
15
Development Tools

P. Pop
Technical University of Denmark

A. Goller
TTTech Computertechnik AG

T. Pop
Ericsson AB

P. Eles
Linköping University

CONTENTS

15.1 Introduction . 363
15.2 Design Tasks . 365
15.3 Schedule Generation . 368

15.3.1 Requirements and Application Model . 371
15.3.1.1 Application Model . 374

15.3.2 Scheduling Complexity and Scheduling Strategies 374
15.3.2.1 Incremental Scheduling . 376
15.3.2.2 Host Multiplexing . 378
15.3.2.3 Dynamic Messaging . 380
15.3.2.4 Scheduling Strategies in TTPPlan 381

15.3.3 Schedule Visualization . 383
15.3.3.1 The Schedule Browser . 384
15.3.3.2 The Schedule Editor . 384
15.3.3.3 The Round-Slot Viewer . 387
15.3.3.4 Visualization of Message Paths 387

15.4 Holistic Scheduling and Optimization . 391
15.4.1 System Model . 392
15.4.2 The FlexRay Communication Protocol . 393
15.4.3 Timing Analysis . 396

15.4.3.1 Schedulability Analysis of DYN Messages 397
15.4.3.2 Holistic Schedulability Analysis of FPS Tasks

and DYN Messages . 401

361

362 Time-Triggered Communication

15.4.4 Bus Access Optimization . 402
15.4.4.1 The Basic Bus Configuration 404
15.4.4.2 Greedy Heuristic . 406
15.4.4.3 Simulated Annealing-Based Approach 407
15.4.4.4 Evaluation of Bus Optimization Heuristics 407

15.5 Incremental Design . 408
15.5.1 Preliminaries . 410

15.5.1.1 System Architecture . 410
15.5.1.2 Application Mapping and Scheduling 411

15.5.2 Problem Formulation . 414
15.5.3 Characterizing Existing and Future Applications 416

15.5.3.1 Characterizing the Already Running Applications 416
15.5.3.2 Characterizing Future Applications 418

15.5.4 Quality Metrics and Objective Function . 419
15.5.4.1 Slack Sizes (the first criterion) 419
15.5.4.2 Distribution of Slacks (the second criterion) 421
15.5.4.3 Objective Function and Exact Problem

Formulation . 421
15.5.5 Mapping and Scheduling Strategy . 422

15.5.5.1 The Initial Mapping and Scheduling 423
15.5.5.2 Iterative Design Transformations 424
15.5.5.3 Minimizing the Total Modification Cost 427

15.5.6 Experimental Results . 431
15.5.6.1 Evaluation of the IMS Algorithm and the Iterative

Design Transformations . 431
15.5.6.2 Evaluation of the Modification Cost

Minimization Heuristics . 435
15.6 Integration of Time-Triggered Communication with Event-Triggered

Tasks . 437
15.6.1 Software Architecture . 437
15.6.2 Optimization Problem . 438
15.6.3 Schedulability Analysis . 439

15.6.3.1 Static Single Message Allocation (SM) 440
15.6.3.2 Static Multiple Message Allocation (MM) 442
15.6.3.3 Dynamic Message Allocation (DM) 443
15.6.3.4 Dynamic Packet Allocation (DP) 444

15.6.4 Optimization Strategy . 446
15.6.4.1 Greedy Heuristics . 447
15.6.4.2 Simulated Annealing Strategy 450

15.6.5 Experimental Results . 452
15.7 Configuration and Code Generation . 455

15.7.1 Communication Configuration . 456
15.7.1.1 TTP — Personalized MEDLs 456
15.7.1.2 Monitor MEDL for TTP . 457
15.7.1.3 Buffer Configuration for FlexRay 457

Development Tools 363

15.7.2 Middleware Configuration . 458
15.7.2.1 Configuration Format . 460
15.7.2.2 FlexRay Interface Configuration 461
15.7.2.3 HS-COM Configuration . 466

15.7.3 Code Generation . 468
15.7.3.1 Feature Configuration . 468
15.7.3.2 Implementation . 472

15.7.4 Configuration of Third-Party Software . 476
15.8 Verification . 477

15.8.1 Process Requirements . 478
15.8.1.1 DO-178B . 479
15.8.1.2 IEC 61508 . 480
15.8.1.3 ISO 26262 . 481

15.8.2 Verification Best Practices . 482
15.8.2.1 Reuse of Processes . 482
15.8.2.2 Extending Checklists . 483
15.8.2.3 Use of COTS Products . 483
15.8.2.4 Modular Certification . 484
15.8.2.5 Requirements Management . 484
15.8.2.6 Test Vectors . 486
15.8.2.7 Test Suite . 486

15.8.3 Verification Tooling Approach . 486
15.8.3.1 Output Correctness . 486
15.8.3.2 Manual vs. Automated Verification 487
15.8.3.3 Qualification of Verification Tools 488
15.8.3.4 TTPVerify . 489
15.8.3.5 TTPTD-COM-Verify . 490

15.1 Introduction
Embedded systems are now everywhere: From medical devices to vehicles, from mo-
bile phones to factory systems, almost all the devices we use today are controlled by
embedded computers. Over 98% of microprocessors are used in embedded systems,
and the number of embedded systems in use has become larger than the number
of humans on the planet, and is projected to increase to 40 billion worldwide by
2020 [11, 84]. The embedded systems market size is about 100 times larger than the
desktop market, with over 160 billion Euros worldwide and a growth rate of 9% [84].

The complexity of embedded systems is growing at a very high pace and their
constraints in terms of performance, reliability, cost and time-to-market are getting
tighter. The embedded software size is increasing 10 to 20% per year, depending on
the application area. Today’s cars have more than 100 million object code instruc-
tions [84], while in avionics, the size of the certified software has increased from 12
Mbytes in Airbus A340 to 80 Mbytes in A380 [11].

364 Time-Triggered Communication

At the same time, high complexity, increasing density and higher operational
frequencies have led to an increasing number of faults [65]. Embedded systems are
increasingly used in safety-critical contexts, such as automotive applications, avion-
ics, medical equipment, control and telecommunication devices, where any devia-
tion from the specified functionality can have catastrophic consequences. In addition,
many industries are very cost-sensitive, and thus the dependability requirements have
to be met within a tight cost constraint.

Therefore, the task of designing such systems is becoming increasingly impor-
tant and difficult at the same time. The difficulty of designing embedded systems is
reflected by the share of the development and implementation costs from the final
product price, which is 36% in the automotive area, 22% in industrial automation,
37% in the telecommunications area, 41% in consumer electronics and 33% for med-
ical equipment [276]. This has led to a design productivity gap: The number of on-
chip transistors is growing each year by 58% (according to Moore’s law), whereas
the productivity of hardware designers is only growing by 21% per year, and the
software productivity is lagging even further behind [276].

Many organizations, including automotive manufacturers, are used to designing
and developing their systems following some version of the “waterfall” [94] model
of system development. This means that the design process starts with a specification
and, based on this, several system-level design tasks are performed manually, usually
in an ad-hoc fashion. Then, the hardware and software parts are developed indepen-
dently, often by different teams located far away from each other. Software code
is written, the hardware is synthesized and they are supposed to integrate correctly.
Simulation and testing are done separately on hardware and software, respectively,
with very few integration tests.

If this design approach was appropriate when used for relatively small systems
produced in a well-defined production chain, it performs poorly for more complex
systems, leading to an increase in the time-to-market. New approaches and tools
have been proposed, which are able to: Successfully manage the complexity of em-
bedded systems, meet the constraints imposed by the application domain, shorten the
time-to-market, and reduce development and manufacturing costs. There are many
development tools, and their use depends on the application area. The most important
embedded systems tools are presented in [191].

In the next section, we present the typical design tasks, emphasizing the commu-
nication synthesis task, which is the focus of this chapter. We will present state-of-
the-art techniques and tools for the communication scheduling and communication
configuration. In Section 15.3, we will define the general problem of scheduling, dis-
cuss its complexity and the typical strategies employed. Once a schedule is generated,
it can be manipulated, extended and visualized.

As we will show, communication synthesis has a strong impact at the system-
level. In this context, in Section 15.4, we will discuss the integrated (holistic)
scheduling of tasks and messages, and the bus schedule optimization to support the
fulfillment of timing constraints. Systems are seldom built from scratch, hence, in
Section 15.5 we discuss the issues related to incremental design, where a schedule
has to be generated such that it is flexible, i.e., supports the addition of new func-

Development Tools 365

tionality. Although this book is focused on time-triggered systems, using an event-
triggered approach at the processor level can be the right solution under certain cir-
cumstances [205]. Hence, in Section 15.6, we present an approach to integrate event-
driven tasks with a time-triggered communication infrastructure.

Once a schedule is generated, it has to be translated into a communication con-
figuration, particular for the communication protocol used, such as TTP1 or FlexRay.
In Section 15.7 we illustrate this issue using the tool chain from TTTech. Finally, in
the last section of this chapter, we discuss verification and certification aspects.

15.2 Design Tasks
The aim of a design methodology is to coordinate the design tasks such that the time-
to-market is minimized, the design constraints are satisfied and various parameters
are optimized. The following are the state-of-the-art methodologies in embedded
systems design:

• Function/architecture co-design: Function/architecture co-design is a design
methodology [162, 323] which addresses the design process at higher ab-
straction levels. Function/architecture co-design uses a top-down synthesis ap-
proach, where trade-offs are evaluated at a high level of abstraction. The main
characteristic of this methodology is the use, at the same time with the top-
down synthesis, of a bottom-up evaluation of design alternatives, without the
need to perform a full synthesis of the design. The approach to obtain accurate
evaluations is to use an accurate modeling of the behavior and architecture, and
to develop analysis techniques that are able to derive estimates and to formally
verify properties relative to a certain design alternative. The determined esti-
mates and properties, together with user-specified constraints, are then used to
drive the synthesis process.

Thus, several architectures are evaluated to determine if they are suited for
the specified system functionality. There are two extremes in the degrees of
freedom available for choosing an architecture. At one end, the architecture is
already given, and no modifications are possible. At the other end of the spec-
trum, no constraints are imposed on the architecture selection, and the synthe-
sis task has to determine, from scratch, the best architecture for the required
functionality. These two situations are, however, not common in practice. Of-
ten, a hardware platform is available, which can be parameterized (e.g., size
of memory, speed of the buses, etc.). In this case, the synthesis task is to de-
rive the parameters of the architecture such that the functionality of the system
is successfully implemented. Once an architecture is determined and/or pa-

1Throughout this chapter, we use “TTP” instead of “TTP/C,” as it is the commercial and more custom-
ary term.

366 Time-Triggered Communication

rameterized, the function/architecture co-design continues with the mapping
of functionality onto the instantiated architecture.

• Platform-based design: In order to reduce costs, especially in the case of
a mass market product, the system architecture is usually reused, with some
modifications, for several product lines. Such a common architecture is de-
noted by the term platform, and consequently the design tasks related to such
an approach are grouped under the term platform-based design [163].

One of the most important components of any system design methodology is
the definition of a system platform. Such a platform consists of a hardware
infrastructure together with software components that will be used for several
product versions, and will be shared with other product lines, in the hope to
reduce costs and the time-to-market.

The authors in [163] have proposed techniques for deriving such a platform for
a given family of applications. Their approach can be used within any design
methodology for determining a system platform that later on can be parame-
terized and instantiated to a desired system architecture.

Considering a given application or family of applications, the system platform
has to be instantiated, deciding on certain parameters, and lower level details,
in order to suit the particular application(s). The search for an architecture
instance starts from a certain platform, and a given application. The applica-
tion is mapped and compiled on an architecture instance, and the performance
numbers are derived, typically using simulation. If the designer is not satisfied
with the performance of the instantiated architecture, the process is repeated.

• Incremental design process: A characteristic of the majority of approaches
to the design of embedded systems is that they concentrate on the design, from
scratch, of a new system optimized for a particular application. For many ap-
plication areas, however, such a situation is extremely uncommon and appears
only rarely in design practice. It is much more likely that one has to start from
an already existing system running a certain application and the design prob-
lem is to implement new functionality (including also upgrades to the existing
one) on this system. In such a context, it is very important to operate no, or
as few as possible, modifications to the already running application. The main
reason for this is to avoid unnecessarily large design and testing times. Per-
forming modifications on the (potentially large) existing application increases
design time and, even more, testing time (instead of only testing the newly im-
plemented functionality, the old application, or at least a part of it, has also to
be retested) [264].

However, minimizing the modification cost is not the only aspect to be con-
sidered. Such an incremental design process, in which a design is periodically
upgraded with new features, is going through several iterations. Therefore,
after new functionality has been introduced, the resulting system has to be im-
plemented such that additional functionality, later to be mapped, can easily be
accommodated [264].

Development Tools 367

There is a large body of literature on systems engineering that discusses vari-
ous methodologies for systems development. Many methodologies employed in the
development of safety-critical systems are a variant of the “V-Model” [94], named
after the graphical representation in a “V” shape of the main development phases,
that starts with the requirements phase, followed by hazard and risk analysis, spec-
ification, architectural design, module design, module construction and testing (at
the bottom of the “V” shape), system integration and testing, system verification,
system validation and, finally, certification. For example, the V-model is employed
in the SETTA approach [6], which proposes system development methodologies for
time-triggered systems in the automotive and aerospace domains.

The design tasks that have to be performed depend on the type of system be-
ing developed and on the design methodology employed. For safety-critical systems,
the design tasks are often dictated by certification requirements, or by the develop-
ment approach used. For example, the Automotive Open System Architecture (AU-
TOSAR) defines, besides the models for system development, the design tasks that
have to be performed [18]. Regardless of the design tasks performed, model-based
design is used throughout the development process: The interaction among design
tasks is facilitated by the use of models, and the modeling is supported by graphical
modeling tools. The following are the typical design tasks:

• Functional analysis and design: The functionality of the host system, into
which the electronic system is embedded, is normally described using a for-
malism from that particular domain of application. For example, if the host
system is a vehicle, then its functionality is described in terms of control al-
gorithms using differential equations, which are modeling the behavior of the
vehicle and its environment. At the level of the embedded real-time system
which controls the host system, the functionality is typically described as a set
of functions, accepting certain inputs and producing some output values.

During the functional analysis and design stage, the desired functionality is
specified, analyzed and decomposed into sub-functions based on the experi-
ence of the designer.

• Architecture selection: The architecture selection task decides what compo-
nents to include in the hardware architecture and how these components are
connected. Architecture selection relies heavily on the experience of the de-
signer and previous product versions. If needed, new hardware components
may be designed and synthesized, part of the hardware design task.

• Mapping: The mapping task has to decide what part of the functionality
should be implemented on which of the selected components.

The automotive companies integrate components from suppliers, and thus the
mapping choices are often limited.

• Software design and implementation: This is the phase in which the soft-
ware is designed and the code is written. The code for the functions is devel-
oped manually or generated automatically. The low-level software that inter-

368 Time-Triggered Communication

acts closely with the hardware is sometimes called firmware, and the task of
designing it is hence called firmware design.

At this stage, the correctness of the software is analyzed through simulations,
but no analysis of timing constraints is performed, which is done during the
scheduling and schedulability analysis stage.

• Scheduling and schedulability analysis: Once the functions have been de-
fined and the code has been written, the scheduling task is responsible for
determining the execution order of the functions inside an ECU, and the trans-
mission of messages such that the timing constraints are satisfied.

Schedulability analysis is used to determine if an application is schedulable. A
detailed discussion about scheduling and schedulability analysis is presented
in the next section.

• Integration: In this phase, the manufacturer has to integrate the ECUs from
different suppliers. The performance of the interacting functionality is ana-
lyzed using analysis tools and time-consuming simulation runs using the real-
istic environment of a prototype car.

Detecting potential problems at such a late stage may lead to large delays in
the time-to-market, since once a problem is identified, it takes a very long time
to go through all the previous stages in order to fix it.

• Communication synthesis: Many real-time applications, following physical,
modularity or safety constraints, are implemented using distributed architec-
tures. The systems addressed in this book are composed of several different
types of hardware components, interconnected in a network.

In this context, an important design task is the communication synthesis task,
which decides the scheduling of communications and the configuration param-
eters specific to the employed protocol. These decisions have a strong impact
on the overall system properties such as predictability, performance, depend-
ability, cost, maintainability, etc.

• Calibration, testing, verification: These are the final stages of the design
process. If not enough analysis, testing and verification has been done in earlier
stages of the design, these stages can be very time consuming, and problems
identified here may lead to large delays.

15.3 Schedule Generation
According to [49], a scheduling policy provides two features: (i) an algorithm for
ordering the use of system resources (in particular the processors, the buses, but also
I/Os) and (ii) a means of predicting the worst-case behavior of the system when

Development Tools 369

the scheduling algorithm is applied. The prediction, also known as schedulability
analysis, can then be used to guarantee the temporal requirements of the application.

The aim of a schedulability analysis is to determine sufficient and necessary con-
ditions under which an application is schedulable. An application is schedulable if
there exists at least one scheduling algorithm that is able to produce a feasible sched-
ule. A schedule is a particular assignment of activities to the resource (e.g., tasks to
processors). A schedule is feasible if all tasks can be completed within the specified
constraints. Before such techniques can be used, the worst-case execution times of
tasks have to be determined. Tools such as aiT [98] can be used in order to determine
the worst-case execution time of a piece of code on a given processor.

The analysis and optimization techniques employed depend on the scheduling
policy and the model of the functionality used. The design techniques typically take
as input a model of the functionality consisting of sets of interacting tasks. A task is
a sequence of computations (corresponding to several building blocks in a program-
ming language) which starts when all its inputs are available. When it finishes execut-
ing, the task produces its output values. Tasks can be preemptible or non-preemptible.
Non-preemptible tasks are tasks that cannot be interrupted during their execution.
Preemptible tasks can be interrupted during their execution. For example, a higher
priority task has to be activated to service an event; in this case, the lower prior-
ity process will be temporarily preempted until the higher priority process finishes
its execution. Tasks send and receive messages. Depending on the communication
protocol, message transmission can be preemptible or non-preemptible. Large non-
preemptible messages can be split into packets before transmission.

There are several approaches to scheduling:

• Non-preemptive static cyclic scheduling (SCS) algorithms are used to build,
offline, a schedule table with activation times for each task (and message),
such that the timing constraints of tasks (and messages) are satisfied.

• Preemptive fixed priority scheduling (FPS). In this scheduling approach, each
task (and message) has a fixed (static) priority which is computed offline. The
decision on which ready task to activate (and message to send) is taken online
according to their priority.

• Earliest deadline first (EDF). In this case, that task will be activated (and that
message will be sent) which has the nearest deadline.

For static cyclic scheduling, if building the schedule table fulfills the timing con-
straints, the application is schedulable. In the context of online scheduling methods,
there are basically two approaches to the schedulability analysis: Utilization-based
tests and response-time analysis.

• The utilization tests use the utilization of a task or message (its worst-case
execution time relative to its period) in order to determine if the task sets (or
messages) are schedulable.

• A response time analysis has two steps. In the first step, the analysis derives the

370 Time-Triggered Communication

worst-case response time of each task and message (the time it takes from the
moment it is ready for execution, until it has finished executing). The second
step compares the worst-case response time of each task and message to its
deadline and, if the response times are smaller than or equal to the deadlines,
the application is schedulable.

As mentioned throughout this book, another important distinction is between two
basic design approaches for real-time systems, the event-triggered and time-triggered
approaches.

• Time-Triggered: In the time-triggered approach, activities are initiated at pre-
determined points in time. In a distributed time-triggered system, it is assumed
that the clocks of all nodes are synchronized to provide a global notion of time.
Time-triggered systems are typically implemented using non-preemptive static
cyclic scheduling, where the task activation or message communication is done
based on a schedule table built offline.

• Event-Triggered: In the event-triggered approach, activities happen when a
significant change of state occurs. Event-triggered systems are typically imple-
mented using preemptive priority-based scheduling, or earliest deadline first,
where, as response to an event, the appropriate task is invoked to service it.

In this chapter, we are interested in time-triggered systems implemented using
non-preemptive static cyclic scheduling. A static schedule is a list of activities that is
repeated periodically. Each activity has an associated start time, capturing, for exam-
ple, when the particular task has to be activated or the message has to be transmitted.
There are several types of schedules in time-triggered systems.

• Message schedules: These are the schedules for the messages and frames
transmitted on the bus. The message schedules are organized according to a
TDMA policy: Each processor can transmit only during a predetermined time
interval, the so-called TDMA slot. In such a slot, a node can send several mes-
sages packaged in a frame (TTP), or even several frames (TTEthernet). Some
protocols require a fixed sequence of slots, each slot corresponding to a node,
and covering all the nodes in the architecture. This sequence is called a TDMA
round. Several TDMA rounds can be combined together in a cycle that is re-
peated periodically (cluster cycle). Other protocols (like TTEthernet) are less
strict and allow a basically arbitrary pattern within a cluster cycle. However,
the design of control algorithms often implies the use of TDMA rounds, and
several TDMA rounds with different length may be folded into a cluster cy-
cle. The sequence and length of slots may be required to be the same for all
TDMA rounds (FlexRay). In TTP, different lengths of slots are allowed, but a
fixed sequence must be maintained.

