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Abstract

Embedded computing systems are making their way into more and more devices,
from household appliances to mobile phones, and from PDAs to cars. Many of
these systems are battery powered, and hence battery lifetime is a critical design
issue. Also these systems, need to meet the timing constraints imposed by their
application domain.

An increasing number of application areas for real-time embedded systems, such
as space and consumer applications, have hard constraints both in terms of en-
ergy and reliability. To address these two simultaneously is challenging because
lowering the voltage to reduce power consumption, which is the most common
approach, has been shown to exponentially increase the number of transient
faults. Moreover, time-redundancy based fault-tolerance techniques, such as re-
execution, and voltage scaling-based low-power techniques are both relying on
the use of processor idle-time.

In addition, such competing requirements have to be met within a given devel-
opment and manufacturing cost and time-frame. Therefore, the task of design-
ing such embedded systems is becoming not only increasingly important, but
also increasingly difficult. The objective of this thesis is to develop techniques
which are able to simultaneously meet both energy and reliability constraints
at system-level.

In this thesis real-time applications with hard deadlines, mapped on distributed
multi-processor systems-on-a-chip, are considered. The applications are repre-
sented as a set of interacting processes and have hard reliability and timing
requirements. Processes and messages are statically scheduled using schedule
tables. I propose techniques for the scheduling, mapping, voltage scaling and



redundancy assignment, such that the energy consumption of the applications
is minimised, and the implementations are schedulable and meet the imposed
reliability goals.

The techniques have been implemented using a constraint logic programming
system, and have been evaluated using a set of synthetic applications, as well
as a real-life application, consisting of an MP3-decoder. The experiments show
that, using careful optimisation, it is possible to produce reliable and schedulable
implementations without compromising energy consumption.



Resumeé

Indlejrede systemer bliver mere og mere almindelige i disse ar. Bade i app-
likationer som mobiltelefoner og PDAer, men ogsa i hjemmets maskiner. Disse
systemer er ofte batteridrevne, og det er derfor ngdvendigt, at de sparer pa
strommen. Systemernes funktioner stiller desuden krav til, at de kan operere i
real-time.

Et stigende antal anvendelsesomrader for indlejrede systemer har tydelige be-
greensninger bade inden for energiforbrug og palidelighed. Den mest almin-
delige fremgangsmade til at seenke energiforbruget er en dynamisk nedsattelse
af spaendingen. Men dette giver anledning til en eksponentiel stigning i antallet
af fejl, hvilket gor det besveerligt at fremstille systemer med hgj palidelighed
og lavt energiforbrug. Energibesparende teknikker konkurrerer desuden med
teknikkerne til fejltolerance om at ggre brug af systemets slack, dvs. den tid
hvor systemet ikke udfgrer opgaver.

Disse konkurrerende krav skal opfyldes inden for et firmas tidsplan samt produk-
tions- og fremstillingsomkostninger. Dermed bliver det at designe indlejrede
systemer, der bade har et lavt energiforbrug og en hgj palidelighed, ikke blot en
mere vigtig, men ogsa en mere vanskelig opgave. Formalet med dette arbejde
er at udvikle teknikker, der bade kan opfylde energikrav og palidelighedskrav i
systemets designfase.

Dette arbejde undersgger real-time-applikationer med strenge tidsbegraensninger.
Disse er allokeret pa distribuerede multiprocessor system-on-a-chip-systemer.
Applikationerne repraesenteres som et seet af kommunikerende processer, der
har strenge begraensninger for bade palidelighed og timing. Processernes start-
tider og kommunikation er statisk fastlagt. I dette arbejde praesenteres en raekke



teknikker, der indfgrer fejltolerance og som samtidig bestemmer starttider, hard-
wareallokation og spaendingsregulering. Pa denne made kan et systems energi-
forbrug blive minimeret, samtidig med at et palidelighedsmal bliver opfyldt.

De fremstillede teknikker er blevet implementeret i et constraint logic program-
ming system og er blevet evalueret ved hjelp af syntetiske applikationer. Dertil
kommer ogsa en virkelig applikation i form af en MP3-dekoder. De udfgrte
eksperimenter viser, at det ved hjalp af god optimering er muligt at opna sys-
temer, der bade har en hgj palidelighed og et lavt energiforbrug.
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CHAPTER 1

Introduction

The tendency has for a long time been for digital systems to make their way
into more and more everyday appliances. Both in highly advanced devices such
as mobile phones, mp8 players, PDA’s and other portable devices, but also cars,
and even low tech devices such as household appliances.

These embedded systems are often battery powered, and hence need to have
low power consumption, in order to yield good battery lifetime. They need
to be high performance, to meet the timing constraints imposed on the device
(e.g. real time voice coding/decoding in mobile phones, music decoding in music
players etc.). In addition, the devices need to be small, as they are intended to
be part of the users everyday equipment, or even act as an accessory to express
style or interests. These devices need to be reliable, as their functionality is
often relied upon, as in mobile phones, or may even be safety-critical as in the
safety systems of cars.

The rest of this chapter is organised as follows. Section [l introduces the
design flow for embedded systems. The motivation for this project is presented
in section[C2 Section [[Apresents the work by others relevant to this thesis, and
the problem formulation and the contributions made in this thesis are presented
in section [
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Figure 1.1: Design flow for embedded systems [23].
1.1 Embedded Systems Design Flow

Embedded systems are single purpose systems, with a well defined functionality.
The system-level design flow for embedded systems is shown in figure [C1l The
flow has two inputs, namely: a model of the application, and a model of the
hardware architecture on which the application is to be run. In this thesis
the architectures considered are multiprocessor systems-on-a-chip (MP-SoC's),
consisting of several processing elements interconnected by a bus.

Several design tasks are performed as part of the system-level design task. This
includes assigning each part of the application onto a specific hardware unit on
which it will run. This design task is called mapping. Further, a time plan,
or schedule, has to be generated which dictates when the different parts of the
application should be executed. This has to take into account data dependencies
and deadlines, to ensure correct behaviour of the system. If the system is to use
voltage scaling, a voltage schedule will also be derived at this stage.

To verify that the system description arrived at in the design phase is actually
going to work correctly, a model is created of the system. Using this model the
behaviour of the system is analysed to ensure that timing and power require-
ments are met. Typically the design phase will be an iterative process, where
the design is gradually refined as part of an optimisation.
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When a satisfactory system implementation has been found, the system is syn-
thesised. This process creates the actual hardware and software implementa-
tions.

In this thesis I address hard real-time applications modelled using process graphs
[[7]. The functionality is distributed on a heterogeneous system of processing
elements, interconnected by a bus. Processors and messages are statically sched-
uled using schedule tables.

In this work the focus will be on the system-level design tasks of scheduling,
mapping and redundancy assignment.

1.2 Motivation

Traditionally, embedded systems have been designed by a number of single pur-
pose chips assembled on a print-board. To accommodate the need for smaller
components and better performance, more and more functionalities are today
being integrated on single chips. This allows for making complete solutions on
a single chip, or system-on-chip solutions. These systems will often include sev-
eral digital processors, for e.g. speech coding, radio coding, etc., and are hence
commonly called multi-processor system-on-a-chip (MP-SoC).

The continued increase in integration and complexity of MP-SoC's is made pos-
sible by the on going increase in available space on a chip. This phenomenon is
described by Moore’s Law [27, 28] which conjectures that the amount of tran-
sistors that can be fit on a single chip doubles every 18 months [25]. This law is
continuously upheld, as new technologies are developed which allows for decreas-
ing the size of single transistors. The reduced feature sizes, lead to an increase
in power consumption. A prediction of the power consumption of processors as
a function of time, is shown in figure This increase in power consumption,
combined with the increasing miniaturisation of features, lead to increased en-
ergy density. The energy density of future integrated circuit technologies will
approach that of a nuclear power plant []].

The increased miniaturisation also gives rise to another phenomenon, namely
increase in the amount of faults. Faults in electronics are random and non-
permanent electrical events, which are seen as bit flips in logics or memory.
Faults due to internal reasons, such as leak current or cross talk, are called in-
termittent faults. Faults caused by external effects are called transient faults.
External effects may be caused by electromagnetic radiation from other devices,
or exposure to the ever present cosmic radiation. The latter is especially im-
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Figure 1.2: Prediction of power consumption for micro electronics (from [28]).

portant in space applications where the unshielded radiation can give rise to as
many as 35 faults in 15 minutes [20], but is also an important factor in earth
bound applications.In this thesis, T address transient faults, and do not dwell
with their cause, but rather how to handle and recover from them.

The failure rates for modern electronics are plotted in figure The left plot
shows that the amount of permanent faults is falling. However the number of
transient faults are increasing rapidly. The shown plot for transient faults refers
to memory units, but also applies to general logic circuitry.

The increase in energy consumption is often addressed by the use of energy
management techniques. One very common approach is dynamic voltage scaling
(DVS). This has been shown to be an easy and effective means of conserving
power, but has also been shown to further increase the probability of faults
B0, B2]. As a consequence of this effect, and the generally increasing probability
of faults, it is becoming critical to consider faults in a system already in the
design phase.

Design tools exist for embedded systems that can create system level designs.
These allow for doing optimisation on different parameters, such as energy con-
sumption, or fault tolerance. As shown in [30] these two tasks are not inde-
pendent, but in fact greatly interact. Current design tools do not take this
interaction into account, which may lead to them creating systems which are
energy efficient, but very unreliable.
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Figure 1.3: Failure rate plots, for permanent faults and transient (soft) faults

(from [A]).

1.3 Related Work

Several hardware solutions for fault tolerance have been proposed, e.g. MARS
[[4], TTA [13], and XBW [2], all of which use hardware redundancy to tolerate
one permanent fault. These approaches are also able to tolerate transient faults,
but they are very costly in terms of hardware. This cost is only further increased
if the systems are to tolerate larger number of faults, a point that is increasingly
important as the amount of transient faults is much larger than permanent faults

3]

Current research use cost as the only design constraint [16]. The use of redun-
dancy, however, introduces overhead, in terms of performance, and thus may
lead to systems that are unschedulable. Only few researchers [T2 211 22] opti-
mise their implementations to minimise the penalty on performance. For these,
the optimisation is limited though, and does not consider the use of several
redundancy techniques.

Two system-level approaches that allow an energy/performance trade-off dur-
ing run-time of the application are dynamic voltage scaling (DVS) and adaptive
body biasing (ABB) [24]. While DVSaims to reduce the dynamic power con-
sumption by scaling down operational frequency and circuit supply voltage,
ABB is effective in reducing the leakage power by scaling down frequency and
increasing the threshold voltage through body biasing.

The current research has addressed fault-tolerance and low-power requirements
separately. However, embedded systems using DVSand ABB, are more sus-
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ceptible to transient faults, as the rate of these increase exponentially as the
supply voltage decreases [32]. Conversely, increased voltage levels lead to higher
on-chip temperatures, which in turn has a negative effect on reliability. Fur-
ther, the energy management techniques, and time-redundant fault tolerance
techniques, are competing for the same slack (unused time in schedules for pro-
cessors). Initial research into the interplay of energy/performance trade-offs and
fault-tolerance techniques has been presented in [6, 20, B0]. These approaches
are very restricted in terms of situations considered, and are thus of limited
interest,.

1.4 Thesis Objective and Contributions

In this thesis hard real-time applications mapped on distributed multi-processor
systems-on-a-chip are considered. The applications are represented as a set of
interacting processes and have hard reliability and timing requirements. Pro-
cesses and messages are statically scheduled using schedule tables. The objective
of this thesis is to propose techniques for the scheduling, mapping, voltage scal-
ing and performing redundancy assignment, such that the energy consumption
of the applications is minimised, and the implementations are schedulable and
meet the imposed reliability goal.

