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Abstra
t
Embedded 
omputing systems are making their way into more and more devi
es,from household applian
es to mobile phones, and from PDAs to 
ars. Many ofthese systems are battery powered, and hen
e battery lifetime is a 
riti
al designissue. Also these systems, need to meet the timing 
onstraints imposed by theirappli
ation domain.An in
reasing number of appli
ation areas for real-time embedded systems, su
has spa
e and 
onsumer appli
ations, have hard 
onstraints both in terms of en-ergy and reliability. To address these two simultaneously is 
hallenging be
auselowering the voltage to redu
e power 
onsumption, whi
h is the most 
ommonapproa
h, has been shown to exponentially in
rease the number of transientfaults. Moreover, time-redundan
y based fault-toleran
e te
hniques, su
h as re-exe
ution, and voltage s
aling-based low-power te
hniques are both relying onthe use of pro
essor idle-time.In addition, su
h 
ompeting requirements have to be met within a given devel-opment and manufa
turing 
ost and time-frame. Therefore, the task of design-ing su
h embedded systems is be
oming not only in
reasingly important, butalso in
reasingly di�
ult. The obje
tive of this thesis is to develop te
hniqueswhi
h are able to simultaneously meet both energy and reliability 
onstraintsat system-level.In this thesis real-time appli
ations with hard deadlines, mapped on distributedmulti-pro
essor systems-on-a-
hip, are 
onsidered. The appli
ations are repre-sented as a set of intera
ting pro
esses and have hard reliability and timingrequirements. Pro
esses and messages are stati
ally s
heduled using s
heduletables. I propose te
hniques for the s
heduling, mapping, voltage s
aling and



iiredundan
y assignment, su
h that the energy 
onsumption of the appli
ationsis minimised, and the implementations are s
hedulable and meet the imposedreliability goals.The te
hniques have been implemented using a 
onstraint logi
 programmingsystem, and have been evaluated using a set of syntheti
 appli
ations, as wellas a real-life appli
ation, 
onsisting of an MP3-de
oder. The experiments showthat, using 
areful optimisation, it is possible to produ
e reliable and s
hedulableimplementations without 
ompromising energy 
onsumption.



Resumé
Indlejrede systemer bliver mere og mere almindelige i disse år. Både i app-likationer som mobiltelefoner og PDAer, men også i hjemmets maskiner. Dissesystemer er ofte batteridrevne, og det er derfor nødvendigt, at de sparer påstrømmen. Systemernes funktioner stiller desuden krav til, at de kan operere ireal-time.Et stigende antal anvendelsesområder for indlejrede systemer har tydelige be-grænsninger både inden for energiforbrug og pålidelighed. Den mest almin-delige fremgangsmåde til at sænke energiforbruget er en dynamisk nedsættelseaf spændingen. Men dette giver anledning til en eksponentiel stigning i antalletaf fejl, hvilket gør det besværligt at fremstille systemer med høj pålidelighedog lavt energiforbrug. Energibesparende teknikker konkurrerer desuden medteknikkerne til fejltoleran
e om at gøre brug af systemets sla
k, dvs. den tidhvor systemet ikke udfører opgaver.Disse konkurrerende krav skal opfyldes inden for et �rmas tidsplan samt produk-tions- og fremstillingsomkostninger. Dermed bliver det at designe indlejredesystemer, der både har et lavt energiforbrug og en høj pålidelighed, ikke blot enmere vigtig, men også en mere vanskelig opgave. Formålet med dette arbejdeer at udvikle teknikker, der både kan opfylde energikrav og pålidelighedskrav isystemets designfase.Dette arbejde undersøger real-time-applikationer med strenge tidsbegrænsninger.Disse er allokeret på distribuerede multipro
essor system-on-a-
hip-systemer.Applikationerne repræsenteres som et sæt af kommunikerende pro
esser, derhar strenge begrænsninger for både pålidelighed og timing. Pro
essernes start-tider og kommunikation er statisk fastlagt. I dette arbejde præsenteres en række



ivteknikker, der indfører fejltoleran
e og som samtidig bestemmer starttider, hard-wareallokation og spændingsregulering. På denne måde kan et systems energi-forbrug blive minimeret, samtidig med at et pålidelighedsmål bliver opfyldt.De fremstillede teknikker er blevet implementeret i et 
onstraint logi
 program-ming system og er blevet evalueret ved hjælp af syntetiske applikationer. Dertilkommer også en virkelig applikation i form af en MP3 -dekoder. De udførteeksperimenter viser, at det ved hjælp af god optimering er muligt at opnå sys-temer, der både har en høj pålidelighed og et lavt energiforbrug.
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Chapter 1
Introdu
tion

The tenden
y has for a long time been for digital systems to make their wayinto more and more everyday applian
es. Both in highly advan
ed devi
es su
has mobile phones, mp3 players, PDA's and other portable devi
es, but also 
ars,and even low te
h devi
es su
h as household applian
es.These embedded systems are often battery powered, and hen
e need to havelow power 
onsumption, in order to yield good battery lifetime. They needto be high performan
e, to meet the timing 
onstraints imposed on the devi
e(e.g. real time voi
e 
oding/de
oding in mobile phones, musi
 de
oding in musi
players et
.). In addition, the devi
es need to be small, as they are intended tobe part of the users everyday equipment, or even a
t as an a

essory to expressstyle or interests. These devi
es need to be reliable, as their fun
tionality isoften relied upon, as in mobile phones, or may even be safety-
riti
al as in thesafety systems of 
ars.The rest of this 
hapter is organised as follows. Se
tion 1.1 introdu
es thedesign �ow for embedded systems. The motivation for this proje
t is presentedin se
tion 1.2. Se
tion 1.3 presents the work by others relevant to this thesis, andthe problem formulation and the 
ontributions made in this thesis are presentedin se
tion 1.4.



2 Introdu
tion

Figure 1.1: Design �ow for embedded systems [23℄.1.1 Embedded Systems Design FlowEmbedded systems are single purpose systems, with a well de�ned fun
tionality.The system-level design �ow for embedded systems is shown in �gure 1.1. The�ow has two inputs, namely: a model of the appli
ation, and a model of thehardware ar
hite
ture on whi
h the appli
ation is to be run. In this thesisthe ar
hite
tures 
onsidered are multipro
essor systems-on-a-
hip (MP-SoC s),
onsisting of several pro
essing elements inter
onne
ted by a bus.Several design tasks are performed as part of the system-level design task. Thisin
ludes assigning ea
h part of the appli
ation onto a spe
i�
 hardware unit onwhi
h it will run. This design task is 
alled mapping. Further, a time plan,or s
hedule, has to be generated whi
h di
tates when the di�erent parts of theappli
ation should be exe
uted. This has to take into a

ount data dependen
iesand deadlines, to ensure 
orre
t behaviour of the system. If the system is to usevoltage s
aling, a voltage s
hedule will also be derived at this stage.To verify that the system des
ription arrived at in the design phase is a
tuallygoing to work 
orre
tly, a model is 
reated of the system. Using this model thebehaviour of the system is analysed to ensure that timing and power require-ments are met. Typi
ally the design phase will be an iterative pro
ess, wherethe design is gradually re�ned as part of an optimisation.



1.2 Motivation 3When a satisfa
tory system implementation has been found, the system is syn-thesised. This pro
ess 
reates the a
tual hardware and software implementa-tions.In this thesis I address hard real-time appli
ations modelled using pro
ess graphs[17℄. The fun
tionality is distributed on a heterogeneous system of pro
essingelements, inter
onne
ted by a bus. Pro
essors and messages are stati
ally s
hed-uled using s
hedule tables.In this work the fo
us will be on the system-level design tasks of s
heduling,mapping and redundan
y assignment.1.2 MotivationTraditionally, embedded systems have been designed by a number of single pur-pose 
hips assembled on a print-board. To a

ommodate the need for smaller
omponents and better performan
e, more and more fun
tionalities are todaybeing integrated on single 
hips. This allows for making 
omplete solutions ona single 
hip, or system-on-
hip solutions. These systems will often in
lude sev-eral digital pro
essors, for e.g. spee
h 
oding, radio 
oding, et
., and are hen
e
ommonly 
alled multi-pro
essor system-on-a-
hip (MP-SoC ).The 
ontinued in
rease in integration and 
omplexity of MP-SoC s is made pos-sible by the on going in
rease in available spa
e on a 
hip. This phenomenon isdes
ribed by Moore's Law [27, 28℄ whi
h 
onje
tures that the amount of tran-sistors that 
an be �t on a single 
hip doubles every 18 months [25℄. This law is
ontinuously upheld, as new te
hnologies are developed whi
h allows for de
reas-ing the size of single transistors. The redu
ed feature sizes, lead to an in
reasein power 
onsumption. A predi
tion of the power 
onsumption of pro
essors asa fun
tion of time, is shown in �gure 1.2. This in
rease in power 
onsumption,
ombined with the in
reasing miniaturisation of features, lead to in
reased en-ergy density. The energy density of future integrated 
ir
uit te
hnologies willapproa
h that of a nu
lear power plant [8℄.The in
reased miniaturisation also gives rise to another phenomenon, namelyin
rease in the amount of faults. Faults in ele
troni
s are random and non-permanent ele
tri
al events, whi
h are seen as bit �ips in logi
s or memory.Faults due to internal reasons, su
h as leak 
urrent or 
ross talk, are 
alled in-termittent faults. Faults 
aused by external e�e
ts are 
alled transient faults.External e�e
ts may be 
aused by ele
tromagneti
 radiation from other devi
es,or exposure to the ever present 
osmi
 radiation. The latter is espe
ially im-



4 Introdu
tion

Figure 1.2: Predi
tion of power 
onsumption for mi
ro ele
troni
s (from [28℄).
portant in spa
e appli
ations where the unshielded radiation 
an give rise to asmany as 35 faults in 15 minutes [20℄, but is also an important fa
tor in earthbound appli
ations.In this thesis, I address transient faults, and do not dwellwith their 
ause, but rather how to handle and re
over from them.The failure rates for modern ele
troni
s are plotted in �gure 1.3. The left plotshows that the amount of permanent faults is falling. However the number oftransient faults are in
reasing rapidly. The shown plot for transient faults refersto memory units, but also applies to general logi
 
ir
uitry.The in
rease in energy 
onsumption is often addressed by the use of energymanagement te
hniques. One very 
ommon approa
h is dynami
 voltage s
aling(DVS ). This has been shown to be an easy and e�e
tive means of 
onservingpower, but has also been shown to further in
rease the probability of faults[30, 32℄. As a 
onsequen
e of this e�e
t, and the generally in
reasing probabilityof faults, it is be
oming 
riti
al to 
onsider faults in a system already in thedesign phase.Design tools exist for embedded systems that 
an 
reate system level designs.These allow for doing optimisation on di�erent parameters, su
h as energy 
on-sumption, or fault toleran
e. As shown in [30℄ these two tasks are not inde-pendent, but in fa
t greatly intera
t. Current design tools do not take thisintera
tion into a

ount, whi
h may lead to them 
reating systems whi
h areenergy e�
ient, but very unreliable.



1.3 Related Work 5

(a) Permanent-failure rate for CMOS devi
es. (b) Transient-failure rate for CMOS memories.Figure 1.3: Failure rate plots, for permanent faults and transient (soft) faults(from [3℄).1.3 Related WorkSeveral hardware solutions for fault toleran
e have been proposed, e.g. MARS[14℄, TTA [13℄, and XBW [2℄, all of whi
h use hardware redundan
y to tolerateone permanent fault. These approa
hes are also able to tolerate transient faults,but they are very 
ostly in terms of hardware. This 
ost is only further in
reasedif the systems are to tolerate larger number of faults, a point that is in
reasinglyimportant as the amount of transient faults is mu
h larger than permanent faults[3℄.Current resear
h use 
ost as the only design 
onstraint [16℄. The use of redun-dan
y, however, introdu
es overhead, in terms of performan
e, and thus maylead to systems that are uns
hedulable. Only few resear
hers [12, 21, 22℄ opti-mise their implementations to minimise the penalty on performan
e. For these,the optimisation is limited though, and does not 
onsider the use of severalredundan
y te
hniques.Two system-level approa
hes that allow an energy/performan
e trade-o� dur-ing run-time of the appli
ation are dynami
 voltage s
aling (DVS ) and adaptivebody biasing (ABB) [24℄. While DVSaims to redu
e the dynami
 power 
on-sumption by s
aling down operational frequen
y and 
ir
uit supply voltage,ABB is e�e
tive in redu
ing the leakage power by s
aling down frequen
y andin
reasing the threshold voltage through body biasing.The 
urrent resear
h has addressed fault-toleran
e and low-power requirementsseparately. However, embedded systems using DVSand ABB, are more sus-