• Task schedules: These are the schedules for tasks running on the processors,
according to a SCS policy. Such a scheduling scheme is also called “time-
line scheduling,” and is the most used approach to handle periodic tasks in

Development Tools 371

safety-critical systems. The advantages and disadvantages of timeline schedul-
ing (especially compared to fixed-priority preemptive scheduling) are well un-
derstood [203]. The tasks are repeated periodically, with a period called the
major cycle. In most cases, the task periods are not identical, so the major cycle
is set to the least common multiple of all periods, and is subdivided into minor
cycles. A task with a smaller period will appear in several minor cycles, thus
achieving its desired rate. The task schedules are implemented using a cyclic
executive, typically based on a clock tick (an interrupt), which triggers the
start of the minor cycle. Often, other interrupts are disabled (or severely lim-
ited) and when the tasks in the minor cycle finish executing, control is passed
to a background scheduler that attends to less important activities.

• Partition schedules: In safety-critical systems, applications of different crit-
icality levels are often separated from each other using spatial and temporal
partitioning. Thus, with temporal partitioning, each application is allowed to
run only within predefined time slots, allocated on each processor. The se-
quences of time slots for all applications on a processor are grouped within a
major frame, which is repeated periodically.

• Interrupt schedules: While task and partition schedules mainly focus on the
user application, interrupt schedules are used for middleware tasks. Certain
actions, like reading and unpacking a frame, have to be executed actually for
every frame received. An interrupt (or middleware task activation) therefore
may occur several times within a cluster cycle or even within a TDMA round.
The interrupt schedule specifies what specific actions to execute in this partic-
ular instance of an interrupt occurrence.

• Cluster schedules: To implement a schedule in a distributed system, a global
notion of time is required. The previously mentioned schedules are typically
specified at the cluster level, since clock synchronization is performed at the
cluster level. A cluster schedule captures task, message and partition schedules
within a cluster. Several cluster schedules can be present in a system, but they
will not be synchronized with each other.

15.3.1 Requirements and Application Model

The requirements imposed on an embedded system depend on the particular ap-
plication that it implements. Requirements are divided into functional requirements
and non-functional requirements. The difficulty of designing embedded systems lies
in the many competing non-functional requirements that have to be satisfied. Typ-
ical non-functional requirements are: Performance (in terms of latency, through-
put, speedup), unit cost (the cost of manufacturing each copy of the system), non-
recurring engineering cost (the one-time monetary cost of designing the system),
size, power consumption, flexibility (how easy is it to change the functionality, to
add new functions), time-to-prototype, time-to-market and dependability attributes
such as reliability, maintainability and safety.

372 Time-Triggered Communication

In a real-time system, the timing constraints are of utmost importance: “The cor-
rectness of the system behavior depends not only on the logical results of the com-
putations, but also on the physical instant at which these results are produced” [169].
In hard real-time systems, missing a deadline can lead to a catastrophic failure. De-
sign methodologies for these systems are based on their worst-case execution times.
In soft real-time systems, missing a deadline does not cause catastrophic failures in
the system but leads to a certain performance degradation. The following are typical
constraints imposed in a hard real-time system:

• Timing constraints. The worst-case execution time (WCET) Ci is an upper
bound on the execution times of a task τi, which depends on its functional-
ity and the particular processor Ni where it runs. Tasks can have constraints
on their completion or activation. Thus, a deadline Di of a task τi is a time
at which the task must complete its execution. Tasks which must be executed
once every Ti units of time are called periodic tasks, and Ti is called their
period. (Each execution of a periodic task is called a job.) All other tasks are
called aperiodic. Release times restrict the start time of task activations (of-
ten to avoid resource contention). Another important timing constraint, es-
pecially in the context of control applications, is jitter, which captures the
time-variation of a periodic event. Note that all these constraints also apply
to messages.

• Precedence constraints: They impose an ordering in the execution of activi-
ties. The behavior of the system is often modeled as a sequence of activities.
Thus, before a task can start, it has to wait for the input from another task. For
example, to perform an image recognition, first the image has to be acquired.
Distance constraints express a minimum distance between two activities, on
top of a precedence constraint. The opposite of distance constraints are the
freshness constraints, which express the maximum distance between two con-
secutive activities. Freshness constraints are typically placed on sensor data.

• Resource constraints: To perform their function, tasks have to use resources.
A task may have a locality constraint which requires the allocation of a task
to a specific processor, for example, because it has to use an actuator attached
to this particular processor. When several tasks want to use the same resource
(e.g., shared memory), we impose mutual exclusion constraints. Messages
exchanged between tasks on different processors have to use the bus, thus im-
posing communication constraints.

• Extendability constraints: Of specific interest are changes that are considered
“local.” Such a local change is a new message mi+1 that shall be transmitted
from one node A to another node B, but not to all other nodes C to Z. Ide-
ally, the communication configuration of nodes C to Z need not be updated
due to this change. A slightly different case is if message mi, which only is
transmitted between nodes A and B, gets changed in its size.

Unfortunately, this view does not provide enough detail to decide whether this

Development Tools 373

change is local or not. If it is necessary to move another messagemj due to the
now bigger size of messagemi, it is obviously not simply a local change. Con-
straints may exist regarding the placement and alignment of messages within
frames. A certain amount of bandwidth (per host) could be reserved for fu-
ture extensions. Users may want to specify the layout of the frame manually,
but leave the scheduling of the frames to a tool. The objective is to be able
to modify and extend an existing schedule throughout the whole development
and product lifetime just by local changes in order to save verification and
certification efforts.

These requirements dictate the types of schedules that have to be produced, and
the types of tools needed to generate the schedules. For example, the precedence con-
straints will capture if the interaction between components is synchronous or asyn-
chronous. A fully synchronous application (the tasks and the communication are in
phase and with the same speed) needs a more interacting design tool chain, that will
produce synchronized cluster-level schedules for both tasks and messages, than an
asynchronous application. There can be several setups, which will be reflected in
the tools used and the tool flow employed: The time-triggered network communi-
cation and application are synchronous; the time-triggered network communication
and application are asynchronous (causing oversampling and undersampling issues);
the network communication is not time-triggered and the application is bound to a
local clock (e.g., a control loop with CAN); and the network communication is not
time-triggered and the application reacts on events.

Thus, in this section we discuss the tools needed for generating message sched-
ules for time-triggered communication. In Section 15.4, we consider a complex
setup, where tasks can be both time-triggered and event-triggered, and messages
are transmitted using FlexRay, which has both static (time-triggered) and dynamic
(event-triggered) segments. The assumption is that tasks and messages are syn-
chronous. We discuss holistic scheduling: How to generate the cluster-level task
and message schedules such that the timing constraints are satisfied for both time-
triggered and event-triggered activities. We show how schedulability analysis has to
be integrated with schedule generation to guarantee the timing constraints. In Sec-
tion 15.5, we discuss how the schedules can be generated such that they are flex-
ible, i.e., easy to extend with new functionality. Section 15.6 focuses on the in-
teraction between event-triggered tasks, which produce event-triggered messages,
and the time-triggered frames scheduled over TTP. Several approaches that sched-
ule event-triggered messages over time-triggered frames are proposed and discussed.
We propose both problem-specific heuristic algorithms and meta-heuristics for the
optimization of the generated schedules. Section 15.3.2 discusses the complexity of
the scheduling problem and the typical solutions employed. As we will show in the
remainder of this chapter, the way the schedules are generated and optimized has a
significant impact not only on the timing constraints, but also on flexibility, latency,
jitter, buffer size, switching devices required and others.

374 Time-Triggered Communication

15.3.1.1 Application Model

There is a lot of research in the area of system modeling and specification, and an im-
pressive number of representations have been proposed. An overview, classification
and comparison of different design representations and modeling approaches is given
in [85]. The scheduling design task deals with sets of interacting tasks. Researchers
have used, for example, dataflow process networks (also called task graphs, or pro-
cess graphs) to describe interacting tasks, and have represented them using directed
acyclic graphs, where a node is a process and the directed arcs are dependencies
between processes.

In this subsection, we describe the application model assumed in the following
sections. Thus, we model an application A as a set of directed, acyclic, polar graphs
Gi(Vi, Ei) ∈ A. A node τij ∈ Vi represents the jth task or message in Gi. An edge
eijk ∈ Ei from τij to τik indicates that the output of τij is the input of τik. A task
becomes ready after all its inputs have arrived, and it issues its outputs when it termi-
nates. A message will become ready after its sender task has finished, and becomes
available for the receiver task after its transmission has ended. The communication
time between tasks mapped on the same processor is considered to be part of the
task’s worst-case execution time and is not modeled explicitly. Communication be-
tween tasks mapped on different processors is performed by message passing over
the bus. Such message passing is modeled as a communication task inserted on the
arc connecting the sender and the receiver task.

We consider that the scheduling policy for each task is known (either SCS or
FPS), and we also know how the messages are transmitted. For example, for FlexRay,
we would know if the message is sent in the static or dynamic segment. For a task
τij ∈ Vi, Nodeτij

is the node to which τij is assigned for execution. When executed
on Nodeτij

, a task τij has a known worst-case execution time Cτij
. We also con-

sider that the size of each message m is given, which can be directly converted into
communication time Cm on the particular bus.

Tasks and messages activated based on events also have a priority, priorityτij
.

All tasks and messages belonging to a task graphGi have the same period Tτij = TGi

which is the period of the task graph. A deadline DGi
is imposed on each task graph

Gi. In addition, tasks can have associated individual release times and deadlines.
If dependent tasks are of different periods, they are combined into a merged graph
capturing all activations for the hyper-period (LCM of all periods) [261].

15.3.2 Scheduling Complexity and Scheduling Strategies

As mentioned earlier, a schedule defines the assignment of activities to the resources.
The complexity of deriving a schedule depends on the type and quantity of resources
available, the constraints imposed, and the objective function that has to be opti-
mized. Scheduling is probably one of the most researched problems in computer sci-
ence, and there is an enormous amount of results. There are several surveys available
which present the scheduling problems, their complexity and the strategies used.

Development Tools 375

The following are the main findings regarding the complexity of the scheduling
problems related to time-triggered systems, as reported in [300]:

• The integrated task and message scheduling problem to find the optimal sched-
ule (the one with minimum length) is NP-complete. Thus, given a task graph
model of the application, a limited number of processors interconnected by a
time-triggered bus, the problem of finding a feasible schedule that minimizes
the schedule length does not have a polynomial-time solution.

• The optimal task scheduling problem on a limited number of processors, but
without considering the communication costs, is also NP-complete.

• The scheduling problem, considering communication costs, on an unlimited
number of processors is NP-complete.

• The task scheduling problem, without the communication costs, is polynomial
on an unlimited number of processors. Of course, there are never unlimited
resources in a real system.

• The problem of deriving a schedule for messages, with the aim of optimizing
a given design metric, is NP-complete if it can be reduced to the “knapsack”
or “bin-packing” problems, which themselves are NP-complete.

These results mean that the schedules cannot be derived manually, and tool sup-
port is necessary. The scheduling problem is a very well-defined optimization prob-
lem, and has been tackled with every conceivable approach.

• Mathematical techniques: Researchers have proposed integer linear pro-
gramming, mixed-integer programming and dynamic programming. Decom-
position strategies (such as Benders-decomposition), enumerative techniques
such as Branch-and-Bound and Lagrangian relaxation techniques have also
been proposed. Such mathematical approaches have the advantage of produc-
ing the optimal solution. However, they are only feasible for limited problem
sizes due to the prohibitive run times.

• Artificial intelligence (AI): AI techniques have been used for scheduling,
such as expert/knowledge-based systems, distributed agents and neural net-
works.

• Scheduling heuristics: The most popular scheduling heuristics are list
scheduling and clustering [300]. List scheduling (LS) is the dominant schedul-
ing heuristic technique. LS heuristics use a sorted priority list, containing the
tasks ready to be scheduled, while respecting the precedence constraints. A
task is ready if all the predecessor tasks have finished executing and all the
incoming messages are received. LS generates the schedule by successively
scheduling each task (and message) onto the processor (bus). The start time
in the schedule table is the earliest time when the resource is available to the
respective task (or message). The allocation of tasks to processors has a direct

376 Time-Triggered Communication

influence on the communication cost. When the allocation of tasks to proces-
sors is not decided, clustering can be used to group tasks that interact heavily
with each other, and allocate them on the same processor [300].

• Neighborhood search: Although very popular, the drawback of scheduling
heuristics such as list scheduling is that they do not guarantee finding the op-
timal solution, i.e., they get stuck in a local optimum in the solution space.
Neighborhood search techniques are meta-heuristics (i.e., they can be used for
any optimization problem, not only scheduling) that can be used to escape
from the local optimum. Neighborhood search techniques use design transfor-
mations (moves) applied to the current solution, to generate a set of neigh-
boring solutions that can be further explored by the algorithm. Popular meta-
heuristics in this category are Simulated Annealing, Tabu Search and Genetic
Algorithms [46].

In the following subsections, we will use constructive heuristics such as list
scheduling to generate schedules, and meta-heuristics (neighborhood search tech-
niques) such as Simulated Annealing and Tabu Search to optimize a given schedule
for a certain metric. In the next subsections, some concepts based on and extending
the list-scheduling heuristic are discussed in detail. These concepts are partly imple-
mented in the scheduler of TTPPlan [344], the cluster design tool for TTP clusters
from TTTech. Lastly, we provide further details on the scheduling approach chosen
for TTPPlan.

15.3.2.1 Incremental Scheduling

Once a schedule has been generated and optimized, an important aspect is the ex-
tension of a schedule. The goal is to keep the scheduled tasks or messages as they
are, and to only add new tasks or messages in the free places. Incremental scheduling
(a.k.a. schedule extension) thus means that scheduling is done in discrete steps.

Schedule Steps

Each time a schedule is made, this is called a “schedule step.” These schedule “steps”
do not really form a sequence of different steps, but the whole process is a quite it-
erative one: After an initial schedule has been created, some properties or objects
may be changed, and a new schedule is made, which is possibly analyzed. Due to
this analysis or to change requests, further modifications are done, and a new sched-
ule is made. Each such cycle of changing and scheduling is considered a schedule
step. It is possible to make as many schedule steps as needed, until the result is sat-
isfactory. The concept of schedule steps fits well into the list-scheduling approach
as discussed above. Furthermore, a schedule step does not imply that already placed
tasks or messages are kept in their places. Any modification of the output is possible.

Freezing and Thawing

One can keep a schedule by “freezing” the current schedule step. By adding new

Development Tools 377

messages (with their type, period and further attributes, such as sender and receiver)
to it, and scheduling again, the “holes” in the original schedule are filled without
changing the already placed parts. The inverse operation is to “thaw” a schedule
step. This means to actually throw away the schedule that was computed in this very
step, but keeping the schedule parts from previous schedule steps. The additions
made in this step are then merged with the new additions (made after the just thawed
schedule step), and together considered the change set for the current schedule step.
Obviously, only the last frozen schedule step can be thawed. The concept of freezing
and thawing schedule steps also nicely fits into the list-scheduling approach.

Apart from adding new messages, other possible additions after a frozen schedule
step are:

• Additional hosts and subsystems

• Additional message types

• Mapping of new subsystems to hosts

In TTPPlan, only “frozen” schedule steps are stored and actually counted as steps.
Schedule steps are numbered to identify them later on. The first schedule step is also
called the “base step.” It contains all information necessary to make the MEDL (Mes-
sage Descriptor List, see Chapter 5, Section 5.3.1) for each host. In later schedule
steps, additional messages can be added for transmission in previously unused por-
tions of frames. Since the MEDL only contains information about the lengths of the
frames, but not their contents, the addition of messages can be done without changing
the MEDL.

TTXPlan

TTXPlan is the cluster design tool for FlexRay clusters. Incremental scheduling is of
special interest here, as the Field Bus Exchange Format (FIBEX) [13] is used, and
FIBEX also allows us to save just parts of a cluster schedule. Furthermore, FlexRay
comprises a static and a dynamic segment, but the concept of schedule steps is not
applicable to the dynamic segment.

During FIBEX import, any already existing schedule information is imported
first, then the static part of the schedule is frozen and the rest of the information is
imported. With the command “Make new schedule,” this remaining data, including
the whole dynamic segment, is included in the schedule. The dynamic segment is
always scheduled from scratch, regardless of any already existing schedule informa-
tion. Part of the reason is that the length and the structure of dynamic frames change
when messages are added.

TTXPlan adds all schedule increments to its model. When the scheduler is then
started to generate a new schedule, it takes into account the original schedule while
computing a schedule for the “extended” model. It will not change the global
FlexRay configuration, but will eventually allocate additional free slots to hosts and
map additional messages to empty spaces in frames. Hosts, subsystems, messages,
frames and their associations that were present in the original cluster design remain

378 Time-Triggered Communication

unchanged. The advantage of this concept is that hosts which are not affected by a
change need not be touched. Moreover, a host may support different versions of the
schedule by identifying which messages are sent.

Change Management

If, for example, only two hosts A and B need additional messages, only these two
must be updated, while all other hosts can remain at the base step of the scheduling.
Later, host C might be updated to use the second schedule step, too. Eventually,
hosts A, D, and E might get updated to yet another schedule step with additional
messages. At runtime, a cluster using incremental scheduling can thus contain hosts
with differing schedule steps.

Each schedule step is an extension of the cluster’s communication properties.
It can place messages into unused parts of already allocated frames or assign yet
unused frames to the host and put messages there. When a host has exhausted the
spare capacity of its frames, or is known not to want to participate in any further
schedule steps, it should be excluded from further schedule steps. The user may
then still add increments to other hosts. The dynamic segment is not affected by this
exclusion.

To allow for safe interoperation of hosts at various steps of an incremental sched-
ule, each of the hosts participating in a schedule step should send one message per
schedule step carrying the schedule-step checksum (e.g., computed by a design tool)
which allows for online consistency checks. For a schedule step to be safely usable,
the schedule-step checksum sent by the sender must be equal to the schedule-step
checksum expected by the receiver.

15.3.2.2 Host Multiplexing

Host Multiplexing is a means to describe the fact that two or more hosts use the
same sending slot in different rounds. Although this is a general concept, it is only
available for TTP clusters.

A rather simple scenario is given in Figure 15.1. The first three slots are occupied
as usual: Each slot is assigned to one node. The last slot is assigned to three nodes,
where “Node 3” occupies two rounds, and “Node 4” and “Node 5” each occupy a
single round in this four-round schedule.

In the following example scenario, a special kind of host has been designed to
be non-periodic and still participate in the multiplexing. It is important to notice that
the messages of this host are still periodic! It meets additional requirements like the
following:

• One slot (in a schedule of 32 rounds) shall be shared by six hosts.

• Each host shall be assigned one round-slot every 8th round (periodic data).

• In the remaining 4 ∗ 2 rounds (two per multiplexing period), each host shall be
assigned one additional round-slot (event data, higher-level protocols).

Development Tools 379

Node 0 Node 1 Node 2 Node 3

Node 0 Node 1 Node 2 Node 4

Node 0 Node 1 Node 2 Node 3

Node 0 Node 1 Node 2 Node 5

R
ou

nd

0

1

2

3

NodeX Transmission of Node X

Slot
0 1 2 3

FIGURE 15.1
Multiplexed Slots

• With hosts A to F, the 32 round-slots shall be shared like this (typed in four
lines, each representing 8 rounds, for better readability):

A B C D E F A B
A B C D E F C D
A B C D E F E F
A B C D E F ? ?

• The remaining two round-slots (marked “? ?”) can be assigned to any multi-
plexing partner.

The pattern required is non-periodic in the sense that transmissions by one mul-
tiplexing host are not separated by a constant number of rounds anymore. However,
it can still be modeled by assigning multiple periods to a single multiplexing host
(e.g., in the above example, both “mux periods” 8 and 32 could be assigned to the
same host). This type of host is called “MUX Ghost” (in the following, simply called
“ghost”) and has the following properties:

• A ghost behaves like a host in that it can run subsystems in a cluster and can
thus send messages. In addition, it must be assigned a “mux period” and a
“mux round.”

• It is linked to a specific host which implements the subsystems specified for
the ghost. (Note: A ghost must be linked to the same slot as the linked host.)

• A ghost has no “Host in Cluster” link in the object model.

380 Time-Triggered Communication

• A ghost has no MEDL.

• The MEDL of a host contains the host’s own round-slots (“R Slot”) and the
round-slots of all ghosts linked to it.

15.3.2.3 Dynamic Messaging

Dynamic messaging is a concept to support the separation of concerns. One concern
is the time, period and data size in which a specific host is permitted to send its
data. The other concern is the actual layout and content of the frame being sent. This
means that the middleware (e.g., the COM layer) needs to know both “when” and
“what” to receive. Hence, it must be configured accordingly. Any time the “what”
changes, it needs to be reconfigured.

The general idea — or rather: the requirement — behind dynamic messaging is
that the middleware only should know the “when,” and consequently only should
need to be reconfigured in case of big changes, such as the timing of frames, if at all.
Reconfiguration shall not be necessary if a message is added to a “hole” in an ex-
isting frame. It definitely shall not be necessary for all hosts in the cluster. Dynamic
messaging therefore allows us to keep changes local, and to reduce certification ef-
forts.

