
Optimization algorithms for the
scheduling of IEEE 802.1 Time-Sensitive

Networking (TSN)

Michael Lander Raagaard Paul Pop

January 2017

DTU Technical Report

DTU Compute
Technical University of Denmark
2800 Kongens Lyngby, Denmark

Abstract

1

TSN is an IEEE effort to bring deterministic real-time capabilities
to IEEE 802.3 Ethernet. TSN meets the bandwidth and dependabil-
ity requirements of emerging mixed-criticality applications, while ensur-
ing timeliness of time-critical communication. The IEEE 802.1Qbv sub-
standard introduces time-aware gates within network devices enabling
fully deterministic temporal behavior of real-time communication. For
each egress port, a Gate Control List (GCL) specifies which queue (traf-
fic class) may transmit at which points in time. Using this functionality
enables frames to be forwarded in the network in a time-triggered man-
ner. In this report, we are interested in synthesizing schedule tables for
periodic time-critical flows on TSN architectures such that timeliness is
guaranteed, i.e., an assignment of critical Ethernet frames to egress port
queues, and a construction of GCLs ensuring that all frames are schedu-
lable. The problem is formulated as a multi-objective combinatorial opti-
mization problem, which minimizes the queue utilization as well as end-
to-end latency. We propose several algorithms to solve this problem, and
evaluate them on synthetic and realistic test cases.

2

Abbreviations

Abbreviation Description
ALAP as-late-as-possible
ASAP as-soon-as-possible
AVB Audio-Video Bridging
BE Best-Effort
CBS Credit Based Shaper
FIFO first in, first out
GCL Gate-Control List
GRASP Greedy Randomized Adaptive Search Procedure
ILP Integer Linear Programming
IQR Interquartile Range
LCM Least Common Multiple
MIP Mixed Integer Programming
MTU Maximum Transmission Unit
OMT Optimization Modulo Theories
PCP Priority Code Point
QoS Quality of Service
RCL Restricted Candidate List
SMT Satisfiability Modulo Theories
TAS Time Aware Shaper
TSN Time-Sensitive Networking
TT Time-Triggered
VID VLAN Identifier
WCD Worst-Case Delay

Notations

Notation Description
A Set of repetitions of si within hyperperiod
α Individual repetition of si within hyperperiod
a Local search strategy
B Set of repetitions of sj within hyperperiod
β Individual repetition of sj within hyperperiod
δ Maximum synchronization error
Dπ(x) Combinations of choosing π link-sharing flows from x

E Data links in network

3

Notation Description
ε Variable for modeling identical queue assignments
ES End systems in network
F Set of all frames
f(x) Metaheuristic objective function
f
[va,vb]
i,m A single frame
f
[va,vb]
i,m .L Transmission duration of f [va,vb]i,m

f
[va,vb]
i,m .φ Periodic offset of f [va,vb]i,m

f
[va,vb]
i,m .φ Lower bound on periodic offset
f
[va,vb]
i,m .φ Upper bound on periodic offset
γ Length of Restricted Candidate List (RCL)
G(E,V) Directed graph of network topology
I Set of all flow instances
K Excess queue usage
κa,b Number of queues used by TT flows in [va, vb]

Λ Additional end-to-end latency
l Ratio of time spent in local search phase
λi End-to-end latency for si
λi Lower bound on end-to-end latency
M Theoretically infinitely large constant
ω Variable for modeling disjunction
π Maximum number of flows to destroy
Φα Feasible region in repetition α
Φ∩ Feasible regions intersection
φ Function for lower bound on period offsets
R Set of all frame repetitions
Ra,b Set of all routes from va to vb
rk Route in network
S Set of all flows
σ Variable for modeling disjunction
si A single flow
si.D Deadline of si
si.I Set of flow instances associated with si
si.k Number of frames on each link of si
si.r Route of si
si.s Sending link of si
si.T Period of si
si.t Receiving link of si
si.va Sending end system for si

4

Notation Description
s
[va,vb]
i Instance of flow si on link [va, vb]

s
[va,vb]
i .F Frames associated with s[va,vb]i

s
[va,vb]
i .ρ Queue assignment for s[va,vb]i

si.vb Receiving end system for si
SW Switches in network
V Devices in network
va Network device, either switch or end system
[va, vb] Data link from va to vb
[va, vb] .c Number of queues associated with egress port [va, vb]

[va, vb] .d Propagation delay on link [va, vb]

[va, vb] .s Transmission rate on link [va, vb]

X Solution space
x Feasible solution
x∗ Optimal solution
z Objective value
z∗ Optimal objective value

1 Introduction 5

1 Introduction

A safety-critical system is a system whose failure or malfunction may cause se-
rious harm to humans, equipment, or the environment. For example, nuclear
plant control, aerospace, or automotive systems. Safety-critical systems usu-
ally run distributed real-time applications with nodes communicating through
a network. In addition to the computational value, the correctness of a real-
time application depends on the time at which results are produced [1]. In
other words, real-time systems must guarantee response within specified time
constraints. Consequently, the communication network must meet certain time-
liness requirements to ensure correctness of the application, such as guaranteeing
that messages are delivered within their deadlines. In this report, we model and
solve combinatorial optimization problems related to communication networks
for distributed real-time safety-critical systems.

Many examples of real-time safety-critical systems exist within the domains
of industrial automation and automotive systems. For instance, consider an
automated manufacturing plant with robots working on production lines [2, 3].
Each robot is made up of several end systems, such as sensors, controllers,
and actuators. For cooperation purposes, the robots are interconnected in a
physical network. In addition, the robots are connected to a centralized control
unit with more computational power than available in each robot. Physical
processes, such as a system of robots, are highly time-sensitive. Missed deadlines
in this context could lead to damaged equipment or even endanger the lives of
workers near the production line. Consider for instance that a sensor in a robot
detects a value that requires all robots to stop immediately. The sensor value is
transmitted through the network to the centralized control unit which decides
to make a stop. Now, it sends a stop message to each robot, which signals the
corresponding actuator. This scenario requires a reliable network with timing
guarantees for critical traffic.

Traditionally, fieldbus [4] technologies, such as CAN [5] and FlexRay [6], have
been used for industrial real-time applications. However, emerging applications
have increasing bandwidth demands. For instance, autonomous driving requires
data rates of at least 100 Mbit/s for graphical computing based on camera, radar,
and lidar data, whereas CAN and FlexRay only provide data rates of up to 0.5
Mbit/s and 10 Mbit/s, respectively [7].

The well-known networking standard IEEE 802.3 Ethernet [8] meets the emerg-

1 Introduction 6

ECU1

ECU2

ECU3

RADAR

SENSOR

CAMERA SOUND

A/C

ENGINE

Figure 1: Safety-critical in-vehicle communication network for the automotive
domain.

ing bandwidth requirements for safety-critical networks, while remaining scal-
able and cost-effective. It does, however, lack real-time capabilities [9]. Hence,
there is a need for Industrial Ethernet [10], i.e., Ethernet in an industrial environ-
ment extended with deterministic real-time capabilities. Many extensions, such
as EtherCAT [11], PROFINET [12], SERCOS III [13], and TTEthernet [14],
have previously been suggested and used in the industry. Although they satisfy
the timing requirements, they are incompatible with each other, and as a result,
they cannot operate on the same physical links in a network without losing real-
time guarantees [3]. Consequently, the IEEE 802.1 Time-Sensitive Networking
(TSN) task group [15] has since 2012 worked on standardizing real-time and
safety-critical enhancements for Ethernet.

The work in this report is based on networks as defined in the Time-Sensitive
Networking (TSN) standard. In such networks, applications with different time-
liness requirements coexist. Network traffic is divided into three categories based
on criticality level: (1) Hard real-time communication where missing a deadline
results in failure, (2) soft real-time communication where deadline misses are
undesired but safe, and (3) best-effort communication without timing require-
ments.

Fig. 1 shows a simplified example from the automotive domain of a network
used for all three traffic types. The figure depicts an in-vehicle network [16, 17]
of modern cars. In this type of network, hundreds of electronic control units
(ECUs) are interconnected for running applications with different timing re-
quirements. For instance, applications for driver assistance systems and au-
tonomous driving require hard real-time communication, while others, e.g., re-
lated to on-board entertainment or driver’s comfort have soft real-time require-
ments or none at all. In the network of Fig. 1, autonomous driving would rely on
data from cameras, sensors, and radars to avoid collisions, while an entertain-
ment application streams data to the sound system. It is crucial that streaming

1 Introduction 7

...

Figure 2: Ethernet switch with frames waiting in queues.

to the sound system does not affect timeliness of the collision detection. The
in-vehicle network must meet the real-time requirements of all applications.

In Ethernet networks, messages are transmitted between end systems as frames.
Frames are forwarded on links, through switches, on a route from sender to
receiver. They queue up in switches during transmission while waiting for the
next link in the route to become available. Each switch has multiple queues,
and frames are filtered into queues based on their priority. When a link becomes
available a new frame is chosen for transmission starting from the top queue.
Hence, the queueing delay for each frame depends on its priority, on how many
other frames are queued in front of it, and on the availability of the next link.
This leads to network congestion causing nondeterministic behavior.

Fig. 2 illustrates an Ethernet switch with its internal queues. The switch has
two incoming links on the left and one outgoing link on the right. One red and
one blue frame are queued in the first and second queue, respectively. The red
frame is chosen for transmission on the outgoing link because it is queued in the
topmost queue. Meanwhile, the blue frame waits in the second queue for the
link to become available. A second blue frame is arriving at the lower incoming
link and is queued in the second queue with the other blue frame.

TSN specifies three traffic classes, denoted Time-Triggered (TT), Audio-Video
Bridging (AVB), and Best-Effort (BE). Time-Triggered (TT) traffic is used for
hard real-time applications where non-determinism is unacceptable. TSN de-
fines mechanisms for forwarding queued frames from a specific queue at precise
points in time. This is implemented by blocking the other queues and relies
on static schedule tables for deciding when to block each queue. These mecha-
nisms provide the basic building blocks for achieving determinism and bounded
end-to-end latency. It is, however, beyond the scope of TSN to define how to
construct the schedule tables.

2 Related Work 8

The second traffic class, Audio-Video Bridging (AVB), is used for soft real-time
applications such as multi-media streaming, where end-to-end latency and jitter
should be minimized in general, but an occasional deadline miss is acceptable.
Best-Effort (BE) traffic is — as the name suggests — suitable for best-effort
traffic. It is only eligible for transmission when it does not interfere with TT
and AVB traffic. Hence, it is to be used for low priority traffic without timing
requirements.

In this report, we focus on the scheduling problem for TT traffic. We assume
that the TSN network topology and TT messages are given as input. The
objective of the report is to design algorithms for synthesizing schedule tables
for TT traffic in order to guarantee timeliness. The schedule must ensure that all
deadlines are satisfied. Furthermore, it should be optimized to meet industrial
application demands [18, 19] for minimal latency and jitter. The schedule must
facilitate a high Quality of Service (QoS) for AVB and BE traffic by using a
minimal number of queues in switches.

We propose three different approaches: (1) One that finds optimal schedules
based on an Integer Linear Programming (ILP) formulation. (2) A scalable,
constructive heuristic for finding feasible schedules. (3) A Greedy Randomized
Adaptive Search Procedure (GRASP)-based heuristic as a trade-off between
tractability and solution quality yielding high-quality schedules in reasonable
time. For comparison, the three approaches are experimentally evaluated on
industrial-sized test cases with high link utilization.

2 Related Work

Synthesizing schedules for distributed real-time applications is a well-studied
problem. It consists of two coupled problems: Scheduling tasks at the processor
level and scheduling frames at the network level. Real-time applications rely
on timeliness at both levels. In [19] the two problems are solved jointly using a
Satisfiability Modulo Theories (SMT) approach, and Zhang et al. [20] propose
a Mixed Integer Programming (MIP) approach for the joint problem.

In this report, however, we focus on synthesizing schedules at the network level.
In the context of TTEthernet, numerous strategies have been proposed for

2 Related Work 9

scheduling frames on network links. Steiner [21] models the problem as a set of
constraints which are then solved by an SMT-solver. In [22] the same author
proposes an extension to the SMT approach where blank spaces are left between
TT frames to avoid starvation of lower-priority frames, thereby improving QoS.
Pozo et al. [23] improve scalability of the SMT-based approach by decomposing
the problem into subproblems which are solved independently. Doing that, they
are able to find feasible schedules for up to 100,000 frames in one hour.

Other approaches have also been proposed, such as a Tabu Search-based meta-
heuristic [24] which minimizes end-to-end latency of lower priority traffic. Avni
et al. [25] propose a scheduling strategy where switches have an error-recovery
protocol, enabling them to utilize secondary paths in case of link failures.

Recent work has addressed the scheduling problem for TSN as well. TSN and
TTEthernet are similar in many ways, but differ in some significant aspects:
Messages in TTEthernet consist of a single frame, whereas TSN messages may
consist of multiple frames. Furthermore, TTEthernet schedule tables are speci-
fied for individual frames, where TSN specifies schedules on a per-queue basis.
Consequently, all messages sharing the same queue are affected by the associ-
ated schedule table. As a result, the work on TTEthernet scheduling is not
directly applicable to TSN networks.

Dürr and Nayak [3] relate the TSN scheduling problem to the “No-wait Job-shop
Scheduling Problem” in order to achieve schedules with minimum network delay
for TT messages. They assume that a single queue is reserved for TT traffic
in every outgoing port and that all messages are repeatedly transmitted within
the same period. With these assumptions they achieve near-optimal schedules
with an Tabu Search-based approach.

Craciunas et al. [26] identify issues affecting determinism in TSN schedules and
define additional TSN-specific constraints for overcoming the issues. Further-
more, they propose an SMT-based approach where the assumptions from [3]
have been relaxed, i.e., TT traffic may utilize multiple queues, and messages
have individual periods. Assigning TT traffic to multiple queues adds flexibil-
ity and enables finding feasible schedules in scenarios with high link utilization.
However, queue usage should in general be minimized where possible in order
to make queues available for lower-priority traffic. Thus, [26] also presents an
Optimization Modulo Theories (OMT) approach for minimizing queue usage.
The work in this report considers the same constraints and assumptions as in
[26] and is an extension of the work we have presented in [27].

3 Report Overview 10

3 Report Overview

The report is structured into nine sections as follows:

Section 2 introduces fundamental Ethernet concepts and describes relevant
TSN protocols.

Section 3 presents the abstraction models for the architecture and application,
i.e., the network and communication models.

Section 4 gives a formal definition of the problem and a motivational example.

Section 5 describes an ILP-based approach for solving the problem to opti-
mality.

Section 6 proposes a constructive heuristic that finds feasible solutions in most
cases.

Section 7 presents an optimization layer on top of the heuristic approach. The
layer is a metaheuristic which attempts to improve solution quality.

Section 8 experimentally evaluates and compares the three approaches on syn-
thetic test cases. They are evaluated in terms of solution quality and
execution time.

Section 9 concludes the report and describes ideas for future work.

4 Time-Sensitive Networking 11

4 Time-Sensitive Networking

This section gives a brief introduction to Time-Sensitive Networking (TSN).
TSN defines three traffic classes: Time-Triggered (TT), Audio-Video Bridging
(AVB), and Best-Effort (BE). The report considers the TT scheduling problem,
and hence, the introduction will primarily focus on TT traffic. At the time
of writing, the work on TSN is still ongoing. In this report we assume TSN
consisting of the standards presented below.

IEEE 802.1ASrev Timing and Synchronization [28]
IEEE 802.1Qav Forwarding and Queueing of Time-Sensitive Streams [29]
IEEE 802.1Qbv Enhancements for Scheduled Traffic [30]
IEEE 802.1Qbu Frame Preemption [31]

Some fundamental Ethernet concepts are introduced before the standards are
explained and related to the traffic classes.

5 Ethernet Networking

TSN is based on a switched multi-hop network architecture adopted from IEEE
802.3 Ethernet. Switches interconnect end systems via full-duplex links, mean-
ing that the physical links enable transmission in both directions simultaneously.
Fig. 3 shows a TSN network architecture with end systems ES1, ES2, ES3, ES4,
and ES5 interconnected via network switches SW1 and SW2. In the figure, a
message is sent from ES2 to ES4 via SW1 and SW2.

5.1 Frames

Messages sent on Ethernet networks are wrapped in Ethernet frames [8, 32]. A
single frame transmits a payload of at most 1500 bytes, the so-called Maximum

5 Ethernet Networking 12

SW2SW1

ES1

ES3

ES2

ES5

ES4

Figure 3: Switched multi-hop full-duplex TSN network.

Transmission Unit (MTU). If the data size of a message is larger than MTU, it
is fragmented into multiple frames. The number of frames needed to transmit
a message with data size x is calculated as d x

MTU e. All frames are assumed to
be MTU-sized, except for the last which contains the remaining data.

In the physical layer, an Ethernet frame itself is wrapped in an Ethernet packet [4,
8]. Fig. 4 shows the different fields in Ethernet packets and frames. The packet
contains a preamble (7 bytes), a start frame delimiter (SFD) (1 byte), the frame
(64–1522 bytes), and an inter frame gap (12 bytes). The purpose of the pream-
ble (including SFD) and the inter frame gap is to mark the beginning and end
of a new incoming frame. The frame itself consists of six fields. The first two
(each 6 bytes) contain MAC addresses of the receiver and sender, respectively.
Then comes the IEEE 802.1Q header [32] (4 bytes), the length of the frame (2
bytes), followed by the payload or message data (42–1500 bytes). The final field
is the frame check sequence (4 bytes) which is a checksum for detecting if the
frame was corrupted during transmission.

Two fields within the IEEE 802.1Q header are of importance to TT traffic:

(i) The VLAN Identifier (VID) is a 12-bit field specifying the Virtual LAN
of a frame. This is used to distinguish frames from different messages.

(ii) The Priority Code Point (PCP) is a 3-bit field specifying the priority level,
i.e., the traffic class such as TT, AVB, or BE. Furthermore, it defines which
queue the frame is assigned to within a switch.

A total overhead of 42 bytes is added to every payload sent on the network. If
the payload is less than the minimum size of 42 bytes then it is padded with

6 AVB and BE Traffic 13

Preamble

7 bytes 6 bytes 6 bytes 4 bytes 2 bytes 42-1500 bytes 4 bytes 12 bytes1B

Destination
MAC

Source
MAC

802.1Q
Header Length

Ethernet packet (84-1542 bytes)

Payload Frame Check
Sequence

Inter Frame
Gap

S
F
D

Ethernet frame (64-1522 bytes)

Figure 4: Overview of Ethernet frame fields.

zeros until reaching the minimum size. Thus, in this case the overhead is even
larger.

