper “BioChip Simulater Components Design” by Morten Schmidt
ii

and the sizes of the components are based on a library file
iii
.

Mixer

The component called mixer is used to mix two fluids together. The

mixed fluid can then be used in other components. The mixing process

is controlled by opening and closing valves in a certain order. The mixer

component contains 9 valves in total.

The mixer component has the size 30 x 30 in the XML files. The 9 valves

are placed at the following coordinates relative to the top left corner of

the mixer component:

V1: (0, 15) V2: (2, 13) V3: (2, 17)

V4: (5, 2) V5: (15, 0) V6: (24, 2)

V7: (27, 13) V8: (29, 15) V9: (27, 17)

Storage

The component called storage is used for storage of

fluids on the biochip. These stored fluids can be used

later on. The transportation of fluids inside the

storage is controlled by opening and closing valves.

The storage component contains 28 valves; however,

some of these valves are always open or closed at the

same time. This means that some of these valves can

be “combined” through local routing and thereby

share the same inlet source. This means that there

are in fact only 6 distinct valves that need to be

routed on the biochip.

Tinna Schmidt Rasmussen

Side 12 af 38

The storage component has the size 90 x 30 in the XML files. The 6 distinct valves are placed at the

following coordinates relative to the top left corner of the mixer component as (0, 0):

V1: (0, 0) V2: (0, 29) V3: (45, 0)

V4: (45, 29) V5: (89, 0) V6: (89, 29)

These valves are spaced out over the size of the component, so that they are all at the edge of the

component.

Switch

There are two types of switches as described in

the section “Preliminaries and theory background”

under “Routing of channels”: the T switch and the

X switch. The size of a valve is 100 µm, which

mean that in the unit used in the XML files would

have to be changed and be done more precisely in order to incorporate switches properly, since 1 unit in

the XML files at the moment are 150 µm.

Detector

The component called detector is able to use a detect operation on the

biochip for a specified amount of time. The detector component has no

internal valves but it has been decided that a valve should be placed at

the input and output of the detector.

The detector component has the size 20 x 20 in the XML files. In order

to place the valves at the input and output, a valve should be placed at the point (0, 10) and (19, 10),

relative to the top left corner of the detector component.

Heater

The component called heater can heat up liquid for a specified amount

of time. The heater component has no internal valves but it has been

decided that a valve should be placed at the input and output of the

heater.

Tinna Schmidt Rasmussen

Side 13 af 38

The heater component has the size 40 x 15 in the XML files. In order to place valves at the input and output,

a valve should be placed at the point (0, 7) and (39, 7), relative to the top left corner of the heater

component.

Filter

The component called filter is able to use a filter operation on liquid on

the biochip. The filter component has no internal valves but it has been

decided that a valve should be placed at the input and output of the

filter.

The filter component has size 120 x 30 in the XML files. In order to place

valves at the input and output, a valve should be placed at the point (0, 15) and (119, 15), relative to the

top left corner of the filter component.

Rotation of components

In order to rotate the components on the biochip, a rotate function is introduced. The rotate function is

divided into two methods: rotX and rotY, who return the x-coordinate and y-coordinate after rotation

respectively.

The rotate methods takes as input the original coordinates of the valve (oldX and oldY), the angle (which

depends on the orientation of the component) and the coordinates of the top left corner of the component

(here called xCenter and yCenter, since this point will be the center of the rotation).

The formulas for calculating the rotated coordinates are:

���� = (��	
�	� + cos(�
��	� ∗ (���� − ��	
�	�� − cos(�
��	� ∗ (���� − ��	
�	��

���� = (��	
�	� + sin(�
��	� ∗ (���� − ��	
�	�� + cos(�
��	� ∗ (���� − ��	
�	��

The components are rotated counter-clockwise. The orientation 0 gives the angle 0, the orientation 1 gives

the angle�/2, the orientation 2 gives the angle 2 ∗ �/2 and the orientation 3 gives the angle 3 ∗ �/2 in

radians. Those are the only 4 possible rotations.

When rotating the component it is possible that a valve will get a new coordinate that isn’t a real number.

However, the coordinates are integers meaning that any decimals will be cut off.