With dynamic messaging, every message is assigned an ID that is part of the
message. It is placed at the beginning of the message, similarly to a frame header,
and has a fixed length. With this ID, the embedded software or the COM layer can
identify the message within a frame. The obvious disadvantage is that an additional
ID per message needs to be transmitted, which requires more bandwidth. The major
advantage is that a middleware layer (e.g., the COM layer) does not need any in-
formation about the location of a message within a frame. The middleware is able
to pack and unpack any message without the communication configuration (MEDL)
being modified, too. Allocation is statically predefined, so that overloading of frames
cannot occur.

Initially, all hosts get a description of all possible messages that exist in the clus-
ter, including their ID, length and other relevant properties for packing and unpack-
ing. Once known, there is no need to update this information, regardless of whether
the middleware is transferred to another host, or the message is placed at another
position in the frame. Middleware configuration data only needs to be created once,
and is the same for all hosts of the cluster. Having host hardware with preloaded and
preconfigured middleware on stock becomes feasible, as it can be used right out of
the box.

Dynamic messaging can be seen as an alternative to incremental scheduling.
While for incremental scheduling, the bin-packing problem needs to be solved for
placing messages in frames, and enough room must be reserved for potential future
extensions, this is not relevant for dynamic messaging. The layout of the frame is
determined at runtime.

Development Tools 381

15.3.2.4 Scheduling Strategies in TTPPlan

The basic input data for the message scheduler of TTPPlan consists of general cluster
information (e.g., cycle durations, transmission speed, topology), information about
hosts connected to this cluster and the messages sent by these hosts (e.g., size, period,
redundancy).

The message scheduler of TTPPlan is an algorithm to produce a static, cyclic
schedule. It is implemented as a heuristic scheduler, or more precisely, as a combi-
nation of a list scheduler, followed by an optimization step. The schedule output is
basically a set of frames with a specific message allocation and a predefined trans-
mission time instance.

In terms of programming, the message scheduler consists of five steps:

1. Initialization of the scheduler

2. Preparation for the scheduling (including checking the input object model)

3. Scheduling of the messages (including placement of the messages within a
frame)

4. Write back the scheduling results to the object model

5. Finish scheduling

Preparation for Scheduling

Before the actual message scheduling takes place, various preparation steps have
to be performed inside the message scheduler. This includes increasing the global
cluster schedule step and figuring out the number of cluster modes. Usually, there is
one user mode and one pseudo mode for TTP startup, but there might be more.

Afterwards, some messages are created that are needed for certain services. Such
messages include “RPV messages” for the remote-pin-voting feature, as well as sub-
system status messages. Every subsystem that was designed to send its status needs
to send such a message. If the cluster allows schedule extensions, special messages
carrying schedule step checksums have to be created as well.

Algorithmic Steps

In terms of algorithmic structure and complexity, only the third step from the above
list is of interest. It can be broken down further into eight steps. These — basically in-
dependent — steps of the message scheduler are described in the order of invocation
inside TTPPlan.

1. Increment the schedule step. The “scheduled” attribute of all objects is in-
creased by one. This attribute is initially zero if no schedule step has been
made so far (base step), and therefore incremented to one. If a schedule of an
old, not frozen schedule step exists, this schedule is deleted. All frozen sched-
ule information will be kept.

382 Time-Triggered Communication

2. Create the grid. This step is only done inside the base step and is skipped for
every additional schedule step. The grid is derived from the basic bus parame-
ters like bus speed, the shortest and longest period of messages to be sent and
the number of hosts in the cluster. Each cell of the grid represents a round-
slot, and an “R Slot” object is created accordingly. In this step, the number of
rounds per cluster cycle is calculated, too.

3. Schedule messages.

(a) Assign one slot to each host, depending on the shortest message period
this host wants to use.

(b) Assign additional slots to hosts according to the user settings regarding
reserved bandwidth. With bandwith reservation, the amount of free space
within a frame can be influenced, thus facilitating extensions in future
schedule steps.

(c) Determine the “difficulty” of a host by the number of messages, the
replica level, and the ID of the host. (The ID is used to obtain a deter-
ministic ordering.)

(d) For every host, starting with the most difficult one, do the following:

i. Determine the difficulty of a message in the following order: Chan-
nel freedom, redundancy degree, round-delta, round freedom, size
and name.

ii. Assign messages to frames starting with the most difficult message.
iii. For each message: If there is an available R Slot, use the R Slot with

“good” round-delta. Otherwise, try to assign a new R Slot.
iv. For each slot: Try to balance channels, then try to balance rounds.

Slots are not balanced.

4. Schedule messages in frame. Place the messages in a specified position inside
the frame. There are several options for this placement: The placement can
be optimized for data access, leading to messages aligned with byte and word
boundaries, as far as possible. It is also possible to specify that a message may
be placed in fragments (i.e., not contiguously). A very simple approach is to
place one message after the other, in the order they have been added to the
frame.

5. Schedule messages in message boxes. If message boxes exist, place the mes-
sages inside the defined message box depending on alignment, size and ID.

6. Place I-Frames.: Place the frames necessary for synchronization of TTP wher-
ever possible. If too few locations can be identified, a warning is issued. In this
case, the user may try scheduling with different parameters, or switch over to
using X-frames.

7. Check schedule invariants. These checks are executed to ensure the consis-
tency of the schedule itself. If an internal error occurs, all schedule information

Development Tools 383

collected so far will be deleted again. In addition, the schedule signatures and
the checksum are computed and set during this check.

15.3.3 Schedule Visualization

The more complex a communication system is, the greater the need for a means to
visualize its schedule. It has been shown that increased complexity makes it more
difficult to recognize design faults, simply due to a lack of overview. Thus, if the
system can be visualized in terms of underlying communication structures instead
of just pouring out all schedule details over the user, design comprehension is im-
proved [280].

Many characteristics of time-triggered systems — such as their repetitive char-
acter (i.e., periodic transmission), predefined “active intervals,” the use of state mes-
sages for data sharing and highly self-contained components — provide this kind of
structure and hence support design comprehension.

For example, the points in time when events in a time-triggered system take place
are well-defined. This information can be used to add to an understanding of the
system, as the time axis can serve as the basis for conceptual structuring.

On the application level, strictly time-triggered systems just use interfaces based
on state messages. This means that the interfaces of all components only consist
of a number of state messages that must either be read or written. No other com-
munication or coordination mechanisms are required. As time-triggered systems are
of repetitive nature, a component regularly reads the same input messages and then
writes the same set of output messages — usually at about equidistant points in time.
Only the content of the messages changes, but not the messages themselves.

With these characteristics of a time-triggered system in mind, we can define ba-
sically three possibilities for schedule visualization: a textual representation (in the
following called schedule browser), a graphical one (in the following called schedule
viewer or schedule editor) and animation.

While a schedule editor may give a better overview of the whole schedule and
eases real “schedule editing” (for example, manually moving frames), a schedule
browser may be simpler to use when searching for specific information or wanting to
compare certain properties of messages. Animation, although trendy, is not covered
here, as we do not consider it a viable solution. In our opinion, it does not satisfy
the user’s need for interaction (editing) and customized views the way browsers and
editors do. Therefore, only examples of these two types are briefly outlined in the
following, as they are also implemented in TTTech’s readily available cluster design
and scheduling tool TTPPlan. TTPPlan can generate a cluster (i.e., message) schedule
either from scratch or by extending an existing schedule (schedule extension), and
provides both textual and graphical schedule editing. Further details can be found
in [344].

384 Time-Triggered Communication

FIGURE 15.2
The Schedule Browser of TTPPlan

15.3.3.1 The Schedule Browser

The schedule browser of TTPPlan employs a hierarchical structure, similar to the well-
known treeview of other browsers, listing all objects participating in the schedule
(hosts, frames, transmission slots). See Figure 15.2 for a screenshot. Each object is
displayed as clickable hyperlink, allowing for direct access to the corresponding ob-
ject editor, where the object’s attributes can be edited. Expanding an object node in
the browser displays the actual timing information of the schedule, e.g., slot dura-
tions, frame and message sizes and transmission periods.

A shorter version of the schedule browser, the schedule summary, can be useful
for a first quick overview. It could be automatically displayed in a design tool right
after successful schedule generation, as it is done in TTPPlan. It only displays the
basic data of the generated schedule (number and duration of rounds, transmission
speed of messages and frames).

15.3.3.2 The Schedule Editor

In TTP and FlexRay, the communication schedule is based on rounds and slots. This
fact lends itself to a grid-like representation, with the rows corresponding to rounds
and the columns corresponding to slots. Each intersection of a row and a column
thus represents a round-slot, the basic “transmission window” for scheduled data.
The grid as a whole displays one cluster cycle in its entirety. Due to the periodic

Development Tools 385

nature of a time-triggered schedule, where only the transmitted contents change, but
not the timing behavior, this gives a perfect overview.

In TTP, each transmitting host in the cluster is assigned its own transmission slot.
Consequently, the columns automatically also represent the hosts. For FlexRay, an
indication which slot is used by which hosts needs to be added.

In a redundant system, i.e., with data being transmitted twice on two different
communication channels, each round-slot can be split into two sections to display the
frames transmitted on both channels. Vertical alignment of these sections is preferred
as the structure of the frames on both channels can be compared quickly, giving an
immediate understanding of whether the frames are truly redundant (i.e., have exactly
the same structure), or only some messages in the frames are redundant, while others
are not.

The schedule editor of TTPPlan is shown in Figure 15.3. It provides drop-down
lists to select certain parts of the schedule; this is very helpful when dealing with
huge and complex schedules. If a host, frame or message is selected, all occurrences
of it are highlighted (as far as the schedule is displayed, that is). For example, se-
lecting a message is useful to see in which slots or rounds it has been scheduled for
transmission.

For working with large clusters, the display area of the schedule grid can be set
by selecting the desired number of hosts/slots or rounds. On the one hand, this makes
the frames larger, easier to see and easier to select with the mouse. On the other hand,
it allows us to obtain an overview by viewing all slots and rounds at the same time
and to identify “similar” patterns in the communication structure.

As the round-slot fields of the grid may not be large enough (even with a re-
duced number of visible slots/rounds) to display all relevant information, a “magni-
fier” function, like the “magnifier window” shown in Figure 15.3, allows the user to
view the frames of a selected round-slot — as well as the messages contained in the
frames — in a separate window area. In addition, details about the messages (size
and timing) are listed below the magnifier window.

Actual schedule editing is best done by drag-and-drop: Drag a message from
its current position (frame or round) to another and release it there. This implicitly
changes the affected attributes of the message. In this way, one can optimize the
current schedule and generate shorter slots, thus allowing for shorter overall rounds.
Manual editing also can provide a way out in case the scheduling tool failed to find
a feasible schedule.

However, certain actions are prohibited by the schedule editor because they
would either violate design constraints or have to be performed prior to rescheduling,
i.e., in the scheduling tool itself:

• Drop messages into rounds where their period or phase constraints would be
violated

• Drop messages on I-frames (for TTP)

• Move replicated messages to a round-slot where there is not enough space on
the other channel (in TTP: where there is an I-frame on one of the channels)

386 Time-Triggered Communication

FIGURE 15.3
The Schedule Editor of TTPPlan

Development Tools 387

• Move messages out of their slot (in TTP) or out of the slots the sending host
may use (in FlexRay). We consider it bad practice to implicitly change the
communication requirements (i.e., who sends what) by editing the schedule.
Editing should only refine the timing in detail.

• Move messages within the frame (there should never be a need for this).

15.3.3.3 The Round-Slot Viewer

Similar to a schedule editor, a round-slot viewer has a grid-like structure, with the
rows representing rounds and the columns representing slots. Each intersection of
a row and a column thus represents a round-slot. For large schedules, scrolling and
limiting the number of displayed items can be useful. After the successful generation
of a schedule, one might want to open the round-slot viewer to have a look at the
schedule timing.

Like the schedule editor, the round-slot viewer shown in Figure 15.4 provides a
magnifier window below the schedule grid. Selecting a round-slot highlights it and
also shows it in the magnifier window. At the top of the magnifier window, the slot
time is displayed for both channels (first channel above, second one below). The time
is split into four parts that are equal for both channels (from left to right):

• Transmission phase: The time span needed for transmission of the frames.
I-frames and N-frames are displayed in different colors. Overfull N-frames
would be displayed in red to highlight them.

• Post-receive-phase (prp): The time span immediately after transmission
phase, during which certain services are performed.

• Idle time: This time is needed to stretch the durations of the slots to meet the
specified round duration. This idle time is unused bandwidth.

• Pre-send-phase (psp): The time span immediately before action time, during
which frame transmission is prepared. The sum of prp, idle time and psp de-
termines the inter-frame gap (IFG). It is limited by the slowest controller in the
cluster.

Below the slot time, the user interrupts for both channels are displayed. The mag-
nifier window itself displays additional information about the selected round-slot.
Among this information there is the kind of each item in the round-slot, as well as a
time grid showing the time from the beginning of the cluster cycle.

15.3.3.4 Visualization of Message Paths

TTEthernet communication, although time-triggered, is not as strict in its structure
as TTP. It is not based on rounds and individual sending slots for each device, but
rather on “communication links,” i.e., physical connections between sender and re-
ceiver, that are basically independent of each other. In contrast to TTP, TTEthernet

388 Time-Triggered Communication

FIGURE 15.4
The Round-Slot Viewer of TTPPlan

Development Tools 389

allows the simultaneous reception and transmission on the same link, as well as si-
multaneous communication on several links. Therefore, a rigid grid like that of the
schedule editor or the round-slot viewer presented above is not the optimal visual-
ization strategy.

The approach presented here is instead based on the communication links and
“message paths.” A message path denotes the logical path a message takes through
the network from the original sender to the last receiver or receivers, including in-
termediate receiving and resending by one or more switches. Figure 15.5 shows a
possible schedule viewer for TTEthernet, based on such a visualization approach.
Note that — for simplicity — only strictly time-triggered messages are considered
here (i.e., no rate-constrained or best-effort messages).

As usual, the schedule viewer is based on a horizontal time axis. In parallel to
it there are the lines representing the communication links. Each link connects two
devices, whose names are stated at the left edge of the schedule, above and below the
line. The colored rectangles above each line are the messages transmitted from the
upper to the lower device, the rectangles below the line those in the other direction.

The example schedule in Figure 15.5 displays one cluster cycle with a duration
of 1 ms, with the first 100 µs being reserved (by design) for special purposes, e.g.,
clock synchronization. For simplicity, all messages are transmitted once per cluster
cycle, i.e., their periods equal the cluster cycle duration.

Following the path of the message OUT (gray rectangle) from the main controller
to all other devices provides some insight into the way of interpreting the displayed
schedule. Moving along the time axis, the following transmissions take place:

1. The Main Controller sends OUT to switch sw1 (lower left corner of the sched-
ule).

2. sw1 takes some time processing OUT, hence the gap between the first and the
second transmission.

3. sw1 simultaneously sends OUT to the end system IO Node1 and the switch
sw2.

4. sw2 takes some time processing OUT.

5. sw2 sends OUT to sw3 just after the processing time.

6. sw2 simultaneously sends OUT to IO Node2 and IO Node3. This transmis-
sion takes place later than that to sw3 because there are some other messages
scheduled for transmission in the same direction on these links.

7. sw3 takes some time processing OUT.

8. sw2 simultaneously sends OUT to IO Node4 and IO Node5.

In the same way, the paths of the messages INX and IN MC X can be traced
from the end systems (IO NodeX) to the main controller (starting at the upper left
corner of the schedule).

390 Time-Triggered Communication

FI
G

U
R

E
15

.5
Il

lu
st

ra
tio

n
of

D
at

a
Tr

af
fic

on
A

ll
Fu

ll-
D

up
le

x
C

on
ne

ct
io

ns
of

a
T

T
E

th
er

ne
tN

et
w

or
k

Development Tools 391

Clicking on a message not only highlights all its occurrences, but even shows its
message paths as arrows indicating the intra-network communication. User interac-
tion is not viable here, as drawing all arrows for all messages would result in a mess.
However, showing the paths of a selected message on request gives the user a quick
notion of where processing delays occur and which way the data flows, resulting in
a good impression about the latency of this message.

Displaying messages with a transmission period of exactly one cluster cycle —
as in the above example — is simple, but a system is not always designed this way.
For messages with a higher frequency, i.e., that are transmitted more than once per
cluster cycle, additional “depth” of the display is needed. Basically, there are two
possibilities to include the periodicity in the displayed schedule:

• To draw one message instance after the other, with the schedule viewer always
displaying one whole cluster cycle. The advantage is that this representation is
simple. The disadvantage is that the viewing area can become very long and
thus will need a lot of scrolling and zooming. By introducing a magnifier or
an overview window, navigation in this “wide” schedule representation can be
made more comfortable.

• To wrap each link after the shortest period (cf. the TTP schedule editor), which
means that each instance of the shortest period starts “at the beginning,” i.e.,
the left edge. The advantage is that the messages with the highest frequency
are placed below each other, and messages with periods that are integer mul-
tiples of the shortest period are also nicely displayed. But there are at least
two disadvantages. First, it is difficult to keep an overview with several links.
Second, adding arrows to show the communication paths makes the schedule
quite unreadable, as the arrows may cross message instances of interest.

15.4 Holistic Scheduling and Optimization
Applications consist of a set of interacting tasks that communicate through messages.
Depending on the functionality, tasks and messages may be time-triggered or event-
triggered, or, in certain situations [205], a combination of both. There are many ap-
plications where the interaction between the functions is tightly coupled, and design
decisions cannot be taken in isolation, they have to be taken considering the complete
system, i.e., in a holistic manner. For example, when TT tasks and TT messages are
synchronized, the schedule of the tasks has to be constructed at the same time with
the message schedule. Also, the worst-case end-to-end delays for ET messages may
impact the worst-case response times of ET tasks, and in this case the analysis and
optimization of messages has to be considered at the same time with the analysis and
optimization of tasks.

In this section, we present an approach to holistic analysis and optimization of

392 Time-Triggered Communication

FlexRay-based systems. Although the work here considers FlexRay, the holistic anal-
ysis and optimization principles are also valid for other protocols. FlexRay is com-
posed of static (ST) and dynamic (DYN) segments, which are arranged to form a bus
cycle that is repeated periodically. The ST segment is similar to TTP, and employs a
generalized time-division multiple-access (GTDMA) scheme. The DYN segment of
the FlexRay protocol is similar to Byteflight and uses a flexible TDMA (FTDMA)
bus access scheme. We propose techniques for determining the timing properties of
messages transmitted in the static and the dynamic segments of a FlexRay communi-
cation cycle. We first briefly present a static cyclic scheduling technique for TT mes-
sages transmitted in the ST segment. Then, we develop a worst-case response time
analysis for ET messages sent using the DYN segment, thus providing predictability
for messages transmitted in this segment. The analysis techniques for messages are
integrated in the context of a holistic schedulability analysis algorithm that computes
the worst-case response times of all the tasks and messages in the system.

Such an analysis, while being able to bound the message transmission times on
both the ST and DYN segments, represents the first step toward enabling the use of
this protocol in a systematic way for time-critical applications. The second step to-
ward an efficient use of FlexRay is concerned with optimization techniques that con-
sider the particular features of an application during the process of finding a FlexRay
bus configuration that can guarantee that all time constraints are satisfied.

15.4.1 System Model

We consider architectures consisting of nodes connected by one FlexRay commu-
nication channel2 (see Figure 15.6a). Each processing node connected to a FlexRay
bus is composed of two main components: A CPU and a communication controller
(see Figure 15.7a) that are interconnected through a two-way controller-host inter-
face (CHI). The controller runs independently of the node’s CPU and implements the
FlexRay protocol services.

For the systems we are studying, we have made some basic assumptions about
the features of a software architecture which runs on the CPU of each node. The
main component of the software architecture is a real-time kernel that contains two
schedulers, for static cyclic scheduling (SCS) and fixed priority scheduling (FPS),
respectively3 (see Figure 15.6b).

When several tasks are ready on a node, the task with the highest priority is ac-
tivated, and preempts the other tasks. Let us consider the example in Figure 15.6b,
where we have six tasks sharing the same node. Tasks τ1 and τ6 are scheduled using
SCS, while the rest are scheduled with FPS. The priorities of the FPS tasks are in-
dicated in the figure. The arrival time of a task is depicted with an upward pointing
arrow. Under these assumptions, Figure 15.6b presents the worst-case response times
of each task. SCS tasks are non-preemptable and their start time is offline fixed in the

2FlexRay is a dual-channel bus.
3EDF can also be added, as presented by us in [266].

Development Tools 393208 Real-Time Syst (2008) 39: 205–235

Fig. 1 System architecture example

the rest are scheduled with FPS. The priorities of the FPS tasks are indicated in the
figure. The arrival time of a task is depicted with an upwards pointing arrow. Under
these assumptions, Fig. 1b presents the worst-case response times of each task. SCS
tasks are non preemptable and their start time is off-line fixed in the schedule table
(they also have the highest priority, denoted with priority level “0” in the figure). FPS
tasks can only be executed in the slack of the SCS schedule table.

FPS tasks are scheduled based on priorities. Thus, a higher priority task such as
τ3 preempts a lower priority task such as τ4. SCS activities are triggered based on a
local clock in each processing node. The synchronization of local clocks throughout
the system is provided by the communication protocol (FlexRay 2005).