The techniques have been implemented using a constraint logic programming
system, and have been evaluated using synthetic applications as well as a real-
life example consisting of an MP3-decoder. The experiments show that, through
careful optimisation, it is possible to obtain reliable and schedulable implemen-
tations without compromising the energy consumption.

The contributions of the thesis are the following:

e Design optimisation for energy minimisation under reliability and timing
constraints.

Energy minimisation is usually done using voltage scaling. However, re-
search has shown that lowering the voltage will dramatically decrease re-
liability. Thus, if the reliability of a system is increased, by introducing
redundancy, and then voltage scaled (within the deadlines), the reliabil-
ity is destroyed. If a minimal-energy system is obtained, and redundancy
then introduced, it might not meet the deadlines. The most important
contribution of the thesis is a design optimisation method, which is able
to produce reliable implementations, that minimise energy at the same
time as meeting the deadlines.
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e An optimisation method that decides the type of redundancy.

To increase the reliability of a system, redundancy techniques such as
re-execution and replication are needed. It is shown that using just re-
execution is not enough, because both re-execution and voltage scaling
compete for the slack. Using passive replication in conjunction with re-
execution, can better exploit the slack. This is because, if slack is not
available on one processor, it might be found on another processor.

o A constraint logic programming-based scheduling technique which is able
to quickly produce good quality schedules.

Having a good scheduling algorithm can help in increasing the slack. With
increased slack, the reliability-energy trade-offs can better be supported.



Introduction




CHAPTER 2

Preliminaries

In this section I present the preliminaries for the work in this thesis. Section
T presents the fundamentals of mapping and scheduling. The system and
application models are presented in section and respectively. In section
B4 the fault model is introduced, and section introduces fault recovery.
An alternative application model with explicit fault recovery is presented in
section Z6l In section BZ7 the concept of reliability is introduced, and equations
are presented. The models for energy and reliability under voltage scaling are
presented in sections and The software model, and the corresponding
scheduler implementations are presented in section

2.1 Scheduling and Mapping

As mentioned in the introduction, mapping and scheduling are the design tasks
of assigning processes to hardware units, and making a time plan for the exe-
cution of the processes. Both of these problems are individually NP-complete.
Consequently the combination of the two is also NP-complete [, 29)].

This makes the problems computationally hard, and hence sophisticated al-
gorithms are needed to solve these. The work in this thesis uses constraint
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(a) Architecture (b) Voltage levels

Figure 2.1: Sample architecture with two processing elements each with three
frequency levels.

logic programming (CLP) to model the problems, and achieve optimal solu-
tions. Finding optimal solutions is generally not feasible using conventional
programming.

2.2 System Model

In this thesis a system model, consisting of a number of processing elements PFEs
that are connected by a single bus, is considered. These processing elements
may be heterogenous and have different performance, and thus take different
amounts of time to execute the same process. A processing element can be
run at a number of preset frequency levels Fpg. These frequency levels are
expressed in percent of the processors maximum performance.

A sample architecture is shown in figure EZI], where both the layout of the pro-
cessing elements and the available frequency levels for each processing element
are shown.

Each processing element has a real-time operating system, which is responsible
for starting processes. Processes are started in accordance with a pre-rendered
static schedule table, or a set of schedule tables (as discussed later). The oper-
ating system monitors whether processes execute successfully, and if not, takes
measures to tolerate the fault in accordance with the fault tolerance policy.

2.3 Application Model

An application A is modelled as a directed acyclic graph. A graph G consists of
a set of edges € and vertices V such that G(V, &) € A. Each vertex represents
a process P; with a corresponding worst-case execution time (¢). Since we
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PE, PE, P ] PR ————
(a) Fp, = 100%, c= 2 (b) Fp, = 67%, c= 3 (c) Fp, = 34%, c= 6

Figure 2.2: Voltage scaling of a single process onto PFE; from figure 1 The
height, of the process illustrates the frequency its run at, and the length the
duration of the process.

operate with a heterogene architecture c is specified per processing element, as
it will be a function of the processing elements design and performance. The
communication between, and thereby ordering of, processes, are represented by
the edges. An edge e;; € £ denotes a communication from process P; to P;.

Figure shows a sample application, with its process graph and the corre-
sponding worst case execution times for the architecture in figure ZZI1

The specified ¢ for a process P; corresponds to the execution time for the process
run at Fp, = 100%. The execution time ¢ for a process run at a lower frequency

f is given by ([31]):
e = 670 (2.1)

Figure shows a process scheduled on the same processor, but at three dif-
ferent frequency levels. To visually capture that the frequency is lowered in the
Gantt chart, the height of the process is decreased. The length of the process
shows how the ¢ of the process increases as the frequency is lowered.

For the fault tolerance techniques described in the following, it is considered
that the worst case execution time of a process includes the time needed to do
error detection, so the ¢ is the sum of the time to do a failed execution, detect
it and clean up and set up for recovery execution. This allows us to disregard
which error detection method is used, as this is outside the scope of this thesis,
and this subject is well researched in the works of others (for insight on this
subject the reader is directed towards [IT] and [23]).

2.4 Fault Model

A system may experience different kinds of faults during its execution. It may
either be permanent faults, or transient or intermittent faults. The work in this
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Figure 2.3: Sample application A

thesis only deals with non-permanent faults, as these are much more frequent
than permanent faults.

The arrivals of faults can be modelled by a Poisson distribution with an arrival
rate \ , referred to as the failure rate [II]. For a single chip system reasonable
values for the failure rate are in the range 1078 — 107 per second [32]. This is
equivalent to 100.000 FITs, i.e. failures in time, or failures per billion hours of
use per megabit. The designer of a system will impose a minimum reliability,
a reliability goal R4, based on the reliability requirements of the application.
Based on A and Ry, the number of transient faults that will be tolerated k
is determined. In the literature of fault tolerance, reliability goals are often
stated in terms of the number of nines after the zero. For instance the goal
R, =0.9999991 is called 6 nines (and a 1). This terminology is adopted in this
thesis, when numerical values of reliabilities are discussed. In order to meet this
goal, the number of faults & to be tolerated by the system is determined.

Within a single execution of an application the distribution of faults is random,
and may strike any process. For k > 1 any combination of processes or even the
same process may be struck k times.

2.5 Fault Recovery

To recover from a failed process it is necessary to add redundancy. This re-
dundancy can be spatial, i.e. the process is run simultaneously on different,
processing elements, this is called replication. Alternatively the process can
be made temporally redundant, i.e. the process is redundant in time, and is
scheduled after the failing process on the same processing element, this is called
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Figure 2.4: Recovery techniques

re-execution. The latter technique has the advantage that the recovery run of
the process is only executed in the event of a fault. This can be combined
with replication, and is then called passive replication, where the process is
scheduled after the failing process, but on another processing element. All the
recovery-techniques are shown with examples in figure 241

In this thesis, the first execution of a process is called the root process, and the
following executions are called recovery processes. Similarly I use root schedule
and recovery schedule.

Another commonly used fault tolerance technique used is checkpointing [20].
This technique can be modelled using re-execution, and is hence not covered
specifically in this thesis.

To use the presented fault tolerance techniques it is critical that the system is
able to detect faults. Fault detection is well covered in the literature. Com-
mon techniques include fingerprinting, where output bits are coded, and time-
stamping where the execution of a process is timed, and is considered faulty if
it does not finish within its ¢. How fault detection is done is outside the scope
of this thesis, and is not covered further. The fault detection implemented by
the designer is assumed to be sufficient to meet R,;. The interested reader is
directed towards [I1] and [25].
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® @

Figure 2.5: A sample conditional process graph. Process P; produces the con-
dition C'p,. If this is true P, will be executed, if it is false P; will be executed.

2.6 Fault-Tolerant Conditional Process Graphs

Conditional process graphs are an extension of normal process graphs, which
adds the notion of guards, or conditions, on some edges. Conditions are boolean,
and may be either true or false. A conditional process P;, that produces the
condition Cp,, will have the conditional output edges e;; which are guarded by
the outcome of the condition.

Figure shows a simple conditional process graph. The process P; produces
the condition C'p,. If this evaluates to true the edge guarded by this condition,
marked C'p, is chosen, and process P, is executed. If the condition is false, the
edge marked Cp, is chosen and P; is executed. These two paths are mutually
exclusive, as they depend on different outcomes of the same condition.

In [9] and [I0] conditional process graphs are extended to capture all possible
execution scenarios in case of faults. Such a graph is called a fault-tolerant
conditional process graph (FT-CPG). A process P; produces a condition, cor-
responding to the success of its execution. If it fails it will have the condition
Fp,, and if it executes without faults Fp,. An example of a fault tolerant con-
ditional process graph is shown in figure For ease of reading, only edges
which model faults are marked by the condition. Tinted processes are recovery
executions. The shown FT-CPG captures all the fault scenarios depicted in the
example in figure ZT0l For example the scenario captured in the schedule in
figure 2.10(b)] on page 27 is captured by the left-most branch in the FT-CPG.

Deriving an FT-CPG that captures all the fault scenarios of a process graph
corresponding to k transient faults, is not trivial. In this section we shall not
dwell further on this. An algorithm for deriving such graphs is presented in
appendix [Al
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(a) Original (b) FT-CPG for the graph, with k=1 (c
process k
graph

|~

FT-CPG for the graph, with
1 and P; replicated

Figure 2.6: Examples of a process graph, and its derived FT-CPG graphs for
k = 1. Tinted processes mark recovery executions.

2.7 Reliability

The reliability of a system is a measure for the probability of its successful
execution. In this section T present the reliability model used in this thesis,
firstly for single processes. Secondly, T will use the formula for a single process
to derive a general expression for the reliability of a fault tolerant application.
Mlustrations of the different recovery techniques are shown in figure 2241

2.7.1 Single Process Reliability

The reliability Ry of a process is defined as the probability of its successful
execution [TT].

Ry=eM=1-p (2.2)

Where ¢ is the execution time of the process, given by equation EZIl p is the
probability of failure. The term A is the failure rate, which describes the amount
of errors that will occur within a time unit.
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2.7.2 Reliability of Re-Execution

For a system with the ability to handle k faults, a process will have k recovery
executions scheduled after the root execution. For such a setup, the reliability
is given by the probability of not all processes failing. Formally this is expressed
as:

RPReea‘, = 1 - (1 - R)1+k (23)

Where the last term is the probability of all processes failing in the same run.

2.7.3 Reliability of Replication

Similarly, for a process scheduled to handle k faults by replication, the reliability
is also given by the probability of not all processes failing, and is written as:

RPRepl =1- H(l - Ry) (2.4)

Where again the last term is the probability of all executions failing. The expres-
sion contains a reliability term for each execution of the process (in contrast to
the formula for re-execution) as the processes are mapped to different processing
elements, which may have different performance and reliability properties. If all
processing elements are identical the reliability will simplify to equation (Z3]).

This expression for replication also holds for passive replication.

2.7.4 Application Reliability

An application consists of a number of processes, for each of which the above
equations yield the reliability. Since all of these processes must execute suc-
cessfully, and T assume that the execution of each processes is independent, the
reliability of an application A is:

Ra= [] Re (2.5)
PcA



2.8 Power Model 17

Equipped with this equation and the presented general expressions for calculat-
ing reliabilities for single processes, the reliability for any fault tolerant applica-
tion can be evaluated.