Tinna Schmidt Rasmussen

Side 14 af 38

Implementation

In order to solve the main problem with routing the control channels, it is necessary to not only implement

the algorithm itself, but also implement a way for the program to read and understand input files as well as

displaying the result in an easily accessible manner. In the following I will describe the overall structure of

the program as well as go into detail and describe how the program reads input, runs the algorithm and

displays the result.

The overall structure

The program consists of the following classes: Driver.java, Grid.java, Listener.java, Node.java,

RoutingAlgorithm.java, SortedNodeList.java, View.java.

Class: Driver

The driver contains the method main(String[]) which creates a new driver object. From here the method

readXML(String) is called, which takes the name of an XML file as input. How the reading of XML files works

is explained under “Reading XML files”. The information from the XML file is stored in an two-dimensional

array called ArcComponents.

When the XML file is read, a frame to display the biochip is created by creating a new View object.

Lastly a new RoutingAlgorithm object is created and given the view and grid as input.

Class: Grid

The class grid is responsible for creating a grid of nodes that represent the biochip. The grid is initialized

with the method initialize(), that first create the grid of width*height nodes. For each node, the node to the

left, right, top and bottom are added to its neighbour list, except for the nodes that are located at the edge

of the grid, in which case not all 4 neighbours are added.

Next the method placeValvesAndInlets() are called. The two-dimensional array ArcComponents created in

the driver class is used to place the valves. ArcCompnents has the following information about each

component i:

• ArcComponents[i][0] – The type of the component, indicated by a number.

• ArcComponents[i][1] – The x coordinate for the top left corner of the component.

• ArcComponents[i][2] – The y coordinate for the top left corner of the component.

• ArcComponents[i][3] – The orientation of the component.

Tinna Schmidt Rasmussen

Side 15 af 38

A switch is used to call methods place1(), place2() and so on, depending on the component type. Each of

these methods takes the coordinates and orientation as input.

Type 1 – Mixer

The mixer component contains 9 valves that are to be placed as described under “Analysis of the problem”.

Type 2 – Storage

The storage component contains 6 valves that are to be placed as described under “Analysis of the

problem”.

Type 3 and 4 – Switches

The type with number 3 and 4 indicates switches that are used when flow channels on the flow layer

intersect. Number 3 is a switch with 3 valves, called a T-switch and number 4 is a switch with 4 valves,

called an X-switch.

Whereas placement information of all the components should be given as the placement of the top left

corner, the placement information of the switches should be given as the placement of the centre of the

switch. The methods place3() and place4() will then place the valves around the switch. For an X-switch the

orientation is irrelevant since a valve will be placed on all 4 sides. For a T-switch, however, the orientation is

important. Orientation 0 is the standard orientation and is implemented as a valve to the left, right and

bottom (to that it simulates an actual T-shape). Orientation 1 is the entire T turned 90 degrees counter-

clockwise, meaning a valve is to be placed to the top, bottom and right and so on.

Type 5, 6 and 7 – Detector, Heater and Filter

These 3 components do not contain any inner valves, but it has been decided to put a valve at the input

and output of the components. This means that each of the 3 components has 2 valves each that are to be

placed as described under “Analysis of the problem”.

Case 8 and 9 – Input and Output

These components do not need any valves. They are read into the program from the XML files, but they

have no effect on the placement of valves.

More components

Other components can easily be added to the program. All that is needed is to create a method in the file

Grid that places the valves relative to the components top left corner. In the file Driver the name of the

component needs to be connected to a number for ArcComponentType.

Tinna Schmidt Rasmussen

Side 16 af 38

Class: Listener

The class Listener is used to update the time in the GUI but has no effect on the algorithm itself.

Class: Node

The class Node create the Node object that is used to represent a single spot in the grid. The Node class

contains the following information about a Node:

• x, y – the coordinates of the node in the grid

• isStart – A Boolean indicating whether the node is a valve (true) or not (false)

• isGoal – A Boolean indicating whether the node is an inlet (true) or not (false)

• name – The coordinates written as a string. It is used for printing to the console

• subACost – The subtotal cost of the node, calculated by how many channels are using the node and

for how long the node has been used.

• curACost – The number of channels currently occupying the node. It is used to check if there are

any shared resources. If curACost for all nodes are less than or equal to 1, no channels use the

same node.