3 The FlexRay communication protocol

In this section we will describe how messages generated by the CPU reach the
communication controller and how they are transmitted on the bus. Let us con-
sider the example in Fig. 2 where we have three nodes, N1 to N3 sending messages
ma,mb, . . . ,mh using a FlexRay bus.

In FlexRay, the communication takes place in periodic cycles (Fig. 2b depicts
two cycles of length Tbus). Each cycle contains two time intervals with different bus
access policies: an ST segment and a DYN segment.3 The ST and DYN segment
lengths can differ, but are fixed over the cycles. We denote with STbus and DYNbus
the length of these segments. Both the ST and DYN segments are composed of sev-
eral slots. In the ST segment, the slots number is fixed, and the slots have constant
and equal length, regardless of whether ST messages are sent or not over the bus in

3The FlexRay bus cycle contains also a symbol window and a network idle time, but their size does not
affect the equations in our analysis. For simplicity, they will be ignored during the examples throughout
the paper.

FIGURE 15.6
System Architecture Example

schedule table (they also have the highest priority, denoted with priority level “0” in
the figure). FPS tasks can only be executed in the slack of the SCS schedule table.

FPS tasks are scheduled based on priorities. Thus, a higher priority task such as
τ3 preempts a lower priority task such as τ4. SCS activities are triggered based on a
local clock in each processing node. The synchronization of local clocks throughout
the system is provided by the communication protocol.

15.4.2 The FlexRay Communication Protocol

In this section, we will describe how messages generated by the CPU reach the com-
munication controller and how they are transmitted on the bus. Let us consider the
example in Figure 15.7 where we have three nodes, N1 to N3 sending messages
ma,mb, . . . ,mh using a FlexRay bus.

In FlexRay, the communication takes place in periodic cycles (Figure 15.7b de-
picts two cycles of length Tbus). Each cycle contains two time intervals with different
bus access policies: An ST segment and a DYN segment.4 We denote with ST bus and
DYN bus the length of these segments. In Figure 15.7 there are three static slots for
the ST segment. For details on the FlexRay communication protocol, the reader is
directed to the FlexRay chapter.

In Figure 15.7, node N1 has been allocated ST slot 2 and DYN slot 3, N2 trans-
mits through ST slots 1 and 3 and DYN slots 2 and 4, while node N3 has DYN slots
1 and 5. For each of these slots, the CHI reserves a buffer that can be written by
the CPU and read by the communication controller (these buffers are read by the

4The FlexRay bus cycle also contains a symbol window and a network idle time, but their size does not
affect the equations in our analysis. For simplicity, they will be ignored during the examples throughout
the section.

394 Time-Triggered Communication
R

ea
l-

Ti
m

e
Sy

st
(2

00
8)

39
:2

05
–2

35
20

9

F
ig

.2
Fl

ex
R

ay
co

m
m

un
ic

at
io

n
cy

cl
e

ex
am

pl
e

th
at

cy
cl

e.
T

he
le

ng
th

of
an

ST
sl

ot
is

sp
ec

ifi
ed

by
th

e
Fl

ex
R

ay
gl

ob
al

co
nfi

gu
ra

tio
n

pa
ra

m
et

er
gd

St
at

ic
Sl

ot
(F

le
xR

ay
20

05
).

In
Fi

g.
2

th
er

e
ar

e
th

re
e

st
at

ic
sl

ot
s

fo
r

th
e

ST
se

gm
en

t.
T

he
le

ng
th

of
th

e
D

Y
N

se
gm

en
ti

s
sp

ec
ifi

ed
in

nu
m

be
ro

f“
m

in
is

lo
ts

”,
an

d
is

eq
ua

l
to

gN
um

be
rO

fM
in

is
lo

ts
.T

hu
s,

du
ri

ng
th

e
D

Y
N

se
gm

en
t,

if
no

m
es

sa
ge

is
to

be
se

nt
du

ri
ng

a
ce

rt
ai

n
sl

ot
,t

he
n

th
at

sl
ot

w
ill

ha
ve

a
ve

ry
sm

al
ll

en
gt

h
(e

qu
al

to
th

e
le

ng
th

gd
M

in
is

lo
to

f
a

so
ca

lle
d

m
in

is
lo

t)
,o

th
er

w
is

e
th

e
D

Y
N

sl
ot

w
ill

ha
ve

a
le

ng
th

eq
ua

l
w

ith
th

e
nu

m
be

r
of

m
in

is
lo

ts
ne

ed
ed

fo
r

tr
an

sm
itt

in
g

th
e

w
ho

le
m

es
sa

ge
(F

le
xR

ay
20

05
).

T
hi

s
ca

n
be

se
en

in
Fi

g.
2b

,w
he

re
D

Y
N

sl
ot

2
ha

s
3

m
in

is
lo

ts
(4

,5
,a

nd
6)

in
th

e
fir

st
bu

s
cy

cl
e,

w
he

n
m

es
sa

ge
m

e
is

tr
an

sm
itt

ed
,a

nd
on

e
m

in
is

lo
t(

de
no

te
d

w
ith

“M
S”

an
d

co
rr

es
po

nd
in

g
to

th
e

m
in

is
lo

tc
ou

nt
er

2)
in

th
e

se
co

nd
bu

s
cy

cl
e

w
he

n
no

m
es

sa
ge

is
se

nt
.

D
ur

in
g

an
y

sl
ot

(S
T

or
D

Y
N

),
on

ly
on

e
no

de
is

al
lo

w
ed

to
se

nd
on

th
e

bu
s,

an
d

th
at

is
th

e
no

de
w

hi
ch

ho
ld

s
th

e
m

es
sa

ge
w

ith
th

e
fr

am
e

id
en

tifi
er

(F
ra

m
eI

D
)

eq
ua

l
to

th
e

cu
rr

en
tv

al
ue

of
th

e
sl

ot
co

un
te

r.
T

he
re

ar
e

tw
o

sl
ot

co
un

te
rs

,c
or

re
sp

on
di

ng
to

th
e

ST
an

d
D

Y
N

se
gm

en
ts

,r
es

pe
ct

iv
el

y.
T

he
as

si
gn

m
en

to
ff

ra
m

e
id

en
tifi

er
s

to
no

de
s

is
st

at
ic

an
d

de
ci

de
d

of
fli

ne
,d

ur
in

g
th

e
de

si
gn

ph
as

e.
E

ac
h

no
de

th
at

se
nd

s
m

es
sa

ge
s

ha
s

on
e

or
m

or
e

ST
an

d/
or

D
Y

N
sl

ot
s

as
so

ci
at

ed
to

it.
T

he
bu

s
co

nfl
ic

ts
ar

e
so

lv
ed

by
al

lo
ca

tin
g

of
fli

ne
on

e
sl

ot
to

at
m

os
to

ne
no

de
,t

hu
s

m
ak

in
g

it
im

po
ss

ib
le

fo
r

tw
o

no
de

s
to

se
nd

du
ri

ng
th

e
sa

m
e

ST
or

D
Y

N
sl

ot
.

In
Fi

g.
2,

no
de

N
1

ha
s

be
en

al
lo

ca
te

d
ST

sl
ot

2
an

d
D

Y
N

sl
ot

3,
N

2
tr

an
sm

its
th

ro
ug

h
ST

sl
ot

s
1

an
d

3
an

d
D

Y
N

sl
ot

s
2

an
d

4,
w

hi
le

no
de

N
3

ha
s

D
Y

N
sl

ot
s

1
an

d
5.

Fo
r

ea
ch

of
th

es
e

sl
ot

s,
th

e
C

H
I

re
se

rv
es

a
bu

ff
er

th
at

ca
n

be
w

ri
tte

n
by

th
e

FI
G

U
R

E
15

.7
Fl

ex
R

ay
C

om
m

un
ic

at
io

n
C

yc
le

E
xa

m
pl

e

Development Tools 395

communication controller at the beginning of each slot, in order to prepare the trans-
mission of frames). The associated buffers in the CHI are depicted in Figure 15.7a.
We denote with DYNSlotsNp the number of dynamic slots associated to a node Np
(this means that for N2 in Figure 15.7, DYNSlotsN2 has value 2).

We use different approaches for ST and DYN messages to decide which messages
are transmitted during the allocated slots. For ST messages, we consider that the
CPU in each node holds a schedule table with the transmission times. When the time
comes for an ST message to be transmitted, the CPU will place that message in its
associated ST buffer of the CHI. For example, ST message mb sent from node N1

has an entry “2/2” in the schedule table specifying that it should be sent in the second
slot of the second ST cycle.

For the DYN messages, we assume that the designer specifies their FrameID. For
example, DYN message me has the frame identifier “2.” While nodes must use dis-
tinct FrameIDs (and consequently distinct DYN slots) in order to avoid bus conflicts,
we allow for a node to send different messages using the same DYN FrameID.5 For
example, messages mg and mf on node N2 have both FrameID 4. If two or more
messages with the same frame identifier are ready to be sent in the same bus cycle, a
priority scheme is used to decide which message will be sent first. Each DYN mes-
sage mi has associated a priority prioritymi

. Messages with the same FrameID will
be placed in a local output queue ordered based on their priorities. The message from
the head of the priority queue is sent in the current bus cycle. For example, message
mf will be sent before mg because it has a higher priority.

At the beginning of each communication cycle, the communication controller of
a node resets the slot and minislot counters. At the beginning of each communication
slot, the controller verifies if there are messages ready for transmission (present in
the CHI send buffers) and packs them into frames.6 In the example in Figure 15.7,
we assume that all messages are ready for transmission before the first bus cycle.

Messages selected and packed into ST frames will be transmitted during the bus
cycle that is about to start according to the schedule table. For example, in Fig-
ure 15.7, messages ma and mc are placed into the associated ST buffers in the CHI
in order to be transmitted in the first bus cycle. However, messages selected and
packed into DYN frames will be transmitted during the DYN segment of the bus cy-
cle only if there is enough time until the end of the DYN segment. Such a situation
is verified by comparing if, in the moment the DYN slot counter reaches the value
of the FrameID for that message, the value of the minislot counter is smaller than a
given value pLatestTx. The value pLatestTx is fixed for each node during the design
phase, depending on the size of the largest DYN frame that node will have to send
during run-time. For example, in Figure 15.7, message mh is ready for transmission
before the first bus cycle starts, but, after message mf is transmitted, there is not
enough room left in the DYN segment. This will delay the transmission of mh for
the next bus cycle.

5This assumption is not part of the FlexRay specification. If messages are not sharing FrameIDs, this
is handled implicitly as a particular case of our analysis.

6In this section, we do not address frame-packing [263], and thus assume that one message is sent per
frame.

396 Time-Triggered CommunicationDevelopment Tools 389

GlobalSchedulingAlgorithm()
1 while TT ready list is not empty
2 select τij from TT ready list
3 if τij is a SCS task then
4 schedule TT task(τij, Nodeτij)
5 else // τij is a ST message
6 schedule ST msg(τij, Nodeτij)
7 end if
8 update TT ready list
9 end while

end StaticScheduling
schedule TT task(τij, Nodeτij)
10 find first available time moment ts after ASAPτij

on Nodeτij

11 schedule τij after ts on Nodeτij, so that holistic analysis
produces minimal worst-case response times
for FPS tasks and DYN messages

12 update ASAP for all τij successors
end schedule TT task
schedule ST msg(τij, Nodeτij)
13 find first ST slot(Nodeτij) available after ASAPτij

14 schedule τij in that ST slot
15 update ASAP for all τij successors

end schedule ST msg

FIGURE 15.8
Global Scheduling Algorithm

by one (Figure 15.8, line 2) to be scheduled on the processor they are mapped to
(line 4), or into a static bus-slot associated to that processor on which the sender of
the message is executed (line 6), respectively. The priority function which is used
to select among ready tasks and messages is a critical path metric, modified by us
for the particular goal of scheduling tasks mapped on distributed systems [?]. Let us
consider a particular task τij selected from the ready list to be scheduled. We con-
sider that ASAPτij is the earliest time moment which satisfies the condition that all
preceding activities (tasks or messages) of τij are finished (line 10). With only the
SCS tasks in the system, the straightforward solution would be to schedule τij at the
first time moment after ASAPτij

when Nodeτij
is free. Similarly, an ST message

will be scheduled in the first available ST slot associated with the node that runs the
sender task for that message.

As presented by us in [?], when scheduling SCS tasks, one has to take into ac-
count the interference they produce on FPS tasks. The function schedule TT task in
Figure 15.8 places a SCS task in the static schedule in such a way that the increase
of worst-case response times for FPS tasks is minimized. Such an increase is deter-
mined by comparing the worst-case response times of FPS tasks obtained with our
holistic schedulability analysis before and after inserting the new SCS task in the
schedule [?].

The next subsection presents our solution for computing the worst case response
times of DYN messages, while in Sect. 15.4.3.2 we will integrate this solution into
a holistic schedulability analysis that determines the timing properties of both FPS

FIGURE 15.8
Global Scheduling Algorithm

15.4.3 Timing Analysis

Given a distributed system based on FlexRay, as described in the previous two sec-
tions, the tasks and messages have to be scheduled. For the SCS tasks and ST mes-
sages, this means building the schedule tables, while for the FPS tasks and DYN
messages we have to determine their worst-case response times.

The problem of finding a schedulable system has to consider two aspects:

1. When performing the schedulability analysis for the FPS tasks and DYN mes-
sages, one has to take into consideration the interference from the SCS activi-
ties.

2. Among the possible correct schedules for SCS activities, it is important to
build one which favors as much as possible the schedulability of FPS activities.

Figure 15.8 presents the global scheduling and analysis algorithm, in which the
main loop consists of a list-scheduling based algorithm [62] that iteratively builds
the static schedule table with start times for SCS tasks and ST messages.

A ready list (TT ready list) contains all SCS tasks and ST messages which are
ready to be scheduled (they have no predecessors or all their predecessors have al-
ready been scheduled). From the ready list, tasks and messages are extracted one
by one (Figure 15.8, line 2) to be scheduled on the processor they are mapped to
(line 4), or into a static bus-slot associated to that processor on which the sender of

Development Tools 397

the message is executed (line 6), respectively. The priority function which is used to
select among ready tasks and messages is a critical path metric, modified by us for
the particular goal of scheduling tasks mapped on distributed systems [86]. Let us
consider a particular task τij selected from the ready list to be scheduled. We con-
sider that ASAPτij

is the earliest time moment which satisfies the condition that all
preceding activities (tasks or messages) of τij are finished (line 10). With only the
SCS tasks in the system, the straightforward solution would be to schedule τij at the
first time moment after ASAPτij

when Nodeτij
is free. Similarly, an ST message

will be scheduled in the first available ST slot associated with the node that runs the
sender task for that message.

As presented by us in [265], when scheduling SCS tasks, one has to take into
account the interference they produce on FPS tasks. The function schedule TT task
in Figure 15.8 places a SCS task in the static schedule in such a way that the in-
crease of worst-case response times for FPS tasks is minimized. Such an increase is
determined by comparing the worst-case response times of FPS tasks obtained with
our holistic schedulability analysis before and after inserting the new SCS task in the
schedule [265].

The next subsection presents our solution for computing the worst-case response
times of DYN messages, while in Section 15.4.3.2 we will integrate this solution into
a holistic schedulability analysis that determines the timing properties of both FPS
tasks and DYN messages (which is called in line 11, of schedule TT task presented
in Figure 15.8).

15.4.3.1 Schedulability Analysis of DYN Messages

The worst-case response time Rm of a DYN message m is given by the following
equation:

Rm(t) = σm + wm(t) + Cm, (15.1)

whereCm is the message communication time (see Section 15.3.1), σm is the longest
delay suffered during one bus cycle if the message is generated by its sender task
after its slot has passed, and wm is the worst-case delay caused by the transmission
of ST frames and higher priority DYN messages during a given time interval t. For
example, in Figure 15.9, we consider that a message m is supposed to be transmitted
in the third DYN slot of the bus cycle. The figure presents the case when message
m appears during the first bus cycle after the third DYN slot has passed; therefore,
the message has to wait σm until the next bus cycle starts. In the second bus cycle,
the message has to wait for the ST segment and for the first two DYN slots to finish,
delay denoted withwm (that also contains the transmission of a messagem′ that uses
the second DYN slot).

The communication controller decides what message is to be sent on the bus in
a certain communication slot at the beginning of that slot. As a consequence, in the
worst case, a DYN message m is generated by its sender task immediately after the
slot with the FrameIDm has started, forcing message m to wait until the next bus
cycle starts in order to really start competing for the bus. In conclusion, in the worst

398 Time-Triggered Communication

Real-Time Syst (2008) 39: 205–235 213

tic schedulability analysis that determines the timing properties of both FPS tasks and
DYN messages (which is called in line 11, of schedule_TT_task presented in Fig. 3).

5.1 Schedulability analysis of DYN messages

The worst case response time Rm of a DYN message m is given by the following
equation:

Rm(t) = σm + wm(t) + Cm, (2)

where Cm is the message communication time (see Sect. 4), σm is the longest delay
suffered during one bus cycle if the message is generated by its sender task after
its slot has passed, and wm is the worst case delay caused by the transmission of ST
frames and higher priority DYN messages during a given time interval t . For example,
in Fig. 4, we consider that a message m is supposed to be transmitted in the 3rd DYN
slot of the bus cycle. The figure presents the case when message m appears during the
first bus cycle after the 3rd DYN slot has passed, therefore the message has to wait
σm until the next bus cycle starts. In the second bus cycle, the message has to wait for
the ST segment and for the first two DYN slots to finish, delay denoted with wm (that
also contains the transmission of a message m′ that uses the second DYN slot).

The communication controller decides what message is to be sent on the bus in
a certain communication slot at the beginning of that slot. As a consequence, in the
worst case, a DYN message m is generated by its sender task immediately after the
slot with the FrameIDm has started, forcing message m to wait until the next bus
cycle starts in order to really start competing for the bus. In conclusion, in the worst
case, the delay σm has the value:

σm = Tbus − (STbus + (FrameIDm − 1) × gdMinislot), (3)

where STbus is the length of the ST segment.
What is now left to be determined is the value wm corresponding to the maximum

amount of delay on the bus that can be produced by interference from ST frames and
DYN messages. We start from the observations that the transmission of a ready DYN
message m during the DYN slot FrameIDm can be delayed because of the following
causes:

• Local messages with higher priority, that use the same frame identifier as m. We
will denote this set of higher priority local messages with hp(m). For example, in
Fig. 2a, messages mg and mf share FrameID 4, thus hp(mg) = {mf }.

Fig. 4 Response time of a DYN messageFIGURE 15.9
Response Time of a DYN Message

case, the delay σm has the value:

σm = Tbus − (ST bus + (FrameIDm − 1)× gdMinislot), (15.2)

where ST bus is the length of the ST segment.
What is now left to be determined is the valuewm corresponding to the maximum

amount of delay on the bus that can be produced by interference from ST frames and
DYN messages. We start from the observations that the transmission of a ready DYN
messagem during the DYN slot FrameIDm can be delayed because of the following
causes:

• Local messages with higher priority, that use the same frame identifier as
m. We will denote this set of higher priority local messages with hp(m).
For example, in Figure 15.7a, messages mg and mf share FrameID 4, thus
hp(mg) = {mf}.

• Any messages in the system that can use DYN slots with lower frame identi-
fiers than the one used by m. We will denote this set of messages having lower
frame identifiers with lf (m). In Figure 15.7a, lf (mg) = {md,me}.

• Unused DYN slots with frame identifiers lower than the one used for sending
m (though such slots are unused, each of them still delays the transmission of
m for an interval of time equal with the length gdMinislot of one minislot);
we will denote the set of such minislots with ms(m). Thus, in the example in
Figure 15.7b, ms(mg) = {1, 2, 3}, and ms(mf) = {3}.

Determining the interference of DYN messages in FlexRay is complicated by
several factors. Let us consider the example in Figure 15.10, where we have two
nodes, N1 (with FrameIDs 1 and 3) and N2 (with FrameID 2), and three messages
m1 to m3. N1 sends m1 and m3, and N2 sends message m2. Messages m1 and
m2 have FrameIDs 1 and 2, respectively. We consider two situations: Figure 15.10a,
where m3 has a separate FrameID 3, and Figure 15.10b, where m3 shares the same
FrameID 1 with m1. The values of pLatestTx for each node are depicted in the fig-
ure.7

7We use pLatestTxm to denote pLatestTxN of the node N sending message m.

Development Tools 399

Real-Time Syst (2008) 39: 205–235 215

F
ig

.5
Tr

an
sm

is
si

on
sc

en
ar

io
s

fo
rD

Y
N

m
es

sa
ge

s
FI

G
U

R
E

15
.1

0
Tr

an
sm

is
si

on
Sc

en
ar

io
s

fo
rD

Y
N

M
es

sa
ge

s

400 Time-Triggered Communication

In Figure 15.10a, message m2, that has a lower FrameID than m3, cannot be
sent immediately after message m1, because the value of the minislot counter has
exceeded the value pLatestTxm2

when the value of the DYN slot counter becomes
equal to 2 (hence, m2 does not fit in this DYN cycle). As a consequence, the trans-
mission of m2 will be delayed for the next bus cycle. However, since in the moment
when the DYN slot counter becomes 3 the minislot counter does not exceed the value
pLatestTxm3

, message m3 will fit in the first bus cycle. Thus, a message (m3 in our
case) can be sent before another message with a lower FrameID(m2). Such situations
must be accounted for when building the worst-case scenario.