2.8 Power Model

Power in electronics is mainly consumed as dynamic power, i.e. the power that is
needed to drive the internal bits from one value to the other. This is called active
power. Active power depends greatly on the clock speed at which the circuitry is
driven, as it is necessary to use more power to do faster switching. In contrast,
passive power is the power that dissipates from the circuitry regardless of the
running frequency.

As there is an almost linear relation between the frequency of a system, and the
voltage needed to drive this [31], I shall be using the terms voltage scaling and
frequency scaling interchangeably in the rest of the thesis.

In this thesis I use the power model from [32] which describes the consumed
power as:

P:Ps+h(Pznd+Pd):Ps+h(Pznd+Cefffm) (26)

In which 7 is a boolean variable, which takes the value 1 if the system is powered
up, and 0 if the system is in sleep mode. Pg is the passive power, which is
always consumed by the circuit. P;,q is the frequency independent component
of the active power. Finally, P; is the frequency dependent component. The
frequency dependent component is extended to be described as an effective
capacitance C.yy and a frequency f™, where m is the dynamic power exponent,
an architecture dependent number, for which m > 2 [Z1].

In this thesis I assume that the MP-SoCs do not support switching to sleep
mode, thus h will always be 1. As the work in this thesis focuses on the en-
ergy savings obtainable from using energy management techniques, the passive
component of the power Ps; can be disregarded as it will only contribute as a
constant. In this way we arrive at:

P:Pind+cefffm (27)
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This gives the energy consumption for a process P; [30]:

EPi = (Pind + Cefffg)CP,- (2'8)

Where fp, is the frequency at which it is executed. Generalising this for a set
of processes P in an application A for which P; € A we get the power for an
application:

Ea= S (Pa+Copsfi)er, (2.9)
P,cA

It should be noted that this is not a precise measure of the exact power con-
sumed, as the passive components would then need to be part of the equations,
but rather a means of comparing different design alternatives. The model allows
for determining the possible energy savings, and as the aim of this work is to
do just that, the model is appropriate.

Numerical examples of how to use the energy expressions are given in section
SR

Precise expressions for the power consumption of embedded systems are pre-
sented in [24].

2.9 Reliability with Voltage Scaling

Lowering the voltage minimises the energy. However, it has been shown that it
also dramatically lowers the reliability [30].

In this section, voltage scaling is introduced into the reliability formulas from
section 27 to capture how the reliability of voltage scaled systems decreases.

As described the failure rate of a system is dependent on the frequency level
the system is run at. The relation between the two can be described by the

expression proposed in [B0, B2]:

d(1—f)

A(f) = Ao10T=Tmin (2.10)
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Figure 2.7: Plot of the relation between the failure rate multiplier and frequency
introduced in equation (ZI0). The normalised frequency ranges from 0, the
minimum frequency of the processor (fmin > 0) to 1, the processor’s frqz-

In which ) is the failure rate of the processor when run at maximum frequency
fmaz, and d is an architecture specific constant. In figure Z7 the frequency de-
pendent ) is plotted for A\g = 1. The plot shows that the failure rate increase is
moderate for frequency levels down to about 60%. However, for lower frequen-
cies, the failure rate increases dramatically, and for a processor run at minimum
frequency the failure rate will be 100 times greater.

In order to yield best possible reliability, recovery executions are always executed
at full speed. Using the formulas presented in section EZ7 expressions for the
reliability of processes with voltage scaling can now be deduced.

2.9.1 Single Process Reliability

Using equation (), the reliability of a single process, run at frequency f is:

Ry=1-ps=e 2% = Mo (2.11)
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2.9.2 Reliability of Re-Execution

As I now have the expressions for scaled and unscaled processes, I can derive the
reliability of a process with fault tolerance. Lets consider a process for which
re-execution provides tolerance for one fault. Bearing in mind that re-executions
will always run at the maximum speed, the reliability of re-execution is:

RReecx =1 — (1= Ro)(1 = R,) =1 — (1 — e 00)(1 — e~ A)e) (2.12)

In this expression the first parenthesis is the probability of the recovery execution
failing. The second is the probability of root execution failing. Together they
form the probability of both failing in the same run. This expands into [30]:

Rpeer = e 25 4 (1 — e e Ry (2.13)

Where ¢, is the execution time of the voltage scaled process.

The generalised expression for a system handling k faults is:

Rieew =1 — (1= Ro)*(1 = R,) =1 — (1 — e Moco)k(1 — e Moy (2.14)

2.9.3 Reliability of Replication

Since replicated processes are executed at the same time, there are no recovery
processes, that will be run at full speed afterwards, in case of an error. As a
consequence, all replicas may be voltage scaled, and the reliability for replication
is thus different from that for re-execution.

The reliability of a replicated process, is again the probability of not all execu-
tions failing. For a system that handles 1 fault by executing the same process
on two processing elements, the reliability is:

Rpep = 1=prapso =1—(1=Rp1)(1=Rya) = 1= (1—e X1er)(1—e7M)2ez)
(2.15)
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And generalised for a system that handles k faults by having k + 1 replicas:

k+1
Rpep =1— JJ(1— e et (2.16)

i=1

2.9.4 Reliability of Passive Replication

Passive replication is similar to replication in terms of all processes being arbi-
trarily mapped. But similar to re-execution in terms of all recovery executions
being scheduled at full speed. Hence the expression for reliability of passive
replication is a combination of the two:

k
Rprep=1—(1— e_/\(f)cf) H(l _ e_)\O,iCO,a‘,) (2.17)

i=1

2.9.5 Application Reliability

The expression for reliability, for an application with voltage scaling, is the same
as the one presented section 7 for applications without replication. However
the expression is repeated here for completeness:

Ra= [] Re (2.18)
P;cA

2.9.6 Reliability Example

To show the use of the presented reliability expressions, the reliability for a
process at three different, voltage levels is calculated here. The process used, is
the one previously shown in figureEZZ2 In the examples a failure rate of 1.0-1076
is used.

Firstly, we evaluate the reliability of the process run at full speed with no fault
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tolerance. This is calculated using equation ([Z2):

Rsingte = ¢ ¢ = 20107 = 0.9999980 = 9 nines and 8 (2.19)

Now we choose to replicate the process to handle one fault (k = 1), such that it
is run simultaneously on two processing elements. Both replicas are run at 66%
voltage. The reliability is calculated using equation ([EZIH):

k+1
Rpep=1— H(l _ e—)\(f)‘i,ci,) =1-(1- e—/\(66)c,1)2 (2.20)

i=1
Using equation (ZI0) and assuming that d = 2 we find that:

d(1—f) 2(1-0.66)

A(0.66) = Ag10TTmin = Ag10 1051 = 10\ (2.21)

and using equation () the duration of the scaled process is calculated to:

C; 2-3
== =3 2.22
667~ 066 2 (2.22)
hence:
Rpep, = 1- (1 _ e*A(GG)c/L')Q —1_ (1 - 6730.040—6)2
= 0.9999999991 = 9 nines and 1 (2.23)

Now we choose to achieve the same level of fault tolerance by using re-execution,
and running the root execution at a mere 34% voltage. Using equation (ZZI4))
and the expression for the scaled failure rate we find that the reliability of this
is:

Rpreex = 1-— (]_ — e*)\oco)(l o 67)‘(0'34)65)
1—(1— e 20107°%) (] — 60001077

= 0.9999999988 = 9 nines and 0 (2.24)
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Using the above approach the reliability of any single process can be calculated,
and using equation (ZI8) these can be combined to produce the reliability for
an entire application.

2.10 Software Model

The fault-tolerance implementation for a system is managed by the on-line
scheduler. This section presents the software model for the processors for dif-
ferent fault tolerance techniques.

In this thesis three different scheduler implementations are used for scheduling
with fault tolerance. These approaches were introduced in [9], as an extension
to the transparent recovery technique used in [T2]. In this section the three fault
tolerant scheduler implementations are presented.

Each processing element of an architecture has an online scheduler. In accor-
dance with a pre-calculated static-schedule (or set of schedules) the scheduler
will run processes. The scheduler detects whether faults occur, and similarly
is responsible for executing the recovery processes, also in accordance with the
static schedule. This is common for all three schedulers, but the way the static
schedules are rendered and are handled, differs greatly between the three.

2.10.1 Fully Transparent Scheduler

This is the simplest, straightforward, implementation. After each process P;,
a recovery slack of length kcp, ; is scheduled. That means that enough time is
scheduled to run k re-executions and thereby handle k-faults.

Thus, processes are scheduled with a free time slot after it, of a size which allows
this process to re-execute on failing. This allows for using a single static schedule
table, and the online scheduler will only have to detect whether a process fails
and simply re-run it if it does. The slack in the schedule table allows for this to
be done without any other process having to be delayed.

This scheduler implementation is fully transparent to fault occurrences, i.e. no
information about faults has to known be the schedulers to take decisions.

Figure shows the process graph from section scheduled with full trans-
parency. Each process has recovery slack scheduled after it, and no process may
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Figure 2.8: Fully transparent schedule for £k = 1. The schedule shown is the
fastest possible for this system configuration.

start until it is guaranteed that all processes before has had time to re-execute.

2.10.2 Slack Sharing Scheduler

The slack sharing scheduler sacrifices some of the transparency in order to
achieve better performance. As the fault model dictates that no more than
k faults will occur within a single execution, it is not necessary to handle more
than this. The slack sharing scheduler exploits this information, by allowing
processes on the same processing element to share re-execution slack. Figure
shows the same system scheduled using slack sharing. In the schedule we
see that e.g. P4 and P; share re-execution slack. As k = 1, only one of the two
processes may experience a fault, and hence only a single recovery slack needs
to be scheduled.

In this scheduler, fault information is shared on the local processor, but faults
are still transparent between processors. In this way, process Ps; has to wait
until time 4 to start, to ensure that process P; has had time to recover.
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Figure 2.9: Slack sharing schedule for £ = 1. The schedule shown is the fastest
possible for this system configuration.

2.10.3 Conditional Scheduler

Fault tolerant scheduling using conditional scheduling has no transparency, i.e.
all online schedulers share the information of faults. This allows the schedulers to
respond very efficiently to faults, and hence produce schedules of high efficiency.
In order to do this efficiently, a static schedule has to be created for each fault
scenario. The possible schedules for the previous example, are shown in figure
T These capture all possible fault scenarios. We see that the schedules are
very efficient as only exactly & slacks are scheduled.

In order to capture all these different possible schedules an advanced conditional
schedule table is needed (shown in figure -I0(K)). The online schedulers will
always start by executing the failure free schedule, marked true. If a fault
is detected all online schedulers are notified and they will all switch to the
corresponding recovery (contingency) schedule, marked Fp, through Fp..

The conditional fault tolerant scheduling gives good control in terms of only
scheduling the minimum amount of recovery slack. However this comes at the
cost of the need of having more advanced online schedulers, more memory to
store the larger schedule tables, and that fault information has to be shared
between all processors, which increases bus utilisation. The broadcast of condi-
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tions on the bus is ignored in this thesis. However, we assume that the online
schedulers can only make decisions based on the fault information they have at
a given time. That is, the schedulers do not use information about faults that
have not yet occurred.

From figure it is seen that several of the possible schedules have the same
deadline, and in fact are examples of worst case scenarios. Whenever conditional
schedules are shown in the rest of this thesis, they will be one of such worst-case
schedules.

All processes are notified of all failures. In this way the schedule table for all
nodes may/will change in the event of a process failure.
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Figure 2.10: Illustration of the different possible schedules captured by a Fault

Tolerant, Conditional Process Graph. Figure R.10(a)] through |

210@)' shows the

Gantt charts for the possible fault scenarios, and table [2.10(k)| shows the cor-
responding conditional schedule table (Blank entries are to be executed at the
time specified in the true column).
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CHAPTER 3

Problem Formulation

In this section motivational examples for the problems addressed in this thesis
are presented. In the last section I give an exact problem formulation.

