

(a) Example architecture (netlist) (b) Fault-tolerance to the fault pattern in (a) (c) Fault-tolerant architecture
Fig. 7. Fault-tolerant architecture examples

one filter. The flow channel intersections are called “switches”
and are denoted with Si. The fault models used as input to our
algorithm can be specified in several ways. If the designer
has used the biochip extensively and has noticed a repeating
fault pattern, such a fault pattern can be provided as input.
For example, in Fig. 7a the designer has specified that she
is interested to tolerate a stuck channel between switch S1
and Mixer1 (the channel is depicted with a thick red line)
and a malfunctioning valve in the pump component of Mixer1
(such pumping valves are used more extensively compared
to the other valves, and hence are more likely to fail). Such
a precisely given fault pattern represents a simple case for
our algorithm, where the optimization focuses on introducing
redundancy only for the specified faults. For example, Fig. 7b
shows a possible architecture that would tolerate the faults
from Fig. 7a. Thus, we have introduced a redundant channel
(the thick green line), which can be used as an alternative if
the channel S1 and Mixer1 fails, and we have used a fault-
tolerant mixer, i.e., FT -Mixer1. Such a fault tolerant mixer,
see Fig. 2b for an example, uses a fourth valve (v13) in the
pump component of the mixer, which is normally composed
on three valves. Thus, if one of the valves fails, the fault-
tolerant mixer still has three functioning valves to perform the
needed pumping action.

However, often, we do not know the exact fault pattern
that has to be tolerated. Instead, the designer would specify
a more general fault model. For example, for the architecture
in Fig. 7a we assume that we do not know the actual fault
pattern, and we are interested to tolerate any single channel
blockage and any single valve malfunction, wherever they
would happen. Note that this is an example; more than a
single fault in channels or valves can be specified as input
to our algorithm. The difficulty in determining a fault-tolerant
architecture in this case, is that we do not know a-priori where
the fault will actually occur. We know the faults only after
we have tested the biochip, and not during the design phase,
which is discussed here. Our fault-tolerant architecture has to
be able to tolerate any single fault occurrence in a channel or a
valve. A possible such fault-tolerant architecture is presented
in Fig. 7c, where we have used two mixers (one is redundant),
and we have used fault-tolerant versions for the storage, heater
and filter components. A fault-tolerant storage simply contains
redundant channels, in our case 9 channels instead of 8, needed
to tolerate a channel failure. A fault-tolerant heater will contain

an additional meandering channel sitting on top of the heated
area (an off-chip metal plate placed under the chip). Similarly,
a fault-tolerant filter contains an additional filtration channel.
A redundant channel structure is used in-between the inputs
and the rest of the components. Note, we assume that fluid
routing can be done through components such as mixers and
storage, but not through the heater and filter.

As mentioned, our algorithm takes as input also a graph
of operations, which models the biochemical application;
see [34] for details. Biochemical applications may have timing
requirements, so we assume that the application has a deadline
by which it must complete. As discussed in the mVLSI
design flow, the application is compiled on a given biochip
architecture in the “Application Mapping” box in Fig. 6b,
such that the imposed deadline is satisfied. During the testing
phase, we determine the faults, and these are given as input
to the compilation task, which will have to ignore the faulty
components in the architecture. In our fault-tolerant design
strategy we are interested to derive that fault-tolerant archi-
tecture, which will allow our application to be successfully
compiled on a faulty architecture in the presence of any faults.
Thus, we propose a compilation-based evaluation approach
for the evaluation of each fault-tolerant netlist visited during
the design space exploration, which can determine if, given
any possible fault pattern, we will be able to successfully run
the application. The evaluation approach relies on two checks
(1) a “k-connectivity test” [37], which checks if the netlist
becomes disconnected if k channels are faulty (a disconnected
architecture cannot run the application, since it cannot route
the fluids) and (2) a “worst-case execution test”, which checks
if, considering the worst-case fault-occurrence scenario, the
application meets its deadline. Note that these testes depend
on the application model. In our example, let us assume that
the application does not perform any mixing after the filtering
and heating steps, so no redundancy is needed in the output
channels of the filtering and heating components (as we have
in-between the inputs and the mixing components).