• totalMinCost – The total minimum cost of the node, meaning it’s subACost plus the cost from the

valve to the node.

Class: RoutingAlgorithm

The class RoutingAlgorithm contains a few helping methods as well as the method that contains the overall

implementation of the algorithm, called runAlgorithm(). Furthermore the class contains methods that are

used to collect the result of the program and print it to the console.

Below I will briefly describe the usage of the various methods.

• runAlgorithm() –

This method contains the overall algorithm for routing the channels. It will be described in detail

under “The Pathfinder algorithm” later in this section.

• routeSignal1() –

This method takes a start node (valve) as input and routes the channel to a goal node (inlet). This is

done with a breath first search. It initialises the start nodes totalMinCost to 0 and adds it to a

queue, sorted by cost. As long as the queue isn’t empty, the first node is the queue it extracted. If

the node is a goal node, then the method getShortestPath(node) is called. Otherwise the node is

expanded and the neighbours are investigated and added to the queue.

Tinna Schmidt Rasmussen

Side 17 af 38

• routeSignal2() –

This method is similar to routeSignal1(), but there is an important difference. The method

routeSignal1() didn’t take the subACost into account. This meant that routeSignal1() found the

cheapest possible path in terms of distance. The method routeSignal2(), on the other hand, takes

the cost of a node into account so that if a node is really expensive it might prefer to take a longer

(but cheaper) path around it.

• getShortestPathTo(Node) –

This method takes a goal node (inlet) as input and then backtracks the path, looking at the previous

node all the time until there are no more previous nodes. This will be when a start node (valve) is

reached. This list of nodes are stored in an ArrayList and returned. During the backtracking of the

route, which will now be the current channel from the given goal node to start node, the aCost is

incremented, by calling that method in the Node class.

• ripUp(ArrayList<Node>) –

This method takes an ArrayList of nodes as input. This ArrayList is a routing tree from a single valve

to an inlet. The method visits every single node in the path and decrement the aCost, by calling that

method in the Node class.

Below the methods that handle the collection of the result is described in detail.

• collectResults() –

This method collects all the relevant information after the algorithm has terminated and prints

them to the console. It also calls the methods printAllminRT() and printAllRT(). The information that

is collected are:

o Number of valves

o Number of intersections on the first run

o Number of minimum intersections (in case the algorithm doesn’t finish with a solution,

then the minimum number of intersections might have been found on another iteration

than the last one)

o Number of intersections on the last run (this is the solution unless the algorithm was

terminated because it reached a limit)

o Number of reruns, which is the number the signal router of the algorithm is called

o Running time

o The length of each routed channel as well as the total route length

Tinna Schmidt Rasmussen

Side 18 af 38

• printAllRT() – This method prints out all the channels in the last routing tree RT. If a solution is

found then that is what is printed. If a solution isn’t found because a limit is reached then the

method prints the latest routing tree, which might not be the most optimal routing tree it has

found. It is possible that it during tit’s runtime has found another routing tree with fewer

intersections than the one being printed.

Class: SortedNodeList

The class SortedNodeList creates an ArrayList with Nodes. The Nodes are sorted by their total minimum

cost (subACost of the node + path cost from valve to the node) so that the node with the lowest total

minimum cost is first in the list.

The SortedNodeList class contains methods to make it easy to retrieve information, such as size(), get(int),

getList() and more. Furthermore the class contains methods to change the list, such as clear(), add(Node n),

remove (Node n) and more.

Class: View

The class View is responsible for the visual representation of the biochip and the routing of the channels. It

uses the Swing library to produce a window frame containing a field showing running time, reruns, number

of intersections as well as the field containing the grid representing the biochip. It contains functions to

update the labels, which can be called from other classes, as well as a function that returns the current

time, used when the algorithm is finished.

The grid is made in the class Grid and the view is updated from the class Node, whenever a node changes is

status, e.g. is set as a valve.

Tinna Schmidt Rasmussen

Side 19 af 38

Reading XML files

The program needs information about valve placement on the control layer as well as the placement of

inlets. The placement of the inlets depends on the biochip used and is built directly into the program. In my

thesis it is assumed that all the inlets are placed on two opposing side of the biochip.