In Figure 15.10b, message m3 shares the same FrameID 1 with m1 but we con-
sider that it has a lower priority, thus hp(m3) = {m1}. In this case, m3 is sent in
the first DYN slot of the second bus cycle (the first slot of the first cycle is occupied
with m1) and thus will delay the transmission of m2. In this scenario, we notice
that assigning a lower frame identifier to a message does not necessarily reduce the
worst-case response time of that message (compare to the situation in Figure 15.10a,
where m3 has FrameID = 3).

We next focus on determining the delay wm(t) in (15.1). The delay produced by
all the elements in hp(m), lf (m) and ms(m) can extend to one or more bus cycles:

wm(t) = BusCyclesm(t)× Tbus + w′m(t), (15.3)

where BusCyclesm(t) is the number of bus periods for which the transmission of m
is not possible because transmission of messages from hp(m) and lf (m) and because
of minislots in ms(m). The delay w′m(t) denotes now the time that passes, in the last
bus cycle, until m is sent, and is measured from the beginning of the bus cycle in
which message m is sent until the actual transmission of m starts. For example, in
Figure 15.10b, BusCyclesm2 = 1 and w′m2

(t) = ST bus +Cm3 . Note that both these
terms are functions of time, computed over an analyzed interval t. This means that
when computing them we have to take into consideration all the elements in hp(m),
lp(m) and ms(m) that can appear during such a given time interval t. Thus, we will
consider the multiset hp(m, t) containing all the occurrences over time interval t
of elements in hp(m). The number of such occurrences for a message l ∈ hp(m)
is equal to: d(Jl + t)/Tle, where Tl is the period of the message l and Jl is its
worst-case jitter (such a jitter is computed as the difference between the worst-case
and best-case response times of its sender task s: Jl = Rs − Rbs [245]). Similarly,
lf (m, t) and ms(m, t) consider all the occurrences over t of elements in lf (m) and
ms(m), respectively.

The optimal (i.e., exact) solutions for determining the values for BusCyclesm(t)
and w′m(t) are beyond the scope of this section, and are presented in [267]. These,
can be intractable for larger problem sizes. Hence, in [267] we have proposed heuris-
tics that quickly compute upper bounds (i.e., pessimistic) values for these terms.
Once for any given time interval t we know how to obtain the values BusCycles(t)
and w′m(t), determining the worst-case response time for a message m becomes an
iterative process that computes Rkm(Rk−1

m), starting from R0
m = Cm and finishing

when Rkm = Rk−1
m .

Development Tools 401

15.4.3.2 Holistic Schedulability Analysis of FPS Tasks and DYN Messages

As mentioned in Section 15.4.1, the worst-case response times of FPS tasks are in-
fluenced on one hand by higher priority FPS tasks, and on the other hand by SCS
tasks. The worst-case response time Rij of a FPS task τij is determined as presented
in [245], and in [265] we have shown how to take into consideration the interference
on Rij produced by an existing static schedule. What is important to mention is that
Rij depends on jitters of the higher priority tasks and predecessors of τij . This means
that for all such activities we have to compute the jitter. In the rest of this section, we
will only concentrate on the situation when the jitter of a task depends on the arrival
time of a message.

According to the analysis of multiprocessor and distributed systems presented
in [245], the jitter for a task τr that starts execution only after it receives a message
m depends on the values of the best-case and worst-case transmission times of that
message:

Jτr
= Rm −Rbm. (15.4)

The calculation of the worst-case transmission time Rm of a DYN message m
was presented in Section 15.4.3.1. For computing Rbm we have to identify the best-
case scenario of transmitting messagem. Such a situation appears when the message
becomes ready immediately before the DYN slot with FrameIDm starts, and it is
sent during that bus cycle without experiencing any delay from higher priority mes-
sages. Thus, the equation for the best-case transmission time of a message is:

Rbm = Cm, (15.5)

where Cm is the time needed to send the message m.
We notice from (15.4) that the jitters for activities in the system depend on the

values of the worst-case response times, which in turn depend on the values of the
jitters [266]. Such a recursive system is solved using a fixed point iteration algorithm
in which the initial values for jitters are 0.

According to [245], the worst-case response time calculation of FPS tasks is of
exponential complexity and the approach proposed in [245] and also used in [265] is
a heuristic with a certain degree of pessimism. The pessimism of the response times
calculated by our holistic analysis will, of course, also depend on the quality of the
solution for the delay induced by the DYN messages transmitted over FlexRay. The
calculation of this delay is our main concern in this section. Therefore, when we
speak about optimal and heuristic solutions in this section we refer to the approach
used for calculating the BusCyclesm and w′m (used in the worst-case response times
calculation for DYN messages) and not the holistic response time analysis which is
based on the heuristics in [245, 265].

For the extension of the analysis to take into account the dual-channel FlexRay
bus, we direct the reader to [267].

402 Time-Triggered Communication

Real-Time Syst (2008) 39: 205–235 225

6 Bus access optimisation

The design of a FlexRay bus configuration for a given system consists of a collection
of solutions for the following subproblems: (1) determine the length of an ST slot,
(2) the number of ST slots, and (3) their assignment to nodes; (4) determine the
length of the DYN segment, (5) assign DYN slots to nodes, and (6) FrameIDs to
DYN messages.

The choice of a particular bus configuration is extremely important when design-
ing a specific system, since its characteristics heavily influence the global timing
properties of the application.

For example, notice in Fig. 8 how the structure of the ST segment influences the
response time of message m3 (for this example we ignored the DYN segment). The
figure considers a system with two nodes, N1 that sends message m1 and N2 that
sends messages m2 and m3. The message sizes are depicted in the figure. In the
first scenario, the ST segment consists of two slots, slot1 used by N1 and slot2 used
by N2. In this situation, message m3 can be scheduled only during the second bus
cycle, with a response time of 16. If the ST segment consists of 3 slots (Fig. 8b),
with N2 being allocated slot2 and slot3, then N2 is able to send both its messages
during the first bus cycle. The configuration in Fig. 8c consists of only two slots,
like in Fig. 8a. However, in this case the slots are longer, such that several messages
can be transmitted during the same frame, producing a faster response time for m3
(one should notice, however, that by extending the size of the ST slots we delay the
reception of message m1 and m2).

Similar optimisations can be performed with regard to the DYN segment. Let us
consider the example in Fig. 9, where we have two nodes N1 and N2. Node N1 is
transmitting messages m1 and m3, while N2 sends m2. Figure 9 depicts three con-
figuration scenarios, a–c. Table A depicts the frame identifiers for the scenario in
Fig. 9a, while Table B corresponds to Fig. 9b–c. The length of the ST slot has been
set to 8. In Fig. 9a, the length of the DYN segment is not able to accommodate both
m1 and m2, thus m2 will be sent during the second bus cycle, after the transmission of
m3 ends. Figure 9b and Fig. 9c depict the same system but with a different allocation

Fig. 8 Optimisation of the ST segmentFIGURE 15.11
Optimization of the ST Segment

15.4.4 Bus Access Optimization

The design of a FlexRay bus configuration for a given system consists of a collection
of solutions for the following subproblems: (1) determine the length of an ST slot,
(2) the number of ST slots, and (3) their assignment to nodes; (4) determine the
length of the DYN segment, (5) assign DYN slots to nodes and (6) FrameIDs to
DYN messages.

The choice of a particular bus configuration is extremely important when de-
signing a specific system, since its characteristics heavily influence the global timing
properties of the application.

For example, notice in Figure 15.11 how the structure of the ST segment in-
fluences the response time of message m3 (for this example, we ignored the DYN
segment). The figure considers a system with two nodes, N1 that sends message m1

andN2 that sends messagesm2 andm3. The message sizes are depicted in the figure.
In the first scenario, the ST segment consists of two slots, slot1 used by N1 and slot2
used by N2. In this situation, message m3 can be scheduled only during the second
bus cycle, with a response time of 16. If the ST segment consists of three slots (Fig-
ure 15.11b), with N2 being allocated slot2 and slot3, then N2 is able to send both its
messages during the first bus cycle. The configuration in Figure 15.11c consists of
only two slots, like in Figure 15.11a. However, in this case the slots are longer, such
that several messages can be transmitted during the same frame, producing a faster
response time for m3 (one should notice, however, that by extending the size of the
ST slots we delay the reception of message m1 and m2).

Similar optimizations can be performed with regard to the DYN segment. Let us
consider the example in Figure 15.12, where we have two nodesN1 andN2. NodeN1

is transmitting messages m1 and m3, while N2 sends m2. Figure 15.12 depicts three
configuration scenarios, a–c. Table A depicts the frame identifiers for the scenario
in Figure 15.12a, while Table B corresponds to Figure 15.12b–c. The length of the

Development Tools 403

226 Real-Time Syst (2008) 39: 205–235

F
ig

.9
O

pt
im

is
at

io
n

of
th

e
D

Y
N

se
gm

en
t

FI
G

U
R

E
15

.1
2

O
pt

im
iz

at
io

n
of

th
e

D
Y

N
Se

gm
en

t

404 Time-Triggered Communication398 Time-Triggered Communication

1 gdNumberOfStaticSlots = max(2, nodesST)
2 gdStaticSlot = max(Cm), m is an ST message
3 STbus = gdNumberOfStaticSlots *gdStaticSlot
4 assign one ST slot to each node (round robin)
5 for n = 1 to 64 do
6 gdCycle = Tss/n
7 if gdCycle < 16000 µs then
8 DYNbus = gdCycle − STbus
9 Assign FrameIDs to DYN messages
10 GlobalSchedulingAlgorithm()
11 Compute cost function Cost
12 if Cost < BestCost then save current solution
13 end if
14 end for

FIGURE 15.13
Basic Bus Configuration

slots during a bus cycle. Next, the size of an ST slot is set so that it can accommodate
the largest ST message in the system (line 2). In line 4, the configuration of the ST
segment is completed by assigning in a round robin fashion one ST slot to each node
that requires one (i.e. in a system with four nodes, where each node is sending in the
static segment, the ST segment of the bus cycle will contain four slots; node 1 will
use slot 1, node 2 will use ST slot 2, etc.).

When it comes to determining the size of the DYN segment, one has to take into
consideration the fact that the period of the bus cycle (gdCycle) has to be an integer
divisor8 of the period of the global static schedule (Tss). In addition, the FlexRay
protocol specifies that each node implementing a cyclic schedule maintains in the
communication controller a counter vCycleCounter that has values in the interval
0..63. This means that during a period of the static schedule there can be at most
64 bus cycles, which leads us to the conclusion that the value of gdCycle can be
determined by iterating over all possible values for vCycleCounter (lines 5–14) and
choosing the most favorable solution in terms of system schedulability (line 11).
Line 7 introduces a restriction imposed by the FlexRay specification, which limits
the maximum bus cycle length to 16 ms. Once the length of the bus cycle is set
(line 5), knowing the length ST bus of the ST segment (line 3), we can determine the
length DYN bus of the DYN segment (line 8).

At this point, in order to finish the design of the bus configuration, a FrameID has
to be assigned to each of the DYN messages (and implicitly DYN slots are assigned
to the nodes that generate the message). This assignment (line 9) is performed under
the following guidelines:

• Each DYN message receives an unique FrameID; this is recommended in order
to avoid large delays introduced by hp(m). For example, in Figure 15.12, we
notice that messagem3 has to wait for an entire gdCycle when it shares a frame
identifier with the higher priority messagem1(Figure 15.12a), which is not the
case when it has its own FrameID (Figure 15.12b).

8We consider that the TSS parameter is slightly adjusted, if necessary.

FIGURE 15.13
Basic Bus Configuration

ST slot has been set to 8. In Figure 15.12a, the length of the DYN segment is not
able to accommodate both m1 and m2, thus m2 will be sent during the second bus
cycle, after the transmission of m3 ends. Figure 15.12b and Figure 15.12c depict the
same system but with a different allocation of DYN slots to messages (Table B). In
Figure 15.12b we notice thatm3, which now does not share the same frame identifier
with m1, can be sent during the first bus cycle, thus m2 will be transmitted earlier
during the second cycle. Moreover, if we enlarge the size of the DYN segment as in
Figure 15.12c, then the worst-case response time of m2 will considerably decrease
since it will be sent during the first bus cycle (notice that in this case m3, having a
greater frame identifier than that of m2, will be sent only during the second cycle).

In order to illustrate the importance of choosing the right bus configuration, we
present three approaches for optimizing the bus access such that the schedulability of
the system is improved. The first approach builds a relatively straightforward, basic,
bus configuration. The other two approaches perform optimization over the basic
configuration.

15.4.4.1 The Basic Bus Configuration

In this section, we construct a Basic Bus Configuration (BBC) which is based on
analyzing the minimal bandwidth requirements imposed by the application.

The BBC algorithm is presented in Figure 15.13 and it starts by setting the num-
ber of ST slots in a bus cycle. The length Tbus of the bus cycle is captured by the
gdCycle protocol parameter. Since each node in the system that generates ST mes-
sages needs at least one ST slot, the minimum number of ST slots is nodesST , the
number of nodes that send ST messages (line 1). The protocol specification also im-
poses a minimum limit on the number of ST slots; therefore, even if there are no
nodes in the system that are using the ST segment, there should be at least two ST

Development Tools 405

slots during a bus cycle. Next, the size of an ST slot is set so that it can accommodate
the largest ST message in the system (line 2). In line 4, the configuration of the ST
segment is completed by assigning in a round robin fashion one ST slot to each node
that requires one (i.e., in a system with four nodes, where each node is sending in the
static segment, the ST segment of the bus cycle will contain four slots; node 1 will
use slot 1, node 2 will use ST slot 2, etc.).

When it comes to determining the size of the DYN segment, one has to take into
consideration the fact that the period of the bus cycle (gdCycle) has to be an integer
divisor8 of the period of the global static schedule (Tss). In addition, the FlexRay
protocol specifies that each node implementing a cyclic schedule maintains in the
communication controller a counter vCycleCounter that has values in the interval
0...63. This means that during a period of the static schedule there can be at most
64 bus cycles, which leads us to the conclusion that the value of gdCycle can be
determined by iterating over all possible values for vCycleCounter (lines 5–14) and
choosing the most favorable solution in terms of system schedulability (line 11).
Line 7 introduces a restriction imposed by the FlexRay specification, which limits
the maximum bus cycle length to 16 ms. Once the length of the bus cycle is set
(line 5), knowing the length ST bus of the ST segment (line 3), we can determine the
length DYN bus of the DYN segment (line 8).

At this point, in order to finish the design of the bus configuration, a FrameID has
to be assigned to each of the DYN messages (and implicitly DYN slots are assigned
to the nodes that generate the message). This assignment (line 9) is performed under
the following guidelines:

• Each DYN message receives an unique FrameID; this is recommended in order
to avoid large delays introduced by hp(m). For example, in Figure 15.12, we
notice that messagem3 has to wait for an entire gdCycle when it shares a frame
identifier with the higher priority messagem1(Figure 15.12a), which is not the
case when it has its own FrameID (Figure 15.12b).

• DYN messages with a higher criticality receive smaller FrameIDs. This is re-
quired in order to reduce, for a given message, the delays produced by lf (m)
and ms(m). We capture the criticality of a message m as:

CPm = Dm − LPm, (15.6)

where Dm is the deadline of the message and LPm is the longest path in the
task graph from the root to the node representing the communication of mes-
sage m. A small value of CPm (higher criticality) indicates that the message
should be assigned a smaller FrameID.

Once we have defined the structure of the bus cycle, we can analyze the entire
system (line 9) by performing the global static scheduling and analysis described
in Section 15.4.3. The resulting system is then evaluated using a cost function that
captures the schedulability degree of the system (line 10):

8We consider that the TSS parameter is slightly adjusted, if necessary.

406 Time-Triggered Communication400 Time-Triggered Communication

1 for gdNumberOfStaticSlots = gdNumberOfStaticSlotsmin to
gdNumberOfStaticSlotsmax do

2 for gdStaticSlot = gdStaticSlotmin to gdStaticSlotmax step 20 *
gdBit do

3 Assign ST slots to nodes
4 for n = 1 to 64 do
5 gdCycle = Tss/n
6 if gdCycle < 16000 µs then
7 DYNbus = gdCycle − STbus
8 do
9 Assign FrameIDs to DYN messages
10 GlobalSchedulingAlgorithm()
11 For all DYN messages, compute CPi
12 Compute cost function Cost
13 if Cost < BestCost then save current solution
14 while(BestCost unchanged for max iterations);
15 end if
16 end for
17 end for
18 end for

FIGURE 15.14
Greedy Heuristic

However, while for the BBC the allocation of FrameIDs to DYN messages is
based on the estimated criticality (15.6), here we explore several FrameID assign-
ment alternatives inside the loop in lines 8–14. We start from an initial assignment
as in the BBC after which a global scheduling is performed (line 10). Using the re-
sulted response times, in the next iteration we assign smaller FrameIDs with priority
to those DYN messages m that have a smaller value for Dm−Rm, where Dm is the
deadline and Rm is the worst case response time computed by the global scheduling.

15.4.4.3 Simulated Annealing-Based Approach

We have implemented a more exhaustive design space exploration than the one in
Sect. 15.4.4.2, using a Simulated Annealing (SA) [?] approach. While relatively
time consuming, this heuristic can be applied if both the BBC and the configura-
tion produced by the greedy approach are unschedulable. Starting from the solution
produced by the greedy optimization, the SA based heuristic explores the design
space performing the following set of moves:

• gdNumberOfStaticSlots is incremented or decremented, inside the allowed
limits (when an ST slot is added, it is allocated randomly to a node);

• gdStaticSlot is increased or decreased with 20 × gdBit , inside the allowed
limits;

• The assignment of ST slots to nodes is changed by re-assigning a randomly se-
lected ST slot from a nodeN1 to another nodeN2. We also use in this context a
similar transformation that switches the allocation of two ST slots, FrameID1

and FrameID2, used by two nodes N1 and N2 respectively;

FIGURE 15.14
Greedy Heuristic

Cost =

{
f1 =

∑
τij

max(Rij −Dij , 0), if f1 > 0,
f2 =

∑
τij

(Rij −Dij), if f1 = 0
(15.7)

where Rij and Dij are the worst-case response times and respectively the deadlines
for all the activities τij in the system. This function is positive if at least one task
or message in the system misses its deadline, and negative if the whole system is
schedulable. Its value is used in line 11 when deciding whether the current configu-
ration is the best one encountered so far.

15.4.4.2 Greedy Heuristic

The Basic Bus Configuration (BBC) generated as in the previous section can result
in an unschedulable system (the cost function in (15.7) is positive). In this case, addi-
tional points in the solution space have to be explored. In Figure 15.14, we present a
greedy heuristic that further explores the design space in order to find a schedulable
solution.

While for the BBC the number and size of ST slots has been set to the minimum
(gdNumberOfStaticSlotsmin = max(2,nodes), gdStaticSlotmin = max(Cm)),
the heuristic explores different alternative values between these minimal values and
the maxima imposed by the FlexRay protocol specification. Thus, during a bus cycle
there can be at most gdNumberOfStaticSlotsmax = 1023 ST slots, while the size
of a ST slot can take at most gdStaticSlotmax = 661 macroticks. In addition, the
payload for a FlexRay frame can increase only in 2-byte increments, which according
to the FlexRay specification translates into 20 gdBit, where gdBit is the time needed
for transmitting one bit over the bus (line 2).

Development Tools 407

The assignment of ST slots (line 3) to nodes is performed, like for the BBC, in
a round robin fashion, with the difference that each node can have not only one but
a quota of ST slots determined by the ratio of ST messages that it transmits (i.e., a
node that sends more ST messages will be allocated more ST slots).

The sizes of the bus cycle and of the DYN segment are assigned in lines 4–16 in
a similar way to the BBC algorithm.

However, while for the BBC the allocation of FrameIDs to DYN messages is
based on the estimated criticality (15.6), here we explore several FrameID assign-
ment alternatives inside the loop in lines 8–14. We start from an initial assignment
as in the BBC after which a global scheduling is performed (line 10). Using the re-
sulted response times, in the next iteration we assign smaller FrameIDs with priority
to those DYN messages m that have a smaller value for Dm−Rm, where Dm is the
deadline andRm is the worst-case response time computed by the global scheduling.

15.4.4.3 Simulated Annealing-Based Approach

We have implemented a more exhaustive design space exploration than the one in
Section 15.4.4.2, using a Simulated Annealing (SA) [46] approach. While relatively
time consuming, this heuristic can be applied if both the BBC and the configuration
produced by the greedy approach are unschedulable. Starting from the solution pro-
duced by the greedy optimization, the SA based heuristic explores the design space
performing the following set of moves:

• gdNumberOfStaticSlots is incremented or decremented, inside the allowed
limits (when an ST slot is added, it is allocated randomly to a node)

• gdStaticSlot is increased or decreased with 20 × gdBit , inside the allowed
limits

• The assignment of ST slots to nodes is changed by re-assigning a randomly se-
lected ST slot from a nodeN1 to another nodeN2. We also use in this context a
similar transformation that switches the allocation of two ST slots, FrameID1

and FrameID2, used by two nodes N1 and N2, respectively

• The assignment of DYN slots to messages is modified by switching the slots
used by two DYN messages

In Section 15.4.4.4 we used extensive, time consuming runs with the Simulated
Annealing approach, in order to produce a reference point for the evaluation of our
greedy heuristic.