Once such a fault-tolerant netlist is determined, it is given as
an input to the physical synthesis tasks, so we can check if the
resulted physical design satisfies the imposed input constraints.
For example, it may happen that the total biochip area used in
the flow layer is too large, or that the number of control pins
needed to drive the fault-tolerant biochip goes over a specified
threshold (biochips are often limited in the number of input

Figure 1. Fault-tolerant architecture examples

I. BACKGROUND AND MOTIVATION

The focus of this paper is on continuous-flow biochips,
where the basic building block is a microvalve. By combin-
ing these microvalves, more complex units such as mixers,
switches, multiplexers can be built, hence the name of the
technology, “microfluidic Very Large Scale Integration”
(mVLSI) [1]. Biochips are currently being designed manually
using tools such as AutoCAD. Physical defects can be intro-
duced during the fabrication process, which reduces the yield,
and may lead to the failure of the biochemical application.
Failure is costly because of the need to redo lengthy experi-
ments, using expensive reagents and often hard-to-obtain
samples, and can be safety critical (endangering human life),
e.g., for important diagnostic procedures (screening for can-
cer). Researchers have started to propose fault models and
test techniques for mVLSI biochips [2].

To increase the yield, and to potentially also prevent the
failure during the operation of the biochip, we advocate the
use of fault-tolerant biochip design. The vision is to provide
application fault-tolerance at run-time (online), detecting the
faults as they appear, and reconfiguring the application.
However, in this paper our assumption is that the faults are
detected during testing, and that the operation of the biochip
is reconfigured offline (at design time) to avoid the faults. We
are interested to introduce redundancy such that the applica-
tions can still successfully run on a defective biochip. Re-
dundancy is the addition of extra resources, normally not
needed for correct operation, to be used for fault-tolerance.

II. FAULT-TOLERANT DESIGN

We propose a fault-tolerant design strategy, which is part
of an overall mVLSI physical design flow described in [3].
Our algorithm takes as input (i) a netlist of components, i.e.,
the components in the architecture and their interconnections,
(ii) an application model consisting of a sequencing graph,
where each node is an operation and edges capture fluid de-
pendencies, (iii) a fault model, and (iv) a set of constraints
imposed by the designer, and produces as output a
fault-tolerant netlist. We are interested in that fault-tolerant

Assoc. Prof. Paul Pop is with the Department of Applied Mathematics

and Computer Science, Technical University of Denmark (phone: +45 50
18 62 96; fax: +45 45 88 26 73; e-mail: paupo@dtu.dk).

netlist, which fulfills the constraints imposed by the designer
(e.g., in terms of maximum biochip area to be used for fault-
tolerance) and corresponds to an architecture that is able to
successfully run the biochemical application even in case of
the occurrence of faults in the given fault model.

Fig. 1a presents an example input netlist. If the designer
has used the biochip extensively and has noticed a repeating
fault pattern, such a fault pattern can be provided as input.
For example, in Fig. 1a the designer has specified a stuck
channel (depicted with a thick red line) and a malfunctioning
valve in the pump component of Mixer1. Fig. 1b shows a
possible architecture that would tolerate the faults from Fig.
1a. We have introduced a redundant channel (the thick green
line), which can be used as an alternative if the channel fails,
and we have used a fault- tolerant mixer, i.e., FT-Mixer1.
Such a fault tolerant mixer, uses a fourth valve in the pump
component of the mixer, which is normally composed on
three valves. Thus, if one of the valves fails, the fault- toler-
ant mixer still has three functioning valves to perform the
needed pumping action.

However, often, we do not know the exact fault pattern
that has to be tolerated. Instead, the designer would specify a
more general fault model. The difficulty in determining a
fault-tolerant architecture in this case, is that we do not know
a-priori where the fault will actually occur. We know the
faults only after we have tested the biochip, and not during
the design phase, which is discussed here. A possible such
fault-tolerant architecture is presented in Fig. 1c.

REFERENCES
[1] I. E. Araci and S. R. Quake. 2012. “Microfluidic Very Large Scale

Integration (MVLSI) With Integrated Micromechanical Valves”. Lab
on a Chip 12 (16): 2803-2806.

[2] K. Hu, F. Yu, T. Y. Ho and K. Chakrabarty. 2014. “Testing of
Flow-Based Microfluidic Biochips: Fault Modeling, Test Generation,
and Experimental Demonstration”. IEEE Transactions on Comput-
er-Aided Design of Integrated Circuits and Systems, 3(10):1463-1475

[3] W. H. Minhass, P. Pop, J. Madsen and F. S. Blaga. 2012. “Architec-
tural Synthesis of Flow-Based Microfluidic Large-Scale Integration
Biochips”. Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems: 181-190

Flow-Based Biochips: Fault-Tolerant Design and Error Recovery
Paul Pop, Member, IEEE