3.1 Complete Search vs. List Scheduling

Previous work in doing fault tolerant scheduling, using conditional process
graphs, has been presented in [9]. In this work scheduling is done using the
well known list scheduling algorithm. The list scheduling algorithm is a fast
heuristic search implementation which offers good solutions to scheduling prob-
lems. However, as with any heuristic, the algorithm is not guaranteed to produce
optimal results, and may hence produce a good schedule but not the globally
optimal. In order to produce the optimal solution, it is necessary to explore
all possible solutions. As scheduling problems are inherently N P-complete [29],
this exploration is very costly in terms of time.

Using a complete search implementation to find optimal schedules may produce
solutions of significantly better quality than list scheduling. As the embedded
systems considered in the thesis all use static schedules, the extra expense, to do
complete search, is a one-time cost, and may prove it self well worth it. Consider
the process graph shown in ﬁgurewith the execution times shown in figure
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Figure 3.1: Performance of list scheduling versus optimal scheduling.

A “7 in the durations table denotes that a process cannot be mapped
on that processing element. Given this input, a list scheduling algorithm will
produce the solution shown in figure List scheduling always selects a
process if it is ready for execution, i.e. all its predecessors have already been
scheduled. Hence list scheduling will schedule P5 to start at time 0, as it has no
predecessors. However this proves to yield a suboptimal solution. The optimal
schedule is shown in figure This shows that introducing some initial
slack, also called idle time, on processor PF5 is actually beneficial.

3.2 Policy Assignment

Determining whether a process is to be scheduled using re-execution or replica-
tion is called policy assignment. The problem of doing good policy assignment
is critical in the optimisation process. The following example illustrates this
importance.

For a given architecture (figureB-2(d))) an application (figures [3.2(e)] and B-2(T))
with a pre-defined mapping is to be scheduled under a reliability goal R,. The

fastest schedule for the application without fault tolerance is shown in figure
This schedule finishes well within the applications deadline, but does not
meet the reliability goal. The designer hence wants to introduce redundancy to
meet the reliability goal, and thus will introduce re-executions of all processes
utilising slack sharing. The result of naively doing this is shown in ﬁgure




3.2 Policy Assignment

31

Deadline

PE,
PE,

(a) No fault tolerance

Deadline

Deadline Missed

(b) Only re-execution

Deadline

PE, PE,

(d) Architecture

ot et

Bus

(e) Process
graph

| Process || PFE, | PE, |

pe, [P P, U/
e, [P ]

| P,Passive Replication |

(c) Re-execution and passive repli-

cation

P 2 3
Py 4 6
Ps 6 9

(f) Durations Table

Figure 3.2: Illustration of the importance of considering redundancy assignment
while scheduling. The application shown in figure B.2(e)| with the durations
shown in is to be scheduled on the architecture shown in figure
Figure B.2(a)| shows the fastest schedule with no fault tolerance. This however
does not meet the reliability goal. Figure shows the same system sched-
uled with redundancy to handle one fault, however the deadline is no longer
met. To remedy this the re-execution of P, is passively replicated on the faster

PFEq, this is shown in figure [3.2(c)
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in which the reliability goal is met, but the deadline is now missed. Figure
shows the same application with an optimal use of both re-execution and
replication. The redundancy of P, is now moved to the faster PFE;, and the
application now meets its reliability goal and its deadline.

This example shows that it is important to consider the policy assignment when
doing scheduling as it may drastically impact on the quality of produced sched-
ules.

3.3 Power Consumption for Fault Tolerant Sched-
ulers

The choice of fault tolerance scheduler implementation has great impact on the
length of the produced schedule. This means that the choice of scheduler affects
the amount of slack for use with voltage scaling to obtain energy savings.

Figure shows an application (figure that is to be scheduled on an
architecture (figure . The application is considered scheduled with each
of the three schedulers: fully transparent, slack sharing, and conditional. The
fastest possible solutions for each of these schedulers are shown in the left most
column of Gantt charts. It is easily seen that the amount of available slack
greatly increases with the use of more sophisticated schedulers. Slack sharing
yields a slack of 2, where as conditional yields a slack of 6.

In this example T only consider the energy consumed by the root schedule. This
is an approximation of the actual energy consumption, but describes the best
case consumption. As it is only the root schedule that is subject to voltage
scaling, it is only this energy that will give rise to energy savings. Hence, this
is a reasonable simplification that makes the evaluation of achievable energy
savings much easier. As the three schedules in figures [3.3(a), B-3(c)l and [3.3(e)]
all describe the same application, and all processes are run at the same voltage
level, they naturally have the same energy consumption F 4 g.

We wish to exploit the available slack to do voltage scaling, and minimise the
energy consumption. As there was no available slack when using fully trans-
parent scheduling, no voltage scaling can be done and energy consumption is
unchanged.

The slack sharing scheduler yielded a slack of 2, and hence energy optimisation is
possible. The energy optimal schedule is shown in figure[3.3(d)} From the Gantt
chart it is seen that the optimal voltage scaling is to run processes P, Ps, Py,
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Figure 3.3: Illustration of the obtainable energy savings for different fault tol-
erance schemes. The first column shows the fastest schedules for each fault
tolerance scheduling. The second column shows energy optimal schedules for
the corresponding fault tolerance. The figures illustrate how more energy can be
saved by using more advanced fault tolerance techniques which generate more
slack. All the shown schedules can tolerate one transient fault, and have the
same deadline, but the consumed energy to achieve this varies greatly with the
different schedules.
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and Ps at the same frequency fa, and P, at frequency fp,. The relations for
the frequency levels is derived as the following two equations:

Deadline =16 = 3cs, +cfp, + o (3.1)
Deadline =16 = 4cy, + 3co (3.2)
Solving this we find the execution times of the scaled processes:
16 —3¢p 10
¢a = T =7 (3.3)
10 26
¢y = 16-3cp —cg=16-3— —2="= (3.4)
Using equation () the frequencies they are run at can be found:
Co 2-4
= —="=2.0 3.5
Ja Cha 10 % (3:5)
2-4
fp = X 20 _31% (3.6)
Cfpy 6

With these values the energy consumption for processes at the two frequencies
can be calculated. To do so equation [ZX) is used. As the deadline is fixed
for the application the frequency independent power would contribute with the
same amount for any schedule, and is hence disregarded of. The power exponent
is assumed to be m = 3 which is a reasonable value [30]:

3
8 26
Ep2 = Cefffg6p2 = Ceff <%) Z = 0.18906ff = 9.4%E0 (37)
8\* 10
E‘D1 = CefffZLCA = Ceff (1—0> Z = 128Ceff = 64%E0 (38)

Where Ej is the energy consumed by a process run at full speed. Summing the
energy contributions we find the total energy consumed for the schedule, using
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equation (ZH):

EAstack = 4Ep, + Ep, = (4% 1.28+0.189)C.sp = 5.31Cos; = 53%FE.40 (3.9)

Using the slack sharing scheduler we can achieve a system with the same level
of fault tolerance as for the transparent schedule, but which only consumes 53%
of the energy.

The conditional scheduler yielded a slack of 6 and hence has even greater po-
tential for voltage scaling. The energy optimal conditional schedule is shown in
figure [3.3(f)} From the schedule we see that:

Deadline =16 = 4cy, + co (3.10)
I
16 —¢cy 14
= = — 3.11
Cfa 4 4 ( )
Which leads to:

2-4
fa= 2 =22 51% (3.12)

Cfa 14

From this we find the energy consumption for the conditional scheduler to be:

3
8 14
E A cond = 5Cefff£anA = 5Ceff <ﬁ) T = 3.27Ceff = 33%EA’0 (3.13)

The conditional scheduler gives the same level of redundancy, but consumes
only 33 % of the energy of the transparent scheduler.

We see that, using more advanced fault recovery schedules, the energy con-
sumption of an application can be reduced dramatically, while the level fault
tolerance is maintained.
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3.4 Reliability and Scheduling

As shown in previous sections and scheduling has great impact on the
obtainable slack, and thereby the amount of voltage scaling that can be per-
formed. In this example the effect of voltage scaling on system reliability is
investigated.

Figure B4l shows an application to be scheduled such that energy consumption
is minimised, while a required reliability goal of 9 nines is met.

Using slack sharing scheduling the fastest schedule is shown in figure[3.4(a)l The
energy is /4,0, and the deadline is met, however the energy consumption is not
minimised. The reliability for the schedule is calculated using equations (ZI4)

and (ZT6) in similar manner to the example in section EZ7 using the constants
d =2, \o = 107% and the frequencies listed in figure 3.4(e)

Optimising the application for minimum energy consumption, with the deadline
as a hard constraint, results in the schedule shown in figure Due to the
probability of faults being dependent on the frequency, the reliability of the
system is lowered. The probability of error is increased by:

1 — R
Ap = Tm_enerdy 13 3.14
r 1 _Rfastets ( )

The consumed energy is reduced to merely 56% of the fastest schedule, but the
reliability goal is missed.

To ensure meeting the reliability goal, this is imposed as a hard constraint
along with the deadline. The optimal schedule under these constraints is shown
in figure Now all constraints are met and, under these, the energy is
minimised. For this schedule the energy is reduced to 74% of the energy for
the fastest schedule. In order to produce a minimal energy schedule under the
reliability goal, the processes on PFE5 are forced to swap places.

This example shows that reliability has to be considered at the same time as
doing scheduling and voltage scaling in order to produce optimal schedules. If
this is not done, the designed system may become very unreliable. Further,
optimal schedules under reliability constraints will need to sacrifice some energy
savings in order to be reliable.

However, my optimisation algorithms are able to produce schedules with con-
strained reliability, which yield energy savings comparable to schedules with
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Figure 3.4: Example of the necessity of considering reliability when doing
scheduling and energy optimisations. The application is shown in figure
with the corresponding process durations in figure The application is
to be mapped onto the architecture shown in figure with corresponding
voltage levels in figure using slack sharing fault tolerance scheduling. In
figure the schedule has been optimised for speed alone. Figure
shows the same system optimised for minimal energy consumption. Note that
Ps and Ps have swapped places on PEs to allow for better voltage scaling. Fi-
nally figure shows the system optimised for minimal energy consumption
under the reliability goal of 9 nines. Again the processes swap places to allow
for the best scaling under this constraint.
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unconstrained reliability.

3.5 Problem Formulation

Considering an application 4 with the process graph G, and a distributed archi-
tecture consisting of a number of processing elements connected by a single bus,
we determine a reliability goal corresponding to fault-tolerance for k transient
faults. For this system we wish to perform the following design tasks. Create
a schedule, i.e. determine the start time for each process. Do mapping, that
is the allocation of each process onto processing elements. Do voltage scaling
to minimise the energy consumption. Apply a fault-tolerance policy, either re-
execution or passive replication, to each process such that the applications is
tolerant to k transient faults. All of these tasks have be considered simultane-
ously to produce a design in which the application is schedulable, the energy is
minimised, and the reliability goal is met.



CHAPTER 4

Energy-Optimisation under
Reliability and Timing
Constraints

In this chapter I present the optimisation algorithms for energy minimisation
under reliability and timing constraints. Section EEJ]land EEZintroduce constraint
logic programming and ECL!PS® respectively. Section presents the logic
constraints that correspond to general embedded systems design tasks. The
constraints specific to fault tolerance are presented in section EE4l The objective
function of the optimisation is described in section The search strategy
used in the optimisation is presented in section

4.1 Constraint Logic Programming

Linear programming (LP) has been a popular tool for modelling and doing
optimisations for many years, especially in operations research. LP models are
composed by a set of algebraic equations which describe the system. To find a
solution, general purpose solvers are used to search the design space. This has
the great advantage that all models will be able to use the same solver, and
hence improvements to this solver can be shared by all users of the LP system.
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This has given rise to very sophisticated solvers with very good performance.