15.4.4.4 Evaluation of Bus Optimization Heuristics

In order to evaluate our optimization algorithms, we generated seven sets of 25 ap-
plications representing systems of 2 to 7 nodes, respectively. We considered 10 tasks
mapped on each node, leading to applications with a number of 20 to 70 tasks. De-
pending on the mapping of tasks, each such system had up to 60 additional nodes in
the application task graph due to the communication tasks. The tasks were grouped

408 Time-Triggered CommunicationReal-Time Syst (2008) 39: 205–235 231

Fig. 12 Evaluation of bus optimisation algorithms

Finally, we considered the same real-life example implementing a vehicle cruise
controller as in Sect. 5.4. It consists of 54 tasks and 26 messages grouped in 4 task
graphs that are mapped over 5 nodes. Two of the task graphs were time triggered and
the other two were event triggered. Configuring the system using the BBC approach
took less than 0.001 seconds but resulted in a unschedulable system. Using the greedy
heuristic approach took 0.02 seconds, while the simulated annealing was allowed to
run for more than one hour; the cost function obtained by the latter was 4% smaller
(meaning that the response times were also smaller) than in the solution obtained
with the greedy heuristic, but in both cases the selected bus configuration resulted in
a schedulable system.

7 Conclusions

In this paper, we have presented a schedulability analysis for the FlexRay commu-
nication protocol. For ST messages we have built a static cyclic schedule, while for
DYN messages we have, for the first time, developed a worst-case response time
analysis. This analysis has been integrated in the context of a holistic schedulability
analysis that determines the timing properties for all the tasks and messages in the
system. Since FlexRay is rapidly becoming one of the preferred protocols for auto-
motive applications, the development of such an analysis is of huge importance.

We have proposed three approaches for the derivation of worst-case response times
of DYN messages. OO uses an ILP formulation to derive the optimal solution for
the communication delay. HH uses heuristic-based upper-bounds for a bin-covering
problem in order to quickly determine good quality response times. OH is able to
further reduce the pessimism of HH by using an ILP formulation for one part of the
solution. Our experiments have shown that the HH approach is efficiently producing
high quality results.

Finally, we have shown the importance of finding a bus configuration that is dedi-
cated to the particular needs of the application, and have also proposed heuristics that

FIGURE 15.15
Evaluation of Bus Optimization Algorithms

in task graphs of five tasks each. Half of the tasks in each system were time triggered
and half were event triggered. The execution times were generated in such a way
that the utilization on each node was between 30% and 60% (similarly, the message
transmission times were generated so that the bus utilization was between 10% and
70%). All experiments were run on an AMD Athlon 2400+ PC.

Figure 15.15 shows the results obtained after running our three algorithms pro-
posed in Section 15.4.4 (BBC—Basic Bus Configuration, GH—Greedy Heuris-
tic, and SA—Simulated Annealing). In Figure 15.15a, we show the percentage of
schedulable applications, while in Figure 15.15b, we present the computation times
required by each algorithm. One can notice that the BBC approach runs in almost
zero time, but it fails to find any schedulable configurations for systems with more
than four processors. On the other hand, the other two approaches continue to find
schedulable solutions even for larger systems. Moreover, the percentage of schedula-
ble solutions found by the greedy algorithm is comparable with the one obtained with
the simulated annealing. Furthermore, the computation time required by the greedy
heuristic is several orders of magnitude smaller than the one needed for the extensive
runs of simulated annealing.9

15.5 Incremental Design
We have briefly introduced the issue of incremental design in Section 15.2. Incre-
mental design has similarities with design for flexibility and scalability. The issue of

9Due to the extensive runs with SA, we can assume that the actual percentage of schedulable applica-
tions is close to that found by SA.

Development Tools 409

scalability in time-triggered systems has been investigated in [358], where the au-
thors are interested in generating schedules which (i) allow tasks to increase their
WCET without the need for rescheduling and (ii) have idle times distributed peri-
odically to allow future expansion. Haubelt et al. [127] consider the requirement of
flexibility as a parameter during design space exploration. Their goal is the gener-
ation of an architecture which, at an acceptable cost, is able to implement different
applications or variants of a certain application.

In this section, we present an approach for mapping and scheduling of distributed
embedded systems for hard real-time applications, aiming at a minimization of the
system modification cost. We consider an incremental design process that starts from
an already existing system running a set of applications. We are interested in imple-
menting new functionality such that the timing requirements are fulfilled, and the
following two requirements are also satisfied: The already running applications are
disturbed as little as possible, and there is a good chance that, later, new functionality
can easily be added to the resulted system. Thus, we propose a heuristic which finds
the set of already running applications which have to be remapped and rescheduled
at the same time with mapping and scheduling the new application, such that the
disturbance on the running system (expressed as the total cost implied by the modifi-
cations) is minimized. Once this set of applications has been determined, we outline a
mapping and scheduling algorithm aimed at fulfilling the requirements stated above.
The approaches have been evaluated based on extensive experiments using a large
number of generated benchmarks.

1. First, we consider mapping and scheduling for hard real-time embedded sys-
tems in the context of a realistic communication model based on a time di-
vision multiple access (TDMA) protocol as recommended for applications in
areas like, for example, automotive electronics [180]. We accurately take into
consideration overheads due to communication and consider, during the map-
ping and scheduling process, the particular requirements of the communication
protocol.

2. Next, we have considered the design of distributed embedded systems in the
context of an incremental design process as outlined above. This implies that
we perform mapping and scheduling of new functionality on a given dis-
tributed embedded system, so that certain design constraints are satisfied and,
in addition: (a) The already running applications are disturbed as little as pos-
sible. (b) There is a good chance that, later, new functionality can easily be
mapped on the resulted system.

We propose a new heuristic, together with the corresponding design criteria,
which finds the set of old applications which have to be remapped and rescheduled
at the same time with mapping and scheduling the new application, such that the
disturbance on the running system (expressed as the total cost implied by the modi-
fications) is minimized. Once this set of applications has been determined, mapping
and scheduling are performed according to the requirements stated above.

Supporting such a design process is of critical importance for current and future

410 Time-Triggered Communication

1 2

RT-Kernel

MBI

CPU

TTP Controller

3

RT-Kernel

MBI

CPU

TTP Controller

S1 S0 S1

m1
m1

m2
m2

m2 m2

N0 N1

Round 2

m2

FIGURE 15.16
Message Passing Mechanism

industrial practice, as the time interval between successive generations of a product
is continuously decreasing, while the complexity due to increased sophistication of
new functionality is growing rapidly. The goal of reducing the overall cost of succes-
sive product generations has been one of the main motors behind the, currently very
popular, concept of platform-based design [163, 216]. Although, in this section, we
are not explicitly dealing with platform-based systems, most of the results are also
valid in the context of this design paradigm.

15.5.1 Preliminaries

In this chapter, the concepts of incremental design are investigated in the context of
TTP-based systems. However, the techniques presented here are also applicable to
other time-triggered protocols.

15.5.1.1 System Architecture

Thus, we consider architectures consisting of nodes connected by a broadcast com-
munication channel. Every node consists of a TTP controller, processor, memory
and an I/O interface to sensors and actuators. For the details of TTP, please refer to
Chapter 5.

We assume that each node in the architecture has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the information needed
to take decisions on activation of tasks and each communication controller has a
schedule table to decide the transmission of messages.

Development Tools 411

The message passing mechanism is illustrated in Figure 15.16, where we have
three tasks, τ1 to τ3. τ1 and τ2 are mapped to node N0 that transmits in slot S0, and
τ3 is mapped to nodeN1 that transmits in slot S1. Messagem1 is transmitted between
τ1 and τ2 that are on the same node, while message m2 is transmitted from τ1 to τ3
between the two nodes. We consider that each task has its own memory locations for
the messages it sends or receives and that the addresses of the memory locations are
known to the kernel through the schedule table.

τ1 is activated according to the schedule table, and when it finishes it calls the
send kernel function in order to sendm1, and thenm2. Based on the schedule table,
the kernel copies m1 from the corresponding memory location in τ1 to the memory
location in τ2. When τ2 will be activated, it finds the message in the right location.
According to our scheduling policy, whenever a receiving task needs a message, the
message is already placed in the corresponding memory location. Thus, there is no
overhead on the receiving side, for messages exchanged on the same node.

Message m2 has to be sent from node N0 to node N1. At a certain time, known
from the schedule table, the kernel transfers m2 to the TTP controller by packaging
it into a frame in the MBI. Later on, the TTP controller knows from its MEDL when
it has to take the frame from the MBI, in order to broadcast it on the bus. In our
example, the timing information in the schedule table of the kernel and the MEDL is
determined in such a way that the broadcasting of the frame is done in the slot S0 of
Round 2. The TTP controller of node N1 knows from its MEDL that it has to read
a frame from slot S0 of Round 2 and to transfer it into the MBI. The kernel in node
N1 will read the message m2 from the MBI. When τ3 will be activated based on the
local schedule table of nodeN1, it will already havem2 in its right memory location.

In [260] we presented a detailed discussion concerning the overheads due to the
kernel and to every system call. We also presented formulas to derive the worst-case
execution delay of a task, taking into account the overhead of the timer interrupt, the
worst-case overhead of the task activation and message passing functions.

15.5.1.2 Application Mapping and Scheduling

Considering a system architecture like the one presented earlier, the mapping of
a task graph G(V, E) is given by a function M : V → PE, where PE =
{N1, N2, .., Nnpe} is the set of nodes (processing elements). For a task τi ∈ V ,
M(τi) is the node to which τi is assigned for execution. Each task τi can potentially
be mapped on several nodes. Let Nτi ⊆ PE be the set of nodes to which τi can
potentially be mapped. For each Ni ∈ Nτi

, we know the worst-case execution time
tNi
τi

of task τi, when executed on Ni. Messages transmitted between tasks mapped
on different nodes are communicated through the bus, in a slot corresponding to the
sending node. The maximum number of bits transferred in such a message is also
known.

In order to implement an application, represented as a set of task graphs, the de-
signer has to map the tasks to the system nodes and to derive a static cyclic schedule
such that all deadlines are satisfied. We first illustrate some of the problems related
to mapping and scheduling, in the context of a system based on a TDMA communi-

412 Time-Triggered Communication

a) Tasks 2 and 4 are mapped on the fast node

b) Tasks 2 and 4 are mapped on the slow node

N2
(slow) 1

2

3

4

N1 N2 N3

4ms

12ms

8ms

–

12ms
4ms

8ms

–

––

TDMA round:

–

–

N1
N3

(fast)

Slot lengths: S1 = S2 = S3 = 4 ms

m1,2 m1,4

Node1

Node3

Bus

2

3

4

m2,3 m4,3
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1S1 S2 S3

1

m1,2 m1,4

2

3

4

m2,3 m4,3
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1S1 S2 S3

1

T = D = 50ms

Node1

Node2

Bus

1

2 4

3 S1 S2 S3

Task execution times

0ms

0ms4ms 52ms

4ms 48ms

FIGURE 15.17
Mapping and Scheduling Example

Development Tools 413

cation protocol, before going on to explore further aspects specific to an incremental
design approach.

Let us consider the example in Figure 15.17 where we want to map an application
consisting of four tasks τ1 to τ4, with a period and deadline of 50 ms. The architecture
is composed of three nodes that communicate according to a TDMA protocol, such
that Ni transmits in slot Si. For this example, we suppose that there is no other
previous application running on the system. According to the specification, tasks τ1
and τ3 are constrained to node N1, while τ2 and τ4 can be mapped on nodes N2 or
N3, but not N1. The worst-case execution times of tasks on each potential node and
the sequence and size of TDMA slots are presented in Figure 15.17. In order to keep
the example simple, we suppose that the message sizes are such that each message
fits into one TDMA slot.

We consider two alternative mappings. If we map τ2 and τ4 on the faster proces-
sor N3, the resulting schedule length (Figure 15.17a) will be 52 ms which does not
meet the deadline. However, if we map τ2 and τ4 on the slower processor N2, the
schedule length (Figure 15.17b) is 48 ms, which meets the deadline. Note, that the
total traffic on the bus is the same for both mappings and the initial processor load is
0 on both N2 and N3. This result has its explanation in the impact of the communi-
cation protocol. τ3 cannot start before receiving messages m2,3 and m4,3. However,
slot S2 corresponding to node N2 precedes in the TDMA round slot S3 on which
node N3 communicates. Thus, the messages which τ3 needs are available sooner in
the case τ2 and τ4 are, counter-intuitively, mapped on the slower node.

But finding a valid schedule is not enough if we are to support an incremental
design process as discussed in the introduction. In this case, starting from a valid
design, we have to improve the mapping and scheduling so that not only the design
constraints are satisfied, but also there is a good chance that, later, new functionality
can easily be mapped on the resulted system.

To illustrate the role of mapping and scheduling in the context of an incremental
design process, let us consider the example in Figure 15.18. For simplicity, we con-
sider an architecture consisting of a single processor. The system is currently run-
ning application Ψ (Figure 15.18a). At a particular moment, application A1 has to
be implemented on top of Ψ. Three possible implementation alternatives for A1 are
depicted in Figure 15.18b1, 15.18c1 and 15.18d1. All three are meeting the imposed
time constraint for A1. At a later moment, application A2 has to be implemented
on the system running Ψ and A1. If A1 has been implemented as shown in Fig-
ure 15.18b1, there is no possibility to map application A2 on the given system (in
particular, there is no time slack available for task τ7). If A1 has been implemented
as in Figure 15.18c1 or 15.18d1,A2 can be correctly mapped and scheduled on top of
Ψ andA1. There are two aspects which should be highlighted based on this example:

1. If application A1 is implemented like in Figure 15.18c1 or 15.18d1, it is pos-
sible to implement A2 on top of the existing system, without performing any
modifications on the implementation of previous applications. This could be
the case if, during implementation of A1, the designers have taken into con-
sideration the fact that, in future, an application having the characteristics of
A2 will possibly be added to the system.

414 Time-Triggered Communication

2. If A1 has been implemented like in Figure 15.18b1, A2 can be added to the
system only after performing certain modifications on the implementation of
A1 and/or Ψ. In this case, of course, it is important to perform as few as possi-
ble modifications on previous applications, in order to reduce the development
costs.

15.5.2 Problem Formulation

As shown in Section 15.5.1, we capture the functionality of a system as a set of
applications. An application A consists of a set of task graphs Gi ∈ A. For each
task τi in a task graph we know the set Nτi

of potential nodes on which it could
be mapped and its worst-case execution time on each of these nodes. We also know
the maximum number of bits to be transmitted by each message. The underlying
architecture is as presented in Section 15.5.1.1. We consider a non-preemptive static
cyclic scheduling policy for both tasks and message passing.

Our goal is to map and schedule an applicationAcurrent on a system that already
implements a set Ψ of applications, considering the following requirements:

• Requirement a: All constraints on Acurrent are satisfied and minimal modifi-
cations are performed to the implementation of applications in Ψ.

• Requirement b: New applicationsAfuture can be mapped on top of the result-
ing system.

We illustrate such an incremental design process in Figure 15.19. The product is
implemented as a three processor system and its versionN−1 consists of the set Ψ of
two applications (the tasks belonging to these applications are represented as white
and black disks, respectively). At the current moment, application Acurrent is to be
added to the system, resulting in version N of the product. However, a new version,
N+1, is very likely to follow and this fact is to be considered during implementation
of Acurrent.10

If it is not possible to map and schedule Acurrent without modifying the imple-
mentation of the already running applications, we have to change the scheduling and
mapping of some applications in Ψ. However, even with remapping and reschedul-
ing all applications in Ψ, it is still possible that certain constraints are not satisfied.
In this case, the hardware architecture has to be changed by, for example, adding a
new processor, and the mapping and scheduling procedure for Acurrent has to be
restarted. In this section, we will not further elaborate on the aspect of adding new
resources to the architecture, but will concentrate on the mapping and scheduling as-
pects. Thus, we consider that a possible mapping and scheduling of Acurrent which
satisfies the imposed constraints can be found (with minimizing the modification of

10The design process outlined here also applies when Acurrent is a new version of an application
Aold ∈ Ψ. In this case, all the tasks and communications belonging to Aold are eliminated from the
running system Ψ, before starting the mapping and scheduling ofAcurrent.

Development Tools 415

1 2

1 2

1 2

1 2

1 2

1 2

1 2

6

7

3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

6

6 7

1

2
3

4

5

6

7

Application
t

1
 = t

2
 = 10ms

T = D = 90ms

Application A
t

3
 = t

4
 = t

5
 = 10ms

TA = 90 ms; DA = 80ms

Application A
t

6
 = 10ms; t

7
 = 30ms

TA = DA = 90ms

a) Initial system, running application

b1) Application A on top of : 1st alternative

b2) Application A on top of the 1st alternative:
7 cannot be mapped.

c1) Application A on top of : 2nd alternative

c2) Application A on top of the 2nd alternative:
successful implementation.

d1) Application A on top of : 3rd alternative

d2) Application A on top of the 3rd alternative:
successful implementation.

90ms

80ms

90ms

FIGURE 15.18
Application A2 Implemented on Top of Ψ and A1

416 Time-Triggered Communication

Existing
applications:

Application to

Possible future
V

er
si

on
 N

V
er

si
on

 N
1

V
er

si
on

 N
+1

be added to
the system:

Acurrent

application to
be added:

Afuture

Im
plem

ent A
current so that:

1. constraints on A
current are satisfied;

2. m
odifications of

 are m
inim

ized;
3. good chance to im

plem
ent A

future ;

FIGURE 15.19
Incremental Design Process

the already running applications), and this solution has to be further improved in
order to facilitate the implementation of future applications.

In order to achieve our goal, we need certain information to be available con-
cerning the set of applications Ψ as well as the possible future applications Afuture.
What exactly we have to know about these applications will be discussed in Sec-
tion 15.5.3. In Section 15.5.4 we then introduce the quality metrics which will allow
us to give a more rigorous formulation of the problem we are going to solve.

The tasks in application Acurrent can interact with the previously mapped appli-
cations Ψ by reading messages generated on the bus by tasks in Ψ. In this case, the
reading task has to be synchronized with the arrival of the message on the bus, which
is easy to model as an additional time constraint on the particular receiving task. This
constraint is then considered (as any other deadline) during scheduling of Acurrent.

15.5.3 Characterizing Existing and Future Applications

15.5.3.1 Characterizing the Already Running Applications

To perform the mapping and scheduling of Acurrent, the minimum information
needed, concerning the already running applications Ψ, consists of the local sched-
ule tables for each processor node. Thus, we know the activation time for each task
previously mapped on the respective node and its worst-case execution time. As for
messages, their length as well as their place in the particular TDMA frame are known.

Development Tools 417

If the initial attempt to schedule and map Acurrent does not succeed, we have to
modify the schedule and, possibly, the mapping of applications belonging to Ψ, in the
hope of finding a valid solution for Acurrent. The goal is to find that minimal modi-
fication to the existing system which leads to a correct implementation of Acurrent.
In our context, such a minimal modification means remapping and/or rescheduling a
subset Ω of the old applications, Ω ⊆ Ψ, so that the total cost of re-implementing Ω
is minimized.

Remapping and/or rescheduling a certain applicationAi ∈ Ψ can trigger the need
to also perform modifications of one or several other applications because of, for ex-
ample, the dependencies between tasks belonging to these applications. In order to
capture such dependencies between the applications in Ψ, as well as their modifi-
cation costs, we have introduced a representation called the application graph. We
represent a set of applications as a directed acyclic graph G(V,E), where each node
Ai ∈ V represents an application. An edge eij ∈ E from Ai to Aj indicates that
any modification to Ai would trigger the need to also remap and/or reschedule Aj ,
because of certain interactions between the applications.11 Each application in the
graph has an associated attribute specifying if that particular application is allowed
to be modified or not (in which case, it is called frozen). To those nodes Ai ∈ V
representing modifiable applications, the designer has associated a cost RAi

of re-
implementing Ai. Given a subset of applications Ω ⊆ Ψ, the total cost of modifying
the applications in A is:

R(Ω) =
∑
Ai∈Ω

RAi
. (15.8)

Modifications of an already running application can only be performed if the task
graphs corresponding to that application, as well as the related deadlines (which have
to be satisfied also after remapping and rescheduling), are available. However, this
is not always the case, and in such situations that particular application has to be
considered frozen.

In Figure 15.20, we present the graph corresponding to a set of 10 applications.
Applications A6, A8, A9 and A10, depicted in black, are frozen: No modifications
are possible to them. The rest of the applications have the modification cost RAi

depicted on their left. A7 can be remapped/rescheduled with a cost of 20. If A4 is to
be re-implemented, this also requires the modification of A7, with a total cost of 90.
In the case of A5, although not frozen, no remapping/rescheduling is possible as it
would trigger the need to modify A6, which is frozen.

To each application Ai ∈ V the designer has associated a cost RAi
of re-

implementing Ai. Such a cost can typically be expressed in man-hours needed to
perform retesting ofAi and other tasks connected to the remapping and rescheduling
of the application. If an application is remapped or rescheduled, it has to be validated
again. Such a validation phase is very time consuming. In the automotive industry,
for example, the time-to-market in the case of the powertrain unit is 24 months. Out

11If a set of applications has a circular dependence, such that the modification of any one implies the
remapping of all the others in that set, the set will be represented as a single node in the graph.