5.2 Switches

An Ethernet switch has ingress (incoming) and egress (outgoing) ports con-
necting it via links to surrounding switches and end systems. Each egress port
typically has eight queues for storing frames that wait to be forwarded on the
corresponding link, as shown in Fig. 2. When frames arrive at ingress ports they
are filtered into queues based on their PCP field in the IEEE 802.1Q header.
When a link is idle, a new frame is chosen for transmission from among the
queued frames. If frames are waiting in multiple queues, the topmost queue is
selected, and hence the queue assignment is related to the priority of the frame.
If there are always frames queued in a high-priority queue, this selection scheme
leads to starvation of lower-priority frames. The AVB traffic class is an effort
to prevent this, while still providing low latencies and minimal jitter for the
high-priority frames. It is described in Sect. 6.

6 AVB and BE Traffic

AVB traffic as defined in IEEE 802.1Qav is suitable for soft real-time commu-
nication such as multi-media streaming. In such applications latency and jitter
should be minimized. AVB is implemented using a Credit Based Shaper (CBS)
for shaping traffic. There is one CBS for each AVB-enabled queue in the switch.
Frames are available for transmission when the credit is non-negative. As AVB

7 Time-Triggered (TT) Traffic 14

frames are transmitted, the credit decreases with a send slope. Conversely, the
credit increases with an idle slope slope when AVB frames are waiting in the
queue. The purpose of CBS is to even out AVB traffic to prevent starvation
of lower priority messages [27]. However, the credit based shaper is not robust
and can cause congestion loss [33], which makes it unsuitable for hard real-time
communication.

BE traffic is suitable for low-priority traffic, where there are no timing require-
ments. Hence, BE frames are eligible for transmission when the link is idle, and
there are no eligible frames in higher-priority queues.

In this report, we do not explicitly consider AVB and BE traffic because they do
not influence the TT schedule. Instead, the TT schedule affects the QoS of AVB
and BE in the following way: A schedule that takes up many queues for the
TT traffic, leaves fewer queues available for AVB and BE traffic. Consequently,
schedules using less queues are preferable, as they leave more queues available
for AVB and BE traffic.

7 Time-Triggered (TT) Traffic

TSN defines standards that bring real-time capabilities to Ethernet in the form
of TT traffic. IEEE 802.1ASrev defines a network-wide time-synchronization
protocol which effectively achieves a global notion of time across all switches and
end systems. Clocks must be comparable across devices, if forwarding of frames
is to be controlled accurately. The time-synchronization protocol achieves a
microsecond network precision, denoted by δ. The difference in the internal
clocks of any two devices at any point in time is at most δ.

Utilizing the global network clock, IEEE 802.1Qbv defines a Time Aware Shaper
(TAS) concept which enables scheduling of high priority traffic. TAS controls a
gate for each queue. Frames in a queue are only eligible for transmission if the
queue gate is open. Fig. 5 shows a network diagram with three end systems,
ES1, ES2, ES3, and a single switch, SW1. The switch has two ingress ports and
a single egress port. Egress ports are depicted as boxed arrow tails, ingress ports
as boxed arrow heads, and data links as the lines in-between. Every queue of
the egress port has an associated gate. The gate of the topmost queue is opened,

7 Time-Triggered (TT) Traffic 15

ES3

ES2

t0
q1 0

t1
1

t2

1
...
...

ES1

t0
q1 1

t1
0

t2

0
...
...

SW1

t0
q1 0

t1
1

t2

0
...
...

q2 0 0 1

q8 1 0 0 ...

...

Figure 5: TSN network with diagrams of internal components of end systems
and switches. The figure depicts the situation at time t1 where a
frame (blue arrow) is entering switch SW1 from end system ES2. In
parallel another frame (red arrow) is leaving SW1 at an egress port
towards end system ES3.

enabled the red frame to be selected for transmission. Interference from lower
priority traffic is prevented by closing the gates of the remaining queues, as
shown in the figure. When the egress port is idle, the next frame is selected for
transmission from the queue with highest priority among the queues with open
gates. Opening queues in a mutually-exclusive fashion, allows for full control of
frame forwarding.

In this report, we assume that all TSN devices are scheduled. It means that all
egress ports have a TAS controlling when traffic is transmitted. Conceptually,
when only TT traffic is considered, the egress ports of end systems have a single
queue with an associated gate, as shown in the diagrams for ES1 and ES2.

A Gate-Control List (GCL) defines for each egress port, when the queue gates
are open and closed. In the figure they are depicted as white tables below
queues. 1 and 0 in the GCL represent an open and closed gate, respectively.
For instance, the gate in ES1 is open at time t0 but closed at t1 and t2, and
conversely for the gate in ES2. Using the GCLs to schedule forwarding of frames
in a route from sender to receiver, enables TT traffic suitable for hard real-time
communication.

The GCLs can be constructed in such a way that AVB and BE traffic are pre-
vented from initiating transmission in the time slots reserved for TT frames.
However, non-determinism could still occur, if a lower priority frame is already

7 Time-Triggered (TT) Traffic 16

transmitting on the link at the beginning of a time slot. There are two ways to
prevent this. The first option is to place an MTU-sized guard band before every
TT time slot. The guard band closes all other queues well in advance to ensure
that the link is available when it is time to transmit the TT frame. This option
is undesirable because it decreases the bandwidth available for lower-priority
traffic. The second option is to let the TT frames preempt to lower priority
queues as defined in IEEE 802.1Qbu. When a frame is preempted, its trans-
mission is temporarily paused, so the link becomes available to a higher-priority
frame. Once transmission of the higher-priority frame completes, transmission
of the preempted frame is resumed. A header is added to each fragment of
the preempted frame, which increases the total overhead associated with the
frame. However, the overhead is negligible compared to an MTU-size guard
band. Thus, preemption is the preferred method, if supported by the hardware.

Each GCL has a temporal granularity which we refer to as the macrotick.
For simplicity, and without loss of generality, we assume that all GCLs have
a macrotick of 1 µs. This makes comparing GCLs across different switches
straightforward.

Fig. 5 shows the state of the network at time t1. At this point in time, the first
gate in SW1 is open, while the others are closed, as defined in column t1 of the
GCL. A red frame is queued in q1 of SW1, and the link connecting SW1 and
ES3 is idle. Consequently, the frame in q1 is chosen for transmission because q1
is the only queue with an open gate. This is illustrated with the red arrow.

In parallel, a frame, illustrated with a blue arrow, is being transmitted from ES2

to SW1 because the gate in ES2 is open. The PCP field of the frame dictates
that it is filtered into q2 in SW1. The gate of this queue is closed at time t1, so
it cannot interfere with transmission of the red frame. At time t2, the red frame
has finished transmission. From the t2-column of the GCL in SW1, it is seen
that q1 closes and q2 opens, causing the blue frame to be transmitted to ES3.

8 System Model 17

ES3SW1

ES1

ES2

r1

r2

Figure 6: Architecture model of Fig. 5 with vertices representing end systems
and switches, and edges representing data links.

8 System Model

This section presents the system model used throughout the report. More specif-
ically, it describes the architecture and application model. The architecture
model is an abstract representation of the physical TSN network, including end
systems, switches, and links. The application model is an abstract representa-
tion of the communication protocol for sending messages on a TSN network.
The presented notation is inspired by Craciunas et al in [26].

9 Architecture Model

The topology of a TSN network is modeled as a directed graph G(E,V), where
the set of vertices V is the devices in the network, i.e., the set of all end systems,
denoted ES, and the set of all switches, denoted SW. Hence, V = ES ∪ SW.
The set of edges E represents data links in the network. A directed edge from
va ∈ V to vb ∈ V represents a one-way communication link from va to vb.
Thus, a physical full-duplex link between devices va and vb results in two edges,
denoted [va, vb] ∈ E and [vb, va] ∈ E. Fig. 6 shows the architecture model of the
network in Fig. 5.

Associated with each link is the tuple of attributes (s, d, c) which is explained in
Table 3. Throughout the report an object-oriented notation is used to refer to
specific attributes. E.g., [va, vb] .s refers to the transmission rate of link [va, vb].
The transmission rate is typically 100 Mbps or 1 Gbps. The propagation delay

10 Application Model 18

s ∈ R Transmission rate
d ∈ R Propagation delay
c ∈ N Number of queues in corresponding egress port

Table 3: Attributes for data link [va, vb] ∈ E.

of a link is proportional to the length of the physical link. There is exactly one
egress port for every link and, hence, the notation [va, vb] refers to the link from
va to vb as well as the egress port in va associated with the link to vb. It should
be clear from the context when the notation refers to the link and when it refers
to the egress port. We use [va, vb] .c to refer to the number of queues in egress
port [va, vb]. We assume [va, vb] .c = 1 if va ∈ ES and [va, vb] .c = 8 if va ∈ SW,
as shown in Fig. 5.

A route, rk, is an ordered sequence of links connecting sending end system
va with receiving end system vb. The sequence represents a data path for
sending messages from va to vb. Every route starts and ends in end systems
with one or multiple intermediate switch vertices. Fig. 6 shows two routes:
r1 going from ES1 to ES3, i.e., r1 = ([ES1, SW1] , [SW1, ES3]), and route
r2 = ([ES2, SW1] , [SW1, ES3]). Note that there can be multiple routes con-
necting the same two end systems depending on the network topology. We
denote Ra,b the set of all routes connecting va with vb. Due to the simplic-
ity of the topology in Fig. 6 all pair of end systems have only one route, e.g.,
R1,3 = {r1} and R2,3 = {r2}. In this report we assume all messages are unicast,
and consequently every route is a path with a single destination.

10 Application Model

As the focus of this report is on Time-Triggered (TT) traffic, the application
model considers only this type of traffic. Hence, AVB and BE is not modeled.
The considered TT messages are periodic, which means that they are repeatedly
sent along the network with a certain period. Such a periodic message sent on
a route in the network is called a flow.

10 Application Model 19

T ∈ N Period in microseconds
D ∈ N Maximum end-to-end latency in microseconds
va ∈ ES Sending end system (source)
vb ∈ ES Receiving end system (destination)
r ∈ Ra,b A route in the network connecting va and vb
s ∈ r Sending link, i.e., outgoing link from va

t ∈ r Receiving link, i.e., incoming link in vb
k ⊂ N Number of frames on each link
I ⊂ I Set of flow instances

Table 4: Attributes for flow si = (T,D, va, vb, r, s, t, k, I).

ρ ∈ {1, . . . , [va, vb] .c} Assigned queue for egress port [va, vb]

F ⊂ F Set of frames of si transmitted on [va, vb]

Table 5: Attributes for flow instance s[va,vb]i = (ρ, F).

10.1 Flow Model

TT communication is expressed as a set of flows S. Associated with each TT
flow si ∈ S is a set of attributes specified in Table 4. The meaning of the
attributes for flow si is the following: Every si.T microseconds, a message, in
the form of a sequence of si.k frames, is sent on the network via a route si.r from
end system si.va to end system si.vb. In each period, the entire message must
be received in si.vb within si.D microseconds from the time the transmission is
initiated in si.va. In other words, the last frame in the sequence must be fully
received within the deadline.

A flow instance, denoted s[va,vb]i ∈ I, is the instance of a flow si on a particular
link [va, vb]. I denotes all flow instances in a schedule, and si.I refers to all
flow instances of si. There is one such flow instance for each link in the route
si.r. A tuple (ρ, F) is associated with each flow instance and the attributes
are described in Table 5. The flow instance concept is introduced to denote
the set of frames si.F transmitted on the individual links for flow si. It is also
introduced to capture the assignment of frames to egress port queues. Recall
that [va, vb] denotes the link between devices va and vb as well as the egress
port in va towards vb. The frames s[va,vb]i .F are queued in egress port [va, vb]

during transmission. The attribute s[va,vb]i .ρ specifies to which queue the frames
are assigned, thus it is upper bounded by the number of queues in the device
([va, vb] .c). The flow instance concept ensures that all frames in s[va,vb]i .F are

10 Application Model 20

L ∈ N Transmission duration in microseconds on [va, vb]

φ ∈ [0, si.T − L] Integral microsecond offset within each period

Table 6: Attributes for frame f [va,vb]i,m = (L, φ).

assigned the same queue, while allowing frames of flow si to be assigned different
queues in different egress ports along route si.r.

10.2 Frame Model

We let F denote the set of all frames in a schedule. A single frame f [va,vb]i,m ∈ F
denotes the transmission of the mth frame of flow si on link [va, vb]. Frame
f
[va,vb]
i,m is associated with the attribute pair (L, φ) as described in Table 6. The
transmission duration f

[va,vb]
i,m .L is based on the transmission rate and propa-

gation delay of the physical link [va, vb], and the total number of bytes in the
packet. Suppose that the frame has a payload of MTU (1500 bytes), resulting
in a packet size of 1542 bytes, then the transmission duration on a 1 Gbps link
with negligible propagation delay is calculated in Eq. 1.

f
[va,vb]
i,m .L =

1542 bytes
[va, vb].s

+ [va, vb].d =
1542 bytes

1 Gbps
= 12.336 µs (1)

By only considering the transmission duration of a particular frame, we can
ignore the transmission rate and propagation delay of individual links.

The offset f [va,vb]i,m .φ defines the start time for the frame transmission within each
period si.T . The frame is repeatedly sent at times

φ, si.T + φ, 2 · si.T + φ, 3 · si.T + φ, . . .

For simplicity, we restrict that every frame must be fully transmitted within
its period, yielding a feasible offset interval of φ ∈ [0, si.T − L]. Consequently,
the end-to-end latency of any flow is upper bounded by its period, which means
that only a deadline value less than the period is meaningful (si.D ≤ si.T).

11 Gate-Control List (GCL) Schedule 21

11 Gate-Control List (GCL) Schedule

GCLs for all egress ports make up a deterministic schedule of when to send TT
frames on links. Because of the periodic nature of flows, the GCLs have a certain
cycle time after which they start over from the beginning. Consequently, the
corresponding schedule repeats after this cycle duration which we denote the
hyperperiod [1]. The hyperperiod depends on the periods of the individual flows
because the period of each flow must be a divisor of the hyperperiod, i.e., every
flow period repeats an integral number of times within the hyperperiod. Hence,
the hyperperiod is the Least Common Multiple (LCM) of all the flow periods.

To illustrate the correspondence between GCLs and the resulting schedule, as
well as the newly introduced notation, we present an example: Two flows s1 and
s2 are given in the architecture from Fig. 6 on routes r1 and r2, respectively.
We assume that all data links have a transmission rate of 1 Gbps and negligible
propagation delay. Flow s1 has a data sizes of 1500 bytes, and flow s2 a data size
of 4500 bytes, resulting in one and three MTU-sized frames, respectively. All
frames have equal duration of 12.336 µs as calculated in Eq. 1. The periods of
s1 and s2 are 100 µs and 150 µs, respectively. The flows are given by the tuples:

s1 = (100 µs, 100 µs, ES1, ES3, r1, [ES1, SW1] , [SW1, ES3] , (2)

1, {s[ES1,SW1]
1 , s

[SW1,ES3]
1 }) (3)

s2 = (150 µs, 150 µs, ES2, ES3, r2, [ES2, SW1] , [SW1, ES3] , (4)

3, {s[ES2,SW1]
2 , s

[SW1,ES3]
2 }) (5)

The individual flow instances are defined as follows:

s
[ES1,SW1]
1 = (1, {f [ES1,SW1]

1,1 }) (6)

s
[SW1,ES3]
1 = (1, {f [SW1,ES3]

1,1 }) (7)

s
[ES2,SW1]
2 = (1, {f [ES2,SW1]

2,1 , f
[ES2,SW1]
2,2 , f

[ES2,SW1]
2,3 }) (8)

s
[SW1,ES3]
2 = (2, {f [SW1,ES3]

2,1 , f
[SW1,ES3]
2,2 , f

[SW1,ES3]
2,3 }) (9)

Fig. 7 shows a schedule for transmitting the frames of s1 and s2 illustrated
as a variant of a Gantt chart [34]. The horizontal axis represents the time
dimension, that is, when frames are transmitted. The vertical axis represents
links and queues. A box represents the transmission of a frame on a link. For
instance, the box labeled “1.1” on the row for [ES1, SW1] represents transmission

11 Gate-Control List (GCL) Schedule 22

[ES1, SW1]

[ES2, SW1]

[SW1, ES3]

300150 200 25010050

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

1.1 1.1 1.12.1 2.12.2 2.22.3 2.3

hyperperiod

s2.T
s1.T

time

q1q2

t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12t1t0

Figure 7: Schedule of frame transmissions on links. Flows s1 (red) and s2
(blue) have periods 100 µs and 150 µs, respectively, with hyperperiod
300 µs. The events t1, . . . , t12 represent changes in GCL for egress
port [SW1, ES3] (see Table 7).

of f [ES1,SW1]
1,1 . The thin rows below link [SW1, ES3] illustrate when frames

are in the queues of egress port [SW1, ES3]. A frame is in a queue from the
time transmission is initiated on the previous link, until the time transmission
is initiated on the egress port associated with the queue. Hence, in Fig. 7,
f
[ES1,SW1]
1,1 is in q1 of egress port [SW1, ES3] from t0 until t1 where transmission
of f [SW1,ES3]

1,1 is initiated.

Flow s1, with period 100 µs, has three repetitions within the hyperperiod of
300 µs, while s2, with period 150 µs, has two repetitions. Notice, how the start
time of a frame is at the same offset in each period. For instance f [ES1,SW1]

1,1 is
transmitted at times 0 µs, 100 µs, and 200 µs, corresponding to f [ES1,SW1]

1,1 .φ =

0 µs. This restriction is the reason for the gap between f [SW1,ES3]
2,2 and f [SW1,ES3]

2,3

in the first repetition of s2. In the second repetition of s2 the gap is required
to prevent conflicting with f [SW1,ES3]

1,1 . The model does not allow for different φ
values in different repetitions.

There is an equivalence between the set of GCLs for all egress ports and a sched-
ule like the one presented in Fig. 7. That is, a set of GCLs can be constructed
from a schedule and vice versa. Table 7 illustrates the equivalence by presenting
the GCL for egress port [SW1, ES3]. At time t0 = 0 µs the gates of q1 and q2 for
scheduled traffic are closed while the gates of all remaining queues are open to
allow transmission of lower-priority traffic. At time t1, q1 is opened to transmit

12 Schedule Feasibility 23

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

q1 0 1 0 0 0 0 1 0 0 0 1 0 0
q2 0 0 1 0 1 0 0 0 1 0 0 1 0
remaining 1 0 0 1 0 1 0 1 0 1 0 0 1

Table 7: GCL for egress port [SW1, ES3] for the schedule in Fig. 7. 1 and 0
represent open and closed gates, respectively.

f
[SW1,ES3]
1,1 . At this time all other queues are closed to avoid interference from
frames in other queues. At time t2, f

[SW1,ES3]
1,1 has finished transmission and it

is safe to open q2 instead to initiate transmission of f [SW1,ES3]
1,1 and f [SW1,ES3]

2,2

after which q2 is closed (at time t3) and the remaining queues are opened for
lower-priority traffic. The mutual exclusion of TT queues is what ensures deter-
minism, and the remaining queues should be opened whenever the TT queues
are closed to ensure a high QoS for other traffic types.