6 Introdu
tion
eptible to transient faults, as the rate of these in
rease exponentially as thesupply voltage de
reases [32℄. Conversely, in
reased voltage levels lead to higheron-
hip temperatures, whi
h in turn has a negative e�e
t on reliability. Fur-ther, the energy management te
hniques, and time-redundant fault toleran
ete
hniques, are 
ompeting for the same sla
k (unused time in s
hedules for pro-
essors). Initial resear
h into the interplay of energy/performan
e trade-o�s andfault-toleran
e te
hniques has been presented in [6, 20, 30℄. These approa
hesare very restri
ted in terms of situations 
onsidered, and are thus of limitedinterest.1.4 Thesis Obje
tive and ContributionsIn this thesis hard real-time appli
ations mapped on distributed multi-pro
essorsystems-on-a-
hip are 
onsidered. The appli
ations are represented as a set ofintera
ting pro
esses and have hard reliability and timing requirements. Pro-
esses and messages are stati
ally s
heduled using s
hedule tables. The obje
tiveof this thesis is to propose te
hniques for the s
heduling, mapping, voltage s
al-ing and performing redundan
y assignment, su
h that the energy 
onsumptionof the appli
ations is minimised, and the implementations are s
hedulable andmeet the imposed reliability goal.The te
hniques have been implemented using a 
onstraint logi
 programmingsystem, and have been evaluated using syntheti
 appli
ations as well as a real-life example 
onsisting of an MP3-de
oder. The experiments show that, through
areful optimisation, it is possible to obtain reliable and s
hedulable implemen-tations without 
ompromising the energy 
onsumption.The 
ontributions of the thesis are the following:
• Design optimisation for energy minimisation under reliability and timing
onstraints.Energy minimisation is usually done using voltage s
aling. However, re-sear
h has shown that lowering the voltage will dramati
ally de
rease re-liability. Thus, if the reliability of a system is in
reased, by introdu
ingredundan
y, and then voltage s
aled (within the deadlines), the reliabil-ity is destroyed. If a minimal-energy system is obtained, and redundan
ythen introdu
ed, it might not meet the deadlines. The most important
ontribution of the thesis is a design optimisation method, whi
h is ableto produ
e reliable implementations, that minimise energy at the sametime as meeting the deadlines.
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• An optimisation method that de
ides the type of redundan
y.To in
rease the reliability of a system, redundan
y te
hniques su
h asre-exe
ution and repli
ation are needed. It is shown that using just re-exe
ution is not enough, be
ause both re-exe
ution and voltage s
aling
ompete for the sla
k. Using passive repli
ation in 
onjun
tion with re-exe
ution, 
an better exploit the sla
k. This is be
ause, if sla
k is notavailable on one pro
essor, it might be found on another pro
essor.
• A 
onstraint logi
 programming-based s
heduling te
hnique whi
h is ableto qui
kly produ
e good quality s
hedules.Having a good s
heduling algorithm 
an help in in
reasing the sla
k. Within
reased sla
k, the reliability-energy trade-o�s 
an better be supported.
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Chapter 2 Preliminaries
In this se
tion I present the preliminaries for the work in this thesis. Se
tion2.1 presents the fundamentals of mapping and s
heduling. The system andappli
ation models are presented in se
tion 2.2 and 2.3 respe
tively. In se
tion2.4 the fault model is introdu
ed, and se
tion 2.5 introdu
es fault re
overy.An alternative appli
ation model with expli
it fault re
overy is presented inse
tion 2.6. In se
tion 2.7 the 
on
ept of reliability is introdu
ed, and equationsare presented. The models for energy and reliability under voltage s
aling arepresented in se
tions 2.8 and 2.9. The software model, and the 
orrespondings
heduler implementations are presented in se
tion 2.10.2.1 S
heduling and MappingAs mentioned in the introdu
tion, mapping and s
heduling are the design tasksof assigning pro
esses to hardware units, and making a time plan for the exe-
ution of the pro
esses. Both of these problems are individually NP -
omplete.Consequently the 
ombination of the two is also NP -
omplete [7, 29℄.This makes the problems 
omputationally hard, and hen
e sophisti
ated al-gorithms are needed to solve these. The work in this thesis uses 
onstraint
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(a) Ar
hite
ture Voltage Level

PE1 100 % 67 % 34 %
PE2 100 % 67 % 34 %(b) Voltage levelsFigure 2.1: Sample ar
hite
ture with two pro
essing elements ea
h with threefrequen
y levels.logi
 programming (CLP) to model the problems, and a
hieve optimal solu-tions. Finding optimal solutions is generally not feasible using 
onventionalprogramming.2.2 System ModelIn this thesis a system model, 
onsisting of a number of pro
essing elements PEsthat are 
onne
ted by a single bus, is 
onsidered. These pro
essing elementsmay be heterogenous and have di�erent performan
e, and thus take di�erentamounts of time to exe
ute the same pro
ess. A pro
essing element 
an berun at a number of preset frequen
y levels FPE . These frequen
y levels areexpressed in per
ent of the pro
essors maximum performan
e.A sample ar
hite
ture is shown in �gure 2.1, where both the layout of the pro-
essing elements and the available frequen
y levels for ea
h pro
essing elementare shown.Ea
h pro
essing element has a real-time operating system, whi
h is responsiblefor starting pro
esses. Pro
esses are started in a

ordan
e with a pre-renderedstati
 s
hedule table, or a set of s
hedule tables (as dis
ussed later). The oper-ating system monitors whether pro
esses exe
ute su

essfully, and if not, takesmeasures to tolerate the fault in a

ordan
e with the fault toleran
e poli
y.2.3 Appli
ation ModelAn appli
ation A is modelled as a dire
ted a
y
li
 graph. A graph G 
onsists ofa set of edges E and verti
es V su
h that G(V , E) ∈ A. Ea
h vertex representsa pro
ess Pi with a 
orresponding worst-
ase exe
ution time (c). Sin
e we



2.4 Fault Model 11(a) FP1
= 100%, c= 2 (b) FP1

= 67%, c= 3 (
) FP1
= 34%, c= 6Figure 2.2: Voltage s
aling of a single pro
ess onto PE1 from �gure 2.1. Theheight of the pro
ess illustrates the frequen
y its run at, and the length theduration of the pro
ess.operate with a heterogene ar
hite
ture c is spe
i�ed per pro
essing element, asit will be a fun
tion of the pro
essing elements design and performan
e. The
ommuni
ation between, and thereby ordering of, pro
esses, are represented bythe edges. An edge eij ∈ E denotes a 
ommuni
ation from pro
ess Pi to Pj .Figure 2.3 shows a sample appli
ation, with its pro
ess graph and the 
orre-sponding worst 
ase exe
ution times for the ar
hite
ture in �gure 2.1.The spe
i�ed c for a pro
ess Pi 
orresponds to the exe
ution time for the pro
essrun at FP〉

= 100%. The exe
ution time cf for a pro
ess run at a lower frequen
y
f is given by ([31℄):

cf =
c0

f
(2.1)Figure 2.2 shows a pro
ess s
heduled on the same pro
essor, but at three dif-ferent frequen
y levels. To visually 
apture that the frequen
y is lowered in theGantt 
hart, the height of the pro
ess is de
reased. The length of the pro
essshows how the c of the pro
ess in
reases as the frequen
y is lowered.For the fault toleran
e te
hniques des
ribed in the following, it is 
onsideredthat the worst 
ase exe
ution time of a pro
ess in
ludes the time needed to doerror dete
tion, so the c is the sum of the time to do a failed exe
ution, dete
tit and 
lean up and set up for re
overy exe
ution. This allows us to disregardwhi
h error dete
tion method is used, as this is outside the s
ope of this thesis,and this subje
t is well resear
hed in the works of others (for insight on thissubje
t the reader is dire
ted towards [11℄ and [25℄).2.4 Fault ModelA system may experien
e di�erent kinds of faults during its exe
ution. It mayeither be permanent faults, or transient or intermittent faults. The work in this
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(a) Pro
essgraph G

Pro
ess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(b) Durations tableFigure 2.3: Sample appli
ation Athesis only deals with non-permanent faults, as these are mu
h more frequentthan permanent faults.The arrivals of faults 
an be modelled by a Poisson distribution with an arrivalrate λ , referred to as the failure rate [11℄. For a single 
hip system reasonablevalues for the failure rate are in the range 10−8 − 10−6 per se
ond [32℄. This isequivalent to 100.000 FITs, i.e. failures in time, or failures per billion hours ofuse per megabit. The designer of a system will impose a minimum reliability,a reliability goal Rg, based on the reliability requirements of the appli
ation.Based on λ and Rg, the number of transient faults that will be tolerated kis determined. In the literature of fault toleran
e, reliability goals are oftenstated in terms of the number of nines after the zero. For instan
e the goal

Rg = 0.9999991 is 
alled 6 nines (and a 1). This terminology is adopted in thisthesis, when numeri
al values of reliabilities are dis
ussed. In order to meet thisgoal, the number of faults k to be tolerated by the system is determined.Within a single exe
ution of an appli
ation the distribution of faults is random,and may strike any pro
ess. For k > 1 any 
ombination of pro
esses or even thesame pro
ess may be stru
k k times.2.5 Fault Re
overyTo re
over from a failed pro
ess it is ne
essary to add redundan
y. This re-dundan
y 
an be spatial, i.e. the pro
ess is run simultaneously on di�erentpro
essing elements, this is 
alled repli
ation. Alternatively the pro
ess 
anbe made temporally redundant, i.e. the pro
ess is redundant in time, and iss
heduled after the failing pro
ess on the same pro
essing element, this is 
alled



2.5 Fault Re
overy 13
(a) Repli
ation (b) Re-exe
ution (
) Passive repli
ation

(d) Ar
hite
ture Pro
ess PE1 PE2

P1 2 2(e) DurationsFigure 2.4: Re
overy te
hniques
re-exe
ution. The latter te
hnique has the advantage that the re
overy run ofthe pro
ess is only exe
uted in the event of a fault. This 
an be 
ombinedwith repli
ation, and is then 
alled passive repli
ation, where the pro
ess iss
heduled after the failing pro
ess, but on another pro
essing element. All there
overy-te
hniques are shown with examples in �gure 2.4.In this thesis, the �rst exe
ution of a pro
ess is 
alled the root pro
ess, and thefollowing exe
utions are 
alled re
overy pro
esses. Similarly I use root s
heduleand re
overy s
hedule.Another 
ommonly used fault toleran
e te
hnique used is 
he
kpointing [20℄.This te
hnique 
an be modelled using re-exe
ution, and is hen
e not 
overedspe
i�
ally in this thesis.To use the presented fault toleran
e te
hniques it is 
riti
al that the system isable to dete
t faults. Fault dete
tion is well 
overed in the literature. Com-mon te
hniques in
lude �ngerprinting, where output bits are 
oded, and time-stamping where the exe
ution of a pro
ess is timed, and is 
onsidered faulty ifit does not �nish within its c. How fault dete
tion is done is outside the s
opeof this thesis, and is not 
overed further. The fault dete
tion implemented bythe designer is assumed to be su�
ient to meet Rg. The interested reader isdire
ted towards [11℄ and [25℄.
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Figure 2.5: A sample 
onditional pro
ess graph. Pro
ess P1 produ
es the 
on-dition CP1 . If this is true P2 will be exe
uted, if it is false P3 will be exe
uted.
2.6 Fault-Tolerant Conditional Pro
ess GraphsConditional pro
ess graphs are an extension of normal pro
ess graphs, whi
hadds the notion of guards, or 
onditions, on some edges. Conditions are boolean,and may be either true or false. A 
onditional pro
ess Pi, that produ
es the
ondition CPi

, will have the 
onditional output edges eij whi
h are guarded bythe out
ome of the 
ondition.Figure 2.5 shows a simple 
onditional pro
ess graph. The pro
ess P1 produ
esthe 
ondition CP1 . If this evaluates to true the edge guarded by this 
ondition,marked CP1 is 
hosen, and pro
ess P2 is exe
uted. If the 
ondition is false, theedge marked CP1 is 
hosen and P3 is exe
uted. These two paths are mutuallyex
lusive, as they depend on di�erent out
omes of the same 
ondition.In [9℄ and [10℄ 
onditional pro
ess graphs are extended to 
apture all possibleexe
ution s
enarios in 
ase of faults. Su
h a graph is 
alled a fault-tolerant
onditional pro
ess graph (FT-CPG). A pro
ess Pi produ
es a 
ondition, 
or-responding to the su

ess of its exe
ution. If it fails it will have the 
ondition
FPi

, and if it exe
utes without faults FPi
. An example of a fault tolerant 
on-ditional pro
ess graph is shown in �gure 2.6(b). For ease of reading, only edgeswhi
h model faults are marked by the 
ondition. Tinted pro
esses are re
overyexe
utions. The shown FT-CPG 
aptures all the fault s
enarios depi
ted in theexample in �gure 2.10. For example the s
enario 
aptured in the s
hedule in�gure 2.10(b) on page 27 is 
aptured by the left-most bran
h in the FT-CPG.Deriving an FT-CPG that 
aptures all the fault s
enarios of a pro
ess graph
orresponding to k transient faults, is not trivial. In this se
tion we shall notdwell further on this. An algorithm for deriving su
h graphs is presented inappendix A.
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(a) Originalpro
essgraph (b) FT-CPG for the graph, with k = 1 (
) FT-CPG for the graph, with
k = 1 and P1 repli
atedFigure 2.6: Examples of a pro
ess graph, and its derived FT-CPG graphs for

k = 1. Tinted pro
esses mark re
overy exe
utions.2.7 ReliabilityThe reliability of a system is a measure for the probability of its su

essfulexe
ution. In this se
tion I present the reliability model used in this thesis,�rstly for single pro
esses. Se
ondly, I will use the formula for a single pro
essto derive a general expression for the reliability of a fault tolerant appli
ation.Illustrations of the di�erent re
overy te
hniques are shown in �gure 2.4.2.7.1 Single Pro
ess ReliabilityThe reliability R0 of a pro
ess is de�ned as the probability of its su

essfulexe
ution [11℄.
R0 = e−λc = 1− ρ (2.2)Where c is the exe
ution time of the pro
ess, given by equation 2.1. ρ is theprobability of failure. The term λ is the failure rate, whi
h des
ribes the amountof errors that will o

ur within a time unit.



16 Preliminaries2.7.2 Reliability of Re-Exe
utionFor a system with the ability to handle k faults, a pro
ess will have k re
overyexe
utions s
heduled after the root exe
ution. For su
h a setup, the reliabilityis given by the probability of not all pro
esses failing. Formally this is expressedas:
RPReex

= 1− (1 −R)1+k (2.3)Where the last term is the probability of all pro
esses failing in the same run.2.7.3 Reliability of Repli
ationSimilarly, for a pro
ess s
heduled to handle k faults by repli
ation, the reliabilityis also given by the probability of not all pro
esses failing, and is written as:
RPRepl

= 1−
k

∏

i=1

(1−Ri) (2.4)Where again the last term is the probability of all exe
utions failing. The expres-sion 
ontains a reliability term for ea
h exe
ution of the pro
ess (in 
ontrast tothe formula for re-exe
ution) as the pro
esses are mapped to di�erent pro
essingelements, whi
h may have di�erent performan
e and reliability properties. If allpro
essing elements are identi
al the reliability will simplify to equation (2.3).This expression for repli
ation also holds for passive repli
ation.2.7.4 Appli
ation ReliabilityAn appli
ation 
onsists of a number of pro
esses, for ea
h of whi
h the aboveequations yield the reliability. Sin
e all of these pro
esses must exe
ute su
-
essfully, and I assume that the exe
ution of ea
h pro
esses is independent, thereliability of an appli
ation A is:
RA =

∏

Pi∈A

RPi
(2.5)