However, algebra is a very limited tool for modelling. A much more powerful
mathematical tool is logics. Logic programming is also a well established ap-
proach, based on languages such as PROLOG. Logic programming is conceptually
identical to LP in that a set of rules describe a solution, and a solver searches to
find this solution. However for many applications outside artificial intelligence,
logic programming has rather poor performance.

Recent years have seen the advent of a hybrid of the two paradigms, the con-
straint logic programming (CLP). The added constraints allow for specifying
algebraic constraints on the systems defined by the use of logics. This has given
rise to CLP systems with the modelling capabilities of logics, as well as the
performance of LP. CLP has especially proven to yield good performance in
solving NP-hard problems.

Programming in CLP is based on logic constraints. A system is described by
a set of constraints which define valid conditions for the system variables. A
solution to the modelled problem is an enumeration of all system variables, such
that there are no conflicting constraints.

4.2 The ECL'PS*-CLP System

ECLPS® is a PROLOG hased CLP system. Its logic kernel, and all components
for it are programmed in PROLOG. The actual programming language is however
not standard PROLOG, but offers constructs specific to CLP.

ECL’PS® was originally developed by the European Computer-Industry Re-
search Centre (ECRC) in Munich and later by IC-Parc at Imperial College of
London, but has been open-sourced in the summer of 2006 and is now publicly
available as a community project [5] supported by Cisco Systems.

The ECL!PS® system includes a wide variety of libraries and extensions, as well
as a simple backtracking solver. The language offers primitives to allow for easy

construction of custom solvers, both for complete search, as well as heuristics.

Further details about ECL'PS® are available in [ E.
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PE,
PE.

(a) Schedule (b) Process Graph

Figure 4.1: Illustration of the precedence constraint. Process P; in the process
graph cannot start untill it has received data from its predecessor P;.

4.3 Constraints for Embedded Systems

In this section I present a series of logic constraints, which have been used in
the literature to model embedded systems design tasks. These model general
things like processor and data behaviour, and are as such applicable to all types
of systems. The constraints specific to fault tolerance are presented in the next
section.

4.3.1 Precedence Constraints

The sequence of processes in an application A is determined by their inter-
communications £ (see section B3 for definition). No process can be executed
before all the processes, from which it depends on communications from, have
been executed. Recalling that an edge e;; denotes a communication from process
P; to Pj the precedence constraint can be formalised as:

Start(Pj) >= V., Start(P;) + Duration(P;) (4.1)

which must hold for all processes P; € A. An example of the constraint is shown
in figure EEJ1 The example shows how the data dependency e;; in the process
graph forces P; to start after P; has finished.

4.3.2 Resource Constraint

The resource constraint enforces the constraint that a processor can only execute
a single process at a time. Two processes may either be executing on different
processors, or execute such that their executions do not overlap in time. This
is formally expressed by:
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PE, PE, PE,
PE PE, PE,

(a) Schedule A (b) Schedule B (c) Schedule C (d) Process graph

Figure 4.2: Tllustration of resource constraint. Two processes cannot occupy the
same processing element at the same time. The three Gantt charts illustrate
valid schedules.

Mapping(P;) # Mapping(P;)
VStart(P;) # Start(P;) + Duration(F;)
VStart(P;) # Start(P;) + Duration(F;) (4.2)

which must hold for all process pairs P; and P; where i # j. Three schedules,
that adhere to this constraint, are shown in figure Two processes with
no dependencies are to be scheduled. They can either be mapped on different
processors (figure [.2(a)]), as expressed by the first clause of the constraint, they
may execute non-overlappingly on the same processor (figure [.2(b) and f.2(c)).

4.3.3 Timing, Reliability and Energy Constraints

Further, all variables concerning time, can be constrained to be within the
deadline. For the start times of processes this can be formally written as:

Start(P;) + Duration(P;) < Deadline (4.3)

which must hold for all processes P; € A. In fact, this constraint must only
hold for the end process(es) of an application. Specifying it for all processes,
allows the underlying CLP engine to restrict the possible values for the timing
variables. This, in turn, makes it easier for the solver to prove optimality, and
makes searching for solutions faster.

The constraints for voltage scaling, reliability, and energy are direct implemen-
tations of the equations, presented in sections B2 and respectively, and
are not repeated here. The use of these equations are shown in examples in
section and
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4.4 Constraints for Fault Tolerance

In this section the constraints specific to fault tolerance are presented. The
presented constraints form an addition to the general constraints presented in
the previous section, and as such are an incremental addition to add support for
fault tolerance to the already presented model. The constraints are presented
individually per fault tolerance technique. Examples of schedules with each of
the presented techniques can be found in figure

4.4.1 Fully Transparent Scheduler

In fully transparent scheduling, recovery slack is scheduled after each process.
This is modelled by setting the length of a process to the length of the root
execution, plus the length of k recovery executions:

Start(Pj) >= Ve, Start(P;) + Duration(P;)(1 + k) (4.4)

Which must hold for all processes P; € A. This is an adaption of the precedence
constraint from section Xl If voltage scaling is applied, this will effect only
the length of the root execution, as all re-executions will still be executed at full
speed. The expression is then:

Start(P;) >= V., Start(P;) + Durationy(P;) + Duration(P;)k (4.5)

Which again must hold for all processes P; € A.

4.4.2 Slack-Sharing Scheduler

When scheduling with fault tolerance using the slack sharing technique, pro-
cesses with dependencies on the same processor and on other processors need to
be treated differently. The constraints for each of these cases is hence treated
separately in the following.
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Figure 4.3: Illustration of the availability of data in a slack sharing schedule, for
processes scheduled on different processing elements. The Gantt charts show
the critical re-execution schedule.

Processes on the Same Processing Element

Processes executed on the same processor share recovery slack. This slack will
always be scheduled after the root processes. Hence the root processes can be
scheduled without any further constraints. Thus the constraint for processes on
the same processing element is simply:

Mapping(P;) = Mapping(F;) (4.6)

Processes on Different Processing Elements

Things are more complex if the two processes are mapped on different proces-
sors. As just described, processes on the same processor share recovery slack.
Processes on different processors however cannot be started until recovery of
their precedents is guaranteed.

The situation where to processes on different processors have to communicate,
can be split into two special cases. These are illustrated in figure The
constraints for the two cases are presented below individually.



4.4 Constraints for Fault Tolerance 45

data is available to be transmitted to another process can be described by two
special cases, both illustrated in figure B3 and the constraints are presented
below.

Example 1: We consider the dependency between process P» and Ps. In figure
P; is scheduled after a shorter process. The figure shows the critical
recovery path. This is the path which determines when data is available to be
transmitted. In this example the longest recovery path is k re-executions of P,
and hence P3 can start at time:

Start(Ps) >= Start(Py) + Duration;(Ps) + Duration(Ps)k (4.7)

Example 2: In figure P5 is scheduled after a longer process. In this case
the longest recovery path to Ps is k re-executions of P, plus a single execution
of P». That is, the availability of data is not only determined by the sending
process, but also the process scheduled before this. The start time of Pj3 is
constrained by:

Start(Ps) >= Start(Py) + Durations(P1) + Duration(Py)k + Duration(P,)
(4.8)

These two schedule examples show that the availability of data, does not only
depend on the two processes which communicate, but also on all the processes
with which the sending process shares slack. To generalise the shown constraints,
in a way that can be used in an CLP model, detailed information of the recovery
schedule is needed. This is achieved by creating a separate schedule for the
recovery processes. For the examples shown in figure the created recovery
schedule in fact is identical to the recovery schedule shown in each Gantt chart.

The recovery schedule is set up in the following way. For each process P; a
recovery process \S; is inserted into the recovery schedule with an edge ep, 5,. In
the recovery schedule the same precedence and resource constraints are imposed
as presented in section EE3] and The finishing times of the processes in
the recovery schedule is described by:

Finish(S;) > Start(P;) + Duration;(P;) + Duration(P;)k
AFinish(S;) > Start(S;) + Duration(P;) (4.9)

As seen in the previous example (especially figure {.3(d)]), the duration of the
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recovery process, is dependent on its predecessors. Hence the above constraint,
cannot be written as elegantly in terms of the duration, and is hence kept in
this form.

Note that the first part of the expression, up to the A operator, captures the
recovery schedule in example 1. Similarly the rest describes example 2.

Using the recovery schedule, the general logic constraint for processes on differ-
ent, processors can now be written:

Start(P;) >= Finish(S;) (4.10)

General Expression

With the previous definitions of the recovery schedules and constraints for pro-
cesses on the same, and on different processors, a general constraint for slack
sharing can be derived:

Mapping(P;) = Mapping(P;) A Start(P;) > Start(P;) + Durations(P;)
vV Start(P;) > Finish(S;) (4.11)

In the last part of the expression it is not explicitly stated that Mapping(P;) #
M apping(P;), as this is an implicit consequence of the first part of the clause.

4.4.3 Conditional Scheduler

The conditional scheduler implementation is based on the FT-CPGs presented
in section

The use of constraint logic programming for scheduling conditional process
graphs is described in [I5]. The constraints presented in this section is an
extension of that work to allow for scheduling FT-CPGs.

The conditional edges in the FT-CPG form mutually exclusive paths through
the graph. As a consequence two process, which depend on mutually exclusive
conditions, will never be executed in the same run of an application. As an
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example, consider Ps > and P53 in figure P55 depends on the failure
of P11 and P53 depends on P; ;1 not failing (and P, failing). Consequently
these two processes will never be active in the same execution. Because of this,
processes which are part of mutually exclusive paths can be scheduled to the
same resource at the same time. This addition to the resource constraint from
equation (2 is written:

MutuallyExclusive(P;, Pj)
VMapping(P;) # Mapping(P;)
VStart(P;) >= Start(P;) + Duration(P;)
VStart(P;) >= Start(P;) + Duration(F;) (4.12)

which must hold for all process pairs F; and P; where ¢ # j. The function
MutallyExclusive determines whether the two processes are on two disjunctive
paths (as described in the above paragraph). This function is computationally
heavy, as it involves recursively searching through the lists of conditions for
each process. These condition lists are created as part of deriving the FT-CPG.
Therefore, the lists are available to optimisation tool when it loads the FT-CPG.
As the conditions for processes are independent of the scheduling, the recursive
search to determine mutual exclusiveness of processes can be done as a one time
effort as part of the setup of the internal model. In the actual implementation
the function to determine mutual exclusiveness is run first. If the two processes
are mutually exclusive, they do not constrain each other, and nothing further is
done. If they are part of the path, the constraints presented above are invoked.
The logic expression shown above captures this behaviour concisely.

In [15], Kuchinski does conditional scheduling by using a graphical method
to draw processes which depend on different conditions with different width.
In his work, he only operates with a single condition, for which his approach
works well, and is very intuitive, due to its visual resemblance to Gantt charts.
However, in the application of fault tolerance, with the inherently large num-
ber of conditions, the graphical approach would become impractical (processes
would become impractically “thick” in the graph). Further to use this graphi-
cal method Kuchinksi exploits a built-in predicate in the CHIP constraint logic
programming system. This predicate is not available in ECL'PS¢, and hence the
graphical solution is not an option in this implementation. Most importantly,
his implementation will evaluate mutual exclusiveness as part of model while
searching for solutions. For large numbers of conditions, this will become very
time consuming. The solution presented in this thesis is more efficient, as the
costly comparison of conditions is only done a single time, as part of loading the
model. This gives less logic constraints to evaluate at search time, and hence
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significantly faster search performance of the scheduler.