The placement of valves depends on the placement of components on the flow layer as well as the routing

of the flow channels. This information is given to the program through an XML file.

The XML file should have the following structure:

<Architecture>

 <Size>

 <Width>[BIOCHIP WIDTH]</Width>

 <Height>[BIOCHIP HEIGHT]</Height>

 </Size>

 <ListOfArcComponents>

 <ArcComponentProperties>

 <ArcComponentType>[COMPONENT NAME]</ArcComponentType>

 <Position>

 <X>[COMPONENT X]</X>

 <Y>[COMPONENT Y]</Y>

 </Position>

 <Orientation>[COMPONENT ORIENTATION]</Orientation>

 </ArcComponentProperties>

 </ListOfArcComponents>

</Architecture>

First the program reads the [BIOCHIP WIDTH] and [BIOCHIP HEIGHT] in order to create the grid

representing the biochip. The scaling unit is 150 um, however in my test on some benchmarks I have

assumed the scaling 20 um, so the grid would be less detailed and therefore more manageable for my

computer to handle. This means that the valves as well as the width of the control channels are larger than

they would be on the actual biochip. Because of this my tests might not be able to find a solution if one

exists, however, if a solution is found in my tests then that will be a possible solution to the actual biochip.

This will be discussed more throughout in the section “Improvements”.

Next all the information about the components on the biochip is read into the program. For each

component the following information is obtained:

Tinna Schmidt Rasmussen

Side 20 af 38

[COMPONENT NAME] – The name of the component’s type. This is used to determine how many valves

should be placed in the grid and where, relative to the component’s top left corner. Different component

have different valve placement which will be described under “Placement of valves”.

[COMPONENT X], [COMPONENT Y] – The placement of the component’s top left corner on the biochip.

This corner is used when turning the component relative to its orientation.

[COMPONENT ORIENTATION] – The orientation of the component on the biochip. Orientation 0 is the

standard orientation. Orientation 1 is orientation 0 turned 90 degrees counter-clockwise, orientation 2 is

orientation 1 turned 90 degrees counter-clockwise and so on.

Placement of valves

From the XML file the program gains information about a component’s type, top left corner placement and

orientation. The placement of the valves is described in the section “Analysis of the problem” under

“Placement of valves”.

Displaying the result

When the program finishes, either because a solution is found or a limit is reached, the program outputs

the result in the console. The output contains:

• Number of valves on the biochip

• Number of intersections in first try

• Number of intersections in the best solution (will

be 0 if a working solution is found)

• Number of reruns (the number of time the loop

“global router” is run)

• The running time

• The total length of all control channels

• The length of each control channel

• Each control channels route written as a list of

coordinates from valve to inlet

Furthermore a GUI is implemented which shows a grid simulating the biochip. The biochip itself has the

colour LIGHT_GRAY. The inlets have the colour GREEN and are placed at the top and bottom of the grid.

Tinna Schmidt Rasmussen

Side 21 af 38

The valves have the colour BLUE. A control channel has the colour DARK_GRAY; unless control channels are

intersecting in which case the spot of the intersection turns RED. The GUI also displays the run time,

number of reruns and current number of intersections between channels.

The Pathfinder algorithm

The main implementation of the pathfinder algorithm is done is the class RoutingAlgorithm.java in the

method runAlgorithm().

The ArrayList<ArrayList<Node>> RT contains all the current routings of the channels. The method

routeSignal1() is called to find the shortest path for all channels and then adding them to the routing tree

RT. The method checks if a solution is already found, because in that case there is no need for the algorithm

in that routing.

Otherwise the pathfinder algorithm starts with the global router, and the signal router inside the loop. The

signal router rips up a channel from RT, reroutes it now that the cost is updated and adds the new path to

RT.

After the signal router is done for all channels, the global router checks if a solution is found and otherwise

updates the cost of all nodes. If a limit is reached then the loop of the global router is terminated and the

current result printed.

How and when to change the cost of a node

The cost for the nodes needs to be updated to that it corresponds to the number of channels currently

using the nodes as well as for how long the node as been used.