2.8 Power Model 17Equipped with this equation and the presented general expressions for 
al
ulat-ing reliabilities for single pro
esses, the reliability for any fault tolerant appli
a-tion 
an be evaluated.2.8 Power ModelPower in ele
troni
s is mainly 
onsumed as dynami
 power, i.e. the power that isneeded to drive the internal bits from one value to the other. This is 
alled a
tivepower. A
tive power depends greatly on the 
lo
k speed at whi
h the 
ir
uitry isdriven, as it is ne
essary to use more power to do faster swit
hing. In 
ontrast,passive power is the power that dissipates from the 
ir
uitry regardless of therunning frequen
y.As there is an almost linear relation between the frequen
y of a system, and thevoltage needed to drive this [31℄, I shall be using the terms voltage s
aling andfrequen
y s
aling inter
hangeably in the rest of the thesis.In this thesis I use the power model from [32℄ whi
h des
ribes the 
onsumedpower as:
P = Ps + ~(Pind + Pd) = Ps + ~(Pind + Cefffm) (2.6)In whi
h ~ is a boolean variable, whi
h takes the value 1 if the system is poweredup, and 0 if the system is in sleep mode. PS is the passive power, whi
h isalways 
onsumed by the 
ir
uit. Pind is the frequen
y independent 
omponentof the a
tive power. Finally, Pd is the frequen
y dependent 
omponent. Thefrequen
y dependent 
omponent is extended to be des
ribed as an e�e
tive
apa
itan
e Ceff and a frequen
y fm, where m is the dynami
 power exponent,an ar
hite
ture dependent number, for whi
h m ≥ 2 [31℄.In this thesis I assume that the MP-SoC s do not support swit
hing to sleepmode, thus ~ will always be 1. As the work in this thesis fo
uses on the en-ergy savings obtainable from using energy management te
hniques, the passive
omponent of the power Ps 
an be disregarded as it will only 
ontribute as a
onstant. In this way we arrive at:

P = Pind + Cefffm (2.7)



18 PreliminariesThis gives the energy 
onsumption for a pro
ess Pi [30℄:
EPi

= (Pind + Cefffm
Pi

)cPi
(2.8)Where fPi

is the frequen
y at whi
h it is exe
uted. Generalising this for a setof pro
esses P in an appli
ation A for whi
h Pi ∈ A we get the power for anappli
ation:
EA =

∑

Pi∈A

(Pind + Cefffm
Pi

)cPi
(2.9)It should be noted that this is not a pre
ise measure of the exa
t power 
on-sumed, as the passive 
omponents would then need to be part of the equations,but rather a means of 
omparing di�erent design alternatives. The model allowsfor determining the possible energy savings, and as the aim of this work is todo just that, the model is appropriate.Numeri
al examples of how to use the energy expressions are given in se
tion3.3.Pre
ise expressions for the power 
onsumption of embedded systems are pre-sented in [24℄.2.9 Reliability with Voltage S
alingLowering the voltage minimises the energy. However, it has been shown that italso dramati
ally lowers the reliability [30℄.In this se
tion, voltage s
aling is introdu
ed into the reliability formulas fromse
tion 2.7, to 
apture how the reliability of voltage s
aled systems de
reases.As des
ribed the failure rate of a system is dependent on the frequen
y levelthe system is run at. The relation between the two 
an be des
ribed by theexpression proposed in [30, 32℄:

λ(f) = λ010
d(1−f)
1−fmin (2.10)
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yintrodu
ed in equation (2.10). The normalised frequen
y ranges from 0, theminimum frequen
y of the pro
essor (fmin ≥ 0) to 1, the pro
essor's fmax.In whi
h λ0 is the failure rate of the pro
essor when run at maximum frequen
y
fmax, and d is an ar
hite
ture spe
i�
 
onstant. In �gure 2.7 the frequen
y de-pendent λ is plotted for λ0 = 1. The plot shows that the failure rate in
rease ismoderate for frequen
y levels down to about 60%. However, for lower frequen-
ies, the failure rate in
reases dramati
ally, and for a pro
essor run at minimumfrequen
y the failure rate will be 100 times greater.In order to yield best possible reliability, re
overy exe
utions are always exe
utedat full speed. Using the formulas presented in se
tion 2.7, expressions for thereliability of pro
esses with voltage s
aling 
an now be dedu
ed.
2.9.1 Single Pro
ess ReliabilityUsing equation (2.2), the reliability of a single pro
ess, run at frequen
y f is:

Rs = 1− ρs = e−λscs = e−λ(f)cs (2.11)



20 Preliminaries2.9.2 Reliability of Re-Exe
utionAs I now have the expressions for s
aled and uns
aled pro
esses, I 
an derive thereliability of a pro
ess with fault toleran
e. Lets 
onsider a pro
ess for whi
hre-exe
ution provides toleran
e for one fault. Bearing in mind that re-exe
utionswill always run at the maximum speed, the reliability of re-exe
ution is:
RReex = 1− (1−R0)(1 −Rs) = 1− (1 − e−λ0c0)(1 − e−λ(f)cs) (2.12)In this expression the �rst parenthesis is the probability of the re
overy exe
utionfailing. The se
ond is the probability of root exe
ution failing. Together theyform the probability of both failing in the same run. This expands into [30℄:

RReex = e−λ(f)cS + (1− e−λ(f)cs)R0 (2.13)Where cs is the exe
ution time of the voltage s
aled pro
ess.The generalised expression for a system handling k faults is:
RReex = 1− (1−R0)

k(1−Rs) = 1− (1 − e−λ0c0)k(1 − e−λ(f)cs) (2.14)2.9.3 Reliability of Repli
ationSin
e repli
ated pro
esses are exe
uted at the same time, there are no re
overypro
esses, that will be run at full speed afterwards, in 
ase of an error. As a
onsequen
e, all repli
as may be voltage s
aled, and the reliability for repli
ationis thus di�erent from that for re-exe
ution.The reliability of a repli
ated pro
ess, is again the probability of not all exe
u-tions failing. For a system that handles 1 fault by exe
uting the same pro
esson two pro
essing elements, the reliability is:
RRep = 1−ρf,1ρf,2 = 1−(1−Rf,1)(1−Rf,2) = 1−(1−e−λ(f)1c1)(1−e−λ(f)2c2)(2.15)



2.9 Reliability with Voltage S
aling 21And generalised for a system that handles k faults by having k + 1 repli
as:
RRep = 1−

k+1
∏

i=1

(1− e−λ(f)ici) (2.16)2.9.4 Reliability of Passive Repli
ationPassive repli
ation is similar to repli
ation in terms of all pro
esses being arbi-trarily mapped. But similar to re-exe
ution in terms of all re
overy exe
utionsbeing s
heduled at full speed. Hen
e the expression for reliability of passiverepli
ation is a 
ombination of the two:
RPRep = 1− (1− e−λ(f)cf )

k
∏

i=1

(1− e−λ0,ic0,i) (2.17)2.9.5 Appli
ation ReliabilityThe expression for reliability, for an appli
ation with voltage s
aling, is the sameas the one presented se
tion 2.7 for appli
ations without repli
ation. Howeverthe expression is repeated here for 
ompleteness:
RA =

∏

Pi∈A

RPi
(2.18)2.9.6 Reliability ExampleTo show the use of the presented reliability expressions, the reliability for apro
ess at three di�erent voltage levels is 
al
ulated here. The pro
ess used, isthe one previously shown in �gure 2.2. In the examples a failure rate of 1.0·10−6is used.Firstly, we evaluate the reliability of the pro
ess run at full speed with no fault



22 Preliminariestoleran
e. This is 
al
ulated using equation (2.2):
RSingle = e−λc = e−2.0·10−6

= 0.9999980 = 9 nines and 8 (2.19)Now we 
hoose to repli
ate the pro
ess to handle one fault (k = 1), su
h that itis run simultaneously on two pro
essing elements. Both repli
as are run at 66%voltage. The reliability is 
al
ulated using equation (2.16):
RRep = 1−

k+1
∏

i=1

(1− e−λ(f)ici) = 1− (1 − e−λ(66)ci)2 (2.20)Using equation (2.10) and assuming that d = 2 we �nd that:
λ(0.66) = λ010

d(1−f)
1−fmin = λ010

2(1−0.66)
1−0.34 = 10λ0 (2.21)and using equation (2.1) the duration of the s
aled pro
ess is 
al
ulated to:

c66,i =
ci

0.66
=

2 · 3

2
= 3 (2.22)hen
e:

RRep = 1− (1− e−λ(66)ci)2 = 1− (1− e−30.0·10−6

)2

= 0.9999999991 = 9 nines and 1 (2.23)Now we 
hoose to a
hieve the same level of fault toleran
e by using re-exe
ution,and running the root exe
ution at a mere 34% voltage. Using equation (2.14)and the expression for the s
aled failure rate we �nd that the reliability of thisis:
RReex = 1− (1− e−λ0c0)(1 − e−λ(0.34)cs)

= 1− (1− e−2.0·10−6

)(1 − e−600.0·10−6

)

= 0.9999999988 = 9 nines and 0 (2.24)



2.10 Software Model 23Using the above approa
h the reliability of any single pro
ess 
an be 
al
ulated,and using equation (2.18) these 
an be 
ombined to produ
e the reliability foran entire appli
ation.2.10 Software ModelThe fault-toleran
e implementation for a system is managed by the on-lines
heduler. This se
tion presents the software model for the pro
essors for dif-ferent fault toleran
e te
hniques.In this thesis three di�erent s
heduler implementations are used for s
hedulingwith fault toleran
e. These approa
hes were introdu
ed in [9℄, as an extensionto the transparent re
overy te
hnique used in [12℄. In this se
tion the three faulttolerant s
heduler implementations are presented.Ea
h pro
essing element of an ar
hite
ture has an online s
heduler. In a

or-dan
e with a pre-
al
ulated stati
-s
hedule (or set of s
hedules) the s
hedulerwill run pro
esses. The s
heduler dete
ts whether faults o

ur, and similarlyis responsible for exe
uting the re
overy pro
esses, also in a

ordan
e with thestati
 s
hedule. This is 
ommon for all three s
hedulers, but the way the stati
s
hedules are rendered and are handled, di�ers greatly between the three.2.10.1 Fully Transparent S
hedulerThis is the simplest, straightforward, implementation. After ea
h pro
ess Pi,a re
overy sla
k of length kcPi,0 is s
heduled. That means that enough time iss
heduled to run k re-exe
utions and thereby handle k-faults.Thus, pro
esses are s
heduled with a free time slot after it, of a size whi
h allowsthis pro
ess to re-exe
ute on failing. This allows for using a single stati
 s
heduletable, and the online s
heduler will only have to dete
t whether a pro
ess failsand simply re-run it if it does. The sla
k in the s
hedule table allows for this tobe done without any other pro
ess having to be delayed.This s
heduler implementation is fully transparent to fault o

urren
es, i.e. noinformation about faults has to known be the s
hedulers to take de
isions.Figure 2.8 shows the pro
ess graph from se
tion 2.3 s
heduled with full trans-paren
y. Ea
h pro
ess has re
overy sla
k s
heduled after it, and no pro
ess may
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(a) S
hedule (b) Ar
hite
ture (
) Pro
essgraphPro
ess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(d) Durations

Pro
ess Start Time
P1 0
P2 4
P3 4
P4 8
P5 12(e) S
hedule tableFigure 2.8: Fully transparent s
hedule for k = 1. The s
hedule shown is thefastest possible for this system 
on�guration.start until it is guaranteed that all pro
esses before has had time to re-exe
ute.

2.10.2 Sla
k Sharing S
hedulerThe sla
k sharing s
heduler sa
ri�
es some of the transparen
y in order toa
hieve better performan
e. As the fault model di
tates that no more than
k faults will o

ur within a single exe
ution, it is not ne
essary to handle morethan this. The sla
k sharing s
heduler exploits this information, by allowingpro
esses on the same pro
essing element to share re-exe
ution sla
k. Figure2.9 shows the same system s
heduled using sla
k sharing. In the s
hedule wesee that e.g. P4 and P5 share re-exe
ution sla
k. As k = 1, only one of the twopro
esses may experien
e a fault, and hen
e only a single re
overy sla
k needsto be s
heduled.In this s
heduler, fault information is shared on the lo
al pro
essor, but faultsare still transparent between pro
essors. In this way, pro
ess P3 has to waituntil time 4 to start, to ensure that pro
ess P1 has had time to re
over.
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(a) S
hedule (b) Ar
hite
ture (
) Pro
essgraphPro
ess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(d) Durations

Pro
ess Start Time
P1 0
P2 2
P3 4
P4 8
P5 10(e) S
hedule tableFigure 2.9: Sla
k sharing s
hedule for k = 1. The s
hedule shown is the fastestpossible for this system 
on�guration.2.10.3 Conditional S
hedulerFault tolerant s
heduling using 
onditional s
heduling has no transparen
y, i.e.all online s
hedulers share the information of faults. This allows the s
hedulers torespond very e�
iently to faults, and hen
e produ
e s
hedules of high e�
ien
y.In order to do this e�
iently, a stati
 s
hedule has to be 
reated for ea
h faults
enario. The possible s
hedules for the previous example, are shown in �gure2.10. These 
apture all possible fault s
enarios. We see that the s
hedules arevery e�
ient as only exa
tly k sla
ks are s
heduled.In order to 
apture all these di�erent possible s
hedules an advan
ed 
onditionals
hedule table is needed (shown in �gure 2.10(k)). The online s
hedulers willalways start by exe
uting the failure free s
hedule, marked true. If a faultis dete
ted all online s
hedulers are noti�ed and they will all swit
h to the
orresponding re
overy (
ontingen
y) s
hedule, marked FP1 through FP5 .The 
onditional fault tolerant s
heduling gives good 
ontrol in terms of onlys
heduling the minimum amount of re
overy sla
k. However this 
omes at the
ost of the need of having more advan
ed online s
hedulers, more memory tostore the larger s
hedule tables, and that fault information has to be sharedbetween all pro
essors, whi
h in
reases bus utilisation. The broad
ast of 
ondi-



26 Preliminariestions on the bus is ignored in this thesis. However, we assume that the onlines
hedulers 
an only make de
isions based on the fault information they have ata given time. That is, the s
hedulers do not use information about faults thathave not yet o

urred.From �gure 2.10 it is seen that several of the possible s
hedules have the samedeadline, and in fa
t are examples of worst 
ase s
enarios. Whenever 
onditionals
hedules are shown in the rest of this thesis, they will be one of su
h worst-
ases
hedules.All pro
esses are noti�ed of all failures. In this way the s
hedule table for allnodes may/will 
hange in the event of a pro
ess failure.
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(a) No Fault (b) P1 Failing
(
) P2 Failing (d) P3 Failing
(e) P4 Failing (f) P5 Failing

(g) Pro
essgraph (h) Derived FT-CPG Taskgraph for
k = 1

Pro
ess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(i) Durations Table

(j) Ar
hite
ture ConditionPro
ess true FP1 FP2 FP3 FP4 FP5

P1 0 0, 2
P2 2 4 2, 4
P3 2 4 2, 4
P4 4 6 6 6 4, 6
P5 6 8 8 8 8 6, 8(k) Conditional S
hedule TableFigure 2.10: Illustration of the di�erent possible s
hedules 
aptured by a FaultTolerant Conditional Pro
ess Graph. Figure 2.10(a) through 2.10(f) shows theGantt 
harts for the possible fault s
enarios, and table 2.10(k) shows the 
or-responding 
onditional s
hedule table (Blank entries are to be exe
uted at thetime spe
i�ed in the true 
olumn).
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Chapter 3 Problem Formulation
In this se
tion motivational examples for the problems addressed in this thesisare presented. In the last se
tion I give an exa
t problem formulation.3.1 Complete Sear
h vs. List S
hedulingPrevious work in doing fault tolerant s
heduling, using 
onditional pro
essgraphs, has been presented in [9℄. In this work s
heduling is done using thewell known list s
heduling algorithm. The list s
heduling algorithm is a fastheuristi
 sear
h implementation whi
h o�ers good solutions to s
heduling prob-lems. However, as with any heuristi
, the algorithm is not guaranteed to produ
eoptimal results, and may hen
e produ
e a good s
hedule but not the globallyoptimal. In order to produ
e the optimal solution, it is ne
essary to exploreall possible solutions. As s
heduling problems are inherently NP -
omplete [29℄,this exploration is very 
ostly in terms of time.Using a 
omplete sear
h implementation to �nd optimal s
hedules may produ
esolutions of signi�
antly better quality than list s
heduling. As the embeddedsystems 
onsidered in the thesis all use stati
 s
hedules, the extra expense, to do
omplete sear
h, is a one-time 
ost, and may prove it self well worth it. Considerthe pro
ess graph shown in �gure 3.1(d) with the exe
ution times shown in �gure
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(a) List s
heduling.