418 Time-Triggered Communication

A1 A2

A3

A4 A5

A6

A7
A8 A9 A10

FIGURE 15.20
Characterizing the Set of Already Running Applications

of these, five months, representing more than 20%, are dedicated to validation. In the
case of the telematic unit, the time to market is less than one year, while the vali-
dation time is two months [291]. However, if an application is not modified during
implementation of new functionality, only a small part of the validation tasks have
to be re-performed (e.g., integration testing), thus reducing significantly the time-to-
market, at no additional hardware or development cost.

How to concretely perform the estimation of the modification cost related to an
application is beyond the topic of this section. Several approaches to cost estimation
for different phases of the software life-cycle have been elaborated and are available
in the literature [75, 271]. One of the most influential software cost models is the
Constructive Cost Model (COCOMO) [37]. Such estimations can be used by the
designer as the cost metrics assigned to the nodes of an application graph.

In general, it can be the case that several alternative costs are associated to a
certain application, depending on the particular modification performed. Thus, for
example, we can have a certain cost if tasks are only rescheduled, and another one if
they are also remapped on an alternative node. For different modification alternatives
considered during design space exploration, the corresponding modification cost has
to be selected. In order to keep the discussion reasonably simple, we present the
case with one single modification cost associated to an application. However, the
generalization for several alternative modification costs is straightforward.

15.5.3.2 Characterizing Future Applications

What do we suppose to know about the family Afuture of applications which do
not exist yet? Given a certain limited application area (e.g., automotive electronics),
it is not unreasonable to assume that, based on the designers’ previous experience,
the nature of expected future functions to be implemented, profiling of previous ap-
plications, available incomplete designs for future versions of the product, etc., it is
possible to characterize the family of applications which possibly could be added
to the current implementation. This is an assumption which is basic for the con-
cept of incremental design. Thus, we consider that, with respect to the future ap-
plications, we know the set St = {tmin, ...ti, ...tmax} of possible worst-case exe-
cution times for tasks, and the set Sb = {bmin, ...bi, ...bmax} of possible message
sizes. We also assume that over these sets we know the distributions of probabil-

Development Tools 419

ity fSt
(t) for t ∈ St and fSb

(b) for b ∈ Sb. For example, we might have pre-
dicted possible worst-case execution times of different tasks in future applications
St = {50, 100, 200, 300, 500 ms}. If there is a higher probability of having tasks of
100 ms, and a very low probability of having tasks of 300 ms and 500 ms, then our
distribution function fSt

(t) could look like this: fSt
(50) = 0.20, fSt

(100) = 0.50,
fSt

(200) = 0.20, fSt
(300) = 0.05, and fSt

(500) = 0.05.
Another piece of information is related to the period of task graphs which could

be part of future applications. In particular, the smallest expected period Tmin is as-
sumed to be given, together with the expected necessary processor time tneed, and
bus bandwidth bneed, inside such a period Tmin. As will be shown later, this infor-
mation is treated in a flexible way during the design process and is used in order to
provide a fair distribution of available resources.

The execution times in St, as well as tneed, are considered relative to the slow-
est node in the system. All the other nodes are characterized by a speedup factor
relative to this slowest node. A normalization with these factors is performed when
computing the metrics Cτ1 and Cτ2 introduced in the following section.

15.5.4 Quality Metrics and Objective Function

A designer will be able to map and schedule an application Afuture on top of a
system implementing Ψ andAcurrent only if there are sufficient resources available.
In our case, the resources are processor time and the bandwidth on the bus. In the
context of a non-preemptive static scheduling policy, having free resources translates
into having free time slots on the processors and having space left for messages in
the bus slots. We call these free slots of available time on the processor or on the
bus, slack. It is to be noted that the total quantity of computation and communication
power available on our system after we have mapped and scheduled Acurrent on
top of Ψ is the same regardless of the mapping and scheduling policies used. What
depends on the mapping and scheduling strategy is the distribution of slacks along the
time line and the size of the individual slacks. It is exactly this size and distribution of
the slacks that characterizes the quality of a certain design alternative from the point
of view of flexibility for future upgrades. In this section, we introduce two criteria in
order to reflect the degree to which one design alternative meets the requirement (b)
presented in Section 15.5.2. For each criterion, we provide metrics which quantify
the degree to which the criterion is met. The first criterion reflects how well the
resulted slack sizes fit to a future application, and the second criterion expresses how
well the slack is distributed in time.

15.5.4.1 Slack Sizes (the first criterion)

The slack sizes resulted after implementation of Acurrent on top of Ψ should be
such that they best accommodate a given family of applications Afuture, character-
ized by the sets St, Sb and the probability distributions fSt

and fSb
, as outlined in

Section 15.5.3.2.
Let us go back to the example in Figure 15.18 where A1 is what we now call

420 Time-Triggered Communication

Acurrent, while A2, to be later implemented on top of Ψ and A1, is Afuture. This
Afuture consists of the two tasks τ6 and τ7. It can be observed that the best configu-
ration from the point of view of accommodating Afuture, taking into consideration
only slack sizes, is to have a contiguous slack after implementation ofAcurrent (Fig-
ure 15.18d1). However, in reality, it is almost impossible to map and schedule the
current application such that a contiguous slack is obtained. Not only is it impossi-
ble, but it is also undesirable from the point of view of the second design criterion,
to be discussed next. However, as we can see from Figure 15.18b1, if we schedule
Acurrent such that it fragments the slack too much, it is impossible to fit Afuture
because there is no slack that can accommodate task τ7. A situation such as the one
depicted in Figure 15.18c1 is desirable, where the resulted slack sizes are adapted to
the characteristics of the Afuture application.

In order to measure the degree to which the slack sizes in a given design alter-
native fit the future applications, we provide two metrics, Cτ1 and Cm1 . Cτ1 captures
how much of the largest future application which theoretically could be mapped on
the system can be mapped on top of the current design alternative. Cm1 is similar
relative to the slacks in the bus slots.

How does the largest future application which theoretically could be mapped
on the system look like? The total processor time and bus bandwidth available for
this largest future application is the total slack available on the processors and bus,
respectively, after implementing Acurrent. Process and message sizes of this hypo-
thetical largest application are determined knowing the total size of the available
slack, and the characteristics of the future applications as expressed by the sets St
and Sb, and the probability distributions fSt

and fSb
. Let us consider, for exam-

ple, that the total slack size on the processors is 2800 ms and the set of possible
worst-case execution times is St = {50, 100, 200, 300, 500 ms}. The probability
distribution function fSt is defined as follows: fSt(50) = 0.20, fSt(100) = 0.50,
fSt

(200) = 0.20, fSt
(300) = 0.05 and fSt

(500) = 0.05. Under these circum-
stances, the largest hypothetical future application will consist of 20 tasks: 10 tasks
(half of the total, ft(100) = 0.50) with a worst-case execution time of 100 ms, 4
tasks with 50 ms, 4 with 200 ms, one with 300 and one with 500 ms.

After we have determined the number of tasks of this largest hypotheti-
cal Afuture and their worst-case execution times, we apply a bin-packing algo-
rithm [215] using the best-fit policy in which we consider tasks as the objects to
be packed, and the available slacks as containers. The total execution time of tasks
which are left unpacked, relative to the total execution time of the whole task set,
gives the Cτ1 metric. The same is the case with the metric Cm1 , but applied to mes-
sage sizes and available slacks in the bus slots.

Let us consider the example in Figure 15.18 and suppose a hypothetical Afuture
consisting of two tasks like those of application A2. For the design alternatives
in Figure 15.18c1 and 15.18d1, Cτ1 = 0% (both alternatives are perfect from
the point of view of slack sizes). For the alternative in Figure 15.18b1, however,
Cτ1 = 30/40 = 75% the worst-case execution time of τ7 (which is left unpacked)
relative to the total execution time of the two tasks.

Development Tools 421

15.5.4.2 Distribution of Slacks (the second criterion)

In the previous section, we defined a metric which captures how well the sizes of the
slacks fit a possible future application. A similar metric is needed to characterize the
distribution of slacks over time.

Let τi be a task with period Tτi that belongs to a future application, and M(τi)
the node on which τi will be mapped. The worst-case execution time of τi is tM(τi)

τi .
In order to schedule τi, we need a slack of size tM(τi)

τi that is available periodically,
within a period Tτi

, on processor M(τi). If we consider a group of tasks with period
T , which are part of Afuture, in order to implement them, a certain amount of slack
is needed which is available periodically, with a period T , on the nodes implementing
the respective tasks.

During implementation of Acurrent, we aim for a slack distribution such that
the future application with the smallest expected period Tmin and with the neces-
sary processor time tneed, and bus bandwidth bneed, can be accommodated (see Sec-
tion 15.5.3.2).

Thus, for each node, we compute the minimum periodic slack, inside a Tmin
period. By summing these minima, we obtain the slack which is available periodi-
cally to Afuture. This is the Cτ2 metric. The Cm2 metric characterizes the minimum
periodically available bandwidth on the bus and it is computed in a similar way.

In Figure 15.21 we consider an example with Tmin = 120 ms, tneed = 90 ms
and bneed = 65 ms. The length of the schedule table of the system implement-
ing Ψ and Acurrent is 360 ms (in Section 15.5.5 we will elaborate on the length
of the global schedule table). Thus, we have to investigate three periods of length
Tmin each. The system consists of three nodes. Let us consider the situation in
Figure 15.21a. In the first period, Period 0, there are 40 ms of slack available on
Node1, in the second period 80 ms, and in the third period no slack is available on
Node1. Thus, the total slack a future application of period Tmin can use on Node1

is min(40, 80, 0) = 0 ms. Neither can Node2 provide slack for this application, as
in Period 1 there is no slack available. However, on Node3 there are at least 40 ms
of slack available in each period. Thus, with the configuration in Figure 15.21a we
have Cτ2 = 20 ms, which is not sufficient to accommodate tneed = 90 ms. The
available periodic slack on the bus is also insufficient: Cm2 = 60 ms < bneed. How-
ever, in the situation presented in Figure 15.21b, we have Cτ2 = 120 ms > tneed,
and Cm2 = 90 ms > bneed.

15.5.4.3 Objective Function and Exact Problem Formulation

In order to capture how well a certain design alternative meets the requirement (b)
stated in Section 15.5.2, the metrics discussed before are combined in an objective
function, as follows:

C = wτ1 (Cτ1)2 + wm1 (Cm1)2 + wτ2 max(0, tneed − Cτ2) + wm2 max(0, bneed − Cm2)
(15.9)

422 Time-Triggered Communication

where the metric values introduced in the previous section are weighted by the con-
stants wτ1 , wτ2 , wm1 and wm2 . Our mapping and scheduling strategy will try to min-
imize this function. The first two terms measure how well the resulted slack sizes
fit to a future application (the first criterion), while the second two terms reflect the
distribution of slacks (the second criterion). In order to obtain a balanced solution
that favors a good fitting both on the processors and on the bus, we have used the
squares of the metrics.

We call a valid solution that mapping and scheduling which satisfies all the design
constraints (in our case the deadlines) and meets the second criterion (Cτ2 ≥ tneed
and Cm2 ≥ bneed).12

At this point, we can give an exact formulation of our problem. Given an existing
set of applications Ψ which are already mapped and scheduled, and an application
Acurrent to be implemented on top of Ψ, we are interested in finding the subset
Ω ⊆ Ψ of old applications to be remapped and rescheduled such that we produce
a valid solution for Acurrent ∪ Ω and the total cost of modification R(Ω) is mini-
mized. Once such a set Ω of applications is found, we are interested in optimizing
the implementation ofAcurrent∪Ω such that the objective function C is minimized,
considering a family of future applications characterized by the sets St and Sb, the
functions fSt

and fSb
as well as the parameters Tmin, tneed, and bneed.

A mapping and scheduling strategy based on this problem formulation is pre-
sented in the following section.

15.5.5 Mapping and Scheduling Strategy

As shown in the algorithm in Figure 15.22, our mapping and scheduling strategy
(MS) consists of two steps. In the first step we try to obtain a valid solution for
the mapping and scheduling of Acurrent ∪ Ω so that the modification cost R(Ω) is
minimized. Starting from such a solution, the second step iteratively improves the
design in order to minimize the objective function C. In the context in which the
second criterion is satisfied after the first step, improving the cost function during the
second step aims at minimizing the value of wτ1 (Cτ1)2 + wm1 (Cm1)2.

If the first step has not succeeded in finding a solution such that the imposed time
constraints are satisfied, this means that there are not sufficient resources available
to implement the application Acurrent. Thus, modifications of the system architec-
ture have to be performed before restarting the mapping and scheduling procedure.
If, however, the timing constraints are met but the second design criterion is not
satisfied, a larger Tmin (smallest expected period of a future application, see Sec-
tion 15.5.3.2) or smaller values for tneed and/or bneed are suggested to the designer.
This, of course, reduces the frequency of possible future applications and the amount
of processor and bus resources available to them.

In the following section, we briefly discuss the basic mapping and scheduling
algorithm we have used in order to generate an initial solution. The heuristic used to

12This definition of a valid solution can be relaxed by imposing only the satisfaction of deadlines. In
this case, the algorithm in Figure 15.22 will look after a solution which satisfies the deadlines and R(Ω)
is minimized; the additional second criterion is, in this case, only considered optionally.

Development Tools 423

min(40, 80, 0) = 0ms

min(40, 0, 80) = 0ms

min(80, 80, 40) = 40ms

C2 = 40 + 0 + 0 = 40ms

min(40, 40, 40) = 40ms

min(40, 40, 40) = 40ms

min(80, 80, 40) = 40ms

C2 = 40 + 40 + 40 = 120ms

Time slots occupied by and Acurrent Slack

a)

b)

360 ms

Tmin

Cm
2 = min(60,120, 90) = 60ms

Cm
2 = min(90, 90, 90) = 90ms

Node1

Node2

Period 0 Period 1 Period 2

1

Node3

Bus S1 S2 S3

Round 0 Round 1 Round 2 Round 3

Node1

Node2

Node3

Bus
Round 0 Round 1 Round 2 Round 3

S1 S2 S3 S1 S2 S3 S1 S2 S3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

FIGURE 15.21
Example for the Second Design Criterion

iteratively improve the design with regard to the first and the second design criteria
is presented in Section 15.5.5.2. In Section 15.5.5.3, we describe three alternative
heuristics which can be used during the first step in order to find the optimal subset
of applications to be modified.

15.5.5.1 The Initial Mapping and Scheduling

As shown in Figure 15.23, the first step of MS consists of an iteration that tries
different subsets Ω ⊆ Ψ with the intention to find that subset Ω = Ωmin
of old applications to be remapped and rescheduled which produces a valid so-
lution for Acurrent ∪ Ω such that R(Ω) is minimized. Given a subset Ω, the
InitialMappingScheduling function (IMS) constructs a mapping and a
schedule for the applications Acurrent ∪ Ω on top of Ψ\Ω, that meets the deadlines,
without worrying about the two criteria introduced in Section 15.5.4.

The IMS is a classical mapping and scheduling algorithm for which we have
used the Heterogeneous Critical Path (HCP) algorithm [35] as a starting point. HCP
is based on a list scheduling approach [62]. We have modified the HCP algorithm in
three main regards:

1. We consider that mapping and scheduling does not start with an empty system
but a system on which a certain number of tasks are already mapped.

424 Time-Triggered Communication

MappingSchedulingStrategy
Step 1: try to find a valid solution that minimizes R()

Find a mapping and scheduling of Acurrent on top of \ so that:
1.constraints are satisfied;
2.modification cost R() is minimized;
3.the second criterion is satisfied: C2 tneed and C2

m bneed
if Step1 has not succeeded then

if constraints are not satisfied then
change architecture

else
suggest new Tmin, tneed or bneed

end if
go to Step 1

end if
Step 2: improve the solution by minimizing objective function C

Perform iteratively transformations which improve the first criterion
(the metrics C1 and C1

m) without invalidating the second criterion.
end MappingSchedulingStrategy

FIGURE 15.22
Mapping and Scheduling Strategy (MS)

2. Messages are scheduled into bus-slots according to the TDMA protocol. The
TDMA-based message scheduling technique has been presented by us in [86].

3. As a priority function for list scheduling we use, instead of the CP (critical
path) priority function employed in [35], the MPCP (modified partial critical
path) function introduced by us in [86]. MPCP takes into consideration the
particularities of the communication protocol for calculation of communica-
tion delays.

For the example in Figure 15.17, our initial mapping and scheduling algorithm
will be able to produce the optimal solution with a schedule length of 48 ms.

However, before performing the effective mapping and scheduling with IMS, two
aspects have to be addressed. First, the task graphs Gi ∈ Acurrent ∪ Ω have to be
merged into a single graph Gcurrent by unrolling task graphs and inserting dummy
nodes as discussed in [261].

15.5.5.2 Iterative Design Transformations

Once IMS has produced a mapping and scheduling which satisfies the timing con-
straints, the next goal of Step1 is to improve the design in order to satisfy the
second design criterion (Cτ2 ≥ tneed and Cm2 ≥ bneed). During the second step,
the design is then further transformed with the goal of minimizing the value of
wτ1 (Cτ1)2 + wm1 (Cm1)2, according to the requirements of the first criterion, without
invalidating the second criterion achieved in the first step. In both steps, we iteratively
improve the design using a transformational approach. These successive transforma-
tions are performed inside the (innermost) repeat loops of the first and second
step, respectively (Figure 15.23). A new design is obtained from the current one by

Development Tools 425

performing a transformation called move. We consider the following two categories
of moves:

1. Moving a task to a different slack found on the same node or on a different
node

2. Moving a message to a different slack on the bus

In order to eliminate those moves that will lead to an infeasible design (that vi-
olates deadlines), we do as follows. For each task τi, we calculate the ASAP (τi)
and ALAP (τi) times considering the resources of the given hardware architecture.
ASAP (τi) is the earliest time τi can start its execution, whileALAP (τi) is the latest
time τi can start its execution without causing the application to miss its deadline.
When moving τi we will consider slacks on the target processor only inside the inter-
val [ASAP (τi), ALAP (τi)]. The same reasoning holds for messages, with the addi-
tion that a message can only be moved to slacks belonging to a slot that corresponds
to the sender node (see Section 15.5.1.1). Any violation of the data dependency con-
straints caused by a move is rectified by shifting tasks or messages concerned in an
appropriate way. If such a shift produces a deadline violation, the move is rejected.

At each step, our heuristic tries to find those moves that have the highest poten-
tial to improve the design. For each iteration, a set of potential moves is selected
by the PotentialMoveX functions. SelectMoveX then evaluates these moves
with regard to the respective metrics and selects the best one to be performed. We
now briefly discuss the four PotentialMoveX functions with the corresponding
moves.

PotentialMoveCP2 and PotentialMoveCm2 . Consider Figure 15.21a. In
Period 2 on Node1 there is no available slack. However, if we move task τ1 with
40 ms to the left into Period 1, as depicted in Figure 15.21b, we create a slack
in Period2 and the periodic slack on node N1 will be min(40, 40, 40) = 40 ms,
instead of 0 ms.

Potential moves aimed at improving the metric Cτ2 will be the shifting of tasks
inside their [ASAP,ALAP] interval in order to improve the periodic slack. The
move can be performed on the same node or on less loaded nodes. The same is true
for moving messages in order to improve the metric Cm2 . For the improvement of the
periodic bandwidth on the bus, we also consider movement of tasks, trying to place
the sender and receiver of a message on the same processor and, thus, reducing the
bus load.