For the remainder of this report we will refer to schedules rather than tables
of GCLs. Schedules are much better at visualizing the relationship between
different links and egress ports.

12 Schedule Feasibility

A schedule must satisfy certain constraints in order to ensure feasibility. Some
constraints enforce physical hardware limitations, while others provide real-time
capabilities for time-critical traffic. In combination, they define the solution
space of feasible schedules, i.e. schedules that are both realizable in physical
TSN networks and meet the time-sensitive requirements. The following sections
explain the constraints that define feasible schedules in this report.

12.1 Physical Properties

The solution space for feasible schedules is limited by some physical networking
properties. They are listed below.

12 Schedule Feasibility 24

12.1.1 Link Congestion

A data link is limited by its hardware to only transmit a single frame at a
time, i.e., frames on the same link cannot overlap in the time domain. This
corresponds to the property that boxes on the same row of Fig. 7 do not overlap.
The link can be seen as a critical section, that can only be occupied by a single
frame at a time.

12.1.2 Flow Transmission

A switch cannot forward a frame until the entire frame has been buffered in
the switch. This introduces a forwarding delay for each hop from source to
destination. Due to the small synchronization error of the clocks between de-
vices, the exact time when the entire frame has been received in a particular
switch is unknown. Consequently, the time for forwarding the frame on the
next link should take into account the worst-case synchronization error, δ. For
instance, in Fig. 7, f [ES1,SW1]

1,1 is transmitted on [ES1, SW1] between t0 = 0 µs

and t1 = 12.336 µs. The same frame on the next link, f [SW1,ES3]
1,1 does not ini-

tiate transmission until t1 = 18 µs, because it must wait for f [ES1,SW1]
1,1 to be

fully received in SW1 even with maximum synchronization error. Without loss
of generality, we assume δ = 5.008 µs throughout the report, which means that
transmission of f [SW1,ES3]

1,1 must start after 12.336 µs + 5.008 µs = 17.344 µs.

12.1.3 FIFO Queuing

Frames are selected from egress port queues in a first in, first out (FIFO) fashion,
i.e., frames in a queue should be forwarded in the same order they arrive in.
There could be other physical properties related to the queues, for instance the
maximum number of queued frames. However, for simplicity we assume that
there is no limit on the queue size.

12 Schedule Feasibility 25

12.2 Time-Sensitive Requirements

The schedule must satisfy timeliness requirements for time-critical communica-
tion to achieve bounded latency and minimal jitter. The requirements are listed
below.

12.2.1 Bounded Latency

All time-critical messages must arrive within their relative deadline, i.e., the
end-to-end latency from the time the transmission is initiated until it is fully
received cannot exceed the deadline.

12.2.2 Minimal Jitter

We define jitter as deviations in arrival time of messages from one period to
another. A basic principle in the presented frame model is that each frame is
transmitted at the same offset in every period. This effectively means that the
model enforces minimal jitter, because deviations in arrival time can only be
caused by mechanisms not directly captured by the model, such as the clock
synchronization error.

12.2.3 Deterministic Queues

When a frame is scheduled to be transmitted on a link in a given time interval,
the corresponding GCL is defined to open the associated gate in that interval.
Suppose something goes wrong, so the frame is not fully received, or is not the
first frame in the queue as expected. Then the link transmits the wrong frame
or remains idle when it should be transmitting. Consequently, nondeterminism
is introduced, which means timeliness is compromised.

12 Schedule Feasibility 26

12

AB
1

AB 12
B 2 A 1

(a) Red flow arrives first.

12

AB
1

AB 12
B2 A1

(b) Blue flow arrives first.

Figure 8: Nondeterministic queuing order because the scheduled arrival times
vary with the clock synchronization error.

12

AB

AB 12
B 2A 1

(a) No frame-loss.

12

AB

AB 2
B 2A

(b) Frame “1” is lost.

Figure 9: Nondeterminism caused by the loss of frame “1”. Jitter is introduced
for the blue flow because its frames share queue with the lost frame.

Nondeterminism can occur in the queues in two scenarios:

(i) Frames arriving on different ingress ports are scheduled to arrive at roughly
the same time. Due to the clock synchronization error, the order in which
frames are queued is nondeterministic, and could vary from period to
period. This is illustrated in Fig. 8.

(ii) If a frame is lost for some reason, it of course introduces nondeterminism
for that particular flow, but it could also affect frames of other flows if
they are in the same queue. Fig. 9 illustrates the situation, where the loss
of frame of one flow affects the transmission time of another flow.

To enforce determinism, queue-sharing flows should be scheduled carefully. Frames
of such flows must be scheduled so their arrival times are so far apart that the
arrival order is deterministic even with the maximal clock synchronization er-
ror, and such that only frames of one of the flows are present in the queue at
a time. Analogously to the link congestion property, a queue can be considered
a critical section, which can only be occupied by frames from a single flow at a
time. Fig. 10 illustrates the solution.

12 Schedule Feasibility 27

12

12 1
12

(a) Red flow occupies queue.

AB

AB
B A

12

(b) Blue flow arrives when queue is empty.

Figure 10: Determinism is enforced by scheduling frames of queue-sharing
flows far apart. The arrival time of the blue flow is delayed un-
til the red flow has left the queue.

13 Problem Formulation 28

13 Problem Formulation

In this report, we address the problem of scheduling Time-Triggered (TT) flows
on a network architecture. The problem is formulated as follows: Given a TSN
network topology G(E,V), and a set of TT flows S, determine Gate-Control
Lists (GCLs) for each egress port in the network.

As established in Sect. 10, this corresponds to finding a feasible schedule, i.e.,
feasible assignments for the following two sets of variables:

(i) A queue s[va,vb]i .ρ in egress port [va, vb] for each flow instance s[va,vb]i ∈ I.

(ii) An offset f [va,vb]i,m .φ for the periodic transmission on data link [va, vb] for
each frame f [va,vb]i,m ∈ F .

A feasible schedule satisfies all hardware-imposed constraints while meeting
safety-critical timeliness requirements as described in Sect. 12.

We wish to determine a solution such that two objectives are minimized: (1) The
number of queues used by TT flows, and (2) the end-to-end latency for each
flow. The reason, for minimizing the number of TT queues, is to maximize the
number of queues that remain available for lower-priority traffic, such as AVB
and BE. End-to-end latency should be minimized because it is an important
Quality of Service (QoS) metric in most industrial applications. Furthermore, a
minimized end-to-end latency means frames spend less time waiting in queues,
which help reduce memory requirements for queues.

14 Flow Routing

To simplify the problem, we assume that route si.r of each flow si is given.
The routes can be preprocessed using Dijkstra’s algorithm [35] to determining
a shortest path in the weighted network graph G(E,V). The weight of edge
[va, vb] is computed based on the transmission rate [va, vb] .s and propagation

15 Motivational Example 29

delay [va, vb] .d, such that a shortest path represents the fastest way to transmit
messages from sender to receiver, thereby enabling low end-to-end latencies.

This preprocessing step reduces problem complexity, but could result in sub-
optimal routing in network topologies with redundant routes. However, in this
report, we focus on topologies with only a single route connecting any pair of
end systems.

15 Motivational Example

The running example from Sect. 11 may be used as a motivational example. We
have S = {s1, s2}, and the schedule in Fig. 7 represents a feasible solution to
the presented problem. The solution is given by the assignments in Eq. 10–14:

s
[SW1,ES3]
1 .ρ = 1, s

[SW1,ES3]
2 .ρ = 2 (10)

fES1,SW1

1,1 .φ = 0 µs, fSW1,ES3

1,1 .φ = 18 µs (11)

fES2,SW1

2,1 .φ = 13 µs, fSW1,ES3

2,1 .φ = 31 µs (12)

fES2,SW1

2,2 .φ = 26 µs, fSW1,ES3

2,2 .φ = 44 µs (13)

fES2,SW1

2,3 .φ = 63 µs, fSW1,ES3

2,3 .φ = 81 µs (14)

Queue assignments for end systems are not shown, as they are trivially ρ =
1 because end systems are modeled with only one queue. Every egress port
transmitting TT traffic requires at least one queue for storing TT frames. Hence,
the interesting metric is the total number of excess queues used for TT traffic.
We denote this metric K. The motivational example uses one excess queue,
namely q2 in egress port [SW1, ES3]. Hence, K = 1.

The end-to-end latency for a flow is defined as the time from transmission starts
in the sending end system, and until the last frame has been fully received in the
receiving end system. Every frame in the example has a duration of 12.336 µs,
thus, the end-to-end latencies for s1 and s2, denoted λ1 and λ2, respectively,

15 Motivational Example 30

are calculated in Eq. 15 and 16.

λ1 = (fSW1,ES3

1,1 .φ+ fSW1,ES3

1,1 .L)− fES1,SW1

1,1 .φ (15)

= (18 µs + 12.336 µs)− 0 µs = 30.336 µs

λ2 = (fSW1,ES3

2,3 .φ+ fSW1,ES3

1,1 .L)− fES2,SW1

2,1 .φ (16)

= (81 µs + 12.336 µs)− 13 µs = 80.336 µs

The link congestion (Sect. 12.1.1) and flow transmission (Sect. 12.1.2) con-
straints impose a lower bound on the end-to-end latency. The lower bound is
caused by the fact that each frame must be fully received in a switch before it
can be forwarded, and the fact that links cannot transmit multiple frames at
once. The lower bound depends on the route, and the number and duration
of the frames in a flow. We denote the lower bound for flow si with λi. The
lower bounds for the two flows are λ1 = 30.336 µs and λ2 = 56.336 µs. Sect. 18.1
explains how the bounds are calculated. Similar to queue metric, the interesting
metric is the total amount of additional latency compared to the lower bounds.
The accumulated additional latency, Λ, is calculated in Eq. 17.

Λ = (λ1 − λ1) + (λ2 − λ2) (17)
= (30.336 µs− 30.336 µs) + (80.336 µs− 56.336 µs) = 24 µs

The quality of a solution can be described by the tuple (K,Λ). For the solution
in Eq. 10 - Eq. 14 the objective value is (K = 1,Λ = 24 µs). In general, many
feasible solutions exist for the same problem instance. Fig. 16 shows two different
feasible solutions. One improves K, the other improves Λ. In fact, Fig. 11a is
optimal with respect to K and Fig. 11b is optimal with respect to Λ. Even for
this small example it is not immediately apparent that the end-to-end latency
of Fig. 11b cannot be improved. At first sight, it seems possible to eliminate the
gap between f [SW1,ES3]

2,2 and f [SW1,ES3]
2,3 , thereby reducing Λ to zero. However,

it is not possible to schedule s1 such that it does not interfere with the three
frames of s2.

This motivational example shows that it is difficult to find high-quality solutions
for the presented scheduling problem — even for very small problem instances.

16 Problem Complexity 31

[ES1, SW1]

[ES2, SW1]

[SW1, ES3]

150100 250200500 300

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

1.1 1.1 1.12.1 2.12.2 2.22.3 2.3
q1

time

(a) Optimal with respect to number of excess queues. Objective value: (0, 72 µs).

[ES1, SW1]

[ES2, SW1]

[SW1, ES3]

2501000 300150 20050

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

1.1 1.1 1.12.1 2.12.2 2.22.3 2.3
q1q2

time

(b) Optimal with respect to end-to-end latency. Objective value: (1, 13 µs).

Figure 11: Different feasible schedules for the same problem instance.
(a) is better than Fig. 7 in terms of number of excess queues, (b)
is better in terms of end-to-end latency.

16 Problem Complexity

The presented TT scheduling problem is a multi-objective combinatorial opti-
mization problem. In the following we proof its NP-completeness.

There is a polynomial number of constraints defining the solution space of feasi-
ble schedules. For instance, the link congestion property requires one constraint
for each pair of link-sharing frames. Each constraint can be checked in constant
time, hence it can be verified in polynomial time if a schedule is feasible. This
shows that the TT scheduling problem is in NP.

Scheduling frames within their deadlines is similar to the flow-shop scheduling
problem which is known to be NP-complete [36]. In fact, the decision problem
of flow-shop scheduling reduces to the problem of finding a feasible TT schedule.
In the flow-shop scheduling problem, m jobs are scheduled on n machines. Each
job consists of n operations, one for each machine. The operations must be
carried out in order, such that the first operation of a job is performed on the

16 Problem Complexity 32

first machine, the second operation on the second machine, etc. A feasible
solution must satisfy two constraints:

(i) Machines perform at most one operation at a time.

(ii) One operation of a job must finish before the next operation can start
execution on the next machine.

The execution time of each operation of each job is given. The decision problem
is to determined an arrangement of operations, such that the makespan, i.e.,
total job execution time, is less than some constant D.

The TT scheduling problem is directly mapped to the flow-shop scheduling
problem. Links correspond to machines, flows to jobs, and frames to operations.
Hence, instance X for the flow-shop scheduling problem is transformed into
instance Y of the TT scheduling problem with m flows and n links. Flows
consist of a single frame, and they all have the same route going through the n
links. The period and deadline of all flows are set toD, and all flows are assigned
unique queues. Constraint (i) corresponds to the link congestion property, and
constraint (ii) corresponds to the flow transmission property.

With this mapping, X has a solution with makespan less than D if and only if
the frames in Y are schedulable within their deadline D. Consequently, the flow-
shop scheduling problem reduces to the TT scheduling problem in polynomial
time which concludes the proof that the TT scheduling problem is NP-complete.
In additional to finding a feasible schedule, we are interested in finding schedules
that minimize queue usage and end-to-end latencies. This only adds to the
complexity of the problem.

Assuming that P 6= NP, the scheduling problem cannot be solved to optimality
with any polynomial-time algorithm. The number of solutions increases expo-
nentially with the input size. Since most industrial applications require much
larger schedules than the ones in Sect. 15, advanced optimization strategies are
required to solve the problem.

In the following three sections we present different approaches to solving the TT
scheduling problem. All three represent different compromises between scala-
bility and solution quality. The first, an ILP approach, has a worst-case ex-

16 Problem Complexity 33

ponential running time but with proven optimality. The second, a heuristic
approach, has a polynomial running time but gives no guarantees regarding so-
lution quality. The third, a metaheuristic approach, fills the gap in between the
two other approaches. It iteratively improves solution quality starting from an
initial solution. By using a fast algorithm for generating the initial solution —
such as the heuristic approach — it remains scalable while yielding high quality
solutions due to the iterate improvement.

17 ILP Strategy 34

x*

x2

x1

c

a
b

Figure 12: Two-dimensional polytope for ILP minimization problem.

17 ILP Strategy

Integer Linear Programming (ILP) is a mathematical optimization program con-
sisting of integer variables, a linear objective function, and linear inequalities.
The linear inequalities make up a polyhedron defining the complete solution
space, X, for the problem instance. A feasible solution, x ∈ X, is an assignment
of values to integer variables, such that all inequalities are satisfied. For mini-
mization problems, an optimal solution, x∗, is a feasible solution with minimum
objective value, and conversely for maximization problems.

The objective function, z, is a function mapping solutions to real numbers, i.e.,
z : x→ R. For minimization problems, z∗ denotes the minimum objective value,
hence z∗ = z(x∗) = min{z(x) : x ∈ X }. Solving an ILP problem boils down to
determining z∗ and x∗.

Fig. 12 illustrates the principle of a bounded polyhedron (polytope) defining
the solution space of two integer variables x1 and x2. Only the marked integer
solutions inside the polytope are feasible. The gradient visualizes the objective
values for different locations inside the polytope. The darker the color, the
smaller the objective value, hence, the corresponding minimization problem is
to determine an integer solution x∗ at the “darkest” location. Here x∗ = (1, 2).

Intuitively, it seems like a reasonable solution strategy to find the minimum real -
valued solution inside the polytope, which can be achieving in polynomial time,
and round to nearest integer solution. However, as shown in Fig. 12 this is a
flawed strategy. Point a depicts the minimum real-valued solution, the optimal

18 Objective 35

solution of the so-called linear relaxation. Rounding a to nearest integer solution
yields b = (1, 0), which is not inside the polytope, thus infeasible. Rounding to
a solution inside the polytope, such as c = (2, 1), does not guarantee optimality
as the figure shows.

Many NP-complete problems can be formulated and solved as ILP problems,
and as such ILP itself is NP-hard. Commercial state-of-the-art solvers like
CPLEX [37] and Gurobi [38] are designed to solve complicated ILP problems
with thousands of variables and constraints. The solvers utilize many different
techniques (e.g., branch and bound) for limiting the search space exploration,
thereby improving performance. However, this does not change the fact that
— in the worst case — solving an ILP problem requires full enumeration of all
feasible solutions. The total number of feasible solutions increases exponentially
with the input size for NP-complete problems, including the TT scheduling
problem.

18 Objective

As motived in Sect. 15, the objective of the TT scheduling problem is to mini-
mize the metric pair (K,Λ), where K denotes the total number of excess queues
used for TT flows, and Λ denotes the total extra end-to-end latency introduced
by interfering TT flows. The calculation of K and Λ are shown in Eq. 18 and 19.

K =
∑

[va,vb]∈E

(κa,b − 1) (18)

Λ =
∑
si∈S

(λi − λi) (19)

The variable κa,b ∈ N denotes the number of queues used by TT flows in egress
port [va, vb]. Every TT-enable egress port has at least one TT queue, and as
such the term (κa,b − 1) accounts for the number of excess queues in [va, vb].
The variable λi ∈ N denotes the end-to-end latency for flow si, and λi denotes
a lower bound on the latency, that is, the latency of flow si, as if no other flows
were interfering. Thus, (λi − λi) evaluates to the extra end-to-end latency for
si.

Both metrics, K and Λ, should be as low as possible, which makes the problem
a multi-objective minimization problem. ILP optimizes a single objective value,

18 Objective 36

hence the two metrics are combined into one objective function by introducing
weights c1 and c2 for K and Λ, respectively. The objective value is defined in
Eq. 20.

z = c1 ·K + c2 · Λ
= c1

∑
[va,vb]∈E

(κa,b − 1) + c2
∑
si∈S

(λi − λi) (20)

For instance, by setting c1 sufficiently large, and c2 = 1, the model is configured
to prioritize queue minimization over end-to-end latency, i.e., first the number
of queues is optimized, then end-to-end latency. This will yield the schedule
with minimal end-to-end latency among all schedules using a minimum number
of queues.