(b) Optimal s
heduling.
(
) Ar
hite
ture (d) Pro
essgraphPro
ess PE1 PE2

P1 2 -
P2 - 4
P3 - 4
P4 - 2
P5 8 -(e) DurationsFigure 3.1: Performan
e of list s
heduling versus optimal s
heduling.3.1(e). A �-� in the durations table denotes that a pro
ess 
annot be mappedon that pro
essing element. Given this input, a list s
heduling algorithm willprodu
e the solution shown in �gure 3.1(a). List s
heduling always sele
ts apro
ess if it is ready for exe
ution, i.e. all its prede
essors have already beens
heduled. Hen
e list s
heduling will s
hedule P2 to start at time 0, as it has noprede
essors. However this proves to yield a suboptimal solution. The optimals
hedule is shown in �gure 3.1(b). This shows that introdu
ing some initialsla
k, also 
alled idle time, on pro
essor PE2 is a
tually bene�
ial.3.2 Poli
y AssignmentDetermining whether a pro
ess is to be s
heduled using re-exe
ution or repli
a-tion is 
alled poli
y assignment. The problem of doing good poli
y assignmentis 
riti
al in the optimisation pro
ess. The following example illustrates thisimportan
e.For a given ar
hite
ture (�gure 3.2(d)) an appli
ation (�gures 3.2(e) and 3.2(f))with a pre-de�ned mapping is to be s
heduled under a reliability goal Rg. Thefastest s
hedule for the appli
ation without fault toleran
e is shown in �gure3.2(a). This s
hedule �nishes well within the appli
ations deadline, but does notmeet the reliability goal. The designer hen
e wants to introdu
e redundan
y tomeet the reliability goal, and thus will introdu
e re-exe
utions of all pro
essesutilising sla
k sharing. The result of naively doing this is shown in �gure 3.2(b)
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(a) No fault toleran
e
(b) Only re-exe
ution

(
) Re-exe
ution and passive repli-
ation

(d) Ar
hite
ture
(e) Pro
essgraphPro
ess PE1 PE2

P1 2 3
P2 4 6
P3 6 9(f) Durations TableFigure 3.2: Illustration of the importan
e of 
onsidering redundan
y assignmentwhile s
heduling. The appli
ation shown in �gure 3.2(e) with the durationsshown in 3.2(f) is to be s
heduled on the ar
hite
ture shown in �gure 3.2(d).Figure 3.2(a) shows the fastest s
hedule with no fault toleran
e. This howeverdoes not meet the reliability goal. Figure 3.2(b) shows the same system s
hed-uled with redundan
y to handle one fault, however the deadline is no longermet. To remedy this the re-exe
ution of P2 is passively repli
ated on the faster

PE1, this is shown in �gure 3.2(
).



32 Problem Formulationin whi
h the reliability goal is met, but the deadline is now missed. Figure3.2(
) shows the same appli
ation with an optimal use of both re-exe
ution andrepli
ation. The redundan
y of P2 is now moved to the faster PE1, and theappli
ation now meets its reliability goal and its deadline.This example shows that it is important to 
onsider the poli
y assignment whendoing s
heduling as it may drasti
ally impa
t on the quality of produ
ed s
hed-ules.3.3 Power Consumption for Fault Tolerant S
hed-ulersThe 
hoi
e of fault toleran
e s
heduler implementation has great impa
t on thelength of the produ
ed s
hedule. This means that the 
hoi
e of s
heduler a�e
tsthe amount of sla
k for use with voltage s
aling to obtain energy savings.Figure 3.3 shows an appli
ation (�gure 3.3(g)) that is to be s
heduled on anar
hite
ture (�gure 3.3(h)). The appli
ation is 
onsidered s
heduled with ea
hof the three s
hedulers: fully transparent, sla
k sharing, and 
onditional. Thefastest possible solutions for ea
h of these s
hedulers are shown in the left most
olumn of Gantt 
harts. It is easily seen that the amount of available sla
kgreatly in
reases with the use of more sophisti
ated s
hedulers. Sla
k sharingyields a sla
k of 2, where as 
onditional yields a sla
k of 6.In this example I only 
onsider the energy 
onsumed by the root s
hedule. Thisis an approximation of the a
tual energy 
onsumption, but des
ribes the best
ase 
onsumption. As it is only the root s
hedule that is subje
t to voltages
aling, it is only this energy that will give rise to energy savings. Hen
e, thisis a reasonable simpli�
ation that makes the evaluation of a
hievable energysavings mu
h easier. As the three s
hedules in �gures 3.3(a), 3.3(
), and 3.3(e)all des
ribe the same appli
ation, and all pro
esses are run at the same voltagelevel, they naturally have the same energy 
onsumption EA,0.We wish to exploit the available sla
k to do voltage s
aling, and minimise theenergy 
onsumption. As there was no available sla
k when using fully trans-parent s
heduling, no voltage s
aling 
an be done and energy 
onsumption isun
hanged.The sla
k sharing s
heduler yielded a sla
k of 2, and hen
e energy optimisation ispossible. The energy optimal s
hedule is shown in �gure 3.3(d). From the Gantt
hart it is seen that the optimal voltage s
aling is to run pro
esses P1, P3, P4,
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hedulers 33Fastest S
hedule Minimum Energy S
hedule
Energy = EA,0(a) Fully transparent Energy = EA,0(b) Fully transparent
Energy = EA,0(
) Sla
k Sharing Energy = 53%EA,0(d) Sla
k Sharing
Energy = EA,0(e) Conditional Energy = 33%EA,0(f) Conditional
(g) Pro
essgraph (h) Ar
hite
ture

Pro
ess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(i) DurationsFigure 3.3: Illustration of the obtainable energy savings for di�erent fault tol-eran
e s
hemes. The �rst 
olumn shows the fastest s
hedules for ea
h faulttoleran
e s
heduling. The se
ond 
olumn shows energy optimal s
hedules forthe 
orresponding fault toleran
e. The �gures illustrate how more energy 
an besaved by using more advan
ed fault toleran
e te
hniques whi
h generate moresla
k. All the shown s
hedules 
an tolerate one transient fault, and have thesame deadline, but the 
onsumed energy to a
hieve this varies greatly with thedi�erent s
hedules.



34 Problem Formulationand P5 at the same frequen
y fA, and P2 at frequen
y fP2 . The relations forthe frequen
y levels is derived as the following two equations:
Deadline = 16 = 3cfA

+ cfP2
+ c0 (3.1)

Deadline = 16 = 4cfA
+ 3c0 (3.2)Solving this we �nd the exe
ution times of the s
aled pro
esses:

cfA
=

16− 3c0

4
=

10

4
(3.3)

cfP2
= 16− 3cfA

− c0 = 16− 3
10

4
− 2 =

26

4
(3.4)Using equation (2.1) the frequen
ies they are run at 
an be found:

fA =
c0

cfA

=
2 · 4

10
= 80% (3.5)

fP2 =
c0

cfP2

=
2 · 4

26
= 31% (3.6)With these values the energy 
onsumption for pro
esses at the two frequen
ies
an be 
al
ulated. To do so equation (2.8) is used. As the deadline is �xedfor the appli
ation the frequen
y independent power would 
ontribute with thesame amount for any s
hedule, and is hen
e disregarded of. The power exponentis assumed to be m = 3 whi
h is a reasonable value [30℄:

EP2 = Cefffm
P2

cP2 = Ceff

(

8

26

)3
26

4
= 0.189Ceff = 9.4%E0 (3.7)

EP1 = Cefffm
A cA = Ceff

(

8

10

)3
10

4
= 1.28Ceff = 64%E0 (3.8)Where E0 is the energy 
onsumed by a pro
ess run at full speed. Summing theenergy 
ontributions we �nd the total energy 
onsumed for the s
hedule, using
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EA,slack = 4EP1 + EP2 = (4 ∗ 1.28 + 0.189)Ceff = 5.31Ceff = 53%EA,0 (3.9)Using the sla
k sharing s
heduler we 
an a
hieve a system with the same levelof fault toleran
e as for the transparent s
hedule, but whi
h only 
onsumes 53%of the energy.The 
onditional s
heduler yielded a sla
k of 6 and hen
e has even greater po-tential for voltage s
aling. The energy optimal 
onditional s
hedule is shown in�gure 3.3(f). From the s
hedule we see that:

Deadline = 16 = 4cfA
+ c0 (3.10)

⇓

cfA
=

16− c0

4
=

14

4
(3.11)Whi
h leads to:

fA =
c0

cfA

=
2 · 4

14
= 57% (3.12)From this we �nd the energy 
onsumption for the 
onditional s
heduler to be:

EA,cond = 5Cefffm
A cfA

= 5Ceff

(

8

14

)3
14

4
= 3.27Ceff = 33%EA,0 (3.13)The 
onditional s
heduler gives the same level of redundan
y, but 
onsumesonly 33 % of the energy of the transparent s
heduler.We see that, using more advan
ed fault re
overy s
hedules, the energy 
on-sumption of an appli
ation 
an be redu
ed dramati
ally, while the level faulttoleran
e is maintained.



36 Problem Formulation3.4 Reliability and S
hedulingAs shown in previous se
tions 3.2 and 3.3 s
heduling has great impa
t on theobtainable sla
k, and thereby the amount of voltage s
aling that 
an be per-formed. In this example the e�e
t of voltage s
aling on system reliability isinvestigated.Figure 3.4 shows an appli
ation to be s
heduled su
h that energy 
onsumptionis minimised, while a required reliability goal of 9 nines is met.Using sla
k sharing s
heduling the fastest s
hedule is shown in �gure 3.4(a). Theenergy is EA,0, and the deadline is met, however the energy 
onsumption is notminimised. The reliability for the s
hedule is 
al
ulated using equations (2.14)and (2.16) in similar manner to the example in se
tion 2.7, using the 
onstants
d = 2, λ0 = 10−6 and the frequen
ies listed in �gure 3.4(e).Optimising the appli
ation for minimum energy 
onsumption, with the deadlineas a hard 
onstraint, results in the s
hedule shown in �gure 3.4(b). Due to theprobability of faults being dependent on the frequen
y, the reliability of thesystem is lowered. The probability of error is in
reased by:

∆ρ =
1−Rmin_energy

1−Rfastets

≃ 13 (3.14)The 
onsumed energy is redu
ed to merely 56% of the fastest s
hedule, but thereliability goal is missed.To ensure meeting the reliability goal, this is imposed as a hard 
onstraintalong with the deadline. The optimal s
hedule under these 
onstraints is shownin �gure 3.4(
). Now all 
onstraints are met and, under these, the energy isminimised. For this s
hedule the energy is redu
ed to 74% of the energy forthe fastest s
hedule. In order to produ
e a minimal energy s
hedule under thereliability goal, the pro
esses on PE2 are for
ed to swap pla
es.This example shows that reliability has to be 
onsidered at the same time asdoing s
heduling and voltage s
aling in order to produ
e optimal s
hedules. Ifthis is not done, the designed system may be
ome very unreliable. Further,optimal s
hedules under reliability 
onstraints will need to sa
ri�
e some energysavings in order to be reliable.However, my optimisation algorithms are able to produ
e s
hedules with 
on-strained reliability, whi
h yield energy savings 
omparable to s
hedules with
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Finish Time 20 msEnergy EA,0Reliability 10 nines(a) Fastest Possible S
hedule

Finish Time 24 msEnergy 55.7%EA,0Reliability 8 nines and 4(b) Minimum Energy
Finish Time 24 msEnergy 73.7%EA,0Reliability 9 nines and 2(
) Constrained Reliability, 9 nines

(d) Ar
hite
tureVoltage Level
PE1 100 % 67 % 34 %
PE2 100 % 67 % 34 %(e) Voltage Levels

(f) Pro
ess graphPro
ess PE1 PE2

P1 1 1
P2 7 7
P3 4 4
P4 4 4
P5 4 4
P6 5 5(g) Durations TableFigure 3.4: Example of the ne
essity of 
onsidering reliability when doings
heduling and energy optimisations. The appli
ation is shown in �gure 3.4(f)with the 
orresponding pro
ess durations in �gure 3.4(g). The appli
ation isto be mapped onto the ar
hite
ture shown in �gure 3.4(d) with 
orrespondingvoltage levels in �gure 3.4(e) using sla
k sharing fault toleran
e s
heduling. In�gure 3.4(a) the s
hedule has been optimised for speed alone. Figure 3.4(b)shows the same system optimised for minimal energy 
onsumption. Note that

P3 and P5 have swapped pla
es on PE2 to allow for better voltage s
aling. Fi-nally �gure 3.4(
) shows the system optimised for minimal energy 
onsumptionunder the reliability goal of 9 nines. Again the pro
esses swap pla
es to allowfor the best s
aling under this 
onstraint.
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onstrained reliability.3.5 Problem FormulationConsidering an appli
ation A with the pro
ess graph G, and a distributed ar
hi-te
ture 
onsisting of a number of pro
essing elements 
onne
ted by a single bus,we determine a reliability goal 
orresponding to fault-toleran
e for k transientfaults. For this system we wish to perform the following design tasks. Createa s
hedule, i.e. determine the start time for ea
h pro
ess. Do mapping, thatis the allo
ation of ea
h pro
ess onto pro
essing elements. Do voltage s
alingto minimise the energy 
onsumption. Apply a fault-toleran
e poli
y, either re-exe
ution or passive repli
ation, to ea
h pro
ess su
h that the appli
ations istolerant to k transient faults. All of these tasks have be 
onsidered simultane-ously to produ
e a design in whi
h the appli
ation is s
hedulable, the energy isminimised, and the reliability goal is met.