4.5 Objective Function

The tool uses reliability and deadline as hard constraints. The CLP solver uses
this to constrain the design space, such that for any found solution, these two
constraints will always be satisfied.

The optimisation can hence focus on the consumed energy alone. The equations
used to express the energy are the ones presented in section As the goal of
the tool is to achieve energy savings from using power management techniques,
we are only interested in getting a measure for this saving. The optimisation
process only applies voltage scaling to the root schedule, and therefore only
this will contribute to energy savings. Hence, the tool optimises the energy
consumption of the root schedule only. This is the same approach as used in
the example in section This approach makes the evaluation of the energy
simpler, and hence faster, while still enabling the tool to precisely determine the
energy savings.

4.6 Search Strategy

A CLP program is composed by a set of logic constraints. To find solutions for
such a model, the solver will search through all possible values of all variables,
to find combinations of values which satisfy all constraints.

Consider a single process to be scheduled and mapped to run on an architecture
with two processing elements, and be optimised for fastest execution. This
example is illustrated in figure B4l The application has a deadline of 4, and
the process has a duration of 5 on PE; and 1 on PEs. It should be obvious
that the process can only be mapped on PFEs> in order to meet its deadline, a
point I shall return to shortly. To map and schedule this process the solver
has two design tasks to decide: mapping and scheduling. Due to the constraint
specified in equation (E33)), which states that the start time plus the duration of
all processes will always be smaller than the deadline, the solver will limit the
value space for the start times of the process, to the interval 0-3.

In the search tree in figure [.4(d)] the start times are considered first, and then,
for each start time, the mappings are considered. This gives rise to the shown
search tree, which has three internal-nodes, and six leaf-nodes (corresponding to
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Figure 4.4: Tllustration of search trees for a simple mapping and scheduling
example. The application is to be mapped to the architecture. The schedule is
to be optimised for speed, and finish within a deadline of 4.

the six permutations of the values for the two variables). An alternative search
tree where mappings are considered first, and then start times, is shown in figure
This tree has only two internal nodes, yet naturally the same six leaf-
nodes. Hence, this tree is preferable to the other, as it will end up at the same
results, but visit less internal states in the process, and hence be faster. This
shows that the order in which the design tasks are performed, has a big impact
of the number of states that needs to be visited while searching for solutions.

Let us return to the fact that the process runs too slowly on PFE;. Using the
ordering of design tasks from the optimal search tree from figure and a
solver that will always select the smallest value first, the solver will perform the
search shown in figure In this tree, the process is firstly mapped on PFEj.
The solver evaluates the constraints, and finds that due the process’ duration
being longer than the deadline of the application, this mapping is not valid.
It hence backtracks and maps the process on PFEs instead. While doing this,
the solver does not try any values for start times. These branches are cut of, or
pruned. With the new mapping the solver will try the three different start times,
and determine that 0 yields the fastest schedule. Using pruning, the solver only
had to visit 6 nodes in the search tree, out of the total 9. This illustrates that
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the order in which the design tasks are performed, affects both the number of
internal nodes in the search tree, and the solvers ability to do efficient pruning.
These two things both have very significant performance impact.

For the proposed optimisation algorithm, it has been found that performing
design tasks in the following order yields best search performance: mapping,
voltage scaling, and scheduling.

In the previous example we used a solver which considered variable values, from
the smallest value and up. This is not always the best strategy. Accelerat-
ing searches by changing the sequence in which values are considered, is called
value selection, and is a search heuristic, which does not sacrifice optimality.
The implemented solver in the presented work, uses the following value selec-
tion schemes for each variable: Mappings: random, Voltage levels: from the
minimum, and Start times: from the minimum. This has been found to yield
the best performance. Evaluating the voltage levels from the smallest first, will
bias the search towards finding the schedules with the least energy consumption
first.

4.6.1 Optimality vs. Fast Solutions

For larger applications each design task consists of assigning values to a large
number of variables, e.g. all processes will have a mapping and a start time
variable. Each of these variables will be assigned a value using the strategy pre-
sented above, but the sequence in which the variables are chosen to be assigned
is also an important part of the solver implementation. Speeding up search, by
changing the way in which variables are chosen for assignment is called variable
selection, and is too a search heuristic.

ECL'PSe® offers predicates to implement a number of different variable selection
schemes. The most constrained scheme, will select the variable in the current
set, e.g. mappings or start times, that has most constraints associated with it.
The variable will be assigned a value, and then the second most constrained
variable is selected. This is repeated until the set is empty. A similar approach
is the first fail scheme, which tries to guess which variable will be the first to
lead to an invalid solution. This is done in a simpler and faster way than the
most constrained scheme. The aim of these two approaches, is to try to find
invalid solutions first, in an attempt to do pruning of the search tree as soon
as possible. Early pruning, effectively reduces the size of the search tree, and
consequently makes it easier for the solver to prove optimality of a solution
(which it can only do after having visited all valid solutions). However as a lot
of the initial searches are intentionally directed down search paths that hold
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no solutions, these two approaches may take very long time to find the first
solution, however this first solution will often be the optimal.

As an alternative, ECL'PS® offers the anti first fail selection scheme, which will
try to find a path that produces solutions as fast as possible. This approach will
produce a lot of solutions, that gradually get better. But these will generally
start out being very bad, as the variable selection choose the paths through
the search tree that represent the easy solutions. This selection scheme may
produce good solutions, but will take much longer time to prove them optimal.
This is because the variable selection scheme causes the search to visit a lot of
solutions, which pruning could have shown to be suboptimal.

In the proposed implementation, the main interest is to find the optimal so-
lutions, and I hence use the first fail variable selection approach for all design
tasks. This has been found to yield a good trade-off between the speed of finding
solutions, and the solvers ability to prove the optimality of solutions.
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CHAPTER 5

Experimental Results

In this section I present the experiments performed, in order evaluate the pro-
posed scheduling and optimisation approaches. The experiments have been
conducted on two sets of test data, a set of synthetic applications presented in
section 21l and a case study of an MP3-decoder, presented in section The
remaining sections of this chapter present the conducted experiments.

5.1 Synthetic Applications

A large set of synthetic applications have been generated using the task graphs
for free tool (TGFF) [ [26]. This tool generates pseudo-random process graphs
in a platform independent and general way, allowing researchers to experiment
with their results, on similar input material. I have configured TGFF to gener-
ate series parallel graphs, which resemble graphs for real applications. In figure
BTl a sample TGFF' series parallel graph is shown, together with the input
parameters used to create it.

The test set is composed of graphs with N € 10,15, 20, 25,30 processes. For
each graph size, I have generated a total of ten graphs. Half of the processes in
the graphs have been randomly chosen to be made redundant. The remainder
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TAEF_GRAFH 2
Fariod= 1200

¥nBout Degres Limitz= 5

tg_cnt 5

task_cnt 15 1
gen_series_parallel true
period_laxity 1
period_mul 1, 1, 1

tg_write
eps_write
vcg_write

pe_write
(a) Input parameters (b) Generated graph ex-
ample
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(c) Architecture (d) Voltage levels

Figure 5.1: Parameters used for TGFF and an example of a corresponding
generated process graph. Also the architecture used in the synthetic experiments
is shown.
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of the processes are considered non-critical, and are not made redundant.

Where not explicitly stated otherwise, the architecture shown in figure
is used. The architecture consists of three processing elements, connected by
a single bus. Each processing element can be run at three voltage levels. The
applications have been randomly mapped unto the architecture.

In the experiments, the fully transparent schedule has been used as reference.
This schedule is the straightforward approach, that an experienced designer
would determine, without using my tool. The deadline for the graphs in the
experiments, has been set to the length of the optimal fully transparent schedule.

Similarly, the reliability goal is determined based on the reliability of the fastest
fully transparent schedule. The reliability goal is defined as:

Rg =1- 10(1 - Rtransparent) (51)

which means, the probability of faults may be no more than ten times greater
than in the transparent schedule.

5.2 MP3-decoder Case Study

The experiments have also been conducted on a real application. This is an
MPS3-decoder, for which a process graph, as well as detailed timing information
is available. This example has previously been used in [I8)] and [24].

The process graph for the MP3-decoder is shown in figure The graph has
two parallel executions, with identical durations, and two intersects. This is
because the decoded MP3-stream is stereo, and the two channels are decoded
independently. The durations shown in the figure are written as the number of
cycles they need to complete. The deadline for the application is 25ms.

The MP3-decoder is executed on an architecture with two processing elements,
shown in figure The individual processors can be run at three voltage
levels. The voltage levels have been set slightly higher than in the architecture
for the random process graphs. This is due to processes Py3 through Pjg being
relatively expensive in terms of execution time. With the lower voltage levels,
these processes can not be voltage scaled within the deadline, and the slack can
not be efficiently used for energy management.
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(a) Process graphs
| Description | Process || PFE, | PEs |

Preprocessing P 1071 1071
Scale P, P 476 476
Huffman Decoder Py, Ps 36781 36781
De-quantisation Py, P 14172 14172
ITI-Stereo Pg 63914 | 63914
Reorder Py, Pg 2568 2568
Antialise Py, Pio 21305 | 21305
IDCT P35, Py || 144924 | 144924
Sub-Band Synthesis | Pi5, Pig || 266687 | 266687

(b) Durations

PE, PE,

| Voltage Level |

‘? ‘? PE; || 100 % | 75 % | 50 %
PE, || 100 % | 75 % | 50 %

(c) Architecture (d) Voltage levels

Figure 5.2: Process graph for MP3-decoder. The descriptions are from [24]. The
execution times are here listed as the amount of cycles they need to execute.
The architecture the is also shown, along with the available voltage levels.
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| name | Constant || Value |
Effective capacitance Cesy 1.11-107°F
Power exponent m 3
Frequency independent power Pina 0 mJ
Initial failure rate Ao 1.0 - 1075 faults per second
Failure rate constant d 2

Figure 5.3: Constants used in experiments. The failure rate is assuming a 100
megabit chip [32].

5.3 Optimisation Parameters

The algorithms have been evaluated considering two situations. In the first case,
the application must tolerate one transient fault (£ = 1), and in the second case,
they tolerate two faults (k = 2).

All experiments have been conducted with a fault tolerance level of k € {1,2}.
The constants used for the numerical calculations are shown in figure All
experiments are conducted with a hard deadline. The system is assumed to be
online continuously, hence the frequency independent power, P;,q, can safely be
set to naught, as it will only contribute with a constant to the energy expression
from equation ([ZH), with value Deadline - Py,q.

The constant values are taken from [30] and [19].

The CLP solver that searches for schedules, is set to have a timeout of 15
minutes. For some schedules optimality is proved within this deadline. Other
searches may produce intermediate results, but not be able to prove optimal-
ity. Finally, some searches may not find any solutions within this deadline.
How many searches fall into which category is listed for each experiment in the
following.

The experiments have been conducted using the ECL/PS® version 5.10_44,
running on 3.5 Ghz AMD 64-bit computers with 2 gigabytes ram.