18.1 Lower Bound on End-To-End Latency

A lower bound, λi, for the end-to-end latency of flow si is calculated using a
dynamic programming approach. Recall that si is sent on route, si.r, from
sending link si.s to receiving link si.t, and consists of si.k frames. We introduce
the notation f

[va,vb]
i,m .φ to denote a lower bound on the offset of frame f [va,vb]i,m ,

i.e., a lower bound on f [va,vb]i,m .φ. The lower bound is the earliest possible offset
of f [va,vb]i,m if no other flows interfere. Hence, for the first frame on the sending
link we have:

f
si.s
i,1 .φ = 0 (21)

Due to the link congestion property (Sect. 12.1.1), the offsets of the remaining
frames on the sending link is lower bounded by the completion time of the
previous frame. This is formulated in Eq. 22.

f
si.s
i,m .φ = f

si.s
i,m−1.φ+

⌈
f
si.s
i,m−1.L

⌉
∀m ∈ {2, 3, . . . , si.k} (22)

The duration of frame fsi.si,m−1 is rounded up because fsi.si,m .φ only takes integral
values.

Due to the flow transmission property (Sect. 12.1.2), the offset of the first
frame of link [va, vb] is lower bounded by the completion time (plus maximum
synchronization error) of the same frame on the previous link [vx, va]. This is
formulated in Eq. 23.

f
[va,vb]
i,1 .φ = f

[vx,va]
i,1 .φ+

⌈
f
[vx,va]
i,1 .L+ δ

⌉
∀ [va, vb] ∈ si.r \ {si.s} (23)

19 ILP Model 37

Eq. 21, 22, and 23 establish the base cases for the dynamic programming strat-
egy. The offset for any other frame is lower bounded by both the completion
time of the previous frame on the same link and the completion time (plus syn-
chronization error) of the same frame on the previous link. The recursion is
formulated in Eq. 24.

f
[va,vb]
i,m .φ = max

{
f
[va,vb]
i,m−1 .φ+

⌈
f
[va,vb]
i,m−1 .L

⌉
, f

[vx,va]
i,m .φ+

⌈
f
[vx,va]
i,m .L+ δ

⌉}
(24)

With the recursive definition of f [va,vb]i,m .φ, the lower bound on the end-to-end
latency is formulated as the difference between the completion time of the last
frame on the last link, and the offset of the first frame on the first link, as shown
in Eq. 25.

λi = f
si.t
i,k .φ+ f

si.t
i,k .L− f

si.s
i,1 .φ = f

si.t
i,k .φ+ f

si.t
i,k .L (25)

19 ILP Model

The two primary sets of decision variables of the ILP model are the frame offsets
and the flow instance queue assignments. They are both integer variables, hence
f
[va,vb]
i,m .φ ∈ N for all f [va,vb]i,m ∈ F and s[va,vb]i .ρ ∈ N for all s[va,vb]i ∈ I.

The ILP model is made up of three parts. The first part is formulated in
Eq. 26 – 31, with Eq. 26 being the objective function derived in Sect. 18.

min c1
∑

[va,vb]∈E

(κa,b − 1) + c2
∑
si∈S

(λi − λi) (26)

s.t. κa,b ≥ s[va,vb]i .ρ ∀s[va,vb]i ∈ I (27)
λi = f

si.t
i,k .φ+ f

si.t
i,k .L− f

si.s
i,1 .φ ∀si ∈ S (28)

λi ≤ si.D ∀si ∈ S (29)

f
[va,vb]
i,m .φ ≤ si.T − f

[va,vb]
i,m .L ∀f [va,vb]i,m ∈ F (30)

f
[va,vb]
i,m .φ ≥ f [vx,va]i,m .φ+ f

[vx,va]
i,m .L+ δ ∀f [va,vb]i,m , f

[vx,va]
i,m ∈ F2 (31)

The semantics of variables κa,b and λi, as described in Sect. 18, are implemented
by constraints Eq. 27 and 28, respectively. Eq. 27 ensures that each κa,b is lower

19 ILP Model 38

bounded by every queue ID assigned to a flow instance on [va, vb]. Eq. 28 defines
λi to be the time between transmission of the first frame, on the first link, until
the last frame is fully received on the last link of si, analogously to Eq. 25.

Eq. 29 models the bounded latency requirement (Sect. 12.2.1), i.e., it enforces
that every flow arrives within its deadline. Eq. 30 defines an upper bound on
frame offsets, namely, that every frame has to be fully scheduled within its
period as defined in Sect. 10.2. Eq. 31 captures the flow transmission property
(Sect. 12.1.2). That is, frame f [va,vb]i,m on link [va, vb] must start after the same
frame, f [vx,va]i,m , on the previous link, [vx, va], has been fully received in switch
va, even when considering the worst-case synchronization error, δ.

The two remaining parts are slightly more involved and are concerned with cap-
turing the link congestion property (Sect. 12.1.1), and the deterministic queues
requirement (Sect. 12.2.3). These are described in the following.

19.1 Link Congestion

The link congestion property expresses that each link can transmit at most one
frame at a time, i.e., frames on the same link cannot overlap in the time domain.
Eq. 32 models this by enforcing an in-order transmission of frames from the same
flow.

f
[va,vb]
i,m .φ+ f

[va,vb]
i,m .L ≤ f [va,vb]j,n .φ ∀f [va,vb]i,m , f

[va,vb]
i,n ∈ F2,m < n (32)

It models that frames f [va,vb]i,1 , f [va,vb]i,2 , . . . , f [va,vb]i,m , . . . , f [va,vb]i,k are transmitted
ordered by their index, and frame m cannot initiate transmission until after
frame m− 1 is fully transmitted.

Frames of two different flows, si and sj , might have different periods, i.e.,
si.T 6= sj .T . Consequently, they are repeated a different number of times
within their hyperperiod. We denote the hyperperiod of the two flows by
hpi,j = lcm(si.T, sj .T), where lcm(si.T, sj .T) denotes the Least Common Mul-
tiple (LCM) of the two periods. The set of translations of frames of flow si and
sj within the hyperperiod are denoted with A and B, respectively, as formulated

19 ILP Model 39

in Eq. 33.

A =
{

0, 1, . . . ,
hpi,j

si.T
− 1
}
, B =

{
0, 1, . . . ,

hpi,j

sj .T
− 1
}

(33)

Every frame f [va,vb]i,m of flow si, and every f [va,vb]j,n of sj , are repeatedly transmitted
within the hyperperiod at times:

α · si.T + f
[va,vb]
i,m .φ ∀α ∈ A, and β · sj .T + f

[va,vb]
j,n .φ ∀β ∈ B

The frames could potentially overlap in the time domain for any choice of α and
β. Constraints Eq. 34 and 35 prevent such overlaps.

α · si.T + f
[va,vb]
i,m .φ+ f

[va,vb]
i,m .L ≤ β · sj .T + f

[va,vb]
j,n .φ+M · σ (34)

β · sj .T + f
[va,vb]
j,n .φ+ f

[va,vb]
j,n .L ≤ α · si.T + f

[va,vb]
i,m .φ+M (1− σ) (35)

∀f [va,vb]i,m , f
[va,vb]
j,n ∈ F2,∀α ∈ A,∀β ∈ B

Eq. 34 expresses that f [va,vb]i,m must finish before f [va,vb]j,n starts for each choice of α
and β, and Eq. 35 expresses the reverse situation. An auxiliary binary variable
σ ∈ {0, 1} is introduced to model disjunction, such that only one of the two
constraints has to be satisfied. M represents a (theoretically) infinitely large
constant, which causes either the inequality of Eq. 34 or Eq. 34 to be trivially
satisfied if σ = 1 or σ = 0, respectively. Note that there is such a σ-variable for
each choice of f [va,vb]i,m , f [va,vb]j,n , α, and β, but this is left out to simplify notation.

19.2 Deterministic Queues

As concluded in Sect. 12.2.3, deterministic queues are achieved by allowing at
most one flow present in a queue at any given time. Suppose two flows, si and
sj , share the same queue in switch va. Determinism is enforced by restricting
all frames of sj from entering the queue in va while a frame of sj is queued, and
vice versa. Eq. 36 and 37 model the restriction in the simplest case where si
and sj arrive on the same ingress port, [vx, va].

α · si.T + f
[va,vb]
i,m .φ ≤

β · sj .T + f
[vx,va]
j,n .φ+M

(
ω + ε

[va,vb]
i,j + ε

[va,vb]
j,i

)
(36)

β · sj .T + f
[va,vb]
j,n .φ ≤

α · si.T + f
[vx,va]
i,m .φ+M

(
1− ω + ε

[va,vb]
i,j + ε

[va,vb]
j,i

)
(37)

∀f [vx,va]i,m , f
[va,vb]
i,m , f

[vx,va]
j,n , f

[va,vb]
j,n ∈ F4,∀α ∈ A,∀β ∈ B

19 ILP Model 40

Eq. 36 expresses the case where f [va,vb]i,m is scheduled such that it leaves the
queue in va before f [vx,va]j,n enters, and vice versa in Eq. 37. The auxiliary binary
variable ω ∈ {0, 1}, and the large constantM , are used to implement disjunction
in the same way as in Sect. 19.1.

Another auxiliary binary variable ε[va,vb]i,j [39] is introduced to capture whether
or not s[va,vb]i and s[va,vb]j are assigned the same queue. The variable is 1 if and
only if s[va,vb]i is assigned a queue with ID strictly less than the queue ID of
s
[va,vb]
j . The formal definition is presented in Eq. 38.

ε
[va,vb]
i,j =

{
1, s

[va,vb]
i .ρ < s

[va,vb]
j .ρ

0, otherwise
(38)

As such, the sum ε
[va,vb]
i,j + ε

[va,vb]
j,i equals 1 if and only if si and sj are assigned

different queues in egress port [va, vb]. In this case both constraints are triv-
ially satisfied by addition of the huge constant M . The constraints required to
implement the described semantics for ε are formulated in Eq. 39 and 40.

s
[va,vb]
j .ρ− s[va,vb]i .ρ−M

(
ε
[va,vb]
i,j − 1

)
≥ 1 (39)

s
[va,vb]
j .ρ− s[va,vb]i .ρ−M · ε[va,vb]i,j ≤ 0 (40)

∀s[va,vb]i , s
[va,vb]
j ∈ I2

In the case that si and sj arrive on different ingress ports, the constraints
need to take into account the worst-case synchronization error. Suppose that
si arrives on ingress port [vx, va] and sj arrives on [vy, va]. Then the internal
clocks of vx and vy could differ by as much as δ, causing frames to be forwarded
later or earlier than expected. Consequently, the arrival times of frames at the
ingress ports is further restricted by the size of δ. This is modeled in constraints
Eq. 41 and 42.

α · si.T + f
[va,vb]
i,m .φ+ δ ≤

β · sj .T + f
[vy,va]
j,n .φ+M

(
ω + ε

[va,vb]
i,j + ε

[va,vb]
j,i

)
(41)

β · sj .T + f
[va,vb]
j,n .φ+ δ ≤

α · si.T + f
[vx,va]
i,m .φ+M

(
1− ω + ε

[va,vb]
i,j + ε

[va,vb]
j,i

)
(42)

∀f [vx,va]i,m , f
[va,vb]
i,m , f

[vy,va]
j,n , f

[va,vb]
j,n ∈ F4,∀α ∈ A,∀β ∈ B

20 Analysis 41

The FIFO queuing property (Sect. 12.1.3) is implicitly enforced by constraints
Eq. 32, 36, 37, 41, and 42. The first constraint defines a static ordering of
frames within the same flow, resulting in FIFO queuing for such frames. The
remaining constraints restrict that only one flow can occupy a queue at a time,
preventing frames of other flows from interfering with the queueing order. Thus,
an explicit FIFO queuing constraint is redundant. In combination, the entire
set of presented constraints define the polytope for feasible solutions, over which
the objective function is minimized. The presented ILP model is a refinement
of the model we present in [27]. The constraint definitions are inspired by the
SMT-model in [26].

20 Analysis

The polyhedron defining the feasible solutions consists of O(|F|2) constraints,
but the number of constraints is not directly related to the running time for
solving the ILP model. Instead, the running time increases exponentially with
the input size in the worst case. Hence, this method is well-suited for finding
proven optimal solutions for small instances, but is not expected to be tractable
for medium or large problem instances.

21 Implementation Details

The ILP model is implemented in Python using the PuLP package to model
objective function, constraints, and decision variables. PuLP support a number
of commercial and open-source solvers to optimize the modeled problem. We
have primarily used the commercial solver Gurobi [38]. A time limit is given as
an input to the solver. If the problem has not been solved to optimality within
the time limit, the search terminates, and the current best feasible solution is
returned along with a percentage gap to the lower bound. If nothing else is
stated the time limit is set to four hours. Note that it could be the case that
no feasible solution has been found within the time limit. In this case the ILP
strategy fails to solve the problem, either because no solution exists, or because
it was simply not given enough time.

22 Heuristic Strategy 42

22 Heuristic Strategy

We propose a heuristic strategy as a tractable alternative to the ILP approach
presented in Sect. 17. The greedy scheduling algorithm presented in this section
starts with an empty schedule, and iteratively expands the schedule with one
flow at a time. Each flow is scheduled such that the number of queues and
end-to-end latency is minimized.

The algorithm terminates when all flows have been scheduled, or when the
current iteration fails to schedule a flow within its deadline. The advantage of
this approach is that a very limited search space is explored in every iteration,
and there is a finite number of iterations. Consequently, it scales well to large
instances with many flows. The disadvantage is that each iteration does not
consider the flows which are still to be scheduled, and therefore may make poor
choices leading to suboptimal solutions, or it might fail solve some instances.

Algorithm 1 shows the overall strategy of the heuristic. As an input it takes
the set of TT flows S. The algorithm outputs a feasible solution. In the case
of failure, it outputs a partial feasible schedule, consisting of the successfully
scheduled flows until the point of failure.

The first step of the algorithm is to determine the order in which routes are to be
scheduled (line 3). Flows are scheduled in the order of their deadlines, starting
with the earliest deadline. Flows with early deadlines should be scheduled first
to have the best chances of success. As a secondary sorting criteria, flows are
sorted ascending by their period. A flow with low period is repeated more often
within the hyperperiod, and thus, is more difficult to schedule. On the contrary,
a high period flow has more flexibility to “fit around” lower period frames. To
break ties, if the deadline and period of two flows are identical, we use the length
of the routes, under the assumption that longer data paths are more difficult to
schedule.

With the order in place, flows are considered one-by-one. The heuristic assumes
that the primary objective is to minimize the number of queues used for TT
flows, and the secondary objective is to minimize end-to-end latency. Therefore,
it initially attempts to schedule the current flow using only the first queue for
all flow instances (line 6). The subroutine ScheduleFlow(si, x) on line 8
schedules si when considering the already scheduled flows of the partial solution

23 Scheduling a Single Flow 43

Algorithm 1 Greedy heuristic with minimal number of queues.

1: function GreedyHeuristic(S)
2: x← ∅
3: S ′ ← SortFlows(S)
4: for si ∈ S ′ do
5: success← false
6: s

[va,vb]
i .ρ← 1 ∀ [va, vb] ∈ si.r

7: repeat
8: if ScheduleFlow(si, x) = true then
9: x← x ∪ {si}

10: success← true
11: else
12: [vx, vy]← ConstrainingEgressPort(si, x)

13: s
[vx,vy]
i .ρ← s

[vx,vy]
i .ρ+ 1

14: if s[vx,vy]i .ρ > [vx, vy] .c then . Failure
15: return x
16: until success = true
17: return x

x. In case of success it returns true, otherwise it returns false. The internal
workings of this subroutine are elaborated in Sect. 23.

Lines 7–16 contain a feedback loop which increments the queue ID of a relevant
queue every time the algorithm fails to schedule si with the current queue as-
signments. The feedback loop repeats until a successful queue assignment has
been found, or until running out of queues. If the scheduling succeeds, si is
added to the partial solution x (line 9), if not, the algorithm returns the partial
solution found so far (line 15).

23 Scheduling a Single Flow

Given queue assignments s[va,vb]i .ρ for each flow instance, and a partial solution x
of previously scheduled flows, flow si should be scheduled such that the schedule
remains feasible, and the end-to-end latency is minimized. We start out by
explaining a method for determining the feasible regions for the offsets of si, then
we present an as-soon-as-possible (ASAP) strategy for scheduling the frames of

23 Scheduling a Single Flow 44

si, and finally we discuss different ways of minimizing end-to-end latency as a
post-processing step.

23.1 Feasible Regions

The feasible region for f [va,vb]i,m .φ is a set of intervals where f [va,vb]i,m can be sched-
uled without violating the feasibility of the existing partial schedule, x. For any
point in time t in the feasible region for f [va,vb]i,m .φ, the following three conditions
hold:

(i) The link [va, vb] is available in the interval [t; t+ f
[va,vb]
i,m .L], i.e., no frames

in x are transmitted on the link in this interval.

(ii) The assigned queue in egress port [va, vb] is available at time t. If other
frames, arriving from different devices than f

[va,vb]
i,m , are occupying the

queue, the distance to such queue occupations should be at least δ to
account for the synchronization error.

(iii) Similarly, the assigned queue in the receiving egress port [vb, vc] is available
at time t, and also here there should be a distance of δ to all queue
occupations caused by frames arriving from other devices than va.

Fig. 13 shows the feasible regions for s2 of the running example in Sect. 11. In
this scenario, s1 has already been scheduled, i.e., x = {s1}. Each of the frames
in s2 must be scheduled without conflicting with s1. White boxes mark feasible
offset intervals, and grayed-out areas depict infeasible intervals. Fig. 13a shows
the feasible regions for f [ES2,SW1]

2,1 and f
[SW1,ES3]
2,1 when s2 shares queue q1 in

[SW1, ES3] with s1. Fig. 13b shows the same feasible regions when s2 is assigned
its own queue, q2.

The figures illustrate how already scheduled frames in x leave holes in the feasible
regions for frames that are still waiting to be scheduled. It is apparent that the
feasible region of a frame is highly dependent on the availability of its own queue,
as well as the availability of the queue it is about to be forwarded into. If frames
share the same queue, holes are even larger to prevent flows from being queued
at the same time.

23 Scheduling a Single Flow 45

100 25050 200150 300

1.1 1.1 1.1

1.1 1.1 1.1

0
time

(a) Feasible regions using q1 in egress port [SW1, ES3]. Notice the δ-sized padding
before and after queue occupations.

100 25050 200150 300

1.1 1.1 1.1

1.1 1.1 1.1

0
time

(b) Feasible regions using q2 in egress port [SW1, ES3].

Figure 13: Feasible region for f [ES2,SW1]
2,1 and f [SW1,ES3]

2,1 , when considering the
entire hyperperiod for different queue assignments. White boxes
mark the feasible intervals.

Condition (i) enforces the link congestion property (Sect. 12.1.1). The pur-
pose of condition (ii) and (iii) is related to the deterministic queue requirement
(Sect. 12.2.3). Condition (ii) ensures that the assigned queue in egress port
[va, vb] is available when f [va,vb]i,m is scheduled to leave the queue, and condition
(iii) ensures that the queue of egress port [vb, vc] is available when f

[va,vb]
i,m is

scheduled to enter.