Chapter 4Energy-Optimisation underReliability and TimingConstraints
In this 
hapter I present the optimisation algorithms for energy minimisationunder reliability and timing 
onstraints. Se
tion 4.1 and 4.2 introdu
e 
onstraintlogi
 programming and ECLiPSe respe
tively. Se
tion 4.3 presents the logi

onstraints that 
orrespond to general embedded systems design tasks. The
onstraints spe
i�
 to fault toleran
e are presented in se
tion 4.4. The obje
tivefun
tion of the optimisation is des
ribed in se
tion 4.5. The sear
h strategyused in the optimisation is presented in se
tion 4.6.4.1 Constraint Logi
 ProgrammingLinear programming (LP) has been a popular tool for modelling and doingoptimisations for many years, espe
ially in operations resear
h. LP models are
omposed by a set of algebrai
 equations whi
h des
ribe the system. To �nd asolution, general purpose solvers are used to sear
h the design spa
e. This hasthe great advantage that all models will be able to use the same solver, andhen
e improvements to this solver 
an be shared by all users of the LP system.
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ated solvers with very good performan
e.However, algebra is a very limited tool for modelling. A mu
h more powerfulmathemati
al tool is logi
s. Logi
 programming is also a well established ap-proa
h, based on languages su
h as prolog. Logi
 programming is 
on
eptuallyidenti
al to LP in that a set of rules des
ribe a solution, and a solver sear
hes to�nd this solution. However for many appli
ations outside arti�
ial intelligen
e,logi
 programming has rather poor performan
e.Re
ent years have seen the advent of a hybrid of the two paradigms, the 
on-straint logi
 programming (CLP). The added 
onstraints allow for spe
ifyingalgebrai
 
onstraints on the systems de�ned by the use of logi
s. This has givenrise to CLP systems with the modelling 
apabilities of logi
s, as well as theperforman
e of LP. CLP has espe
ially proven to yield good performan
e insolving NP-hard problems.Programming in CLP is based on logi
 
onstraints. A system is des
ribed bya set of 
onstraints whi
h de�ne valid 
onditions for the system variables. Asolution to the modelled problem is an enumeration of all system variables, su
hthat there are no 
on�i
ting 
onstraints.
4.2 The ECLiPSe-CLP SystemECLiPSe is a prolog based CLP system. Its logi
 kernel, and all 
omponentsfor it are programmed in prolog. The a
tual programming language is howevernot standard prolog, but o�ers 
onstru
ts spe
i�
 to CLP.ECLiPSe was originally developed by the European Computer-Industry Re-sear
h Centre (ECRC) in Muni
h and later by IC-Par
 at Imperial College ofLondon, but has been open-sour
ed in the summer of 2006 and is now publi
lyavailable as a 
ommunity proje
t [5℄ supported by Cis
o Systems.The ECLiPSe system in
ludes a wide variety of libraries and extensions, as wellas a simple ba
ktra
king solver. The language o�ers primitives to allow for easy
onstru
tion of 
ustom solvers, both for 
omplete sear
h, as well as heuristi
s.Further details about ECLiPSe are available in [1, 5℄.
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(a) S
hedule (b) Pro
ess GraphFigure 4.1: Illustration of the pre
eden
e 
onstraint. Pro
ess Pj in the pro
essgraph 
annot start untill it has re
eived data from its prede
essor Pi.4.3 Constraints for Embedded SystemsIn this se
tion I present a series of logi
 
onstraints, whi
h have been used inthe literature to model embedded systems design tasks. These model generalthings like pro
essor and data behaviour, and are as su
h appli
able to all typesof systems. The 
onstraints spe
i�
 to fault toleran
e are presented in the nextse
tion.4.3.1 Pre
eden
e ConstraintsThe sequen
e of pro
esses in an appli
ation A is determined by their inter-
ommuni
ations E (see se
tion 2.3 for de�nition). No pro
ess 
an be exe
utedbefore all the pro
esses, from whi
h it depends on 
ommuni
ations from, havebeen exe
uted. Re
alling that an edge eij denotes a 
ommuni
ation from pro
ess

Pi to Pj the pre
eden
e 
onstraint 
an be formalised as:
Start(Pj) >= ∀eij

Start(Pi) + Duration(Pi) (4.1)whi
h must hold for all pro
esses Pj ∈ A. An example of the 
onstraint is shownin �gure 4.1. The example shows how the data dependen
y eij in the pro
essgraph for
es Pj to start after Pi has �nished.4.3.2 Resour
e ConstraintThe resour
e 
onstraint enfor
es the 
onstraint that a pro
essor 
an only exe
utea single pro
ess at a time. Two pro
esses may either be exe
uting on di�erentpro
essors, or exe
ute su
h that their exe
utions do not overlap in time. Thisis formally expressed by:
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(a) S
hedule A (b) S
hedule B (
) S
hedule C (d) Pro
ess graphFigure 4.2: Illustration of resour
e 
onstraint. Two pro
esses 
annot o

upy thesame pro
essing element at the same time. The three Gantt 
harts illustratevalid s
hedules.

Mapping(Pi) 6= Mapping(Pj)

∨Start(Pi) 6= Start(Pj) + Duration(Pj)

∨Start(Pj) 6= Start(Pi) + Duration(Pi) (4.2)whi
h must hold for all pro
ess pairs Pi and Pj where i 6= j. Three s
hedules,that adhere to this 
onstraint, are shown in �gure 4.2. Two pro
esses withno dependen
ies are to be s
heduled. They 
an either be mapped on di�erentpro
essors (�gure 4.2(a)), as expressed by the �rst 
lause of the 
onstraint, theymay exe
ute non-overlappingly on the same pro
essor (�gure 4.2(b) and 4.2(
)).4.3.3 Timing, Reliability and Energy ConstraintsFurther, all variables 
on
erning time, 
an be 
onstrained to be within thedeadline. For the start times of pro
esses this 
an be formally written as:
Start(Pi) + Duration(Pi) ≤ Deadline (4.3)whi
h must hold for all pro
esses Pi ∈ A. In fa
t, this 
onstraint must onlyhold for the end pro
ess(es) of an appli
ation. Spe
ifying it for all pro
esses,allows the underlying CLP engine to restri
t the possible values for the timingvariables. This, in turn, makes it easier for the solver to prove optimality, andmakes sear
hing for solutions faster.The 
onstraints for voltage s
aling, reliability, and energy are dire
t implemen-tations of the equations, presented in se
tions 2.3, 2.7 and 2.8 respe
tively, andare not repeated here. The use of these equations are shown in examples inse
tion 2.9.6 and 3.3.



4.4 Constraints for Fault Toleran
e 434.4 Constraints for Fault Toleran
eIn this se
tion the 
onstraints spe
i�
 to fault toleran
e are presented. Thepresented 
onstraints form an addition to the general 
onstraints presented inthe previous se
tion, and as su
h are an in
remental addition to add support forfault toleran
e to the already presented model. The 
onstraints are presentedindividually per fault toleran
e te
hnique. Examples of s
hedules with ea
h ofthe presented te
hniques 
an be found in �gure 3.3.4.4.1 Fully Transparent S
hedulerIn fully transparent s
heduling, re
overy sla
k is s
heduled after ea
h pro
ess.This is modelled by setting the length of a pro
ess to the length of the rootexe
ution, plus the length of k re
overy exe
utions:
Start(Pj) >= ∀eij

Start(Pi) + Duration(Pi)(1 + k) (4.4)Whi
h must hold for all pro
esses Pj ∈ A. This is an adaption of the pre
eden
e
onstraint from se
tion 4.3.1. If voltage s
aling is applied, this will e�e
t onlythe length of the root exe
ution, as all re-exe
utions will still be exe
uted at fullspeed. The expression is then:
Start(Pj) >= ∀eij

Start(Pi) + Durationf (Pi) + Duration(Pi)k (4.5)Whi
h again must hold for all pro
esses Pj ∈ A.4.4.2 Sla
k-Sharing S
hedulerWhen s
heduling with fault toleran
e using the sla
k sharing te
hnique, pro-
esses with dependen
ies on the same pro
essor and on other pro
essors need tobe treated di�erently. The 
onstraints for ea
h of these 
ases is hen
e treatedseparately in the following.
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(a) Example 1
(b) Example 2

(
) Pro
ess Graph (d) Ar
hite
tureExample 1 Example 2Pro
ess PE1 PE2 PE1 PE2

P1 2 - 4 -
P2 4 - 2 -
P3 - 2 - 2(e) DurationsFigure 4.3: Illustration of the availability of data in a sla
k sharing s
hedule, forpro
esses s
heduled on di�erent pro
essing elements. The Gantt 
harts showthe 
riti
al re-exe
ution s
hedule.Pro
esses on the Same Pro
essing ElementPro
esses exe
uted on the same pro
essor share re
overy sla
k. This sla
k willalways be s
heduled after the root pro
esses. Hen
e the root pro
esses 
an bes
heduled without any further 
onstraints. Thus the 
onstraint for pro
esses onthe same pro
essing element is simply:

Mapping(Pi) = Mapping(Pj) (4.6)Pro
esses on Di�erent Pro
essing ElementsThings are more 
omplex if the two pro
esses are mapped on di�erent pro
es-sors. As just des
ribed, pro
esses on the same pro
essor share re
overy sla
k.Pro
esses on di�erent pro
essors however 
annot be started until re
overy oftheir pre
edents is guaranteed.The situation where to pro
esses on di�erent pro
essors have to 
ommuni
ate,
an be split into two spe
ial 
ases. These are illustrated in �gure 4.3. The
onstraints for the two 
ases are presented below individually.
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e 45data is available to be transmitted to another pro
ess 
an be des
ribed by twospe
ial 
ases, both illustrated in �gure 4.3, and the 
onstraints are presentedbelow.Example 1: We 
onsider the dependen
y between pro
ess P2 and P3. In �gure4.3(
), P2 is s
heduled after a shorter pro
ess. The �gure shows the 
riti
alre
overy path. This is the path whi
h determines when data is available to betransmitted. In this example the longest re
overy path is k re-exe
utions of P2,and hen
e P3 
an start at time:
Start(P3) >= Start(P2) + Durationf (P2) + Duration(P2)k (4.7)Example 2: In �gure 4.3(d), P2 is s
heduled after a longer pro
ess. In this 
asethe longest re
overy path to P3 is k re-exe
utions of P1 plus a single exe
utionof P2. That is, the availability of data is not only determined by the sendingpro
ess, but also the pro
ess s
heduled before this. The start time of P3 is
onstrained by:

Start(P3) >= Start(P1) + Durationf(P1) + Duration(P1)k + Duration(P2)(4.8)These two s
hedule examples show that the availability of data, does not onlydepend on the two pro
esses whi
h 
ommuni
ate, but also on all the pro
esseswith whi
h the sending pro
ess shares sla
k. To generalise the shown 
onstraints,in a way that 
an be used in an CLP model, detailed information of the re
overys
hedule is needed. This is a
hieved by 
reating a separate s
hedule for there
overy pro
esses. For the examples shown in �gure 4.3, the 
reated re
overys
hedule in fa
t is identi
al to the re
overy s
hedule shown in ea
h Gantt 
hart.The re
overy s
hedule is set up in the following way. For ea
h pro
ess Pi are
overy pro
ess Si is inserted into the re
overy s
hedule with an edge ePi,Si
. Inthe re
overy s
hedule the same pre
eden
e and resour
e 
onstraints are imposedas presented in se
tion 4.3.1 and 4.3.2. The �nishing times of the pro
esses inthe re
overy s
hedule is des
ribed by:

Finish(Si) ≥ Start(Pi) + Durationf(Pi) + Duration(Pi)k

∧Finish(Si) ≥ Start(Si) + Duration(Pi) (4.9)As seen in the previous example (espe
ially �gure 4.3(d)), the duration of the
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overy pro
ess, is dependent on its prede
essors. Hen
e the above 
onstraint,
annot be written as elegantly in terms of the duration, and is hen
e kept inthis form.Note that the �rst part of the expression, up to the ∧ operator, 
aptures there
overy s
hedule in example 1. Similarly the rest des
ribes example 2.Using the re
overy s
hedule, the general logi
 
onstraint for pro
esses on di�er-ent pro
essors 
an now be written:
Start(Pj) >= Finish(Si) (4.10)General ExpressionWith the previous de�nitions of the re
overy s
hedules and 
onstraints for pro-
esses on the same, and on di�erent pro
essors, a general 
onstraint for sla
ksharing 
an be derived:

Mapping(Pi) = Mapping(Pj) ∧ Start(Pj) ≥ Start(Pi) + Durationf (Pi)

∨ Start(Pj) ≥ Finish(Si) (4.11)In the last part of the expression it is not expli
itly stated that Mapping(Pi) 6=
Mapping(Pj), as this is an impli
it 
onsequen
e of the �rst part of the 
lause.4.4.3 Conditional S
hedulerThe 
onditional s
heduler implementation is based on the FT-CPGs presentedin se
tion 2.6.The use of 
onstraint logi
 programming for s
heduling 
onditional pro
essgraphs is des
ribed in [15℄. The 
onstraints presented in this se
tion is anextension of that work to allow for s
heduling FT-CPGs.The 
onditional edges in the FT-CPG form mutually ex
lusive paths throughthe graph. As a 
onsequen
e two pro
ess, whi
h depend on mutually ex
lusive
onditions, will never be exe
uted in the same run of an appli
ation. As an
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e 47example, 
onsider P5,2 and P5,3 in �gure 2.6(b). P5,2 depends on the failureof P1,1 and P5,3 depends on P1,1 not failing (and P2,1 failing). Consequentlythese two pro
esses will never be a
tive in the same exe
ution. Be
ause of this,pro
esses whi
h are part of mutually ex
lusive paths 
an be s
heduled to thesame resour
e at the same time. This addition to the resour
e 
onstraint fromequation (4.2) is written:
MutuallyExclusive(Pi, Pj)

∨Mapping(Pi) 6= Mapping(Pj)

∨Start(Pi) >= Start(Pj) + Duration(Pj)