To measure the cost I use 2 variables: curACost and subACost. The variable curACost is the number of

channels currently using the node. This variable is increased by 1 whenever the method

getShortestPathTo(node) is called, because then every node in the path has its curACost incremented with

1.The variable curACost is decremented whenever the method ripUp(ArrayList<Node>) is called. It is

possible that that same route will be found when its rerouted, but that doesn’t matter as the nodes will be

incremented again through the getShortestPathTo(node) method if that’s the case.

The variable subACost is trickier as it indicates how wanted the node is over time. Whenever curACost is

incremented by one, subACost is incremented by a cost called costX. However, when curACost is

decremented, subACost is only decremented with costX if no channels use the node anymore, meaning if

curACost = 0. If more channels use the same node then the subACost won’t be decremented, but it will be

Tinna Schmidt Rasmussen

Side 22 af 38

further incremented if the channels chooses the same route once again, thereby making the node even

more expensive.

Every time all the signals have been routed one, the global router in the algorithm calls subCostDec(). This

method checks all the nodes if they are currently occupied and if they aren’t the subACost of the nodes are

decremented by costY. This way, nodes that aren’t used for a longer period of time will start getting

cheaper again until eventually they might become attractive when a channel is rerouted and be used again.

The impact of costX and costY

The subACost of a node is changed with two costs: costX and costY. The costX is the cost for the node for

each channel who wants to use it. The costY on the other hand is the decrease in cost over time when the

node is unused.

The costY should decrease slowly, as if it decreases too quickly, the routing algorithm will try to use the

same paths too often and too soon after it becomes available.

The costX should also change slowly, as too big a change would mean that too many channels would avoid

the given node.

Below is an example of the same test. To the left is the costX = 5 and to the right the costX = 1.

Tinna Schmidt Rasmussen

Side 23 af 38

As seen a solution is found in both cases, however, they are different:

• The left example finds a solution after only 2 reruns. The total route length is 242.

• The right example finds a solution after 8 reruns. The total route length is 226.

This shows that if costX is larger, then the channels will spread out faster and if there’s enough space as

they are spreading out, a solution will be found faster. However, this solution might not be optimal as the

high increasing costX makes the channels avoid nodes that might actually give the solution. It takes some

time for the unused nodes to get a reasonable cost again if the costY is a lot smaller than costX, in this case

1.

It is a trade-off between running time and route length.

Tinna Schmidt Rasmussen

Side 24 af 38

Evaluation

In order to run a test, the program needs to know which XML-file to use. This is specified in the class

Driver.java in the first line of the driver constructor. In both the class Driver.java and Grid.java there’s an

integer constant called resize. This constant is used to resize the grid, making the entire more or less

precise. I’ve run my tests with a resize factor of 5, meaning that one node represents the size 750 µm. The

resize constant is 5, because the scaling in the XML files is 150 µm and one node represents 750 µm, and

150/750 = 1/5.

The tests are run with costX = 5 and costY = 1, in order to decrease running time.

I have evaluated the program on some benchmarks created by Wajid Hassan Minhass
iv
. The outputs and

results of these evaluations are included in the appendix. Here I will show the overall result.

Benchmark Number of

valves

Number of

reruns

Running

time

Total

length

Number of

intersections

(first run)

Number of

intersections

(min)

Arch10-1s 43 4 82 3037 419 0

Arch10-2s 39 6 42 872 109 0

ArchIvd2 50 16 588 2114 405 0

ArchSB2 48 50 (limit) 877 2286 140 2

ArchSB2s 47 9 94 2614 169 0

The program ran until a solution was found or a limit was reached. I set the limit as 50 iterations of the

algorithm.

Tinna Schmidt Rasmussen

Side 25 af 38

Discussion

The results from the benchmarks show that even though the number of valves is similar, the difficulty of

routing all the channels differs. That’s because it’s the placement of the valves relative to one another

that’s important. If the valves are spaced out and don’t share a lot of nodes or can easily find another path,

then the algorithm doesn’t have to rerun too many times before a solution is found.

However, if the shared nodes are trapped between other occupied nodes then it will take a long time

before all the channels are routed properly. First the channels using shared nodes will spread out, which

will mean other the occupied nodes around them will be shared instead. Then the channels using these

nodes will have to spread out on so on until no nodes are shared. This can take a while if there are mane

shared and occupied nodes next to each other.