However, the two conditions are not sufficient to meet the deterministic queue
requirement. It is not ensured that the queue remains available in the entire
interval, from the time the frame enters the queue, until it leaves. Frame fi,m
is queued in device vb in the interval [f

[va,vb]
i,m .φ; f

[vb,vc]
i,m .φ]. Consequently, there

exist cases where frames are scheduled within their feasible regions, but still
result in infeasible schedules. The blue frames of Fig. 13a illustrate such a case,
where the two flows use q1 at the same time. If they use different queues, like
in Fig. 13b, then the schedule is feasible. Also note that the feasible regions do
not consider other frames of si, hence the feasible regions do not prevent that,
for instance, two frames of si overlap in the time domain.

23 Scheduling a Single Flow 46

Scheduling a frame, f [va,vb]i,m , means determining the offset, f [va,vb]i,m .φ, within its
period. Because a frame is repeated multiple times within the hyperperiod,
a valid offset must be in the feasible region in every repetition. Therefore, the
feasible region is divided into segments, one for each repetition within the hyper-
period. The notation from Sect. 19.1 is reused to denote the set of repetitions,
A, within the hyperperiod:

A =
{

0, 1, . . . , hp
si.T
− 1
}
, (43)

where hp denotes the hyperperiod for all flows in x ∪ {si}.

We let Φα(f
[va,vb]
i,m , x) denote a single segment, α ∈ A, of the feasible region

of f [va,vb]i,m .φ, given the partial schedule x. Intersecting all segments yields the
subset of intervals present in every segment, i.e., offsets resulting in a feasible
solution in every repetition within the hyperperiod. We denote the intersection
Φ∩(f

[va,vb]
i,m , x) and formally define it in Eq. 44.

Φ∩

(
f
[va,vb]
i,m , x

)
=
⋂
α∈A

Φα

(
f
[va,vb]
i,m , x

)
∩ [0, si.T − f

[va,vb]
i,m .L] (44)

As stated in Sect. 10.2, any frame must be fully transmitted within its period.
Hence, an interval corresponding to the duration of the frame has been removed
from the end of the feasible region.

Fig. 14 shows the calculation of Φ∩ for the feasible regions related to queue
assignment q1 and q2. The upper half of each row is the feasible region for q1,
and the lower half is for q2. It shows the feasible region of frames f [ES2,SW1]

2,1

and f [SW1,ES3]
2,1 for the individual segments, as well as the intersected intervals.

Because all three frames of flow s2 have the same duration, the feasible regions
are identical for f2,2 and f2,3.

With the definition of feasible regions, the problem of scheduling si reduces
to choosing an offset for every frame, f [va,vb]i,m , of si such that the offset is in
Φ∩(f

[va,vb]
i,m , x), while ensuring that the deterministic queue requirement is sat-

isfied, and that the individual frames of si do not conflict with each other.
Sect. 23.2 presents a strategy for choosing the offsets.

23 Scheduling a Single Flow 47

0 10050 150
time

(a) Feasible region for f [ES2,SW1]
2,1 .

0 10050 150
time

(b) Feasible region for f [SW1,ES3]
2,1 .

Figure 14: Feasible regions for s2 on q1 and q2, when considering individual
segments and the intersection.

23.2 As-Soon-As-Possible Strategy

The idea behind the ASAP strategy is to maintain a lower and upper bound,
denoted φ and φ, respectively, for the offsets of the individual frames of si. The
bounds are maintained in such a way that feasibility is guaranteed, if offsets are
chosen from the feasible regions while satisfying the bounds.

The lower bound is based on an auxiliary function defined in Eq. 45, where
f
[va,vb]
i,m .(φ+ L) is a shorthand notation for f [va,vb]i,m .φ+ f

[va,vb]
i,m .L.

φ
(
f
[va,vb]
i,m

)
=


0, if m = 1 ∧ [va, vb] = si.s

df [va,vb]i,m−1 .(φ+ L)e, if m ≥ 2 ∧ [va, vb] = si.s

df [vx,va]i,m .(φ+ L) + δe, if m = 1 ∧ [va, vb] 6= si.s

max{df [va,vb]i,m−1 .(φ+ L)e,df [vx,va]i,m .(φ+ L) + δe}, o/w

(45)

The function computes a lower bound on f [va,vb]i,m , such that the flow transmission

23 Scheduling a Single Flow 48

Algorithm 2 As-soon-as-possible scheduling of frames of a single flow.

1: function ScheduleFlow(si, x)
2: for m = 1, 2, . . . , si.k do
3: f

[va,vb]
i,m .φ← 0, f

[va,vb]
i,m .φ←∞ ∀ [va, vb] ∈ si.r

4: [va, vb]← si.s
5: repeat
6: f

[va,vb]
i,m .φ← φ

(
f
[va,vb]
i,m

)
7: φ← EarliestOffset(Φ∩

(
f
[va,vb]
i,m , x

)
, f

[va,vb]
i,m .φ)

8: if φ =∞ then . No solution exists
9: return false

10: else if φ ≤ f [va,vb]i,m .φ then . Success
11: f

[va,vb]
i,m .φ← φ

12: f
[vb,vc]
i,m .φ← LatestQueueAvailableTime([vb, vc], x, φ)

13: [va, vb]← [vb, vc]
14: else . Upper bound violated
15: f

[vx,va]
i,m .φ← EarliestQueueAvailableTime([va, vb] , x, φ)

16: [va, vb]← [vx, va]

17: until [va, vb] = si.t

18: return λi ≤ si.D

and link congestion properties are satisfied, when considering the previous frame
on the same link, f [va,vb]i,m−1 , and the same frame on the previous link, f [vx,va]i,m . It
is similar to the recursion of Eq. 24. See Sect. 18.1 for a detailed description of
the different cases.

Algorithm 2 presents pseudocode for the ASAP strategy. The k frames on
each link of si are scheduled in order, one by one (line 2). The same frame
is scheduled on all links simultaneously by doing a linear search through the
feasible regions of each link, starting with the frame on the first link and ending
with the frame on the last link (lines 5–17). Each frame is scheduled at time φ,
being the earliest offset no less than the lower bound, and within the feasible
region (line 7). If it is not possible to find such an offset, i.e., φ =∞, then the
search fails (lines 8-9).

If φ is below the upper bound (lines 10-13), it is feasible and f [va,vb]i,m is scheduled
at this time (line 11). Furthermore, a new upper bound is set for the offset of
the frame on the next link. The upper bound is set to be the latest point in time
where the queue in egress port [vb, vc] is available and has been continuously

23 Scheduling a Single Flow 49

0 10050 150

1.1 1.1

1.1 1.1

2.1

2.1

2.2

2.2

time

Figure 15: Backtrack-and-reschedule search through feasible regions by means
of upper and lower bounds on frame offsets.

since time φ (line 12). This prevents queue interleaving between frames of si
and x in the egress ports. The search then continues with the next link (line 13).

If φ violates the upper bound (lines 14-16), it means that it was impossible
to schedule the frame when the queue was still available. Consequently, the
previous frame must be rescheduled to a later point in time, where — hopefully
— the current frame can be scheduled when the queue is available. Thus, the
lower bound on the previous frame is increased to the earliest point in time
where the queue is available and remains available until time φ (line 15). Then,
the algorithm backtracks to the previous link (line 16).

Fig. 15 illustrates the principle on the feasible regions for q1. The figure depicts
the scenario, where frame “2.1” has just been scheduled, and the algorithm
searches for feasible offsets for “2.2”. The dark circle represents the start of the
search, the initial offset for the first frame. As this frame is scheduled, it sets
an upper bound, φ, on the offset on the next link. The white circle indicates
the earliest possible position for the frame on the next link. The offset exceeds
the upper bound, which leads to a lower bound, φ, on the previous link. The
algorithm backtracks to the first link and reschedules this frame to satisfy the
new lower bound, which in turn yields a feasible offset on the second link as
well.

When all frames of the flow have been scheduled, the algorithm succeeds if the
end-to-end latency is within the deadline, and fails otherwise (line 18). The
end-to-end latency, λi is calculated as in Eq. 28. Sect. 23.3 explains ways of
improving the end-to-end latency, thereby increasing the chance of success.

23 Scheduling a Single Flow 50

0 100 25050 200150 300

1.1 1.1 1.1

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

2.1 2.12.2 2.22.3 2.3

time

(a) ASAP-scheduling. Objective value: (1, 37 µs).

0 100 25050 200150 300

1.1 1.1 1.1

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

2.1 2.12.2 2.22.3 2.3

time

(b) ALAP-scheduling. Objective value: (1, 19 µs).

Figure 16: Two different scheduling strategies for s2 using q2 in egress
port [SW1, ES3].

Fig. 15 shows that the algorithm will fail to schedule s2 using q1. The third
and final frame of s2 will do a similar backtracking ending up scheduling “2.3”
in the last interval of the feasible region for [ES2, SW1]. However, the frame
cannot be scheduled in [SW1, ES3], while also satisfying the flow transmission
constraint. Fig. 16a, on the other hand, shows a successful ASAP-scheduling of
flow s2 using q2 instead.

As Fig. 16b illustrates, the same idea can be used in an as-late-as-possible
(ALAP) strategy. In such a strategy, the latest possible offset is found for
each frame in reversed order. The roles of the upper and lower bounds are
interchanged, but the basic principle is the same.

23.3 Minimizing End-To-End Latency

The ASAP strategy identifies the earliest feasible offsets for all frames of si, for
a specific queue assignment. There is, however, no guarantee that the offsets
yield the lowest end-to-end latency. The end-to-end latency is improved, if the
first frame on the first link is delayed, i.e., moved closer to the last frame on the

23 Scheduling a Single Flow 51

0 100 25050 200150 300

1.1 1.1 1.1

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

2.1 2.12.2 2.22.3 2.3

time

(a) Frames moved towards same frame on next link. Objective value: (1, 24 µs).

0 100 25050 200150 300

1.1 1.1 1.1

1.1 1.1 1.1

2.1 2.12.2 2.22.3 2.3

2.1 2.12.2 2.22.3 2.3

time

(b) Frames moved towards last frame on last link. Objective value: (1, 13 µs).

Figure 17: Techniques for minimizing end-to-end latency.

last link. In many cases this is possible by shifting frames left or right within the
interval, that they are initially assigned. Such a move does not affect feasibility
of the schedule, if the frames of si comply with the flow transmission and link
congestion properties with respect to each other.

Fig. 17 presents two methods for minimizing the end-to-end latency, both of
which yield better objective values than the original ASAP strategy. Once a
frame has been scheduled on all links, the method in Fig. 17a moves frames as
close as possible to the same frame on the next link. In this way, queueing delay
between the two links is minimized, which in turn reduces end-to-end latency.

The method in Fig. 17b post-processes frame offsets once all frames have been
scheduled. The offsets are post-processed such that all frames are moved toward
the last frame on the last link. By shifting every frame except the last to
the far right, the end-to-end latency is minimized. Analogous methods can
be formulated for the ALAP strategy. There are numerous ways of reducing
the end-to-end latency, besides the two presented here. These are discussed in
Sect. 27.2.

24 Analysis 52

The shifting technique in Fig. 17b yields the optimal objective value for this
particular instance. In general, however, it is not obvious which strategy is
preferable, and it will vary from instance to instance.

24 Analysis

Sorting all flows can be done in O(|S| log |S|) time, but is negligible compared to
the time spend scheduling frames of the individual flows, and is thus disregarded
for the rest of the analysis.

Scheduling frames of a flow involves calculating the intersected feasible regions,
which is done by removing intervals for each frame that is already scheduled.
A hole is added to the feasible region for each repetition within the hyperpe-
riod. The number of frames already scheduled is upper bounded by |F|, and the
number of repetitions of each frame within the hyperperiod is upper bounded
by hp

Tmin
, where hp is the hyperperiod, and Tmin is the shortest period. Conse-

quently, the running time for calculating the feasible regions for a frame on all its
links is O(hp

Tmin
|F|). A tighter bound is achieved by considering the repetitions

of frames individually. We denote |R| the total number of frame repetitions and
define it formally in Eq. 46.

|R| =
∑

s
[va,vb]
i ∈I

hp
si.T

· |s[va,vb]i .F | (46)

With this notation the running time is O(|R|).

Every hole added, introduces at most one additional interval by breaking an ex-
isting interval into two. Thus, the number of intervals is also upper bounded by
|R|. The backtrack-and-reschedule search through the feasible regions considers
each interval at most once as Fig. 15 illustrates. Hence, the running time for
finding feasible offsets for a frame on all its links is O(|R|) as well.

In the worst case, every flow instance s[va,vb]i is assigned once to all [va, vb] .c
queues, which means that the search for feasible offsets is carried out [va, vb] .c

times for each of the si.k frames of every s
[va,vb]
i . The maximum number of

queues in any egress port is denoted cmax. The total number of searches required

25 Implementation Details 53

to schedule si is upper bounded by cmax · si.k · |si.I|, where |si.I| denotes the
number of flow instances. The maximum number of queues, cmax, may be
considered a constant, as it is a result of a hardware limitation and is typically
fixed at eight queues. Furthermore, si.k · |si.I| is equal to the total number of
frames in si, and thus, summing over all flows gives the total number of frames,
|F|. Doing at most |F| searches, each taking O(|R|) time, yields an asymptotic
running time of O(|F| · |R|), which can also be expressed as O(hp

Tmin
|F|2).

The analysis reveals that the running time is highly dependent on the relation-
ship of the periods, as it affects the hyperperiod. For instance, having only a
single period will eliminate the hp

Tmin
factor, but if periods are prime numbers

the hyperperiod could be extremely large. The analysis also shows, that the
running time is not directly related to topology size, but large topologies often
have a large amount of frames to be scheduled.

The main advantage of the heuristic strategy is its polynomial running time,
which means that it can produce feasible schedules where the ILP strategy is
intractable. There is, however, no guarantee of it finding a solution or the
quality of the solution. It makes a polynomial-time, best-effort attempt based
on problem specific observations. In spacious schedules, where deadlines are
not very tight, and the number of frames per link is reasonable, it is expected
to perform and scale well. In very crowded schedules, it might not succeed
even if there exists a solution, and the quality could be poor. As presented in
Sect. 23.3, there are various techniques for potentially improving the quality of
the solution, but one technique is not superior to the others in every scenario.

25 Implementation Details

The heuristic is implemented in Python. To improve performance, computa-
tionally expensive modules have been compiled into C with the Cython [40]
compiler. The following sections present the two most fundamental details of
the implementation.

25 Implementation Details 54

25.1 Availability Lists

The feasible regions are implemented as linked lists of ordered intervals for
every link and queue. The intervals define when the link or queue is available.
Initially, the schedule is empty meaning that all links and queues are available at
all times. Consequently, the availability lists contain a single interval spanning
the entire hyperperiod.

When frames are scheduled on links and in queues, the corresponding intervals
are removed from the availability lists. Conceptually, one such block is removed
for each time a frame is repeated within the hyperperiod. However, to avoid
iterating through the entire hyperperiod an expanding list approach is used
instead. The first flow scheduled on a link only removes intervals within its own
period. When the next flow is scheduled, the list is expanded to consider the
hyperperiod among the two flows, and the current intervals are duplicated to
accommodate the new hyperperiod. This continues for all flows on the link. In
contrast to considering the global hyperperiod for each list, only the hyperperiod
of the flows scheduled on that particular link or queue is considered.

25.2 Feasible Offsets Search

In order to determine offsets for each frame of a flow, the intersections of the
feasible regions are calculated based on all availability lists. Each list is compiled
into a doubly linked list of intervals, where the corresponding link or queue is
available in all repetitions within the hyperperiod of the list. A doubly linked
list enables iterating the feasible regions from left in case of ASAP scheduling
or from right in case of ALAP scheduling.

Note that the feasible regions in Sect. 23.1 define feasible offsets of frames. In
the implementation the intervals specify when the links and queues are available,
hence the regions do not depend on the duration of the individual frames. This
means that the regions can be reused for all frames of a flow. Instead, the
implementation disregards infeasible offsets during the search.

An important difference between the implementation and the description in

25 Implementation Details 55

Sect. 23.1 is that link and queue intervals are kept separate. This makes the
feasible regions search more complicated, because multiple lists are searches si-
multaneously to find the first offset where both link, sending queue, and receiv-
ing queue are available. However, the separation enables the search to identify
constraining queues. That is, if an offset is disregarded during the search due
to a queue being occupied, then that queue is a constraining queue. Assigning
the flow instance to a different queue will potentially allow the frame to start
earlier in case of ASAP scheduling or later in case of ALAP scheduling.

26 Metaheuristic Strategy 56

26 Metaheuristic Strategy

The term metaheuristic was defined by Glover and Laguna as follows:

“A meta-heuristic refers to a master strategy that guides and modi-
fies other heuristics to produce solutions beyond those that are nor-
mally generated in a quest for local optimality.” [41]

Such a master strategy is well-suited for the TT scheduling problem. It may
make use of the heuristic approach presented in Sect. 22. The polynomial-time
heuristic for scheduling a single flow comes in two variations, an as-soon-as-
possible (ASAP) and an as-late-as-possible (ALAP) strategy, each of which can
be post-processed in different ways as outlined in Sect. 23.3. As a result, there
are numerous modifications of the same heuristic, i.e., different ways of schedul-
ing each flow. Finding the best method for each flow requires full enumeration
of all the different ways of combining flows with heuristic variations. The num-
ber of combinations grows exponentially with the number of flows, which makes
the problem intractable for more than a couple of flows. Hence, the idea is to
design a metaheuristic to do a guided search through the different combinations
to find a near-optimal solution in a reasonable amount of time.

A fundamental principle in most metaheuristics is a neighborhood search in
which similar solutions to the current solution are examined. If an improving
solution is found in the neighborhood, the search will continue from this point in
the next iteration, in the hope that more high-quality solutions are to be found
in this area. This is known as intensification. The problem with intensification
is that the search tends to get stuck in local optima, which could potentially be
very far from the global optimum. Thus, most metaheuristics have techniques
for escaping local optima in order to explore the search space on a global scale.
This is called diversification. The success of a metaheuristic relies on a good
balance between intensification and diversification to ensure that the search
converges towards the global optimum [42].

Randomization often plays an important role in both the intensification and
diversification process, ensuring that different paths are exploited, even if the
search ends up where it has previously been. A metaheuristic terminates when
a specified stopping criterion is met. It may be based on the execution time,

27 Greedy Randomized Adaptive Search Procedure (GRASP) 57

number of iterations, or when there has been no improvement for a significant
period of time.

In this section we adapt a well-known metaheuristic to the TT scheduling prob-
lem. The chosen metaheuristic is called Greedy Randomized Adaptive Search
Procedure (GRASP). The choice of metaheuristic is founded on two main ob-
servations made in Sect. 22:

(i) A feasible solution is achievable in a greedy constructive manner, where
flows are scheduled one at a time.

(ii) There are many different ways of scheduling the same flow.