∨Start(Pj) >= Start(Pi) + Duration(Pi) (4.12)whi
h must hold for all pro
ess pairs Pi and Pj where i 6= j. The fun
tion
MutallyExclusive determines whether the two pro
esses are on two disjun
tivepaths (as des
ribed in the above paragraph). This fun
tion is 
omputationallyheavy, as it involves re
ursively sear
hing through the lists of 
onditions forea
h pro
ess. These 
ondition lists are 
reated as part of deriving the FT-CPG.Therefore, the lists are available to optimisation tool when it loads the FT-CPG.As the 
onditions for pro
esses are independent of the s
heduling, the re
ursivesear
h to determine mutual ex
lusiveness of pro
esses 
an be done as a one timee�ort as part of the setup of the internal model. In the a
tual implementationthe fun
tion to determine mutual ex
lusiveness is run �rst. If the two pro
essesare mutually ex
lusive, they do not 
onstrain ea
h other, and nothing further isdone. If they are part of the path, the 
onstraints presented above are invoked.The logi
 expression shown above 
aptures this behaviour 
on
isely.In [15℄, Ku
hinski does 
onditional s
heduling by using a graphi
al methodto draw pro
esses whi
h depend on di�erent 
onditions with di�erent width.In his work, he only operates with a single 
ondition, for whi
h his approa
hworks well, and is very intuitive, due to its visual resemblan
e to Gantt 
harts.However, in the appli
ation of fault toleran
e, with the inherently large num-ber of 
onditions, the graphi
al approa
h would be
ome impra
ti
al (pro
esseswould be
ome impra
ti
ally �thi
k� in the graph). Further to use this graphi-
al method Ku
hinksi exploits a built-in predi
ate in the CHIP 
onstraint logi
programming system. This predi
ate is not available in ECLiPSe, and hen
e thegraphi
al solution is not an option in this implementation. Most importantly,his implementation will evaluate mutual ex
lusiveness as part of model whilesear
hing for solutions. For large numbers of 
onditions, this will be
ome verytime 
onsuming. The solution presented in this thesis is more e�
ient, as the
ostly 
omparison of 
onditions is only done a single time, as part of loading themodel. This gives less logi
 
onstraints to evaluate at sear
h time, and hen
e
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antly faster sear
h performan
e of the s
heduler.4.5 Obje
tive Fun
tionThe tool uses reliability and deadline as hard 
onstraints. The CLP solver usesthis to 
onstrain the design spa
e, su
h that for any found solution, these two
onstraints will always be satis�ed.The optimisation 
an hen
e fo
us on the 
onsumed energy alone. The equationsused to express the energy are the ones presented in se
tion 2.8. As the goal ofthe tool is to a
hieve energy savings from using power management te
hniques,we are only interested in getting a measure for this saving. The optimisationpro
ess only applies voltage s
aling to the root s
hedule, and therefore onlythis will 
ontribute to energy savings. Hen
e, the tool optimises the energy
onsumption of the root s
hedule only. This is the same approa
h as used inthe example in se
tion 3.3. This approa
h makes the evaluation of the energysimpler, and hen
e faster, while still enabling the tool to pre
isely determine theenergy savings.4.6 Sear
h StrategyA CLP program is 
omposed by a set of logi
 
onstraints. To �nd solutions forsu
h a model, the solver will sear
h through all possible values of all variables,to �nd 
ombinations of values whi
h satisfy all 
onstraints.Consider a single pro
ess to be s
heduled and mapped to run on an ar
hite
turewith two pro
essing elements, and be optimised for fastest exe
ution. Thisexample is illustrated in �gure 4.4. The appli
ation has a deadline of 4, andthe pro
ess has a duration of 5 on PE1 and 1 on PE2. It should be obviousthat the pro
ess 
an only be mapped on PE2 in order to meet its deadline, apoint I shall return to shortly. To map and s
hedule this pro
ess the solverhas two design tasks to de
ide: mapping and s
heduling. Due to the 
onstraintspe
i�ed in equation (4.3), whi
h states that the start time plus the duration ofall pro
esses will always be smaller than the deadline, the solver will limit thevalue spa
e for the start times of the pro
ess, to the interval 0-3.In the sear
h tree in �gure 4.4(d) the start times are 
onsidered �rst, and then,for ea
h start time, the mappings are 
onsidered. This gives rise to the shownsear
h tree, whi
h has three internal-nodes, and six leaf-nodes (
orresponding to
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(a) Pro
ess graph Pro
ess PE1 PE2

P1 1 5(b) Durations (
) Ar
hite
ture
(d) Sear
h tree 1 (e) Sear
h tree 2

(f) Sear
h tree with pruningFigure 4.4: Illustration of sear
h trees for a simple mapping and s
hedulingexample. The appli
ation is to be mapped to the ar
hite
ture. The s
hedule isto be optimised for speed, and �nish within a deadline of 4.the six permutations of the values for the two variables). An alternative sear
htree where mappings are 
onsidered �rst, and then start times, is shown in �gure4.4(e). This tree has only two internal nodes, yet naturally the same six leaf-nodes. Hen
e, this tree is preferable to the other, as it will end up at the sameresults, but visit less internal states in the pro
ess, and hen
e be faster. Thisshows that the order in whi
h the design tasks are performed, has a big impa
tof the number of states that needs to be visited while sear
hing for solutions.Let us return to the fa
t that the pro
ess runs too slowly on PE1. Using theordering of design tasks from the optimal sear
h tree from �gure 4.4(e), and asolver that will always sele
t the smallest value �rst, the solver will perform thesear
h shown in �gure 4.4(f). In this tree, the pro
ess is �rstly mapped on PE1.The solver evaluates the 
onstraints, and �nds that due the pro
ess' durationbeing longer than the deadline of the appli
ation, this mapping is not valid.It hen
e ba
ktra
ks and maps the pro
ess on PE2 instead. While doing this,the solver does not try any values for start times. These bran
hes are 
ut of, orpruned. With the new mapping the solver will try the three di�erent start times,and determine that 0 yields the fastest s
hedule. Using pruning, the solver onlyhad to visit 6 nodes in the sear
h tree, out of the total 9. This illustrates that
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h the design tasks are performed, a�e
ts both the number ofinternal nodes in the sear
h tree, and the solvers ability to do e�
ient pruning.These two things both have very signi�
ant performan
e impa
t.For the proposed optimisation algorithm, it has been found that performingdesign tasks in the following order yields best sear
h performan
e: mapping,voltage s
aling, and s
heduling.In the previous example we used a solver whi
h 
onsidered variable values, fromthe smallest value and up. This is not always the best strategy. A

elerat-ing sear
hes by 
hanging the sequen
e in whi
h values are 
onsidered, is 
alledvalue sele
tion, and is a sear
h heuristi
, whi
h does not sa
ri�
e optimality.The implemented solver in the presented work, uses the following value sele
-tion s
hemes for ea
h variable: Mappings: random, Voltage levels: from theminimum, and Start times: from the minimum. This has been found to yieldthe best performan
e. Evaluating the voltage levels from the smallest �rst, willbias the sear
h towards �nding the s
hedules with the least energy 
onsumption�rst.4.6.1 Optimality vs. Fast SolutionsFor larger appli
ations ea
h design task 
onsists of assigning values to a largenumber of variables, e.g. all pro
esses will have a mapping and a start timevariable. Ea
h of these variables will be assigned a value using the strategy pre-sented above, but the sequen
e in whi
h the variables are 
hosen to be assignedis also an important part of the solver implementation. Speeding up sear
h, by
hanging the way in whi
h variables are 
hosen for assignment is 
alled variablesele
tion, and is too a sear
h heuristi
.ECLiPSe o�ers predi
ates to implement a number of di�erent variable sele
tions
hemes. The most 
onstrained s
heme, will sele
t the variable in the 
urrentset, e.g. mappings or start times, that has most 
onstraints asso
iated with it.The variable will be assigned a value, and then the se
ond most 
onstrainedvariable is sele
ted. This is repeated until the set is empty. A similar approa
his the �rst fail s
heme, whi
h tries to guess whi
h variable will be the �rst tolead to an invalid solution. This is done in a simpler and faster way than themost 
onstrained s
heme. The aim of these two approa
hes, is to try to �ndinvalid solutions �rst, in an attempt to do pruning of the sear
h tree as soonas possible. Early pruning, e�e
tively redu
es the size of the sear
h tree, and
onsequently makes it easier for the solver to prove optimality of a solution(whi
h it 
an only do after having visited all valid solutions). However as a lotof the initial sear
hes are intentionally dire
ted down sear
h paths that hold
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h Strategy 51no solutions, these two approa
hes may take very long time to �nd the �rstsolution, however this �rst solution will often be the optimal.As an alternative, ECLiPSe o�ers the anti �rst fail sele
tion s
heme, whi
h willtry to �nd a path that produ
es solutions as fast as possible. This approa
h willprodu
e a lot of solutions, that gradually get better. But these will generallystart out being very bad, as the variable sele
tion 
hoose the paths throughthe sear
h tree that represent the easy solutions. This sele
tion s
heme mayprodu
e good solutions, but will take mu
h longer time to prove them optimal.This is be
ause the variable sele
tion s
heme 
auses the sear
h to visit a lot ofsolutions, whi
h pruning 
ould have shown to be suboptimal.In the proposed implementation, the main interest is to �nd the optimal so-lutions, and I hen
e use the �rst fail variable sele
tion approa
h for all designtasks. This has been found to yield a good trade-o� between the speed of �ndingsolutions, and the solvers ability to prove the optimality of solutions.
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Chapter 5 Experimental Results
In this se
tion I present the experiments performed, in order evaluate the pro-posed s
heduling and optimisation approa
hes. The experiments have been
ondu
ted on two sets of test data, a set of syntheti
 appli
ations presented inse
tion 5.1, and a 
ase study of an MP3-de
oder, presented in se
tion 5.2. Theremaining se
tions of this 
hapter present the 
ondu
ted experiments.5.1 Syntheti
 Appli
ationsA large set of syntheti
 appli
ations have been generated using the task graphsfor free tool (TGFF ) [4, 26℄. This tool generates pseudo-random pro
ess graphsin a platform independent and general way, allowing resear
hers to experimentwith their results, on similar input material. I have 
on�gured TGFF to gener-ate series parallel graphs, whi
h resemble graphs for real appli
ations. In �gure5.1 a sample TGFF series parallel graph is shown, together with the inputparameters used to 
reate it.The test set is 
omposed of graphs with N ∈ 10, 15, 20, 25, 30 pro
esses. Forea
h graph size, I have generated a total of ten graphs. Half of the pro
esses inthe graphs have been randomly 
hosen to be made redundant. The remainder
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tg_
nt 5task_
nt 15 1gen_series_parallel trueperiod_laxity 1period_mul 1, 1, 1tg_writeeps_writev
g_writepe_write(a) Input parameters (b) Generated graph ex-ample
(
) Ar
hite
ture

Voltage Level
PE1 100 % 67 % 34 %
PE2 100 % 67 % 34 %
PE3 100 % 67 % 34 %(d) Voltage levelsFigure 5.1: Parameters used for TGFF and an example of a 
orrespondinggenerated pro
ess graph. Also the ar
hite
ture used in the syntheti
 experimentsis shown.



5.2 MP3-de
oder Case Study 55of the pro
esses are 
onsidered non-
riti
al, and are not made redundant.Where not expli
itly stated otherwise, the ar
hite
ture shown in �gure 5.1(
)is used. The ar
hite
ture 
onsists of three pro
essing elements, 
onne
ted bya single bus. Ea
h pro
essing element 
an be run at three voltage levels. Theappli
ations have been randomly mapped unto the ar
hite
ture.In the experiments, the fully transparent s
hedule has been used as referen
e.This s
hedule is the straightforward approa
h, that an experien
ed designerwould determine, without using my tool. The deadline for the graphs in theexperiments, has been set to the length of the optimal fully transparent s
hedule.Similarly, the reliability goal is determined based on the reliability of the fastestfully transparent s
hedule. The reliability goal is de�ned as:
Rg = 1− 10(1−Rtransparent) (5.1)whi
h means, the probability of faults may be no more than ten times greaterthan in the transparent s
hedule.5.2 MP3-de
oder Case StudyThe experiments have also been 
ondu
ted on a real appli
ation. This is anMP3-de
oder, for whi
h a pro
ess graph, as well as detailed timing informationis available. This example has previously been used in [18℄ and [24℄.The pro
ess graph for the MP3-de
oder is shown in �gure 5.2. The graph hastwo parallel exe
utions, with identi
al durations, and two interse
ts. This isbe
ause the de
oded MP3 -stream is stereo, and the two 
hannels are de
odedindependently. The durations shown in the �gure are written as the number of
y
les they need to 
omplete. The deadline for the appli
ation is 25ms.The MP3-de
oder is exe
uted on an ar
hite
ture with two pro
essing elements,shown in �gure 5.2(
). The individual pro
essors 
an be run at three voltagelevels. The voltage levels have been set slightly higher than in the ar
hite
turefor the random pro
ess graphs. This is due to pro
esses P13 through P16 beingrelatively expensive in terms of exe
ution time. With the lower voltage levels,these pro
esses 
an not be voltage s
aled within the deadline, and the sla
k 
annot be e�
iently used for energy management.
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(a) Pro
ess graphsDes
ription Pro
ess PE1 PE2Prepro
essing P1 1071 1071S
ale P2, P3 476 476Hu�man De
oder P4, P5 36781 36781De-quantisation P6, P7 14172 14172III-Stereo P8 63914 63914Reorder P9, P10 2568 2568Antialise P11, P12 21305 21305IDCT P13, P14 144924 144924Sub-Band Synthesis P15, P16 266687 266687(b) Durations
(
) Ar
hite
ture Voltage Level