Benefits

The benefit of the Pathfinder algorithm is that it lets channels share nodes to begin with and then

calculates how high the demand for a certain node is and then set the cost accordingly. This assures that

slowly but surely the channels will spread out and start using different nodes. The routing isn’t so much

depending on which order the channels are routed in, which is a good thing. Channels who might have

nodes all to themselves to begin with might later on want to find another path as to make room to other

channels which are spreading out. If the algorithm only considered the channels that were conflicting then

it would be difficult to figure out that an entire different channel needed to be rerouted as well in order to

get a solution.

Improvements

Two control layers

In my implementation there is only a single control layer. However, it is possible to have a biochip with a

control layer on top of the flow layer and at the bottom. The benefit of having two control layers is that it is

easier to get a better routing, since there will be more possible ways to place the control channels. Instead

of a channel having to be routed around another channel, and thereby increasing the length of the channel,

is it possible to place the channels on different layers.

If a failed routing on a single control layer is found, the problem being a single intersection of channels, one

of these channels could be moved to a second layer and the routing could then be used. However, this is

not an optimal solution. If two layers are available it would be important to use them as efficiently as

possible.

Tinna Schmidt Rasmussen

Side 26 af 38

In order to use the two layers efficiently it would be likely to assume that both layers should contain about

the same amount of routed channels. A way to do this would be to put every second channel on the top

layer and the rest at the bottom layer. However, it might result in a bad routing if a lot of troublesome

routings are placed at the same layer for no reason, so I don’t think this solution would be efficient on its

own.

I think a good solution to using two layers would be to decide what layer to place a channel on when it’s

routed and maybe move it to the other layer when it’s rerouted. In my implementation this could be done

by introducing another cost for nodes, so that each node has a costA for the top layer and a costB for the

bottom layer. When a channel is routed it should try to do the routing on both layers, trying to use both the

costA and costB, and then choose the cheapest solution.

By combining the two suggestions, one get a solution that places the same amount of channels on each

layer to begin with. But when the channels are rerouted, which they will be in every iteration of the

algorithm, the channels will be placed to the cheapest layer. This means that if a lot of channels are using

the same nodes in an area on one layer then some of them are likely to be moved to the other layer to

avoid too long routes.

Let valves share inlets

Valves needs to be placed for all the components on the biochip, as well as around all the switches

introduced by the routing of the flow channels. This can become a rather large number, meaning that there

should be a lot of inlets to the small biochip. If it’s known when all the valves should be open and closed on

the biochip, it is possible to figure out which valves are always open or closed at the same time. These

valves could in principle share an inlet source, which would cut down the amount of inlets needed.

It should be taken into account that just because two valves can share an inlet, it doesn’t automatically

mean that this is the most efficient solution. If the valves are placed far apart it can be a problem if their

channels have to connect, because the channel lengths might become unnecessary long. Before inlet-

sharing is introduced in the program, it should first be discussed when the algorithm should favour a short

channel length and when a shared inlet is to be preferred.

More precision

As of right now the precision in my program isn’t very good. The valves and control channels don’t have the

proper size compared to one another and the size of the biochip. In my implementation one node

represents the size750 µm. This means that no valve or channel can be smaller than this. Since a valve is

Tinna Schmidt Rasmussen

Side 27 af 38

100 µm on both side and a control channel is 30 µm with 40 µm between each channel, this isn’t very

precise.

This could be improved by making the grid contain more nodes, so that each node represents a smaller

space. However, this would also increase the memory used by the program as well as the running time.

A smart algorithm

It is possible to make the algorithm smarter in a few ways.

As of right now channels are routed with a breadth first search that takes the cost into account. It could be

a good idea to include a heuristic function so that the algorithm doesn’t have to search through quite as

many nodes before it finds a path.

Another way to make the algorithm smarter would be not to reroute channels that are already perfectly

routed and has no impact on the rest of the channels. Assume we have a chip that contains a cluster of

valves both to the left side of the biochip as well as to the right side. If the cluster of valves to the left side

has been routed and there are no intersections and they use the inlets all the way to the left, then it’s likely

to assume that only the valves to the right would need to be rerouted in order to find a solution for the

entire biochip.