These properties make the problem well-suited for the GRASP metaheuristic,
which is explained in the following section.

27 Greedy Randomized Adaptive Search Proce-
dure (GRASP)

Each iteration of GRASP [43] consists of two phases: A construction phase,
where an initial feasible solution is built, and a search phase, where a neigh-
borhood around the initial solution is examined for improving solutions. The
construction phase contributes with diversification, and the local search ensures
intensification.

The pseudocode in Algorithm 3 describes the overall strategy of GRASP. As
input it takes the problem instance, in this case a set of flows, S, and the
parameters, γ and π, which are explained in Sect. 28 and Sect. 29, respectively.
Like the heuristic, it outputs a feasible solution x of scheduled flows. The
variable x holds the best solution found throughout the search, and is initially
empty (line 2). In each iteration, a new solution x′ is generated in a greedy
fashion (line 4). The solution is subsequently optimized via a local search until
reaching a local optimum (line 5). If the new solution results in a better solution
than the currently best known, then the best solution is updated (lines 6 and

27 Greedy Randomized Adaptive Search Procedure (GRASP) 58

Algorithm 3 GRASP algorithm

1: function GRASP(S, γ, π)
2: x← ∅
3: repeat
4: x′ ← GreedyRandomizedHeuristic(S, γ) . Construction phase
5: x′ ← LocalSearch(x′, π) . Search phase
6: if f(x′) < f(x) then
7: x← x′

8: until stop criterion is met
9: return x

time

objective

Figure 18: Objective value minimization over time for GRASP.

7). This repeats until the stopping criterion is met (line 8), for instance when
the desired execution time has been reached.

Fig. 18 illustrates how the objective value of the current and best known so-
lution progress over time. Black circles indicate the objective value after the
construction phase, and white circles indicate the objective value at the end of
the local search phase. Vertical lines mark the beginning of a new iteration, the
blue line marks the objective value of the best known solution, and the dashed
line marks the global optimum.

The subroutines for the construction phase and search phase are highly problem
dependent. In the presented metaheuristic strategy, they are both based on
the heuristic of Sect. 22, and as such, the metaheuristic can be seen as an
optimization layer applied on top of the heuristic. The subroutines are described
in detail in Sect. 28 and Sect. 29.

27 Greedy Randomized Adaptive Search Procedure (GRASP) 59

27.1 Objective Function

It should be noted, that there is no guarantee that solution x′ is complete,
i.e., that all flows are scheduled. When the algorithm terminates we are only
interested in complete schedules, and hence the objective value of incomplete
schedules should be disregarded. We define the objective function, f , in Eq. 47,
as a tuple containing three metrics. The objective function is an extension of
the one presented in Sect. 18.

f(x) = (|S| − |x|,Kx,Λx) (47)

The first metric is the number of flows that remain unscheduled in x, hence for
all complete schedules the value of this metric is zero. The second and third
metric, respectively, are related to queue usage and end-to-end latency of the
partial solution x, as elaborated in Sect. 18.

We specify, that one objective value is smaller than another, if the first metric
value is smaller. If the values are equal, the second metric is used to break ties,
unless these values are also equal, in which case the third and final metric is used
for comparison. This definition of f(x) first and foremost encourages finding
complete schedules. Queue usage is minimized as a secondary optimization
criterion, and lastly, end-to-end latency is minimized.

27.2 Heuristic Variations

As mentioned previously, there are many ways of scheduling a single flow within
its feasible regions. In this section we present five variations in additional to
the original ASAP heuristic. The same variations exist for ALAP which yields
a total of 12 different ways to schedule a single flow.

Fig. 19 shows an example with all ASAP variations, including the original heuris-
tic in Fig. 19a. The sample flow consists of three frames which are scheduled
in six different ways on two adjacent links, [va, vb] and [vb, vc]. The white boxes
represent the feasible intervals for the frame offsets, i.e., frames must start in
a white box. The primary variation, ASAPQ, is illustrated in Fig. 19b. It at-
tempts to reduce the time frames spend in queues by shifting each frame as
close as possible to the same frame on the subsequent link. Frames on the last

27 Greedy Randomized Adaptive Search Procedure (GRASP) 60

1
1

2
2
3

3

(a) ASAP

1
1

2
2
3

3

(b) ASAPQ

1
1

2
2
3

3

(c) ASAP-L

1
1
2

2
3

3

(d) ASAPQ-L

1
1
2

2
3

3

(e) ASAP-LF

1
1
2

2
3

3

(f) ASAPQ-LF

Figure 19: ASAP heuristic variations.

are not moved, which is illustrated with a thick border in Fig. 19b. The shift
is performed once a frame has been scheduled on all links, affecting the lower
bound of the next frame. Consequently, frames are not necessarily assigned the
same feasible interval as with the original ASAP variation. In Fig. 19b frame “2”
is assigned the middle intervals, whereas the original heuristic assigns it to the
first intervals. By reducing the time frames spend in queues, the overall latency
is minimized. As an important side effect, the method reduces the overall time
the queue is occupied, which could lead to better queue utilization and a lower
total number of queues.

The remaining four variations represent different ways of post-processing the
offsets once all frames have been assigned feasible intervals by either ASAP or
ASAPQ. In ASAP-L (Fig. 19c) all frames are shifted toward the last frame
to reduce end-to-end latency. The schedule produced by ASAP-LF (Fig. 19e)
has been through an additional post-processing step, where all frames are also
shifted toward the first frame. ASAPQ-L and ASAPQ-LF are variations of
ASAPQ that have been post-processed in the same two ways.

The last four variations do not require a new search through the feasible regions,
and are thus computationally inexpensive. Furthermore, ASAP and ASAPQ
make use of the same set of feasible regions, and thus, all six variations arise from
searching through the same feasible regions twice, which is more computationally
efficient than computing each variation separately.

The exact same variations can be formulated for the ALAP heuristic, but every

28 Greedy Randomized Heuristic 61

1
1
2

2
3

3

(a) ALAP

1
1
2

2
3

3

(b) ALAPQ

1
1
2

2
3

3

(c) ALAP-F

1
1
2

2
3

3

(d) ALAPQ-F

1
1
2

2
3

3

(e) ALAP-FL

1
1
2

2
3

3

(f) ALAPQ-FL

Figure 20: ALAP heuristics variations.

shift is reversed compared to ASAP. Consequently, the post-processing steps
first move toward the first frame, then the last. Fig. 20 depicts the variations
for ALAP.

28 Greedy Randomized Heuristic

For the TT scheduling problem we propose a greedy randomized heuristic for
the construction phase. The heuristic is an extension of GreedyHeuristic(S)
presented in Algorithm 1 of Sect. 22. Recall that Algorithm 1 constructively
schedules one flow at a time in a fixed order. Each flow is greedily scheduled
such that the queue usage is minimized, in the partial schedule of the already
scheduled flows.

Randomization is an important aspect of the construction phase to ensure diver-
sification. The idea behind the construction phase is to generate unique starting
points for the local search of each iteration as depicted in Fig. 18. If the same
solution is constructed in each iteration, the construction phase has no effect.
Algorithm 1 deterministically uses the same heuristic for every flow, which makes
it unsuited as a construction phase heuristic. Furthermore, it applies the same
scheduling variation to all flows, but the purpose of the metaheuristic is to find
— for each individual flow — the best variation among the available.

29 Local Search 62

Consequently, we propose an extended randomized version, which we denote
GreedyRandomizedHeuristic(S, γ). The algorithm is modified to handle
each flow in the following ways:

• The increase in objective value is predicted for each of the twelve heuristic
variations.

• A Restricted Candidate List (RCL) of the γ best heuristic variations is
maintained, i.e., the variations yielding the lowest objective value increase.

• The flow is scheduled with a random method from RCL.

The length of RCL, is an input parameter, γ, which should be tuned to get the
best results. If γ = 12, the algorithm simply chooses a random variation, and if
γ = 1 the best variation is always chosen. Note, however, that several variations
may yield the same minimum increase in objective value, and thus γ = 1 still
represents a random choice between these equally good options.

If a method fails to schedule the flow, it is not added to RCL, as this would lead
to an incomplete solution. Thus, it could be the case that all twelve variations
fail, in which case the algorithm terminates and returns the partial solution
constructed so far.

The increase in objective value is predicted by computing frame offsets and
queue assignments for each heuristic variation, but without adding the flow to
the partial solution x. If new queues are utilized, that are not already used
by flows in x, then the queue usage metric increases. The end-to-end latency
metric increases by the latency of the flow being scheduled.

29 Local Search

The purpose of the local search phase is to intensify the search by investigating
a well-defined neighborhood of solutions similar to the current solution. For
the TT scheduling problem this corresponds to schedules where the majority
of flows are scheduled exactly as in the current solution. It is likely that a

29 Local Search 63

better solution arises from rescheduling only a couple of flows. The local search
attempts to identify such reschedulings by destroying part of the schedule, and
repairing it in a different way.

We initially define the neighborhood of a partial schedule x as follows: All the
schedules which can be constructed by removing up to π flows from x, and subse-
quently rescheduling them using one of the twelve heuristic variations presented
in Sect. 27.2. With this definition, the size of the neighborhood grows exponen-
tially with π. Consequently, three measures are taken to limit the neighborhood
size:

• The maximum number of flows to remove is fixed at a low value, for
instance π ≤ 5.

• Only flow combinations sharing at least one link are considered for re-
moval. Rescheduling unrelated flows is unlikely to improve the solution
quality by much.

• Each flow can be scheduled in twelve different ways yielding 12π different
repair permutations. Instead of enumerating them all, the strategy from
Sect. 28 is reused to greedily repair flows one by one.

The following section presents two different strategies for searching through the
reduced neighborhood.

29.1 Search Strategies

The local search is a metaheuristic itself, typically implemented as a hill climbing
algorithm, only accepting improving solutions. It comes in two variations [44]:
First ascent hill climbing, which accepts the first improving solution from the
neighborhood, and steepest ascent hill climbing, where the entire neighborhood
is enumerate and the most improving solution is accepted. The local search
terminates when the entire neighborhood has been searched without finding an
improving solution. In this case, the current solution is a local optimum with
respect to the defined neighborhood.

29 Local Search 64

Algorithm 4 Local search using first ascent hill climbing

1: function LocalSearch(x, π)
2: repeat
3: xc ← x
4: for y ∈ Dπ(xc) do
5: x′ ← xc − y . Destroy
6: for si ∈ y do
7: ScheduleFlowGreedyRandomized(si, x

′) . Repair
8: if f(x′) < f(xc) then
9: x← x′

10: break
11: until stop criterion is met ∨ xc = x
12: return x

For large neighborhoods, full enumeration might be too time consuming, in
which case a stopping criterion may be defined in terms of maximum iteration
count or limited execution time. The stopping criterion ensures that GRASP
returns to the construction phase. As mentioned, a good metaheuristic imple-
mentation has a proper balance between intensification and diversification. For
GRASP, this means spending the right amount of time in the construction phase
versus the local search phase. Hence, the stopping criterion for the local search
phase is an important parameter which should be experimentally tuned to get
the best results.

Algorithm 4 shows pseudocode for a first ascent variation of the local search.
The notation Dπ(xc) is used to denote the set of all possible combinations of
choosing at most π flows from the current solution xc, such that all the chosen
flows share at least one link. These are the set of flows considered for deletion.
Hence, line 4 iterates over all the different ways to delete flows from xc. Flows
are removed to create the incomplete solution, x′ (line 5), which is repaired by
rescheduling flows in a greedy randomized fashion.

Once an improving solutions has been found, the neighborhood loop is ter-
minated, and a new local search iteration begins starting from the new and
improved x (line 3). The local search terminates when the stop criterion is met,
or the entire neighborhood of the current solution has been searched without
finding an improving solution.

Converting the search strategy into a steepest ascent version is straightforward.

30 Analysis 65

It involves maintaining the best x′ found so far, and only update x once the
entire neighborhood has been searched. Apart from this, the procedure is the
same.

30 Analysis

Recall from Sect. 24 that each frame is scheduled on all its links in timeO(hp
Tmin
|F|).

The construction phase reschedules each frame four times, once for each of the
strategies ASAP, ASAPQ, ALAP, and ALAPQ. The post-processing steps re-
sulting in a total of twelve variations are calculated in constant time for each
frame. Hence, the total running time for the greedy randomized heuristic is
O(s · hp

Tmin
|F|2), where s is the number of heuristic variations that require their

own feasible regions search, in this case four.

The local search utilizes the same scheduling algorithm, but reschedules at most
π flows. Let Π denote the maximum number of frames removed in any iteration.
Then rescheduling all removed frames takes O(s ·Π · | hp

Tmin
|F|) time. In a naive

implementation, flows are removed by reconstructing the entire schedule without
the removed flows. This takes O(hp

Tmin
|F|2) time. With clever bookkeeping the

deletion can be optimized by removing the Π frames from the current schedule.
For metaheuristics in general, this is known as delta evaluation. Sect. 31.2
discusses how to do this for the TT scheduling problem.

Overall, each iteration of the GRASP strategy runs in polynomial time, and it
only improves solution quality as it progresses. Hence, it fills the gap between
the exponential-time ILP strategy, and the polynomial-time heuristic strategy.
It is expected to perform well on test cases that are too large for the ILP strategy,
and too congested to solve using a single heuristic strategy. For test cases that
can be solved using a single heuristic strategy, GRASP works as an optimization
layer minimizing the objective function.

The disadvantage of the metaheuristic is the number of settings to tune. The
performance of GRASP is highly dependent on the parameter values, the neigh-
borhood definition, and the local search strategy. Determining the best settings
requires problem-specific knowledge and experimental evaluations.

31 Implementation Details 66

31 Implementation Details

Like the heuristic strategy, the metaheuristic is implemented in Python with
selected modules compiled into C with Cython. The following sections present
the key details related to the implementation.

31.1 Post-processing

The presented post-processing steps involve moving frames within the interval
they are initially assigned. As long as the move is only done within the assigned
interval it can never violate constraints related to other flows. However, the
move could violate constraints related to other frames of the same flow. In
particular, two properties must be respected:

(i) The link congestion property, i.e., frames on a link cannot overlap.

(ii) The flow transmission property, i.e., there should be a spacing of δ between
the same frame on two adjacent links.

This is implemented by traversing the frames in the right order, maintaining
upper and lower bounds. Consider the post-processing step that moves all flows
toward the last frame on the last link. See Fig. 19c. By definition, this frame
does not move, and it sets the upper bound for the offsets of the other frames,
such that (i) and (ii) are satisfied.

The route of the last link is traversed in reversed order, starting from the second-
to-last link. Each frame is moved as far to the right as possible while respecting
the upper bounds. Then, a new upper bound is set for the previous link. This
repeats until the frame has been moved on the very first link. After that, the
post-processing step considers the second-to-last frame on the last link. It is
moved to the right while respecting (i), and then the procedure continues for
the remaining links. The post-processing finishes when the first frame on the
first link has been moved towards its upper bound. The length of this move
is equal to the reduction in end-to-end latency. The procedures for the other
post-processing steps are equivalent.

31 Implementation Details 67

31.2 Deleting flows

Flows are deleted from the current solution by creating a copy where the deleted
flows are left out. As the partial schedule is copied, the new objective value is
calculated. Hence, the implementation does not feature delta evaluation. A copy
is created in every iteration of the local search. However, within an iteration,
the same copy is used for trying out all heuristic variations, and for repairing
all of the removed flows.

In order to implement true delta evaluation, additional data structures are
needed in order to keep track of the effects of each flow. For instance, when
flow si is removed the availability lists (see Sect. 25.1) must be updated, such
that the links and queues are made available in the intervals previously occu-
pied by the frames of si. This requires bookkeeping of all the intervals that were
removed due to the scheduling of si, taking into account that the availability
lists may have expanded since si was scheduled.

Another important aspect of delta evaluation is determining the objective value
of the new partial schedule. When si is deleted, it is straightforward to subtract
the end-to-end latency of si from Λ. However, determining the impact on K is
more involved. K is reduced only if the queue is left unused, i.e., no other flow is
assigned that queue. It requires maintaining the assignments of flows to queues
and updating them accordingly when flows are deleted and repaired.

32 Experimental Evaluation 68

32 Experimental Evaluation

In this section, we evaluate the performance of each of the three presented
strategies. The strategies are evaluated in terms of running time and solution
quality. The number of egress port queues used by a solution is of particular
interest and is considered the primary optimization objective. The strategies
are applied to synthetic, industrial-sized test cases, with high link utilization to
provoke the use of multiple queues.

All experiments were conducted on the DTU High Performance Computing
Cluster, which enables performing up to one hundred experiments in parallel.
16 GB of RAM were reserved for each job. Due to the cluster design, not all
jobs were executed on the same hardware. However, the majority of jobs ran
on a 2.80 GHz Intel Xeon E5-2680 processor.

33 Test Cases

Generating interesting test cases is a problem in itself. If there is too much
space in a schedule, every flow is trivially scheduled with low end-to-end latency
and using only a single queue in each egress port. However, if a schedule is too
congested, there may not exist a feasible solution, and hence, the scheduling
problem is unsolvable.

We assume some parameters are fixed at constant values. For instance, the
network precision is assumed to be δ = 5.008 µs. The transmission rate for
all links is fixed at 1 Gbps, and the propagation delay of each link is assumed
negligible, i.e., it is set to zero. Every egress port is assumed to have eight
queues. Furthermore, the deadline of each flow is set to its period, i.e., there is
no explicit deadline definition. Instead all frames must start and finish within
their period.

We construct six topologies of varying size. The topologies are industrial sized,
and are derived from the work presented in [45]. The topologies are grouped
into three categories based on their size. There are three small topologies, two

33 Test Cases 69

(a) |SW| = 1, |ES| = 3 (b) |SW| = 2, |ES| = 5 (c) |SW| = 3, |ES| = 4

Figure 21: Small network topologies.

(a) |SW| = 18, |ES| = 32 (b) |SW| = 28, |ES| = 48

Figure 22: Medium network topologies.

medium, and a single large, shown in Fig. 21, Fig. 22, and Fig. 23, respectively.
Blue squares illustrate end systems and green circles illustrate switches. The
figure captions present the number of switches and end systems in each topology.
Note, that there are no redundant routes in the topologies, i.e., there exists only
one route between any pair of end systems.

33.1 Flows

The hyperperiod of all flows defines the width of the schedule, and has a major
impact on the complexity of the problem. Thus, the hyperperiod is an important
aspect to consider, when evaluating performance. We define three hyperperiods
of 1 ms, 6 ms, and 30 ms. For each choice of hyperperiod we define high-rate
and low-rate periods as defined in Table 8. High-rate flows have a data size of
either one, two, or three times the Maximum Transmission Unit (MTU) of 1500
bytes. Low-rate flows have data sizes 10, 20, 40, 60, or 100 times MTU. The
choice of periods and data sizes are inspired by [26].