PE1 100 % 75 % 50 %
PE2 100 % 75 % 50 %(d) Voltage levelsFigure 5.2: Pro
ess graph forMP3-de
oder. The des
riptions are from [24℄. Theexe
ution times are here listed as the amount of 
y
les they need to exe
ute.The ar
hite
ture the is also shown, along with the available voltage levels.
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tive 
apa
itan
e Ceff 1.11 · 10−9 FPower exponent m 3Frequen
y independent power Pind 0 mJInitial failure rate λ0 1.0 · 10−6 faults per se
ondFailure rate 
onstant d 2Figure 5.3: Constants used in experiments. The failure rate is assuming a 100megabit 
hip [32℄.5.3 Optimisation ParametersThe algorithms have been evaluated 
onsidering two situations. In the �rst 
ase,the appli
ation must tolerate one transient fault (k = 1), and in the se
ond 
ase,they tolerate two faults (k = 2).All experiments have been 
ondu
ted with a fault toleran
e level of k ∈ {1, 2}.The 
onstants used for the numeri
al 
al
ulations are shown in �gure 5.3. Allexperiments are 
ondu
ted with a hard deadline. The system is assumed to beonline 
ontinuously, hen
e the frequen
y independent power, Pind, 
an safely beset to naught, as it will only 
ontribute with a 
onstant to the energy expressionfrom equation (2.9), with value Deadline · Pind.The 
onstant values are taken from [30℄ and [19℄.The CLP solver that sear
hes for s
hedules, is set to have a timeout of 15minutes. For some s
hedules optimality is proved within this deadline. Othersear
hes may produ
e intermediate results, but not be able to prove optimal-ity. Finally, some sear
hes may not �nd any solutions within this deadline.How many sear
hes fall into whi
h 
ategory is listed for ea
h experiment in thefollowing.The experiments have been 
ondu
ted using the ECLiPSe version 5.10_44,running on 3.5 Ghz AMD 64-bit 
omputers with 2 gigabytes ram.5.4 Performan
e of Fault-Tolerant S
hedulersTo 
ompare the three implemented s
hedulers against ea
h other, two experi-ment runs have been performed. In the �rst, the optimisation 
riteria is �nish
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(a) k = 1 (b) k = 2No. of Pro
essesNo. Faults 10 15 20 25 30Fully transparent

k = 1 10/0/0 9/1/0 7/3/0 5/3/2 2/5/3
k = 2 10/0/0 10/0/0 7/2/1 6/4/0 3/4/3Sla
k sharing
k = 1 10/0/0 9/1/0 7/3/0 5/3/2 2/4/4
k = 2 10/0/0 10/0/0 7/2/1 6/4/0 3/4/3Conditional
k = 1 4/6/0 2/8/0 0/10/0 0/8/0 0/7/3
k = 2 3/7/0 0/10/0 0/9/1 0/10/0 0/7/3(
) Finishing status of sear
hesFigure 5.4: Comparison of the fastest possible s
hedules obtainable with thethree s
hedulers. All values are relative to those of the fully transparent s
hed-uler. Smaller values are better. The table shows the number of optimal /intermediate / none s
hedules for ea
h graph size.time, and their ability to produ
e fast s
hedules is 
ompared. The results forthis experiment is shown in the graphs in �gure 5.4. The x-axis marks the sizeof the graphs, and the y-axis is the length the produ
ed s
hedule, relative tothe s
hedule produ
ed using the fully transparent approa
h. The plotted pointsare the average of the ten graphs generated for ea
h graph size. The number ofoptimal / intermediate / none results for the sear
hes are shown in the tablein �gure 5.4(
). Optimal results are those whi
h have been found within thetimeout. Sin
e the sear
h has stopped before the timeout, the found s
hedule isknown to be optimal. Intermediate results are the best known s
hedule, whenthe sear
h rea
hed timeout. The sear
hes marked as none, did not �nd any validsolutions within the timeout.From the graphs we see that for systems tolerating one transient fault, the sla
ksharing approa
h produ
es results that are 
onsistently 10-15% shorter thanthose for the fully transparent s
heduler. The 
onditional approa
h is 20-30%
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e of Fault-Tolerant S
hedulers 59Fault Toleran
e Te
hnique
k = 1 Fully Trans. Sla
k Shr. ConditionalFinishing time 1103796 919280 818585
k = 2Finishing time 1655694 1286662 1085272Figure 5.5: Minimal �nishing times for MP3-de
oder.

better. This tenden
y is even more obvious for k = 2, where the sla
k sharings
heduler performs 20% better, the 
onditional s
heduler an amazing 50% thanthe transparent s
heduler.To see how large energy savings 
an be a
hieved by exploiting the sla
k produ
edby the better performing s
hedulers, we now minimise the energy for the designs.The deadline used is that of the fastest sla
k sharing s
hedule, and no reliabilitygoal is set. The results of this experiment is shown in �gure 5.6. For the energyplot ,the y-axis is the energy 
onsumption relative to that of the fastest fullytransparent s
hedule, 
al
ulated similarly to the �nishing times in the previousexperiment. For the reliability plot, the y-axis is the absolute reliability.We see that the sla
k sharing s
hedule gives a dynami
 energy saving of 30% and45-50% for one and two faults respe
tively. The 
onditional s
hedule produ
ess
hedules that saves as mu
h as a 70% for k = 2. However, we see that the
onditional s
heduling is not able to produ
e any results at all for graph sizeslarger than 15. This is be
ause of the use of FT-CPGs to 
apture all possiblefault s
enarios. The size of a FT-CPG grows drasti
ally, with growing graphsizes. For graphs with 15 pro
esses the average number of pro
esses in the 
orre-sponding FT-CPG, is 70.9 for k = 1 and 270.9 for k = 2. With 20 pro
esses thisin
reases to 104.9, and 483.4 respe
tively, whi
h renders the sear
h infeasible.The reliability plots show the energy savings are obtained at a very high relia-bility 
ost.The �nishing time optimisation results for the MP3-de
oder are shown in �gure5.5. For k = 2 the sla
k sharing s
hedule is about 25% faster, and the 
ondi-tional about 30% faster. This is 
omparable to the syntheti
 appli
ations. The�nishing times a
hieved using the fully transparent s
heduling s
heme, are usedas deadlines in the remaining experiments. Re
alling that the appli
ation has adeadline of 25ms, the pro
essor that runs the appli
ation, will have to exe
ute
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(a) Energy for k = 1 (b) Reliability for k = 1

(
) Energy k = 2 (d) Reliability k = 2No. of Pro
essesNo. Faults 10 15 20 25 30Fully transparent
k = 1 10/0/0 8/2/0 8/1/1 4/3/3 0/6/4
k = 2 10/0/0 10/0/0 10/0/0 6/2/2 0/7/3Sla
k sharing
k = 1 9/0/1 9/1/0 2/6/2 3/3/4 0/2/8
k = 2 9/1/0 10/0/0 3/5/2 2/6/2 0/4/6Conditional
k = 1 4/1/5 0/3/7 0/0/10 0/0/10 0/0/10
k = 2 5/0/5 1/0/9 0/0/10 0/0/10 0/0/10(e) Finishing status of sear
hesFigure 5.6: Comparison of the obtainable energy savings for di�erent s
hedulers.The fastest s
hedule for fully transparent s
heduling has been used as deadline,and energy minimised under this. The energies are relative to the energy forrunning all pro
esses at full speed, hen
e for energy smaller values are better.The reliability plots are in absolute values, and higher values are better.
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heduling vs. Optimal S
hedules 61Fault Toleran
e Te
hnique
k = 1 Fully Trans. Sla
k Shr. ConditionalEnergy 46123.2084 24529.21914375 20598.871287222Reliability 9 nines and 6 8 nines and 6 8 nines and 6
k = 2Energy 46123.2084 15234.397575 14606.184732684Reliability 14 nines and 5 12 nines and 9 12 nines and 8Figure 5.7: Energy and reliability for MP3-de
oder.at a minimum of:

fk=1 =
1103796

25ms
= 44.15Mhz (5.2)for k = 1 to �nish within the deadline. For the implementation tolerating twofault, the minimum 
lo
k frequen
y is:

fk=2 =
1655694

25ms
= 66.23Mhz (5.3)Provided an ar
hite
ture is given, whi
h supports the two levels of fault tol-eran
e using the straightforward fully transparent s
heduling, the use of themore advan
ed s
hedulers 
ould provide the same level of fault-toleran
e while
onsuming the energy shown in �gure 5.7. Both sla
k sharing and 
onditionals
heduling give an energy saving of about 65% for k = 2.The experiments show that signi�
ant savings in terms of sla
k, and energy, areavailable by the use of more sophisti
ated fault tolerant s
heduling. The energyminimisation experiment 
learly illustrates that energy management should beused with 
are, as the reliability of the produ
ed s
hedules drops rapidly asthe graphs sizes in
rease (i.e. the amount of sla
k in
reases). The experimentsfurther show, that the 
onditional s
heduling, although it produ
es very goodresults, is impra
ti
ally slow.5.5 List S
heduling vs. Optimal S
hedulesTo evaluate the e�
ien
y of the proposed s
heduling te
hniques, I have 
om-pared their performan
e against the algorithm presented in [10℄. I have used
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ode, whi
h s
hedules an FT-CPG representation ofa graph using list s
heduling. In these experiments 100% of the pro
esses are
onsidered to be re
overed in 
ase of fault.The graphs are s
heduled on an ar
hite
ture with 4 pro
essing units. The samemapping is used for all experiments. The optimisation 
riterion is �nishing time.The results of the 
omparison with the list s
heduling are shown in �gure 5.8.In the plots the y-axis is the �nishing time relative to that of the list s
heduler.We see that the sla
k sharing s
heduler performs 25% better for k = 1. For
k = 2 the sla
k sharing approa
h still produ
es better results, but somewhatless so (about 20%). Again we see that the 
onditional s
heduling, does notprodu
e any results for larger graphs. For the s
hedules found, however, we seethat the list s
heduling results, are far from optimal. In fa
t, for k = 2 theoptimal s
hedules are as mu
h as 60% better.The results for the MP3-de
oderare shown in �gure 5.7. For the 
ase study,we see that the sla
k sharing s
heduling is performing nearly as good as the
onditional. We also note that the energy 
onsumption is indeed lower for thes
hedules that handle two faults. This is be
ause they have been s
heduledwith a di�erent deadline. We re
all that the deadline is set to the length of thefastest transparent s
hedule. The advantage of using more advan
ed s
hedulingalgorithms over the transparent be
omes more apparent as k in
reases, andhen
e there is more sla
k for voltage s
aling.These experiments show that the proposed sla
k sharing s
heduling performssigni�
antly better than the list s
heduling algorithm proposed in [10℄.5.6 The E�e
ts of Poli
y AssignmentThe impa
t of poli
y assignment and mapping on the quality of obtainables
hedules is evaluated by s
heduling the same graph with three di�erent degreesof mapping. Firstly, with all pro
esses mapped, and all re
overy exe
utionsmapped on the same pro
essing element, i.e. only with re-exe
ution. Se
ondly,with all root pro
esses mapped, but re
overy exe
utions unmapped, i.e. 
om-bination of re-exe
ution and passive repli
ation. And �nally with all pro
essesunmapped. These experiments are run on the ar
hite
ture shown in �gure 5.9.This is a heterogeneous ar
hite
ture, with three pro
essors, ea
h with di�erentperforman
e. The performan
e ratios are written inside the pro
essing elementsin the �gure. The ratios mean, that a pro
ess mapped on PE2 will have a du-ration that is twi
e as long as if it were mapped on PE1. For this experiment
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(a) k = 1 (b) k = 2No. of Pro
essesNo. Faults 10 15 20 25 30Sla
k sharing
k = 1 10/0/0 7/1/2 5/3/2 7/0/3 4/0/6
k = 2 10/0/0 6/1/3 6/1/2 10/0/0 8/0/2Conditional
k = 1 7/3/0 0/10/0 0/10/0 0/0/10 0/0/10
k = 2 4/6/0 0/10/0 0/1 /10 0/0/10 0/0/10(
) Finishing status of sear
hesFigure 5.8: Fastest possible s
hedules with three di�erent s
hedulers. Theheuristi
 list s
heduling approa
h is used for referen
e, and all other numbersare relative to this. Smaller values are better.the optimisation 
riteria is �nishing time.The results of these experiments are shown in �gure 5.10 for the syntheti
 appli-
ations. The graphs show that using a 
ombination of re-exe
ution and passiverepli
ation, my implementation 
an produ
e s
hedules whi
h are 
onsistently10% better than those with only re-exe
ution. We also see that if the optimi-sation tool is allowed to determine the mapping, as well as the poli
y assign-ment, the results be
ome even better. The plot for this 
ase, however behavesstrangely, and the results be
ome in
reasingly bad, and for 30 pro
esses, evenprodu
es s
hedules that are worse than those with re-exe
ution only. This isbe
ause the size of this design spa
e being signi�
antly larger in this 
ase. Inturn, this is seen in the status table, where nearly no sear
hes �nish withinthe timeout. Hen
e the s
hedules plotted are intermediate results and are thussub-optimal. If the sear
hes had �nished, an improvement in the �nishing time,similar to that where k = 1 should be expe
ted.The MP3-de
oder is s
heduled on the same, homogeneous, ar
hite
ture as in
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Figure 5.9: Ar
hite
ture for the experiments in se
tion 5.6. The performan
eratios for the pro
essors are written above ea
h pro
essor.