Conclusion

The pathfinder algorithm is able to route the control channels on a flow-based biochip. In some cases it

might take a lot of retries, but it keeps moving closer to a solution at each rerun of the algorithm. The use

of a cost for shared nodes works as it means the algorithm doesn’t just rip up and reroute random

channels. At each run of the algorithm it becomes clearer what areas of the biochip are wanted by the

channels and what areas are free to use, at the cost of a longer route length.

Tinna Schmidt Rasmussen

Side 28 af 38

References

[i] Larry McMurchie, Carl Ebeling

PathFinder A Negotiation-based Performance-driven Router for FPGAs

[ii] File: library.xml, included the in zip-folder.

[iii] File: BioChip Simulator - Component Design.pdf, included in the zip-folder.

[iv] W. H. Minhass, P. Pop, and J. Madsen

System-Level Modeling and Synthesis Techniques for Flow-Based Microfluidic Very Large Scale Integration

Biochips,” Technical University of Denmark, Department of Information Technology.

Naveed A. Sherwani. Algorithms for VLSI Physical Design Automation, chapter "Grid routing"

Tinna Schmidt Rasmussen

Side 29 af 38

Appendix

Arch10-1s

Number of valves: 43

Number of intersections: 0

FIRST RUN Number of intersections: 419

MIN Number of intersections: 0

Number of reruns: 4

Running time: 82

Total route length: 3037

Route 1 length: 65

Route 2 length: 66

Route 3 length: 66

Route 4 length: 66

Route 5 length: 68

Route 6 length: 72

Route 7 length: 73

Route 8 length: 72

Route 9 length: 74

Route 10 length: 71

Route 11 length: 75

Route 12 length: 76

Tinna Schmidt Rasmussen

Side 30 af 38

Route 13 length: 77

Route 14 length: 77

Route 15 length: 78

Route 16 length: 77

Route 17 length: 80

Route 18 length: 76

Route 19 length: 75

Route 20 length: 74

Route 21 length: 80

Route 22 length: 83

Route 23 length: 72

Route 24 length: 72

Route 25 length: 73

Route 26 length: 70

Route 27 length: 70

Route 28 length: 73

Route 29 length: 69

Route 30 length: 69

Route 31 length: 69

Route 32 length: 69

Route 33 length: 70

Route 34 length: 67

Route 35 length: 67

Route 36 length: 74

Route 37 length: 64

Route 38 length: 64

Route 39 length: 64

Route 40 length: 61

Route 41 length: 61

Route 42 length: 59

Route 43 length: 59

Tinna Schmidt Rasmussen

Side 31 af 38

Arch10-2s

Number of valves: 39

Number of intersections: 0

FIRST RUN Number of intersections: 109

MIN Number of intersections: 0

Number of reruns: 6

Running time: 39

Total route length: 872

Route 1 length: 49

Route 2 length: 42

Route 3 length: 35

Route 4 length: 35

Route 5 length: 33

Route 6 length: 32

Route 7 length: 29

Route 8 length: 31

Route 9 length: 35

Route 10 length: 33

Route 11 length: 24

Route 12 length: 25

Route 13 length: 24

Route 14 length: 24

Route 15 length: 24

Tinna Schmidt Rasmussen

Side 32 af 38

Route 16 length: 24

Route 17 length: 24

Route 18 length: 24

Route 19 length: 23

Route 20 length: 24

Route 21 length: 23

Route 22 length: 21

Route 23 length: 16

Route 24 length: 16

Route 25 length: 16

Route 26 length: 16

Route 27 length: 16

Route 28 length: 17

Route 29 length: 17

Route 30 length: 17

Route 31 length: 14

Route 32 length: 14

Route 33 length: 15

Route 34 length: 11

Route 35 length: 11

Route 36 length: 11

Route 37 length: 11

Route 38 length: 8

Route 39 length: 8

Tinna Schmidt Rasmussen

Side 33 af 38

ArchIvd2

Number of valves: 50

Number of intersections: 0

FIRST RUN Number of intersections: 405

MIN Number of intersections: 0

Number of reruns: 16

Running time: 588

Total route length: 2114