In order to generate flows, that yield difficult scheduling problems in terms of
queue usage and end-to-end latencies, the link utilization should be relatively
high. Thus, we propose the following procedure for generating applications with

33 Test Cases 70

Figure 23: Large network topology with |SW| = 146, |ES| = 256.

high link utilization: High-rate and low-rate flows are repeatedly added to the
set of flows. The sending and receiving end system are chosen at random among
the end systems in the topology. The flow periods are randomly chosen based
on Table 8, and the data size is chosen from the set of data sizes mentioned
above. This procedure is repeated until meeting a threshold, u, for the average
link utilization on all links in the topology, or until no flow can be added with-
out exceeding the threshold by 20% on one of its links. When the procedure
terminates all links have roughly the same utilization with an average close to
u. By incrementally increasing u in the interval between 5% and 45%, flows are
added to the network until multi-queue scenarios arise.

The interesting values for u differ for each choice of topology and hyperperiod.
Low values yield too easy instances, and high values yield instances that are
impossible to schedule. Hence, to determine the proper values of u, the ASAP
heuristic is used as a proxy function to indicate when the network is sufficiently
saturated with flows.

For each choice of topology and hyperperiod, we generate three classes of link
utilization. The classes are denoted high utilization, medium utilization, and
low utilization. They are based on the objective value obtained by the ASAP
heuristic. The high class contains the 30 observations with the highest queue
usage. The low class consists of the 30 observations with the highest end-to-end
latency, that use no excess queues, and medium is the 30 median observations
with respect to both queue usage and end-to-end latency. In total 1620 test
cases are generated in this way, 270 for each of the six topologies.

34 ILP Strategy 71

Hyperperiod High-rate periods Low-rate periods
1 ms 100 µs, 200 µs, 500 µs 1 ms

6 ms 100 µs, 150 µs, 200 µs, 500 µs 1 ms, 2 ms, 6 ms

30 ms 100 µs, 150 µs, 200 µs, 300 µs, 500 µs 5 ms, 10 ms, 30 ms

Table 8: High- and low-rate periods for specific hyperperiods.

topology size
small medium large

1 ms (14, 168) (55, 490) (299, 1749)

hyperperiod 6 ms (13, 429) (49, 1076) (257, 3672)

30 ms (15, 692) (59, 2980) (316, 16449)

Table 9: Application size for different test case parameters. Each cell contains
a tuple (|S|, |F|), denoting the average number of flows and frames,
respectively.

Table 9 shows the average number of flows and frames for every pair of topology
class and hyperperiod. Overall, the test instances range from a few hundred
frames to tens of thousands of frames.

34 ILP Strategy

We propose two variations of the ILP strategy of Sect. 17. The difference be-
tween the two is only in the objective function definition. Recall that the general
form of the objective function is

z = c1 ·K + c2 · Λ (48)

where K is the number of excess queues used by TT flows, and Λ is the total
end-to-end latency introduced as a result of interference between flows.

The first variation, denoted ILP-K, only minimizes the number of queues, cor-
responding to c1 = 1, c2 = 0. The second variation, denoted ILP-KΛ, has K as
its primary optimization objective, and Λ as a secondary objective. This corre-
sponds to setting c1 = M and c2 = 1, where M is a sufficiently large number,
for instance the sum of all periods.

34 ILP Strategy 72

(a) ILP-K

(b) ILP-KΛ

Figure 24: Execution time of ILP strategy for different levels of link utiliza-
tion. Points indicate a proven optimal solution, + indicate the best
known solution when exceeding the four-hour time limit.

The strategies are benchmarked on the smallest topology size and the shortest
hyperperiod (1 ms). There are 270 such test cases. A cut-off time of four hours is
used, after which the algorithm terminates, returning the best known solution.
Thus, if the time limit is exceeded there is no proof of optimality, even though
the best known solution may be optimal or near-optimal.

Fig. 24 shows the execution time for each of the 270 test cases, categorized
by link utilization. The execution time is plotted on a logarithmic scale to
visualize the exponential nature of the problem. The figure shows that ILP-K
is in general easier to solve, as more executions finish within the time limit.
This seems reasonable as ILP-KΛ solves a multi-objective problem. The plots
also reveal that the problem complexity grows with the link utilization. Fewer

35 Heuristic Strategy 73

executions are solved to optimality as the link utilization increases. As a result
only 53% of the high utilization test cases are solved to optimality for ILP-K,
and only 11% for ILP-KΛ.

Both ILP strategies seem unsuited for anything but the smallest topologies
and shortest hyperperiods. They can, however, serve as important tools for
benchmarking other strategies, if test cases can be solved to optimality in a
reasonable amount of time.

35 Heuristic Strategy

Sect. 22 presents a polynomial-time heuristic. In Sect. 27.2 the heuristic is gen-
eralized into twelve different variations. In the following sections, we evaluate if
one heuristic variation is preferable to the others, how solution quality compares
to the optimum, and finally how an increase in problem size affects running time.

35.1 Variations Comparison

There are four different heuristics, ASAP, ASAPQ, ALAP, and ALAPQ, each
of which can be post-processed in two ways in addition to the original heuristic.
This yields twelve variations. None of the heuristics guarantee to find a solution
if one exists. Hence, it is an important metric to evaluate how many test cases
are solved by each heuristic.

Fig. 25 shows the percentage of solved test cases for each heuristic variation.
In case the heuristic is not able to schedule all flows, it will return a partial
schedule with the flows it was able to schedule. Here, however, we only consider
a problem solved if all flows are scheduled.

Recall, that the test cases have been constructed using ASAP as a proxy func-
tion. Thus, per definition ASAP solves all test cases. From the figure, the ASAP
strategies seem slightly better at finding solutions than the ALAP strategies.

35 Heuristic Strategy 74

Figure 25: Percentage of solved test cases for heuristic variations.

This could be a result of the construction procedure. That is, ASAP strategies
are given an unfair advantage when test cases are constructed. With this in
mind, we calculate the average solve percentage in the last column of Fig. 25.
It is expected that the heuristics will achieve around 90% solved test cases in
real-life scenarios with similar link utilizations, topology sizes, etc.

1134 of 1620 test cases are solved by all variations. This subset of test cases
is used to compare the solution quality among the heuristic variations. Fig. 26
and Fig. 27 show box plots for the distributions of test cases in terms of queue
usage (K) and end-to-end latencies (Λ), respectively.

A box plot [46] is a standardized way of visualization distributions of data based
on the five metrics: Minimum, first quartile, median, third quartile, and max-
imum. The rectangle spans the first quartile, median, and third quartile. The
height of the rectangle is denoted the Interquartile Range (IQR). The maxi-
mum is defined as the observation that is 3

2 IQR above the third quartile, and
the minimum is conversely the observation 3

2 IQR below the first quartile. Ob-
servations above the maximum or below the minimum are considered outliers
and are depicted as individual points.

For instance, the box plots in Fig. 26 depict that 75% of all test cases are solved
using 3 of fewer excess queues, and 50% are solved using zero or one excess
queue. The box plots are identical for all twelve variations when considering

35 Heuristic Strategy 75

(a) box plot (b) box plot, without outliers

Figure 26: Queue usage comparison for heuristic variations.

(a) box plot (b) box plot, without outliers

Figure 27: End-to-end latency comparison for heuristic variations.

queue usage. For end-to-end latency there is a little more variation, but in
general the heuristics perform similar.

Fig. 28 shows queue usage categorized by link utilization. As expected, test
cases with higher link utilization require more queues. The ALAP strategies
yield slightly better queue usage for medium and high utilizations. However,
when considering both queue usage and end-to-end latencies for varying link
utilizations, hyperperiods, and topology sizes, it is not possible to determine a
superior strategy among the twelve. See Fig. 34 and 35 in Sect. 39.

35 Heuristic Strategy 76

Figure 28: Queue usage for heuristic variations at different link utilizations.

Figure 29: Queue usage for BEST heuristic compared with optimum.

As a result, it seems like a reasonable strategy to perform all twelve heuristics
on each test case and choose the one yielding the lowest objective value. The
distributions for this strategy, denoted BEST, are depicted in the last column of
all box plots. BEST is used for comparison with the metaheuristic in Sect. 36.4.

35.2 Compared to Optimum

Fig. 29 shows queue usage for the smallest three topologies with hyperperiod
1 ms. These are the test cases solved by ILP-K, hence, the optimum is known.
If ILP-K failed to find the optimum within the time limit, the best feasible
solution is assumed the optimum. Black lines depict the optimal number of

35 Heuristic Strategy 77

Figure 30: Average heuristic execution time as a function of |F| · |R|.

excess queues, and points represent the best solution found using any of the
twelve variations, i.e., the BEST heuristic. The thin colored lines depict the
average number of extra queues used by the heuristic compared to the optimum.
For medium utilization, the heuristic on average used 1.0 more queues than the
optimal solution. For high utilization the same number is 3.0. For low utilization
the number is zero as ASAP solves all these with no excess queues per definition.
The heuristic found an optimal solution for 28% of the medium utilization test
cases, and for 7% of the high utilization test cases.

35.3 Execution Time

In Sect. 24 the asymptotic running time of the heuristic is analyzed to be O(|F|·
|R|), where |F| is the total number of frames, and |R| is the total number of
frame repetitions. This is due to the fact that each of the |F| must be scheduled
while considering a partial schedule consisting of |R| already occupied intervals.
Hence, the running time of the algorithm grows with not only the number of
frames, but also the number of repetitions of individual frames.

The running time is visualized as a function of |F| · |R| in Fig. 30. The figure
indicates a linear relationship which is in accordance with the analysis. Each
data point represents the average performance of all heuristics for a specific
combination of hyperperiod and link utilization.

36 Metaheuristic Strategy 78

Deviations from the straight line are most likely caused by multi-queue scenarios.
That is, if a flow cannot be scheduled on a queue, all the work done to schedule
it on this particular queue is discarded, and the flow is attempted scheduled on
the next queue. Hence, test cases where this happens often take longer than test
cases that are immediately scheduled on the first queue. This is not accounted
for in Fig. 30.

36 Metaheuristic Strategy

Sect. 26 presents a metaheuristic strategy, which basically searches for the best
way of combining the twelve heuristics. In the following subsections we decide
on a stopping criterion for the metaheuristic, tune its parameters for better
results, and finally compare the performance of the tuned metaheuristic with
the optimum and with the heuristic approach.

36.1 Execution Time

The stopping criterion for the metaheuristic is defined as a maximum execution
time. The objective value will only improve over time, and thus, higher execu-
tion times will result in better solutions. The objective value decreases the most
in early iterations, and at the later stages improvements are small and unlikely.
Hence, at some point, the additional execution time is not worth the potentially
small decrease in objective value. The execution time should be defined based
on this.

Furthermore, the execution time should take into account the size of the test
case, as each iteration takes longer for larger test cases. As a result, we decide
to let the smallest test cases run for one minute, and the largest for one hour.
Running times for the remaining test cases increase with the hyperperiod and
topology size as shown in Table 10.

The variable execution times allow all test cases to roughly explore the same
fraction of the solution space, while still ensuring that the algorithm terminates

36 Metaheuristic Strategy 79

topology size
small medium large

1 ms 1 min 5 min 15 min
hyperperiod 6 ms 5 min 15 min 30 min

30 ms 15 min 30 min 60 min

Table 10: Fixed execution times for GRASP.

within a reasonable amount of time. The execution times represent a trade-off
between solution quality and tractability.

36.2 Parameter Tuning

The GRASP metaheuristic as described in Sect. 26 comes with several param-
eters listed below.

(i) The length, denoted γ, of the Restricted Candidate List (RCL).

(ii) The ratio of time spent in the local search phase compared to the con-
struction phase. This parameter is denoted l.

(iii) The neighborhood definition in terms of the maximum number of flows to
remove from the current solution. This parameter is denoted π.

(iv) The local search strategy, denoted a. Either a steepest ascent or a first
ascent hill climbing metaheuristic.

The parameters should be tuned to find the values yielding the best results. The
set of test cases is divided into two subsets, a training set and a test set. The
training set consists of 540 (33%) representative test cases, and the test set is
the remaining 1080 test cases. The parameter values are tuned on the training
set. Subsequently, the metaheuristic is benchmarked on the test set with fixed
parameter values.

36 Metaheuristic Strategy 80

γ = 1 γ = 2 γ = 4 γ = 6

solved 90.1% 89.6% 89.3% 87.5%
objective (avg) (1.89, 5154) (1.95, 5370) (2.03, 5450) (2.20, 5653)

objective (std) (2.43, 7683) (2.53, 8063) (2.70, 7958) (2.88, 8230)

Table 11: Performance of training set for varying γ.

l = 2 l = 3 l = 5 l = 10

solved 98.7% 98.7% 98.7% 98.7%
objective (avg) (0.94, 4938) (0.96, 4870) (0.96, 4838) (0.97, 4906)

objective (std) (1.58, 8193) (1.65, 8003) (1.65, 7611) (1.76, 8066)

Table 12: Performance of varying l on training set. Parameters fixed: γ = 1.

36.2.1 Construction Phase

The parameter, γ, relates only to the construction phase of the metaheuristic.
Thus, it can be determined independently of the others. Table 11 shows the
benchmark results for four different values of γ. Each of the 540 test cases have
been solved 10 times with the GreedyRandomizedHeuristic as explained in
Sect. 28.

The performance of each parameter value is evaluated based on three features:
The percentage of solved test cases, the average objective value (avg), and the
standard deviation (std) of the objective value. Naturally, a good parameter
value yields a high solve percentage, and has a low average objective value with
little deviation. The table shows that γ = 1 is preferable on all three features.
Hence, from this point on, γ is fixed at 1. Recall that γ = 1 corresponds
to choosing randomly among the heuristic variations that yield the minimal
objective value for each flow.

36.2.2 Local Search Phase

Three parameters are related to the local search phase: Time spent in the local
search phase, neighborhood definition, and local search strategy. Ideally, all
combinations of all parameter values should be tried to find the optimal settings.

36 Metaheuristic Strategy 81

π = 2 π = 3 π = 4 π = 5

solved 98.7% 98.7% 98.7% 98.7%
objective (avg) (0.92, 4848) (0.94, 4938) (0.91, 4772) (0.92, 4915)

objective (std) (1.53, 7850) (1.58, 8193) (1.54, 7550) (1.59, 7922)

Table 13: Performance of varying π. Parameters fixed: γ = 1, l = 2.

a = first ascent a = steepest ascent
solved 98.5% 98.7%

objective (avg) (0.91, 4805) (0.91, 4772)

objective (std) (1.57, 7618) (1.54, 7550)

Table 14: Performance of search strategies with γ = 1, l = 2, π = 4.

However, to limit the number of combinations to evaluate, the parameter values
are instead determined greedily, ordered by the assumed importance.

The first parameter to tune is l, i.e. the amount of time spent in the search
phase. A value of l = 2 means that twice as much time is spent in the local
search phase than the construction phase. With γ fixed at 1, new experiments
are conducted for different values of l. Each test case in the training set is solved
once for each value of l, and with the execution time defined in Table 10. The
benchmark results are shown in Table 12. In general, the benchmark results are
very similar for all values of l, but l = 2 yields the lowest average queue usage.
Thus, l is fixed at 2.

The same procedure is repeated for different values of π. Based on the results
presented in Table 13, π is fixed at 4. In the same way, steepest ascent is chosen
as the local search strategy based on Table 14. In conclusion, the following
parameter values are chosen based on the tuning:

γ = 1, l = 2, π = 4, a = steepest ascent

36.3 Compared to Optimum

Fig. 31 compares the metaheuristic with ILP-K for small topologies and hy-
perperiod 1 ms. On average, it uses 0.02 more queues than the optimum with

36 Metaheuristic Strategy 82

Figure 31: Metaheuristic queue usage compared to optimum for smallest
topologies with hyperperiod 1 ms.

low utilization, 0.22 extra queues with medium utilization, and 1.2 extra queues
with high utilization. It solves 98%, 78%, and 33% of test cases to optimality
with low, medium, and high utilization, respectively. Comparing with Fig. 29,
the metaheuristic is on average better than the BEST heuristic.

Notice, that there is one data point below the optimal value for high link utiliza-
tion. This is due to the fact ILP-K does not finish within the time limit for this
test case. The best feasible solution found by ILP-K is assumed optimal, which
turns out to be a wrong assumption in this particular case, as the metaheuristic
is able to find a better solution.

36.4 Compared to Heuristic

The GRASP method is compared to the BEST heuristic, which is defined as
the best of the twelve heuristic variations for each test case. However, ASAP
solves all test cases because it was used as a proxy-function to construct the
test cases. This gives an unfair comparison. Thus, the average solve percentage
among the twelve variations is used instead.

We introduce a third strategy, GRASP-I, which denotes a variation of GRASP
that terminates once a complete, feasible solution has been found. Comparing
GRASP-I with GRASP gives an indication of how much the solution quality
improves over time.

36 Metaheuristic Strategy 83

(a) solve percentage (b) queue usage (c) end-to-end latency

Figure 32: Comparison of heuristic, GRASP-I, and GRASP.

Fig. 32a shows the solve percentage for the three strategies evaluated on the
test set. As GRASP only improves upon the initial solution it is expected that
GRASP and GRASP-I solve the same number of test cases.

Fig. 32b and 32c show queue usage and end-to-end latencies for the three strate-
gies. GRASP is able to reduce queue usage and end-to-end latency significantly
compared to both the heuristic and GRASP-I. The figure shows that GRASP
is able to schedule 50% of test cases using no excess queues, and 75% are solved
using no more than two excess queues. For end-to-end latency, 50% are solved
with a total latency less than 2000, and 75% are solved with latency less than
7000. The figures also indicate that GRASP-I improves end-to-end latency
slightly compared to the heuristic, but does not seem to improve queue usage.

Fig. 33 shows queue usage for different levels of link utilization. The box plots
clearly show that GRASP outperforms the heuristic at high link utilization. On
average, GRASP uses 2.9 excess queues at high utilization, where the heuristic
uses 5.9 excess queues. Thus, a reduction of 51%. When considering end-to-end
latency the improvement was 18%. See Fig. 36 and 37 in Sect. 39 for details.

GRASP-I uses 5.1 queues on average for high utilization, thus GRASP improves
the queue usage by 43%. Furthermore, GRASP reduces end-to-end latency by

36 Metaheuristic Strategy 84

Figure 33: Queue usage of heuristic, GRASP-I, and GRASP at different link
utilizations.

Time Iterations
Average 5.5s 1.1
Median 1.4s 1

Maximum 60.7s 6

Table 15: Running time and iteration count for GRASP-I. This corresponds
to the time and iteration at which GRASP finds the first feasible
solution.

2%. Table 15 show timing statistics for GRASP-I. At most six GRASP iterations
are needed to find a feasible schedule in around one minute. In half of the cases
only a single iteration and less than two seconds were sufficient to find the first
feasible solution.

37 Conclusions and Future Work 85

37 Conclusions and Future Work

This section presents the main conclusions of the report and discusses ideas for
future research.