(a) k = 1 (b) k = 2No. of Pro
essesNo. Faults 10 15 20 25 30Only re-exe
ution
k = 1 10/0/0 6/2/2 10/0/0 8/2/0 2/0/8
k = 2 10/0/0 10/0/0 8/0/2 10/0/0 8/0/2Re-exe
ution andpassive repli
ation
k = 1 10/0/0 6/4/0 6/2/2 8/2/0 0/0/10
k = 2 10/0/0 6/4/0 8/0/2 8/2/0 0/6/4Both and mapping
k = 1 6/4/0 0/8/2 0/10/0 0/10/0 0/2/8
k = 2 4/6/0 0/10/0 0/8/2 0/10/0 0/8/2(
) Finishing status of sear
hesFigure 5.10: In�uen
e of poli
y assignment on quality of solutions. The s
hed-ules with all pro
esses mapped are used as referen
e, and the other values arerelative to this. Smaller values are better.
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e poli
y
k = 1 Re-ex. Re-ex. & pas. repl. Both & mappingFinishing Time 919280 896671 835325
k = 2Finishing Time 1286662 1241444 1118752Figure 5.11: In�uen
e of poli
y assignment on s
hedule quality forMP3-de
oder.The results are for: all pro
esses mapped, only the root pro
esses mapped, andall pro
esses unmapped.the other experiments. The results are shown in �gure 5.11. Again, we see animprovement when using both passive repli
ation and re-exe
ution, and an evenbigger improvement if the mapping is also 
onsidered part of the optimisation.The �nishing times are improved by a few per
ent when passive repli
ationis introdu
ed, and by about 10% when mapping is also de
ided. Consideringthat the MP3-de
oder has a highly parallel stru
ture, and is s
heduled on twoidenti
al pro
essors, these improvements are in fa
t quite high.These experiments show that 
onsidering poli
y assignment and mapping is
riti
al to produ
e s
hedules of high quality.5.7 Energy Trade-O�s for ReliabilityIn this experiment the obtainable energy savings possible under a reliabilitygoal Rg have been investigated. The optimisation is done using sla
k sharings
heduling, whi
h, through the previous examples, has been shown to behavewell, both in terms of the quality of the produ
ed s
hedules, and also in termsof exe
ution time.Two energy optimisations are done for ea
h graph, one where the reliabilityis not 
onstrained, and one where the reliability goal Rg is imposed as hard
onstraint. The imposed reliability goal is the one presented in se
tion 5.3. Theenergy is 
ompared to that of the fastest transparent s
hedule, the �nishing timeof whi
h, is used as deadline.The results of these experiments are shown in �gure 5.12. The plots 
learlyshow, that lowering the voltage to minimise energy 
onsumption, without 
on-
ern for reliability produ
es extremely unreliable systems. The reliability de-
reases dramati
ally with in
reasing appli
ation size and k. If, however, relia-bility is 
onstrained to meet a reliability design goal, this is avoided. The plots



66 Experimental Resultsfor energy show that, the di�eren
e in energy is only very little, however thereliability bene�ts greatly from the introdu
ed reliability goal. This shows that
onsidering reliability as part of the optimisation pro
ess, my approa
h is ableto dramati
ally improve the reliability of designed systems at very little sa
ri�
eof energy.To illustrate this, let us 
onsider the probability of error, for k = 1 and 20pro
esses. This is improved by a fa
tor of:
∆ρ =

1−Runconstrained

1−Rconstrained

=
1− 0.9634

1− 0.9906
= 3.9150 (5.4)At the 
ost of an in
rease in energy 
onsumption by a mere:

∆E =
Econstrained − Eunconstrained

Eunconstrained

=
0.6993− 0.6917

0.6917
= 0.88% (5.5)And the trend is only more obvious if examples for k = 2 are 
onsidered.The results for the MP3-de
oder show the same tenden
y. Firstly, it should benoted that the reliability for this example is far greater than that of the randomgraphs. This is due to all pro
esses being redundant. In the syntheti
 examplesonly 50% are made redundant, and hen
e the other half will 
ontribute to thesystems unreliability.We see that, for k = 1, the un
onstrained s
hedule 
onsumes:

∆E =
Eunconstrained

Etransparent

=
24529.21914375

46123.2084
= 53.2% (5.6)of the energy of the transparent s
hedule. However, the reliability is missed.The 
onstrained s
hedule yields a s
hedule whi
h 
onsumes:

∆E =
Econstrained

Etransparent

=
29020.2215625

46123.2084
= 62.9% (5.7)energy and meets the reliability goal. By sa
ri�
ing an energy saving of 9%, wehave made the designed system meet its reliability goal. The energy 
ost, fora
hieving this, in this 
ase is a bit larger than for the syntheti
 appli
ations.
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(a) Energy for k = 1 (b) Reliability for k = 1

(
) Energy for k = 2 (d) Reliability for k = 2No. of Pro
essesNo. Faults 10 15 20 25 30Fully transparent
k = 1 10/0/0 9/0/1 7/3/0 5/4/1 2/6/2
k = 2 10/0/0 10/0/0 7/3/0 6/3/1 3/5/2Un
onstrained
k = 1 9/1/0 9/1/0 4/5/1 6/3/1 0/5/5
k = 2 9/1/0 10/0/0 4/6/0 4/5/1 0/6/4Constrained
k = 1 9/1/0 9/0/1 4/3/3 6/3/1 0/7/3
k = 2 10/0/0 10/0/0 5/4/1 7/1/2 0/6/4(e) Finishing status of sear
hesFigure 5.12: Plot of energy and relibality, s
heduled with and without 
on-strained reliability.
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onstrained Constrained
k = 1 Rg = 8 nines and 8Energy 46123.2084 24529.21914375 29020.2215625Reliability 9 nines and 5 8 nines and 6 8 nines and 9
k = 2 Rg = 13 nines and 6Energy 46123.2084 15234.39757 18931.3788375Reliability 14 nines and 6 12 nines and 8 13 nines and 6Figure 5.13: Energy and reliability for MP3-de
oder.This is be
ause theMP3-de
oder is dominated by a few very heavy pro
esses, asdis
ussed earlier. This makes the appli
ation have little �exibility to do voltages
aling. The syntheti
 appli
ations have pro
esses of more even sizes, and hen
eare more �exible.This demonstrates that reliability should be 
onsidered as a part of the system-level optimisation pro
ess. Doing so, may yield valuable insight on how toe�
iently voltage s
ale a system. It is possible to a
hieve mu
h better reliability,at the 
ost of only a very little in
rease in 
onsumed energy.



Chapter 6 Con
lusions
In this thesis, I present design optimisation approa
hes for the design of time
onstrained fault-tolerant embedded multipro
essor systems-on-a-
hip. The pre-sented te
hniques 
onsider the reliability simultaneously with the s
heduling,mapping and voltage s
aling. The presented approa
hes are able to produ
es
hedules with good reliability at a very small energy 
ost, 
ompared to s
hed-ules that where s
heduled without 
onsidering reliability. This shows that it is
riti
al to 
onsider the reliability of systems as part of the system-level designphase.To evaluate the reliability of fault tolerant systems, I have derived equations forthe reliability of several di�erent fault-toleran
e te
hniques. This extends thework of [30℄ to allow for not only re-exe
ution, but also repli
ation and passiverepli
ation. Further the expressions are generalised for arbitrary numbers ofhandled faults k, and not as previous work only for k = 1.Three di�erent fault tolerant s
heduling methods have been implemented: fullytransparent, sla
k sharing and 
onditional. To do 
onditional s
heduling, ageneral algorithm has been developed whi
h builds FT-CPGs from normal taskgraphs. This extends the work of [9℄ and [10℄.The approa
hes have been implemented using a 
onstraint logi
 programmingsystem, and towards this, end the logi
 
onstraints to model fault-tolerant em-



70 Con
lusionsbedded systems are presented. The advantage of using an CLPapproa
h is its�exibility. It is easy to add and remove 
onstraints, and several design tasks 
anbe integrated in the same 
ode. The sear
h strategy 
an easily be 
ontrolled,and, given enough time, the sear
h is able to �nd optimal solutions.The experiments 
ondu
ted have shown that the presented algorithms are ableto produ
e implementations whi
h are fault-tolerant, s
hedulable, and minimiseenergy.6.1 Further WorkThe model presented disregards 
ommuni
ation delay. Considering this howeverwill give rise to some interesting problems. For the more advan
ed s
hedulerimplementation, fault information has to be shared between pro
essors. Thisinformation will naturally have to be transmitted on the bus. This may lead to
ongestion on the bus, and hen
e impa
t exe
ution speed. Further, the extrapower needed to drive the bus, may a�e
t the optimal s
hedules, su
h that lessparallelism is favoured.The optimisation tool presented in this thesis does 
omplete optimal sear
h.This is shown to yield very good results, but is also rather slow. Comparisonwith a list s
heduling heuristi
 shows that the implemented tool behaves gener-ally between 10-20 % better for sla
k sharing s
heduling. It would be interestingto extend the presented model with a fast 
onstraint logi
 programming sear
hheuristi
, whi
h would qui
kly produ
e solutions of good quality.



Appendix ADerivation of FT-CPG
In [9℄ an algorithm to derive FT-CPGs from normal pro
ess graphs is presented.It is however very abstra
t, and as su
h does not form a good base for doing ana
tual implementation. As a 
onsequen
e we have proposed a dire
tly imple-mentable algorithm to derive FT-CPGs.The algorithm takes as input a normal dire
ted pro
ess graph, and from itprodu
es a 
onditional graph with fault toleran
e for k faults. An example of apro
ess graph and its derived FT-CPG for k = 1 is shown in �gure 2.6.The GenerateFTCPG fun
tion is shown in pseudo-
ode representation in algo-rithm 1. The subscripts array set up in line 3 is used to assign unique sub-s
ript numbers to re-exe
utions of a pro
ess. This is ne
essary to distinguishre-exe
utions from ea
h other. Lines 1 to 22 initialise the data stru
tures. Thealgorithm starts with the sour
e node, whi
h has no prede
essors. The algo-rithm maintains a set of 
onditions for ea
h pro
ess whi
h 
aptures the faults
enario in whi
h the pro
ess will be a
tive. For ea
h pro
ess with prede
essors,it is ne
essary to determine whi
h instan
es of this/these prede
essors are valid.E.g. it is 
riti
al that a pro
ess with two prede
essors, is only inserted into thegraph, with 
ombinations of these two prede
essors, that do not belong to mu-tually ex
lusive paths in the FT-CPG. A 
ombination of prede
essor pro
essesthat is part of the same path in the FT-CPG, is 
alled a valid 
ombination.These valid 
ombinations are determined using the set of 
onditions for ea
h
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essor. The valid 
ombinations are determined in line 25. To �nd thesevalid 
ombinations is non-trivial, and the algorithm for doing this is given inalgorithm 2.The for loop from line 26 to 33 inserts a new pro
ess for ea
h valid 
ombination,and the loop from line 34 to 45 inserts re-exe
utions of ea
h of the newly insertedpro
esses.A.1 FindValidCombinationsThis is the fun
tion to �nd valid 
ombinations of prede
essors for a pro
ess.The fun
tion takes as input the so far generated FT-CPG and the pro
ess forwhi
h we wish �nd prede
essor 
ombinations. The pro
ess will have a set ofprede
essors in its original graph, in �gure 2.5 P4 has the prede
essors P2 and
P3. The loop in lines 3-5 sear
hes through the FT-CPG generated so far, andinserts ea
h instan
e of the prede
essors pro
esses in the parents array. In line 6the fun
tion CompareConds is 
alled. This will determine whi
h 
ombinations,of the found prede
essors in the parents array, are part of the same path, andhen
e are valid 
andidates for having Pi inserted as a 
hild. Lines 7 to 11 ensuresthat none of the valid 
ombinations are paths with more than k faults.A.2 CompareCondsThis fun
tion takes a set of lists, holding all the instan
es of the prede
essorpro
esses for a pro
ess. The prede
essors are sorted, su
h that instan
es of thesame pro
ess are all in a separate list. Lines 2-3 handles the spe
ial 
ase whenthere is only one parent, in whi
h 
ase all instan
es are valid 
andidates. Line4 extra
ts the �rst set of prede
essors, 
alls CompareConds re
ursively withthe remaining prede
essors. This re
ursion merges the pro
ess sets, su
h thatpro
esses that are part of the same path through the graph are joined, and their
onditions joined as well. The fun
tion returns a single set of 
ombinations ofprede
essor pro
esses that are parts of the same paths. Using the example from�gure 2.6 and 
onsidering pro
ess P4, the fun
tion would be 
alled with theprede
essor lists {P2,1, P2,2, P2,3} and {P3,1, P3,2, P3,3}, and would return thelist {{P2,1, P3,1}, {P2,1, P3,3}, {P2,3, P3,1}, {P2,2, P3,2}}.The fun
tion CompareConds evaluates the 
onditions for all sets of parents andsee if they are part of mutually ex
lusive paths in the graph. The algorithm forthis fun
tion is shown in algorithm 3.



A.2 CompareConds 73Algorithm 1 GenerateFTCPG(G, T ,k)1: G← ∅2: ReadyList← ∅3: subscript [number of pro
esses℄4: set all susbcript to 15: Pi ← SourceNode(G)6: subscript← subscripts[i] + +7: Insert(Pi,1, G)8: tmp← Pi,subscript9: Pi,1.possibleFaults← k10: Pi,1.conditions← ∅11: tmp← Pi,112: for j ← Pi,1.possibleFauls downto 0 do13: subscript← subscripts[i] + +14: Insert(Pi,subscript, G)15: Pi,subscript.possibleFaults← j16: Pi,subscript.conditions← tmp.conditions + tmp.fail17: Conne
t(tmp, Pi,subscript)18: tmp← Pi,subscript19: end for20: Pi,1.condition+ = Pi,1.success21: newProcessess← ∅22: Insert(Pi.children, readyList)23: while ReadyList is not empty do24: Pi ← Extra
tFirst(ReadyList)25: V C ← FindValidCombinations(Pi, G, k)26: for all vc ∈ V C do27: subscript← subscripts[i] + +28: Insert(Pi,subscript, G)29: Insert(Pi,subscript, newProcesses)30: Pi,subscript.possibleFaults← k − vc.faults31: Pi,subscript.conditions← vc.conditions32: Conne
t(vc.processes, Pi,subscript)33: end for34: for all Pi,k ∈ newProcesses do35: tmp← Pi,k36: for j ← tmp.possibleFauls downto 0 do37: subscript← subscripts[i] + +38: Insert(Pi,subscript, G)39: Pi,subscript.possibleFaults← tmp.possibleFaults40: Pi,subscript.conditions← tmp.conditions + tmp.fail41: Conne
t(tmp, Pi,subscript)42: tmp← Pi,subscript43: end for44: Pi,k.condition+ = Pi,k.success45: end for46: Insert(Pi.children, readyList)47: end while



74 Derivation of FT-CPGAlgorithm 2 FindValidCombinations(Pi, G, k)1: parents← ∅2: index← 13: for all Pj ∈ Pi.parents do4: parents[index + +]← all instan
es of Pj ∈ G5: end for6: candidates← CompareConds(parents)7: for all candidate ∈ candidates do8: if candidate.errors > k then9: Remove(candidate, candidates) {Ensure that only pro
ess with lessthan k faults are added}10: end if11: end for12: return candidatesAlgorithm 3 CompareConds(parents)1: V C ← ∅2: if parents.size = 1 then3: V C.process+ = parents {There is only one set of pro
esses in the set}4: else5: head← Extra
tFirst(parents) {Extra
t �rst set}6: rest← CompareConds(parents) {And re
urse}7: for all h ∈ head do8: for all r ∈ rest do9: valid← true10: for all a ∈ h.conditions do11: for all b ∈ r.conditions do12: if a.process = b.process and a.value! = b.value then13: valid← false {The pro
esses are dependent on di�erent 
on-ditions, and do hen
e not form a valid 
ombination}14: end if15: end for16: end for17: if valid = true then18: Insert(h + r, V C) {Merge the 
onditions and pro
ess of h and rinto V C}19: end if20: end for21: end for22: end if23: return VC



A.3 Repli
ation 75A.3 Repli
ationAlso repli
ation 
an be 
aptured by a FT-CPG. This is illustrated in �gure2.6(
) where P1 is repli
ated. Ea
h vertex in the internal graph representationhas a number whi
h des
ribes the amount of repli
as it has. As all repli
as mustne
essarily have the same in and outbound edges, only a single vertex is used tomodel repli
ation internally. When outputting the graph, this vertex is simplyoutput the same amount of times as it has repli
as (with unique subs
ripts).In this way repli
ation 
an be handled simply and elegantly using the samealgorithm as for re-exe
ution.
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