5.4 Performance of Fault-Tolerant Schedulers

To compare the three implemented schedulers against each other, two experi-
ment runs have been performed. In the first, the optimisation criteria is finish
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(a) k=1 (b) k=2
No. of Processes
| No. Faults | 10 | 15 | 20 | 25 | 30
Fully transparent

k=1 10/0/0 | 9/1/0 | 7/3/0 | 5/3/2 | 2/5/3
k=2 10/0/0 | 10/0/0 | 7/2/1 6/4/0 | 3/4/3

Slack sharing
k=1 10/0/0 | 9/1/0 | 7/3/0 | 5/3/2 | 2/4/4
k=2 10/0/0 | 10/0/0 | 7/2/1 6/4/0 | 3/4/3

Conditional
k=1 4/6/0 | 2/8/0 | 0/10/0 | 0/8/0 | 0/7/3
k=2 3/7/0 | 0/10/0 | 0/9/1 | 0/10/0 | 0/7/3

(c) Finishing status of searches

Figure 5.4: Comparison of the fastest possible schedules obtainable with the
three schedulers. All values are relative to those of the fully transparent sched-
uler. Smaller values are better. The table shows the number of optimal /
intermediate / none schedules for each graph size.

time, and their ability to produce fast schedules is compared. The results for
this experiment is shown in the graphs in figure 4l The x-axis marks the size
of the graphs, and the y-axis is the length the produced schedule, relative to
the schedule produced using the fully transparent approach. The plotted points
are the average of the ten graphs generated for each graph size. The number of
optimal / intermediate / none results for the searches are shown in the table
in figure Optimal results are those which have been found within the
timeout. Since the search has stopped before the timeout, the found schedule is
known to be optimal. Intermediate results are the best known schedule, when
the search reached timeout. The searches marked as none, did not find any valid
solutions within the timeout.

From the graphs we see that for systems tolerating one transient fault, the slack
sharing approach produces results that are consistently 10-15% shorter than
those for the fully transparent scheduler. The conditional approach is 20-30%



5.4 Performance of Fault-Tolerant Schedulers 59

Fault Tolerance Technique

| k=1 | Fully Trans. | Slack Shr. | Conditional

| Finishing time || 1103796 | 919280 | 818585 |
k=2 ] | | |
| Finishing time || 1655694 | 1286662 | 1085272 |

Figure 5.5: Minimal finishing times for MP3-decoder.

better. This tendency is even more obvious for k¥ = 2, where the slack sharing
scheduler performs 20% better, the conditional scheduler an amazing 50% than
the transparent scheduler.

To see how large energy savings can be achieved by exploiting the slack produced
by the better performing schedulers, we now minimise the energy for the designs.
The deadline used is that of the fastest slack sharing schedule, and no reliability
goal is set. The results of this experiment is shown in figure For the energy
plot ,the y-axis is the energy consumption relative to that of the fastest fully
transparent schedule, calculated similarly to the finishing times in the previous
experiment. For the reliability plot, the y-axis is the absolute reliability.

We see that the slack sharing schedule gives a dynamic energy saving of 30% and
45-50% for one and two faults respectively. The conditional schedule produces
schedules that saves as much as a 70% for k = 2. However, we see that the
conditional scheduling is not able to produce any results at all for graph sizes
larger than 15. This is because of the use of FT-CPGSs to capture all possible
fault scenarios. The size of a FT-CPG grows drastically, with growing graph
sizes. For graphs with 15 processes the average number of processes in the corre-
sponding FT-CPG, is 70.9 for k = 1 and 270.9 for &k = 2. With 20 processes this
increases to 104.9, and 483.4 respectively, which renders the search infeasible.

The reliability plots show the energy savings are obtained at a very high relia-
bility cost.

The finishing time optimisation results for the MP3-decoder are shown in figure
For k = 2 the slack sharing schedule is about 25% faster, and the condi-
tional about 30% faster. This is comparable to the synthetic applications. The
finishing times achieved using the fully transparent scheduling scheme, are used
as deadlines in the remaining experiments. Recalling that the application has a
deadline of 25ms, the processor that runs the application, will have to execute
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Fully transparent
k=1 10/0/0 | 8/2/0 | 8/1/1 | 4/3/3 | 0/6/4
k=2 10/0/0 | 10/0/0 | 10/0/0 | 6/2/2 | 0/7/3
Slack sharing
k=1 9/0/1 | 9/1/0 | 2/6/2 | 3/3/4 | 0/2/8
k=2 9/1/0 | 10/0/0 | 3/5/2 | 2/6/2 | 0/4/6
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k=1 4/1/5 | 0/3/7 | 0/0/10 | 0/0/10 | 0/0/10
k=2 5/0/5 | 1/0/9 | 0/0/10 | 0/0/10 | 0/0/10

(e) Finishing status of searches

Figure 5.6: Comparison of the obtainable energy savings for different schedulers.
The fastest schedule for fully transparent scheduling has been used as deadline,
and energy minimised under this. The energies are relative to the energy for
running all processes at full speed, hence for energy smaller values are better.
The reliability plots are in absolute values, and higher values are better.
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Fault Tolerance Technique
| k=1 | Fully Trans. | Slack Shr. | Conditional
Energy 46123.2084 24529.21914375 | 20598.871287222
Reliability || 9 nines and 6 8 nines and 6 8 nines and 6
[ k=2 | | | |
Energy 46123.2084 15234.397575 | 14606.184732684
Reliability || 14 nines and 5 | 12 nines and 9 12 nines and 8

Figure 5.7: Energy and reliability for MP3-decoder.

at a minimum of:

1103796
= — =44.15M 2
fr=1 SEms SMhz (5.2)

for k = 1 to finish within the deadline. For the implementation tolerating two
fault, the minimum clock frequency is:

1655694
o= — T 66.23M .
frmr = = = 66.23M e (5.3)

Provided an architecture is given, which supports the two levels of fault tol-
erance using the straightforward fully transparent scheduling, the use of the
more advanced schedulers could provide the same level of fault-tolerance while
consuming the energy shown in figure 71 Both slack sharing and conditional
scheduling give an energy saving of about 65% for k = 2.

The experiments show that significant savings in terms of slack, and energy, are
available by the use of more sophisticated fault tolerant scheduling. The energy
minimisation experiment clearly illustrates that energy management should be
used with care, as the reliability of the produced schedules drops rapidly as
the graphs sizes increase (i.e. the amount of slack increases). The experiments
further show, that the conditional scheduling, although it produces very good
results, is impractically slow.

5.5 List Scheduling vs. Optimal Schedules

To evaluate the efficiency of the proposed scheduling techniques, I have com-
pared their performance against the algorithm presented in [I]. I have used
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a version of the original code, which schedules an FT-CPG representation of
a graph using list scheduling. In these experiments 100% of the processes are
considered to be recovered in case of fault.

The graphs are scheduled on an architecture with 4 processing units. The same
mapping is used for all experiments. The optimisation criterion is finishing time.

The results of the comparison with the list scheduling are shown in figure
In the plots the y-axis is the finishing time relative to that of the list scheduler.
We see that the slack sharing scheduler performs 25% better for £ = 1. For
k = 2 the slack sharing approach still produces better results, but somewhat
less so (about 20%). Again we see that the conditional scheduling, does not
produce any results for larger graphs. For the schedules found, however, we see
that the list scheduling results, are far from optimal. In fact, for k = 2 the
optimal schedules are as much as 60% better.

The results for the MP3-decoderare shown in figure 71 For the case study,
we see that the slack sharing scheduling is performing nearly as good as the
conditional. We also note that the energy consumption is indeed lower for the
schedules that handle two faults. This is because they have been scheduled
with a different deadline. We recall that the deadline is set to the length of the
fastest transparent schedule. The advantage of using more advanced scheduling
algorithms over the transparent becomes more apparent as k increases, and
hence there is more slack for voltage scaling.

These experiments show that the proposed slack sharing scheduling performs
significantly better than the list scheduling algorithm proposed in [I0].

5.6 The Effects of Policy Assignment

The impact of policy assignment and mapping on the quality of obtainable
schedules is evaluated by scheduling the same graph with three different degrees
of mapping. Firstly, with all processes mapped, and all recovery executions
mapped on the same processing element, i.e. only with re-execution. Secondly,
with all root processes mapped, but recovery executions unmapped, i.e. com-
bination of re-execution and passive replication. And finally with all processes
unmapped. These experiments are run on the architecture shown in figure
This is a heterogeneous architecture, with three processors, each with different
performance. The performance ratios are written inside the processing elements
in the figure. The ratios mean, that a process mapped on PEs will have a du-
ration that is twice as long as if it were mapped on PE;. For this experiment
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(c¢) Finishing status of searches

Figure 5.8: Fastest possible schedules with three different schedulers. The
heuristic list, scheduling approach is used for reference, and all other numbers
are relative to this. Smaller values are better.

the optimisation criteria is finishing time.

The results of these experiments are shown in figure LT for the synthetic appli-
cations. The graphs show that using a combination of re-execution and passive
replication, my implementation can produce schedules which are consistently
10% better than those with only re-execution. We also see that if the optimi-
sation tool is allowed to determine the mapping, as well as the policy assign-
ment, the results become even better. The plot for this case, however behaves
strangely, and the results become increasingly bad, and for 30 processes, even
produces schedules that are worse than those with re-execution only. This is
because the size of this design space being significantly larger in this case. In
turn, this is seen in the status table, where nearly no searches finish within
the timeout. Hence the schedules plotted are intermediate results and are thus
sub-optimal. If the searches had finished, an improvement in the finishing time,
similar to that where k = 1 should be expected.

The MP3-decoder is scheduled on the same, homogeneous, architecture as in
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Figure 5.9: Architecture for the experiments in section The performance
ratios for the processors are written above each processor.
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k=1 10/0/0 | 6/2/2 | 10/0/0 | 8/2/0 2/0/8
k=2 10/0/0 | 10/0/0 | 8/0/2 | 10/0/0 | 8/0/2
Re-execution and
passive replication
k=1 10/0/0 | 6/4/0 6/2/2 8/2/0 | 0/0/10
k=2 10/0/0 | 6/4/0 8/0/2 8/2/0 0/6/4
Both and mapping
k=1 6/4/0 0/8/2 | 0/10/0 | 0/10/0 | 0/2/8
k=2 4/6/0 | 0/10/0 | 0/8/2 | 0/10/0 | 0/8/2

(c) Finishing status of searches

Figure 5.10: Influence of policy assignment on quality of solutions. The sched-
ules with all processes mapped are used as reference, and the other values are
relative to this. Smaller values are better.
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Fault-tolerance policy

| k=1 | Re-ex. | Re-ex. & pas. repl. | Both & mapping

| Finishing Time [| 919280 | 896671 | 835325 |
k=2 ] | | |
| Finishing Time || 1286662 | 1241444 | 1118752 |

Figure 5.11: Influence of policy assignment on schedule quality for MP3-decoder.
The results are for: all processes mapped, only the root processes mapped, and
all processes unmapped.

the other experiments. The results are shown in figure BTl Again, we see an
improvement when using both passive replication and re-execution, and an even
bigger improvement if the mapping is also considered part of the optimisation.
The finishing times are improved by a few percent when passive replication
is introduced, and by about 10% when mapping is also decided. Considering
that the MP3-decoder has a highly parallel structure, and is scheduled on two
identical processors, these improvements are in fact quite high.

These experiments show that considering policy assignment and mapping is
critical to produce schedules of high quality.

5.7 Energy Trade-Offs for Reliability

In this experiment the obtainable energy savings possible under a reliability
goal Ry have been investigated. The optimisation is done using slack sharing
scheduling, which, through the previous examples, has been shown to behave
well, both in terms of the quality of the produced schedules, and also in terms
of execution time.

Two energy optimisations are done for each graph, one where the reliability
is not constrained, and one where the reliability goal R, is imposed as hard
constraint. The imposed reliability goal is the one presented in section Z3l The
energy is compared to that of the fastest transparent schedule, the finishing time
of which, is used as deadline.