38 Conclusions

In this report we have proposed methods for configuring communication net-
works in safety-critical real-time systems. We presented the problem of schedul-
ing Time-Triggered (TT) traffic in time-sensitive networks as defined in the
IEEE 802.1Qbv standard. Periodic messages, called flows, are fragmented into
frames which are sent from sender to receiver via network switches. Frames are
forwarded in a time-triggered manner by configuring Gate-Control Lists (GCLs).
The GCLs define when to open and close gates associated with each egress port
queue in network switches.

The problem of configuring GCLs corresponds to scheduling the temporal off-
set of each frame within its period, and assigning flows to egress port queues.
Schedules must satisfy several constraints in order to be feasible. In particular,
we have identified a constraint needed to ensure deterministic queue forwarding:
Flows cannot wait in a queue at the same time. As a result, frames of different
flows must be temporally or spatially isolated, such that they either do not use
the queue at the same time, or are assigned different queues.

The problem was defined as a multi-objective optimization problem, minimizing
the total number of queues used by time-triggered flows, as well as their end-to-
end latencies. We have showed that the problem is NP-complete, implying that
no polynomial-time algorithm finds the optimal solution. Hence, any algorithm
is a trade-off between tractability and solution quality. In this report we have
proposed three strategies, each representing a different choice for this trade-off.

The first strategy is an Integer Linear Programming (ILP)-based approach. It
minimizes an objective function, which is a combination of the two objective
metrics. The objective function is minimized while satisfying a set of constraints

38 Conclusions 86

defining the solution space of feasible schedules. There are many advantages
to this approach: It finds proven optimal solutions, it is guaranteed to find a
solution if one exists, and it is easy to add constraints to the model once they are
formalized. It has one major drawback, though: Its running time is exponential
in the worst case, making it intractable for industrial-sized applications.

The second strategy is a constructive heuristic strategy. It schedules flows one-
by-one in a predetermined order, attempting to minimize queue usage. Once
a flow has been successfully scheduled, the frame offsets are post-processed to
reduce end-to-end latency. The primary advantage of this strategy is its poly-
nomial running time. However, it lacks the guarantees of the ILP approach.
It is not guaranteed to find a solution even if one exists, and the produced
schedules could be far from optimal. Another drawback is the complexity of
the implementation. The heuristic must be carefully implemented to make sure
that the produced schedules are feasible, i.e., satisfy all constraints. Adding ad-
ditional constraints or changing the objective function could mean redesigning
the heuristic.

The third strategy is a GRASP-based metaheuristic, which generalizes the con-
structive heuristic into twelve unique heuristics. Each flow may be scheduled
using any of the twelve heuristics. The metaheuristic performs a search space
exploration to find the best heuristic for each flow. Every GRASP iteration
consists of two phases: A construction phase, that constructs an initial solution
in a greedy randomized manner, and a local search phase, which searches for
a local optimum by destroying and repairing parts of the schedule. The mo-
tivation behind the metaheuristic is to give a tractable alternative to the ILP
approach, while being more adaptable and provide better solutions than the
heuristic approach. The metaheuristic relies on the heuristic for scheduling in-
dividual flows, thus it adopts its implementational drawbacks. In addition, the
metaheuristic comes with several parameters which are experimentally tuned to
explore the search space in the best way.

The three methods were experimentally evaluated on a set of synthetically gen-
erated industrial-sized test cases. The test cases were categorized by relevant
parameters, such as the size of the network and the level of link utilization. Test
cases with high link utilization are more difficult to schedule and will in general
require more queues. For high link utilization the ILP approach struggled to
find optimal solutions even for test cases with a few hundred frames. Half of the
high utilization test cases timed out after four hours with the ILP approach.

39 Future Work 87

For comparison, the heuristic approach required only seconds to solve the largest
test cases with tens of thousands of frames. However, when considering high link
utilization, the heuristic used 3.0 extra queues on average, and had an average
solve percentage of 90%.

The metaheuristic approach showed significant improvements compared to the
heuristic. It solved nearly all test cases (99.4%), and reduced queue usage as
well as end-to-end latency. At high link utilization, it used 1.2 more queues than
the optimum, compared to 3.0 of the heuristic. On average, the metaheuristic
reduced queue usage by 51% and end-to-end latency by 18%, when considering
high link utilization. The execution time of the metaheuristic was set between
one minute and one hour, but feasible solutions were found within one minute for
all test cases. The experimental evaluation shows that the GRASPmetaheuristic
is a promising method for finding high-quality schedules for large industrial-sized
instances. The following section discusses directions for future work related to
the metaheuristic.

39 Future Work

The metaheuristic approach can be extended and optimized in many ways to
improve performance and add functionality. Some interesting directions for
future work are:

• Relaxing the assumption that routes are given. It is straightforward and
computationally inexpensive to extend the neighborhood of the meta-
heuristic to consider alternative routes. For instance, a set of alternative
routes may be precomputed for each flow, and the metaheuristic could
randomly choose one route when scheduling the flow. Implementing such
functionality in an ILP model is much more involved and will add to the
complexity of an already intractable problem.

• Utilizing preemption between time-triggered queues, as defined in IEEE
802.1Qbu. In this report preemption is only considered in the context
of preempting lower priority traffic to make way for time-triggered traffic.
However, it is possible to let one TT flow preempt another, given that they
are assigned different queues. This enables finding feasible schedules in
cases where the current solution will fail. Preemption is particularly useful

39 Future Work 88

in scenarios where the feasible regions are too fragmented to transmit
complete frames. Like alternative routes, such an extension is not easily
implemented in an ILP model.

• Extending the metaheuristic neighborhood with additional scheduling meth-
ods. For instance, a modification of the presented ILP approach could be
used to solve a small subproblem to optimality, thereby arriving at a local
optimum. Consider that two flows are removed from the current schedule
as part of the local search. An ILP model could then find the optimal
way of rescheduling these two flows in the current schedule. If the two
flows have a limited number of frames, the experimental evaluations indi-
cate that the subproblem could be solved to optimality in seconds. This
will allow the metaheuristic to explore parts of the search space that are
unreachable with the current neighborhood definition.

• Implementing delta evaluation for the local search. The current imple-
mentation features an approach, where the entire schedule is copied for
every iteration of the local search (see Sect. 31.2). Hence, the running
time is proportional to the total number of frames in the schedule. With
clever bookkeeping it is possible to delete flows in the current schedule
without copying. This involves reverting the impact of each of the deleted
flows, i.e., adding back intervals to the feasible region, predicting the new
objective value, etc. Implementing delta evaluation will improve perfor-
mance of the metaheuristic, which enables it to complete more iterations
in the same amount of time. Consequently, it will find improvements more
quickly. Especially large topologies, where flows cover only small parts of
the network, will benefit from delta evaluation.

• Introducing configurable priorities for the multi-objective function. In the
presented method, queue usage is always considered more important than
end-to-end latency. Hence, end-to-end latency is only minimized if it is
not possible to reduce the queue usage. It is straightforward to redefine
the objective function like presented in Sect. 18, where constants c1 and
c2 define the priorities of queue usage and latencies, respectively. This
will allow the system engineer to set c1 and c2 to reflect the schedules
of interest. However, the metaheuristic relies on the heuristic approach
for scheduling individual flows, and the heuristic is designed to primarily
reduce queue usage. Thus, in order to achieve good results the heuristic
should be redesigned.

39 Future Work 89

Additional Evaluations

The following pages contain box plots of queue usage and end-to-end latency
for the three test case dimensions: Link utilization, topology size, and hyperpe-
riod. Fig. 34 and 35 visualize the distributions for queue usage and end-to-end
latency for the heuristic variations, and Fig. 36 and 37 visualize the same for
the metaheuristic.

Note that Fig. 34 and 35 are based on all 1620 test cases, whereas Fig. 36 and
37 are only based on the test set (1080 test cases). The figures are meant as a
supplement to Sect. 32.

39 Future Work 90

(a) link utilization

(b) topology size

(c) hyperperiod

Figure 34: Queue usage comparison for twelve heuristic variations. The figures
show boxplots for varying test case parameters.

39 Future Work 91

(a) link utilization

(b) topology size

(c) hyperperiod

Figure 35: End-to-end latency comparison for twelve heuristic variations. The
figures show boxplots for varying test case parameters.

39 Future Work 92

(a) link utilization

(b) topology size

(c) hyperperiod

Figure 36: Queue usage comparison for best heuristic and GRASP. The figures
show boxplots for varying test case parameters.

39 Future Work 93

(a) link utilization

(b) topology size

(c) hyperperiod

Figure 37: End-to-end latency comparison for best heuristic and GRASP. The
figures show boxplots for varying test case parameters.

Bibliography 94

References

[1] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Norwell, MA, USA: Kluwer Academic
Publishers, 1997.

[2] IEEE TSN (Time-Sensitive Networking): A Deterministic Ethernet Stan-
dard, TTTech Computertechnik AG, 2015.

[3] F. Dürr and N. G. Nayak, “No-wait Packet Scheduling for IEEE
Time-sensitive Networks (TSN),” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, ser. RTNS ’16.
New York, NY, USA: ACM, 2016, pp. 203–212. [Online]. Available:
http://doi.acm.org/10.1145/2997465.2997494

[4] A. Gilchrist, Industry 4.0: the Industrial Internet of Things. Apress, 2016.

[5] ISO 11898: Road vehicles – Controller area network (CAN), International
Organization for Standardization, 2003.

[6] ISO 17458: Road vehicles - FlexRay communications system, 1st ed., In-
ternational Organization for Standardization, 2013.

[7] J. Specht and S. Samii, “Urgency-Based Scheduler for Time-Sensitive
Switched Ethernet Networks,” Proc. of Euromicro Conference on Real-time
Systems, pp. 75–85, 2016.

[8] 802.3 Standard for Ethernet, IEEE, 2015.

[9] J. D. Decotignie, “Ethernet-Based Real-Time and Industrial Communica-
tions,” Proc. of the IEEE, vol. 93, no. 6, pp. 1102–1117, 2005.

[10] Z. Lin and S. Pearson, An inside look at industrial Ethernet communication
protocols, Texas Instruments, 2013.

[11] EtherCAT Leopard-like Speed and Efficiency, Real Time Automation, 2008.

[12] R. Pigan and M. Metter, Automating with PROFINET, 2nd ed., Publicis
Publishing.

[13] E. Schemm, “SERCOS to link with ethernet for its third generation,” Com-
puting and Control Engineering, vol. 15, no. 2, pp. 30–33, 2004.

[14] AS6802: Time-triggered Ethernet, SAE International, 2011.

[15] IEEE, “Official Website of the 802.1 Time-Sensitive Networking Task
Group,” http://www.ieee802.org/1/pages/tsn.html, 2016, [Online; ac-
cessed 30-November-2016].

http://doi.acm.org/10.1145/2997465.2997494
http://www.ieee802.org/1/pages/tsn.html

Bibliography 95

[16] T. Steinbach, H. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and
A. Wolisz, “Tomorrow’s in-car interconnect? A competitive evaluation of
IEEE 802.1 AVB and time-triggered ethernet (AS6802),” in Proceedings of
the 76th IEEE Vehicular Technology Conference, VTC Fall 2012, Quebec
City, QC, Canada, September 3-6, 2012, 2012, pp. 1–5. [Online]. Available:
http://dx.doi.org/10.1109/VTCFall.2012.6398932

[17] T. Herpel, B. Kloiber, R. German, and S. Fey, “Routing of safety-relevant
messages in automotive ecu networks,” in Vehicular Technology Conference
Fall (VTC 2009-Fall), 2009 IEEE 70th. IEEE, 2009, pp. 1–5.

[18] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13.
New York, NY, USA: ACM, 2013, pp. 69–84. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522716

[19] S. S. Craciunas and R. S. Oliver, “Combined task- and network-
level scheduling for distributed time-triggered systems,” Real-Time
Systems, vol. 52, no. 2, pp. 161–200, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11241-015-9244-x

[20] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task-and
network-level schedule co-synthesis of ethernet-based time-triggered sys-
tems,” in 2014 19th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2014, pp. 119–124.

[21] W. Steiner, “An evaluation of smt-based schedule synthesis for time-
triggered multi-hop networks,” in Real-Time Systems Symposium (RTSS),
2010 IEEE 31st. IEEE, 2010, pp. 375–384.

[22] ——, “Synthesis of static communication schedules for mixed-criticality sys-
tems,” in Object/Component/Service-Oriented Real-Time Distributed Com-
puting Workshops (ISORCW), 2011 14th IEEE International Symposium
on. IEEE, 2011, pp. 11–18.

[23] F. Pozo, W. Steiner, G. Rodriguez-Navas, and H. Hansson, “A decompo-
sition approach for smt-based schedule synthesis for time-triggered net-
works,” in Emerging Technologies & Factory Automation (ETFA), 2015
IEEE 20th Conference on. IEEE, 2015, pp. 1–8.

[24] D. Tămaş-Selicean, P. Pop, and J. Madsen, “Design of mixed-criticality ap-
plications on distributed real-time systems,” Technical University of Den-
mark, 2014.

[25] G. Avni, S. Guha, and G. Rodriguez-Navas, “Synthesizing time-triggered
schedules for switched networks with faulty links,” in Embedded Software
(EMSOFT), 2016 International Conference on. IEEE, 2016, pp. 1–10.

http://dx.doi.org/10.1109/VTCFall.2012.6398932
http://doi.acm.org/10.1145/2517349.2522716
http://dx.doi.org/10.1007/s11241-015-9244-x

Bibliography 96

[26] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling
Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks,”
in Proceedings of the 24th International Conference on Real-Time Networks
and Systems, ser. RTNS ’16. New York, NY, USA: ACM, 2016, pp.
183–192. [Online]. Available: http://doi.acm.org/10.1145/2997465.2997470

[27] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design Opti-
mization of Cyber-Physical Distributed Systems using IEEE time-sensitive
Networks (TSN),” IET Cyber-Physical Systems: Theory & Applications,
pp. to–appear, 2016.

[28] IEEE, “802.1AS-Rev - Timing and Synchronization for Time-Sensitive
Applications,” http://www.ieee802.org/1/pages/802.1AS-rev.html, 2016,
[Online; accessed 30-November-2016].

[29] ——, “802.1Qav - Forwarding and Queuing Enhancements for Time-
Sensitive Streams,” http://www.ieee802.org/1/pages/802.1av.html, 2009,
draft 7.0.

[30] ——, “802.1Qbv - Enhancements for Scheduled Traffic,” http://www.
ieee802.org/1/pages/802.1bv.html, 2016, [Online; accessed 30-November-
2016].

[31] ——, “802.1Qbu - Frame Preemption,” http://www.ieee802.org/1/pages/
802.1bu.html, 2016, [Online; accessed 30-November-2016].

[32] 802.1Q Bridges and Bridged Networks, IEEE, 2014.

[33] G. A. Ditzel and P. Didier, “Time Sensitive Network (TSN) Protocols and
use in EtherNet/IP Systems,” 2015 ODVA Industry Conference & 17th
Annual Meeting, 2015.

[34] O. Sinnen, Task Scheduling for Parallel Systems, ser. Wiley Series on Par-
allel and Distributed Computing. Wiley, 2007.

[35] T. H. Cormen, C. E., R. L., and C. Stein, Introduction to Algorithms,
2nd ed. MIT Press and McGraw–Hill, 2001, ch. Section 24.3: Dijkstra’s
algorithm, pp. 595—-601.

[36] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop
and jobshop scheduling,” Math. Oper. Res., vol. 1, no. 2, pp. 117–129,
May 1976. [Online]. Available: http://dx.doi.org/10.1287/moor.1.2.117

[37] “CPLEX Optimizer,” https://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/, [Online; accessed 17-December-2016].

[38] “Gurobi Optimizer,” http://www.gurobi.com/products/gurobi-optimizer,
[Online; accessed 17-December-2016].

http://doi.acm.org/10.1145/2997465.2997470
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1av.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1bu.html
http://dx.doi.org/10.1287/moor.1.2.117
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gurobi.com/products/gurobi-optimizer

Bibliography 97

[39] S. Venugopalan and O. Sinnen, “ILP Formulations for Optimal Task
Scheduling with Communication Delays on Parallel Systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 26, no. 1, pp. 142–151, Jan
2015.

[40] “Cython, C-Extensions for Python,” http://cython.org/, [Online; accessed
24-January-2017].

[41] F. Glover and M. Laguna, “Tabu search, 1997,” Kluwer Academic Publish-
ers, 1997.

[42] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Computing Surveys (CSUR),
vol. 35, no. 3, pp. 268–308, 2003.

[43] M. G. Resende and C. C. Ribeiro, “Grasp: greedy randomized adaptive
search procedures,” in Search methodologies. Springer, 2014, pp. 287–312.

[44] P. Hansen and N. Mladenovic, “Variable neighborhood search,” in Search
methodologies. Springer, 2014, pp. 313–338.

[45] R. S. Oliver, S. S. Craciunas, and G. Stöger, “Analysis of deterministic
ethernet scheduling for the industrial internet of things,” in 2014 IEEE
19th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD). IEEE, 2014, pp. 320–324.

[46] T. W. Kirkman, “Statistics to Use,” http://www.physics.csbsju.edu/stats/,
1996, [Online; accessed 29-January-2017].

http://cython.org/
http://www.physics.csbsju.edu/stats/

	Introduction
	Related Work
	Report Overview
	Time-Sensitive Networking
	Ethernet Networking
	Frames
	Switches

	AVB and BE Traffic
	Time-Triggered (TT) Traffic
	System Model
	Architecture Model
	Application Model
	Flow Model
	Frame Model

	Gate-Control List (GCL) Schedule
	Schedule Feasibility
	Physical Properties
	Time-Sensitive Requirements

	Problem Formulation
	Flow Routing
	Motivational Example
	Problem Complexity
	ILP Strategy
	Objective
	Lower Bound on End-To-End Latency

	ILP Model
	Link Congestion
	Deterministic Queues

	Analysis
	Implementation Details
	Heuristic Strategy
	Scheduling a Single Flow
	Feasible Regions
	As-Soon-As-Possible Strategy
	Minimizing End-To-End Latency

	Analysis
	Implementation Details
	Availability Lists
	Feasible Offsets Search

	Metaheuristic Strategy
	Greedy Randomized Adaptive Search Procedure (GRASP)
	Objective Function
	Heuristic Variations

	Greedy Randomized Heuristic
	Local Search
	Search Strategies

	Analysis
	Implementation Details
	Post-processing
	Deleting flows

	Experimental Evaluation
	Test Cases
	Flows

	ILP Strategy
	Heuristic Strategy
	Variations Comparison
	Compared to Optimum
	Execution Time

	Metaheuristic Strategy
	Execution Time
	Parameter Tuning
	Compared to Optimum
	Compared to Heuristic

	Conclusions and Future Work
	Conclusions
	Future Work