Route 1 length: 9

Route 2 length: 11

Route 3 length: 11

Route 4 length: 11

Route 5 length: 14

Route 6 length: 17

Tinna Schmidt Rasmussen

Side 34 af 38

Route 7 length: 20

Route 8 length: 22

Route 9 length: 46

Route 10 length: 50

Route 11 length: 65

Route 12 length: 65

Route 13 length: 65

Route 14 length: 65

Route 15 length: 65

Route 16 length: 65

Route 17 length: 65

Route 18 length: 75

Route 19 length: 95

Route 20 length: 98

Route 21 length: 97

Route 22 length: 102

Route 23 length: 101

Route 24 length: 101

Route 25 length: 104

Route 26 length: 103

Route 27 length: 82

Route 28 length: 57

Route 29 length: 36

Route 30 length: 43

Route 31 length: 37

Route 32 length: 34

Route 33 length: 31

Route 34 length: 27

Route 35 length: 27

Route 36 length: 30

Route 37 length: 12

Route 38 length: 12

Route 39 length: 12

Route 40 length: 12

Route 41 length: 12

Route 42 length: 12

Route 43 length: 12

Route 44 length: 12

Route 45 length: 12

Route 46 length: 12

Route 47 length: 12

Route 48 length: 12

Route 49 length: 12

Route 50 length: 12

Tinna Schmidt Rasmussen

Side 35 af 38

ArchSB2

Number of valves: 48

Number of intersections: 5

FIRST RUN Number of intersections: 140

MIN Number of intersections: 2

Number of reruns: 50

Running time: 877

Total route length: 2286

Route 1 length: 66

Route 2 length: 68

Route 3 length: 70

Route 4 length: 49

Route 5 length: 73

Route 6 length: 75

Tinna Schmidt Rasmussen

Side 36 af 38

Route 7 length: 76

Route 8 length: 47

Route 9 length: 51

Route 10 length: 47

Route 11 length: 75

Route 12 length: 73

Route 13 length: 58

Route 14 length: 71

Route 15 length: 63

Route 16 length: 40

Route 17 length: 40

Route 18 length: 40

Route 19 length: 40

Route 20 length: 40

Route 21 length: 40

Route 22 length: 40

Route 23 length: 40

Route 24 length: 40

Route 25 length: 40

Route 26 length: 40

Route 27 length: 48

Route 28 length: 69

Route 29 length: 64

Route 30 length: 38

Route 31 length: 38

Route 32 length: 47

Route 33 length: 50

Route 34 length: 53

Route 35 length: 45

Route 36 length: 43

Route 37 length: 38

Route 38 length: 32

Route 39 length: 32

Route 40 length: 32

Route 41 length: 32

Route 42 length: 32

Route 43 length: 36

Route 44 length: 30

Route 45 length: 33

Route 46 length: 33

Route 47 length: 30

Route 48 length: 29

Tinna Schmidt Rasmussen

Side 37 af 38

ArchSB2s

Number of valves: 47

Number of intersections: 0

FIRST RUN Number of intersections: 169

MIN Number of intersections: 0

Number of reruns: 9

Running time: 94

Total route length: 2614

Route 1 length: 42

Route 2 length: 42

Route 3 length: 42

Route 4 length: 42

Route 5 length: 42

Route 6 length: 47

Route 7 length: 47

Route 8 length: 47

Route 9 length: 47

Route 10 length: 47

Route 11 length: 47

Route 12 length: 47

Tinna Schmidt Rasmussen

Side 38 af 38

Route 13 length: 47

Route 14 length: 47

Route 15 length: 47

Route 16 length: 53

Route 17 length: 50

Route 18 length: 54

Route 19 length: 55

Route 20 length: 55

Route 21 length: 55

Route 22 length: 55

Route 23 length: 55

Route 24 length: 55

Route 25 length: 75

Route 26 length: 55

Route 27 length: 55

Route 28 length: 55

Route 29 length: 61

Route 30 length: 61

Route 31 length: 60

Route 32 length: 55

Route 33 length: 55

Route 34 length: 55

Route 35 length: 55

Route 36 length: 55

Route 37 length: 55

Route 38 length: 60

Route 39 length: 80

Route 40 length: 66

Route 41 length: 74

Route 42 length: 78

Route 43 length: 68

Route 44 length: 65

Route 45 length: 63

Route 46 length: 75

Route 47 length: 66

i

ii

iii

iv