The results of these experiments are shown in figure The plots clearly
show, that lowering the voltage to minimise energy consumption, without con-
cern for reliability produces extremely unreliable systems. The reliability de-
creases dramatically with increasing application size and k. If, however, relia-
bility is constrained to meet a reliability design goal, this is avoided. The plots
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for energy show that, the difference in energy is only very little, however the
reliability benefits greatly from the introduced reliability goal. This shows that
considering reliability as part of the optimisation process, my approach is able
to dramatically improve the reliability of designed systems at very little sacrifice
of energy.

To illustrate this, let us consider the probability of error, for £ = 1 and 20
processes. This is improved by a factor of:

Ap = 1- Runconstrained - 1—-0.9634
g 1- Rconstr(zined 1 —0.9906

=3.9150 (5.4)

At the cost of an increase in energy consumption by a mere:

Econstrained - Eunconstrained _ 0.6993 — 0.6917
Eunconstrained 0.6917

AE = —0.88%  (5.5)

And the trend is only more obvious if examples for k = 2 are considered.

The results for the MP3-decoder show the same tendency. Firstly, it should be
noted that the reliability for this example is far greater than that of the random
graphs. This is due to all processes being redundant. In the synthetic examples
only 50% are made redundant, and hence the other half will contribute to the
systems unreliability.

We see that, for £ = 1, the unconstrained schedule consumes:

E i 24529.21914375
AE — unconstrained _ — 539 56
Eiransparent 46123.2084 % (5.6)

of the energy of the transparent schedule. However, the reliability is missed.
The constrained schedule yields a schedule which consumes:

Econstrained 29020.2215625
AE = = =62.9 5.7
Et'r‘ansparent 461232084 % ( )

energy and meets the reliability goal. By sacrificing an energy saving of 9%, we
have made the designed system meet its reliability goal. The energy cost, for
achieving this, in this case is a bit larger than for the synthetic applications.
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Figure 5.12: Plot of energy and relibality, scheduled with and without con-
strained reliability.
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Transparent | Unconstrained Constrained
| k=1 ] R, = 8 nines and 8
Energy 46123.2084 24529.21914375 29020.2215625
Reliability || 9 nines and 5 8 nines and 6 8 nines and 9
| k=2 || | | Ry = 13 nines and 6 |
Energy 46123.2084 15234.39757 18931.3788375
Reliability || 14 nines and 6 12 nines and 8 13 nines and 6

Figure 5.13: Energy and reliability for MP3-decoder.

This is because the MP3-decoder is dominated by a few very heavy processes, as
discussed earlier. This makes the application have little flexibility to do voltage
scaling. The synthetic applications have processes of more even sizes, and hence
are more flexible.

This demonstrates that reliability should be considered as a part of the system-
level optimisation process. Doing so, may yield valuable insight on how to
efficiently voltage scale a system. Tt is possible to achieve much better reliability,
at the cost of only a very little increase in consumed energy.



CHAPTER 6

Conclusions

In this thesis, I present design optimisation approaches for the design of time
constrained fault-tolerant embedded multiprocessor systems-on-a-chip. The pre-
sented techniques consider the reliability simultaneously with the scheduling,
mapping and voltage scaling. The presented approaches are able to produce
schedules with good reliability at a very small energy cost, compared to sched-
ules that where scheduled without considering reliability. This shows that it is
critical to consider the reliability of systems as part of the system-level design
phase.

To evaluate the reliability of fault tolerant systems, I have derived equations for
the reliability of several different fault-tolerance techniques. This extends the
work of [30] to allow for not only re-execution, but also replication and passive
replication. Further the expressions are generalised for arbitrary numbers of
handled faults &, and not as previous work only for k£ = 1.

Three different fault tolerant scheduling methods have been implemented: fully
transparent, slack sharing and conditional. To do conditional scheduling, a
general algorithm has been developed which builds FT-CPGs from normal task
graphs. This extends the work of [9] and [I0].

The approaches have been implemented using a constraint logic programming
system, and towards this, end the logic constraints to model fault-tolerant em-
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bedded systems are presented. The advantage of using an CLPapproach is its
flexibility. It is easy to add and remove constraints, and several design tasks can
be integrated in the same code. The search strategy can easily be controlled,
and, given enough time, the search is able to find optimal solutions.

The experiments conducted have shown that the presented algorithms are able
to produce implementations which are fault-tolerant, schedulable, and minimise
energy.

6.1 Further Work

The model presented disregards communication delay. Considering this however
will give rise to some interesting problems. For the more advanced scheduler
implementation, fault information has to be shared between processors. This
information will naturally have to be transmitted on the bus. This may lead to
congestion on the bus, and hence impact execution speed. Further, the extra
power needed to drive the bus, may affect the optimal schedules, such that less
parallelism is favoured.

The optimisation tool presented in this thesis does complete optimal search.
This is shown to yield very good results, but is also rather slow. Comparison
with a list scheduling heuristic shows that the implemented tool behaves gener-
ally between 10-20 % better for slack sharing scheduling. It would be interesting
to extend the presented model with a fast constraint logic programming search
heuristic, which would quickly produce solutions of good quality.
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Derivation of FT-CPG

In [9] an algorithm to derive FT-CPGs from normal process graphs is presented.
It is however very abstract, and as such does not form a good base for doing an
actual implementation. As a consequence we have proposed a directly imple-
mentable algorithm to derive FT-CPGs.

The algorithm takes as input a normal directed process graph, and from it
produces a conditional graph with fault tolerance for k faults. An example of a
process graph and its derived FT-CPG for k = 1 is shown in figure 226l

The GenerateFTCPG function is shown in pseudo-code representation in algo-
rithm [l The subscripts array set up in line 3 is used to assign unique sub-
script numbers to re-executions of a process. This is necessary to distinguish
re-executions from each other. Lines 1 to 22 initialise the data structures. The
algorithm starts with the source node, which has no predecessors. The algo-
rithm maintains a set of conditions for each process which captures the fault
scenario in which the process will be active. For each process with predecessors,
it is necessary to determine which instances of this/these predecessors are valid.
E.g. it is critical that a process with two predecessors, is only inserted into the
graph, with combinations of these two predecessors, that do not belong to mu-
tually exclusive paths in the FT-CPG. A combination of predecessor processes
that is part of the same path in the FT-CPG, is called a valid combination.
These valid combinations are determined using the set of conditions for each
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predecessor. The valid combinations are determined in line 25. To find these
valid combinations is non-trivial, and the algorithm for doing this is given in
algorithm

The for loop from line 26 to 33 inserts a new process for each valid combination,
and the loop from line 34 to 45 inserts re-executions of each of the newly inserted
processes.

A.1 FindValidCombinations

This is the function to find valid combinations of predecessors for a process.
The function takes as input the so far generated FT-CPG and the process for
which we wish find predecessor combinations. The process will have a set of
predecessors in its original graph, in figure P, has the predecessors P, and
Ps. The loop in lines 3-5 searches through the FT-CPG generated so far, and
inserts each instance of the predecessors processes in the parents array. In line 6
the function CompareConds is called. This will determine which combinations,
of the found predecessors in the parents array, are part of the same path, and
hence are valid candidates for having P; inserted as a child. Lines 7 to 11 ensures
that none of the valid combinations are paths with more than & faults.

A.2 CompareConds

This function takes a set of lists, holding all the instances of the predecessor
processes for a process. The predecessors are sorted, such that instances of the
same process are all in a separate list. Lines 2-3 handles the special case when
there is only one parent, in which case all instances are valid candidates. Line
4 extracts the first set of predecessors, calls CompareConds recursively with
the remaining predecessors. This recursion merges the process sets, such that
processes that are part of the same path through the graph are joined, and their
conditions joined as well. The function returns a single set of combinations of
predecessor processes that are parts of the same paths. Using the example from
figure and considering process Py, the function would be called with the
predecessor lists {Pa 1, Pa2, P23} and {Ps1, P32, P33}, and would return the
list {{P21, P31}, {Po1, Poats {123, 3}, { P22, Pa2}}

The function CompareConds evaluates the conditions for all sets of parents and
see if they are part of mutually exclusive paths in the graph. The algorithm for
this function is shown in algorithm
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Algorithm 1 GenerateFTCPG(G, T ,k)

N N = = = = e e e e e e
= T - B N v =

43:

46:
47:

© 00 N O U = W N =

G—1

ReadyList < ()

subscript [number of processes]
set all susbeript to 1

P; «— SourceNode(G)
subscript «— subscripts[i] + +
Insert(P; 1, G)

tmp — Pi,subscript

P; 1.possibleFaults «— k

P; 1.conditions < ()

: tmp — Pi,l
: for j < P; 1.possibleFauls downto 0 do

subscript «— subscripts|i| + +

Insert(Pi,subscripty g)

P; subscript-possible Faults < j

P; subscript -conditions «— tmp.conditions + tmp. fail
Connect(tmp, Pi,subsc?"’ipt)

tmp Pi,subscript

: end for

: P 1.condition+ = P; .success
: newProcessess «— ()

22:
: while ReadyList is not empty do

Insert(P;.children, readyList)

P; — ExtractFirst(ReadyList)
VC « FindValidCombinations(P;, G, k)
for all ve € VC do
subscript «— subscripts[i] + +
Insert(Pi,subscr'Lpt; g)
Insert(P; subscript; newProcesses)
P subscript-possibleFaults «— k — vc. faults
P subscript-conditions «— ve.conditions
Connect(ve.processes, P subscript)
end for
for all P;;, € newProcesses do
tmp «— P
for j « tmp.possibleFauls downto 0 do
subscript — subscripts|i] + +
Insert(Pi,subscripta g)
P subscript-possible Faults < tmp.possible Faults
P subscript-conditions < tmp.conditions + tmp. fail
Connect(tmp, Pi,subscript)
tmp «— i,subscript
end for
P, ..condition+ = P; j..success
end for
Insert(P;.children, readyList)
end while
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Algorithm 2 FindValidCombinations(P;, G, k)

— = =
N = O

S L AN~ > o

: parents — ()
:index — 1
: for all P; € P;.parents do
parents[index + +] + all instances of P; € G
end for
: candidates < CompareConds(parents)
for all candidate € candidates do
if candidate.errors > k then
Remove(candidate, candidates) {Ensure that only process with less
than k faults are added}
end if
: end for
: return candidates

Algorithm 3 CompareConds(parents)

— = =
w N = O

14:
15:
16:
17:

19:
20:
21:
22:
23:

if parents.size = 1 then
VC.process+ = parents {There is only one set of processes in the set}
else
head «— ExtractFirst(parents) {Extract first set}
rest < CompareConds(parents) {And recurse}
for all h € head do
for all r € rest do
valid < true
for all a € h.conditions do
for all b € r.conditions do

if a.process = b.process and a.value! = b.value then
valid «— false {The processes are dependent on different con-
ditions, and do hence not form a valid combination}
end if
end for
end for
if valid = true then
Insert(h + r, VC') {Merge the conditions and process of h and r
into VC}
end if
end for
end for
end if
return VC
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A.3 Replication

Also replication can be captured by a FT-CPG. This is illustrated in figure
where P; is replicated. Each vertex in the internal graph representation
has a number which describes the amount of replicas it has. As all replicas must
necessarily have the same in and outbound edges, only a single vertex is used to
model replication internally. When outputting the graph, this vertex is simply
output the same amount of times as it has replicas (with unique subscripts).
In this way replication can be handled simply and elegantly using the same
algorithm as for re-execution.
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