PotentialMoveCP1 and PotentialMoveCm1 . The moves suggested by these two
functions aim at improving the C1 metric through reducing the slack fragmenta-
tion. The heuristic is to evaluate only those moves that iteratively eliminate the
smallest slack in the schedule. Let us consider the example in Figure 15.24, where
we have three applications mapped on a single processor: Ψ, consisting of τ1 and
τ2, Acurrent, having tasks τ3, τ4 and τ5, and Afuture, with τ6, τ7 and τ8. Fig-
ure 15.24 presents three possible schedules; tasks are depicted with rectangles, the
width of a rectangle represents the worst-case execution time of that task. The

426 Time-Triggered Communication

Step 1: try to find a valid solution that minimizes R()

repeat
succeeded = InitialMappingScheduling(\ Acurrent)
-- compute ASAP-ALAP intervals for all tasks
ASAP(Acurrent); ALAP(Acurrent)
if succeeded then-- if time constraints are satisfied

-- design transformations in order to satisfy
-- the second design criterion
repeat

-- find set of moves with the highest potential to
-- maximize C2 or C2

m

move_set = PotentialMoveC2 (Acurrent)
PotentialMoveC2

m(Acurrent)
-- select and perform move which improves most C2
move = SelectMoveC2(move_set); Perform(move)
succeeded =C2 tneed and C2

m bneed
until succeeded or maximum number of iterations reached

end if
if succeeded and R() smallest so far then

valid = ; solutionvalid = solutioncurrent
end if

=NextSubset() -- try another subset
until termination condition

Step 2: improve the solution by minimizing objective function C
solutioncurrent = solutionvalid; min valid
-- design transformations in order to satisfy the first design criterion
repeat

-- find set of moves with highest potential to minimize C1 or C1
m

move_set = PotentialMoveC1 (Acurrent min)
PotentialMoveC2

m(Acurrent min)
-- select move which improve w1(C1)2 + w1

m(C1
m)2,

-- and does not invalidate the second criterion
move = SelectMoveC1(move_set); Perform(move)

until w1(C1)2 + w1
m(C1

m)2 has not changed or
maximum number of iterations reached

FIGURE 15.23
Step 1 and Step 2 of the Mapping and Scheduling Strategy in Figure 15.22

Development Tools 427

PotentialMoveC1 functions start by identifying the smallest slack in the sched-
ule table. In Figure 15.24a, the smallest slack is the slack between τ1 and τ3. Once
the smallest slack has been identified, potential moves are investigated which either
remove or enlarge the slack. For example, the slack between τ1 and τ3 can be re-
moved by attaching τ3 to τ1, and it can be enlarged by moving τ3 to the right in the
schedule table. Moves that remove the slack are considered only if they do not lead to
an invalidation of the second design criterion, measured by the C2 metric improved
in the previous step (see Figure 15.23, Step 1). Also, the slack can be enlarged only
if it does not create, as a result, other unusable slack. A slack is unusable if it cannot
hold the smallest object of the future application, in our case τ6. In Figure 15.24a,
the slack can be removed by moving τ3 such that it starts from time 20, immediately
after τ1, and it can be enlarged by moving τ3 so that it starts from 30, 40, or 50 (con-
sidering an increment which here was set by us to 10, the size of τ6, the smallest
object in Afuture). For each move, the improvement on the C1 metric is calculated,
and that move is selected by the SelectMoveC1 function to be performed, which
leads to the largest improvement on C1 (which means the smallest value). For all the
previously considered moves of τ3, we are not able to map τ8 which represents 50%
of theAfuture, therefore C1 = 50%. Consequently, we can perform any of the men-
tioned moves, and our algorithm selects the first one investigated, the move to start
τ3 from 20, thus removing the slack. As a result of this move, the new schedule table
is the one in Figure 15.24b. In the next call of the PotentialMoveC1 function, the
slack between τ5 and τ2 is identified as the smallest slack. Out of the potential moves
that eliminate this slack, listed in Figure 15.24 for case b, several lead to C1 = 0%,
the largest improvement. SelectMoveC1 selects moving τ5 to start from 90, and
thus we are able to map task τ8 of the future application, leading to a successful
implementation in Figure 15.24c.

The previous example has only illustrated movements of tasks. Similarly, in
PotentialMoveCm1 , we also consider moves of messages in order to improve Cm1 .
However, the movement of messages is restricted by the TDMA bus access scheme,
such that a message can only be moved into a slot corresponding to the node on
which it is generated.

15.5.5.3 Minimizing the Total Modification Cost

The first step of our mapping and scheduling strategy, described in Figure 15.23,
iterates on successive subsets Ω searching for a valid solution which also mini-
mizes the total modification cost R(Ω). As a first attempt, the algorithm searches
for a valid implementation of Acurrent without disturbing the existing applications
(Ω = ∅). If no valid solution is found, successive subsets Ω produced by the function
NextSubsetset are considered, until a termination condition is met. The perfor-
mance of the algorithm, in terms of runtime and quality of the solutions produced, is
strongly influenced by the strategy employed for the function NextSubset and the
termination condition. They determine how the design space is explored while test-
ing different subsets Ω of applications. In the following, we present three alternative
strategies. The first two can be considered as situated at opposite extremes: The first

428 Time-Triggered Communication

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160160170 180

1

1

1

2

2

2

3 4 5

3

3

4

4

5

6

7 8Afuture:

Smallest slack

Smallest slack

a)

b)

c)

8 cannot be mapped; move 3 to start from 20

8 cannot be mapped; move 5 to start from 90

Successful implementation

6

7

6 7

7 6 85

a)
Smallest slack: between 1 and 3
Potential moves: 3 starting at 20,
having C1 =50% (denoted with 20/
50%), 30/50%, 40/50%, 50/50%.
Selected move: 3 to 20,
with C1= 50%.

b)
Smallest slack: between 5 and 2
Potential moves: 4 to 40/37.5%, 50/
37.5%, 60/37.5%, 80/37.5%, 90/
37.5%, 100/37.5%; 5 to 90/0%, 100/
0%, 110/50%, 130/50%, 140/50%,
150/0%, 160/0%.
Selected move: 5 to 90 with C1= 0%.

FIGURE 15.24
Successive Steps with Potential Moves for Improving C1

one is potentially very slow but produces the optimal result while the second is very
fast and possibly low quality. The third alternative is a heuristic able to produce good
quality results in relatively short time, as demonstrated by the experimental results
presented in Section 15.5.6.

Exhaustive Search (ES). In order to find Ωmin, the simplest solution is to try
successively all the possible subsets Ω ⊆ Ψ. These subsets are generated in ascend-
ing order of the total modification cost, starting from ∅. The termination condition
is fulfilled when the first valid solution is found or no new subsets are to be gen-
erated. Since the subsets are generated in ascending order, according to their cost,
the subset Ω that first produces a valid solution is also the subset with the minimum
modification cost.

The generation of subsets is performed according to the graph G that charac-
terizes the existing applications (see Section 15.5.3.1). Finding the next subset Ω,
starting from the current one, is achieved by a branch and bound algorithm that, in
the worst case, grows exponentially in time with the number of applications. For
the example in Figure 15.20, the call to NextSubset(∅) will generate Ω = {A7}
which has the smallest non-zero modification cost R({A7}) = 20. The next gen-
erated subsets, in order, together with their corresponding total modification cost
are: R({A3}) = 50, R({A3,A7}) = 70, R({A4,A7}) = 90 (the inclusion of
A4 triggers the inclusion of A7), R({A2,A3}) = 120, R({A2,A3,A7}) = 140,
R({A3,A4,A7}) = 140, R({A1}) = 150, and so on. The total number of possible
subsets according to the graph G in Figure 15.20 is 16.

Development Tools 429

This approach, while finding the optimal subset Ω, requires a large amount of
computation time and can be used only with a small number of applications.

Greedy Heuristic (GH). If the number of applications is larger, a possible so-
lution could be based on a simple greedy heuristic which, starting from Ω = ∅,
progressively enlarges the subset until a valid solution is produced. The algorithm
looks at all the non-frozen applications and picks that one which, together with its
dependencies, has the smallest modification cost. If the new subset does not produce
a valid solution, it is enlarged by including, in the same fashion, the next application
with its dependencies. This greedy expansion of the subset is continued until the set
is large enough to lead to a valid solution or no application is left. For the example
in Figure 15.20, the call to NextSubset(∅) will produce R({A7}) = 20, and will
be successively enlarged to R({A7,A3}) = 70, R({A7,A3,A2}) = 140 (A4 could
have been picked as well in this step because it has the same modification cost of 70
as A2 and its dependence A7 is already in the subset), R({A7,A3,A2A4}) = 210,
and so on.

While this approach very quickly finds a valid solution, if one exists, it is possible
that the resulted total modification cost is much higher than the optimal one.

Subset Selection Heuristic (SH). An intelligent selection heuristic should be
able to identify the reasons due to which a valid solution has not been produced
and to find the set of candidate applications which, if modified, could eliminate the
problem. The failure to produce a valid solution can have two possible causes: An
initial mapping which meets the deadlines has not been found, or the second criterion
is not satisfied.

Let us investigate the first reason. If an application Ai is to meet its deadline
Di, all its tasks τj ∈ Ai have to be scheduled inside their [ASAP,ALAP] inter-
vals. InitialMappingScheduling (IMS) fails to schedule a task inside its
[ASAP,ALAP] interval if there is not enough slack available on any processor, due
to other tasks scheduled in the same interval. In this situation, we say that there is
a conflict with tasks belonging to other applications. We are interested to find out
which applications are responsible for conflicts encountered during the mapping and
scheduling of Acurrent, and not only that, but also which ones are flexible enough to
be moved away in order to avoid these conflicts.

If IMS is not able to find a solution that satisfies the deadlines, it will determine
a metric ∆Ai

that characterizes both the degree of conflict and the flexibility of each
application Ai ∈ Ψ in relation to Acurrent. A set of applications Ω will be charac-
terized, in relation to Acurrent, by the following metric:

∆(Ω) =
∑
Ai∈Ω

∆Ai
. (15.10)

This metric ∆(Ω) will be used by our subset selection heuristic in the case IMS
has failed to produce a solution which satisfies the deadlines. An application with a
larger ∆Ai

is more likely to lead to a valid schedule if included in Ω.
In Figure 15.25, we illustrate how this metric is calculated. Applications A,

B and C are implemented on a system consisting of the three processors Node1,
Node2 and Node3. The current application to be implemented is D. At a certain

430 Time-Triggered Communication

moment, IMS comes to the point to map and schedule task D1 ∈ D. However, it
is not able to place it inside its [ASAP,ALAP] interval, denoted in Figure 15.25
as I . The reason is that there is not enough slack available inside I on any of the
processors, because tasks A1, A2, A3 ∈ A, B1 ∈ B and C1 ∈ C are scheduled
inside that interval. We are interested to determine which of the applications A,
B and C are more likely to lend free slack for D1, if remapped and rescheduled.
Therefore, we calculate the slack resulted after we move away tasks belonging to
these applications from the interval I . For example, the resulted slack available after
modifying application C (moving C1 either to the left or to the right inside its own
[ASAP,ALAP] interval) is of size |I|−min(|CL1 |, |CR1 |). WithCL1 (CR1) we denote
that slice of task C1 which remains inside the interval I after C1 has been moved to
the extreme left (right) inside its own [ASAP,ALAP] interval. |CL1 | represents the
length of slice CL1 . Thus, when considering task D1, ∆C will be incremented with
δD1
C = max(|I| −min(|CL1 |, |CR1 |)− |D1|, 0). This value shows the maximum the-

oretical slack usable for D1, that can be produced by modifying application C. By
relating this slack to the length of D1, the value δD1

C also captures the amount of
flexibility provided by that modification.

The increments δD1
B and δD1

A to be added to the values of ∆B and ∆A, respec-
tively, are also presented in Figure 15.25. IMS then continues the evaluation of the
metrics ∆ with the other tasks belonging to the current application D (with the as-
sumption that task D1 has been scheduled at the beginning of interval I). Thus, as a
result of the failed attempt to map and schedule application D, the metrics ∆A, ∆B

and ∆C will be produced.
If the initial mapping was successful, the first step of MS could fail during the

attempt to satisfy the second criterion (Figure 15.23). In this case, the metric ∆Ai

is computed in a different way. What ∆Ai will capture in this case is the potential
of an application Ai to improve the metric C2 if remapped together with Acurrent.
Therefore, we consider a total number of moves from all the non-frozen applications.
These moves are determined using the PotentialMoveC2 functions presented in
Section 15.5.5.2. Each such move will lead to a different mapping and schedule,
and thus to a different C2 value. Let us consider δmove as the improvement on C2

produced by the currently considered move. If there is no improvement, δmove = 0.
Thus, for each move that has as subject τj ormj ∈ Ai, we increment the metric ∆Ai

with the δmove improvement on C2.
As shown in the algorithm in Figure 15.23, MS starts by trying an implementation

of Acurrent with Ω = ∅. If this attempt fails for one of the two reasons mentioned
above, the corresponding metrics ∆Ai

are computed for all Ai ∈ Ψ. Our heuristic
SH will then start by finding the solution ΩGH produced with the greedy heuristic
GH (this will succeed if there exists any solution). The total modification cost cor-
responding to this solution is RGH = R(ΩGH) and the value of the metric ∆ is
∆GH = ∆(ΩGH). SH now continues by trying to find a solution with a more favor-
able Ω than ΩGH (a smaller total cost R). Therefore, the thresholds Rmax = RGH
and ∆min = ∆GH/n (for our experiments we considered n = 2) are set. Sets of
applications not fulfilling these thresholds will not be investigated by MS. For gen-
erating new subsets Ω, the function NextSubset now follows a similar approach

Development Tools 431

A1

A
D1 = max(max(|I| |B1| min(|A1

L|, |A1
R |), |I|

C
D1 = max(|I| min(|C1

L|, |C1
R |) |D1 |, 0)B

D1 = max(|I| |A1| min(|B1
L|, |B1

R |) |D1 |, 0);

|I| = ALAP(D1) ASAP(D1) ALAP(C1)ASAP(C1)

C1
L

 min(|A2
L|, |A2

R |) min(|A3
L|, |A3

R |)) |D1 |, 0)

Node1

Node2

Node3

B1

C1

A2 A3

D1

C1
R

ASAP(D1) ALAP(D1)

|C1| |C1|

D1 mapped on Node1 D1 mapped on Node3

FIGURE 15.25
Metric for the Subset Selection Heuristic

like in the exhaustive search approach ES, but in a reverse direction, toward smaller
subsets (starting with the set containing all non-frozen applications), and it will con-
sider only subsets with a smaller total cost then Rmax and a larger ∆ than ∆min (a
small ∆ means a reduced potential to eliminate the cause of the initial failure). Each
time a valid solution is found, the current values of Rmax and ∆min are updated in
order to further restrict the search space. The heuristic stops when no subset can be
found with ∆ > ∆min or a certain imposed limit has been reached (e.g., on the total
number of attempts to find new subsets).

15.5.6 Experimental Results

In the following three sections, we show a series of experiments that demonstrate
the effectiveness of the proposed approach and algorithms. The first set of results is
related to the efficiency of our mapping and scheduling algorithm and the iterative
design transformations proposed in Section 15.5.5.1 and 15.5.5.2. The second set of
experiments evaluates our heuristics for minimization of the total modification cost
presented in Section 15.5.5.3. As a general strategy, we have evaluated our algorithms
performing experiments on a large number of test cases generated for experimental
purposes. Finally, we have validated the proposed approach using a real-life example.
All experiments were run on a SUN Ultra 10 workstation.

15.5.6.1 Evaluation of the IMS Algorithm and the Iterative Design Transfor-
mations

For evaluation of our approach, we used task graphs of 80, 160, 240, 320 and 400
tasks, representing the application Acurrent, randomly generated for experimental
purposes. Thirty graphs were generated for each graph dimension; thus, a total of
150 graphs were used for experimental evaluation.

We generated both graphs with random structure and graphs based on more regu-

432 Time-Triggered Communication

TABLE 15.1
Evaluation of the initial mapping and scheduling.

Tasks HCP HCP
avg. max. better avg. max. better

80 2.04% 31.57% 10% 0.35% 1.47% 30%
160 3.12% 48.89% 10% 1.18% 5.44% 33.33%
240 5.53% 61.27% 13.33% 1.38% 14.52% 36.66%
320 6.12% 88.57% 16.66% 2.79% 24.33% 40%
400 11.02% 120.77% 13.33% 2.78% 22.52% 36.66%

lar structures like trees and groups of chains. We generated a random structure graph
deciding for each pair of two tasks if they should be connected or not. Two tasks
in the graph were connected with a certain probability (between 0.05 and 0.15, de-
pending on the graph dimension) on the condition that the dependency would not
introduce a loop in the graph. The width of the tree-like structures was controlled by
the maximum number of direct successors a task can have in the tree (from 2 to 6),
while the graphs consisting of groups of chains had 2 to 12 parallel chains of tasks.
Furthermore, the regular structures were modified by adding a number of 3 to 30
random cross-connections.

Execution times and message lengths were assigned randomly using both uni-
form and exponential distribution within the 10 to 100 ms, and 2 to 8 bytes ranges,
respectively.

We considered an architecture consisting of 10 nodes of different speeds. For
the communication channel, we considered a transmission speed of 256 kbps and a
length below 20 meters. The maximum length of the data field in a bus slot was 8
bytes. Throughout the experiments presented in this section, we have considered an
existing set of applications Ψ consisting of 400 tasks, with a schedule table of 6s on
each processor, and a slack of about 50% of the total schedule size. The mapping of
the existing applications has been done using a simple heuristic that tries to balance
the utilization of processors while minimizing communication. The scheduling of the
applications Ψ has been performed using list scheduling, and the schedules obtained
have then been stretched to their deadline by introducing slacks distributed uniformly
over the schedule table.

In this section, we have also considered that no modifications of the existing
set of applications Ψ are allowed when implementing a new application. We will
concentrate on the aspects related to the modification of existing applications in the
following section.

The first result concerns the quality of the designs produced by our initial map-
ping and scheduling algorithm IMS. As discussed in Section 15.5.5.1, IMS uses the
MPCP priority function which considers particularities of the TDMA protocol. In
our experiments, we compared the quality of designs (in terms of schedule length)
produced by IMS with those generated with the original HCP algorithm proposed
in [35]. Results are depicted in Table 15.1 where we have three columns for both

Development Tools 433

HCP and IMS. In the columns labelled “average,” we present the average percentage
deviations of the schedule length produced with HCP and IMS from the length of
the best schedule among the two. In the maximum column, we have the maximum
percentage deviation, and the column with the heading better shows the percentage
of cases in which HCP or IMS was better than the other. For example, for 240 tasks,
HCP had an average percentage deviation from the best result of 5.53%, compared
to 1.38% for IMS. Also, in the worst case, the schedule length obtained with HCP
was 61.27% larger than the one obtained with IMS. There were four cases (13.33%)
in which HCP has obtained a better result than IMS, compared to 11 cases (36.66%)
where IMS has obtained a better result. For the rest of the 15 cases, the schedule
lengths obtained were equal. We can observe that, in average, the deviation from the
best result is 3.28 times smaller with IMS than with HCP. The average execution
times for both algorithms are under half a second for graphs with 400 tasks.

For the next set of experiments, we were interested to investigate the quality of
the design transformation heuristic discussed in Section 15.5.5.2, aiming at the opti-
mization of the objective function C. In order to compare this heuristic, implemented
in our mapping and scheduling approach MS, we have developed two additional
heuristics:

1. A simulated annealing strategy (SA) [275], based on the same moves as de-
scribed in Section 15.5.5.2. SA is applied on the solution produced by IMS
and aims at finding the near-optimal mapping and schedule that minimizes the
objective function C. The main drawback of the SA strategy is that in order
to find the near-optimal solution it needs very large computation times. Such a
strategy, although useful for the final stages of the system synthesis, cannot be
used inside a design space exploration cycle.

2. A so-called ad-hoc approach (AH), which is a simple, straightforward solution
to produce designs that, to a certain degree, support an incremental process.
Starting from the initial valid schedule of length S obtained by IMS for a
graphGwithN tasks, AH uses a simple scheme to redistribute the tasks inside
the [0, D] interval, where D is the deadline of task graph G. AH starts by
considering the first task in topological order, let it be τ1. It introduces after τ1 a
slack of sizemax(smallest task size of Afuture, (D−S)/N), thus shifting
all descendants of τ1 to the right (toward the end of the schedule table). The
insertion of slacks is repeated for the next task, with the current, larger value of
S, as long as the resulted schedule has a length S ≤ D. Processes are moved
only as long as their individual deadlines (if any) are not violated.

Our heuristic (MS), as well as SA and AH have been used to map and schedule
each of the 150 task graphs on the target system. For each of the resulted designs,
the objective function C has been computed. Very long and expensive runs have
been performed with the SA algorithm for each graph and the best ever solution pro-
duced has been considered as the near-optimum for that graph. We have compared
the objective function obtained for the 150 task graphs considering each of the three
heuristics. Figure 15.26a presents the average percentage deviation of the objective

434 Time-Triggered Communication

AH
MH
SA

40 80 160 240 320
Number of tasks

0

20

40

60

80

100

120

140
A

ve
ra

ge
 P

er
ce

nt
ag

e
D

ev
ia

tio
n

[%
]

AH
MH
SA

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

[m
in

]

0

10

20

30

40

50

SS

40 80 160 240 320
Number of tasks

a) Deviation of the objective function obtained
b) Execution timeswith MS and AH from that obtained with SA

FIGURE 15.26
Evaluation of the Design Transformation Heuristics

function obtained with the MS and AH from the value of the objective function ob-
tained with the near-optimal scheme (SA). We have excluded from the results in
Figure 15.26a, 37 solutions obtained with AH for which the second design criterion
has not been met, and thus the objective function has been strongly penalized. The
average run-times of the algorithms are presented in Figure 15.26b. The SA approach
performs best in terms of quality at the expense of a large execution time: The execu-
tion time can be up to 45 minutes for large graphs of 400 tasks. The important aspect
is that MS performs very well, and is able to obtain good quality solutions, very close
to those produced with SA, in a very short time. AH is, of course, very fast, but since
it does not address explicitly the two design criteria presented in Section 15.5.4, it
has the worst quality of solutions, as expressed by the objective function.

The most important aspect of the experiments is determining to which extent
the design transformations proposed by us, and the related heuristic, really facili-
tate the implementation of future applications. To find this out, we have mapped
graphs of 80, 160, 240 and 320 nodes representing the Acurrent application on top
of Ψ (the same Ψ as defined for the previous set of experiments). After mapping
and scheduling each of these graphs, we have tried to add a new applicationAfuture
to the resulted system. Afuture consists of a task graph of 80 tasks, randomly gen-
erated according to the following specifications: St = {20, 50, 100, 150, 200 ms},
ft(St) = {10, 25, 45, 15, 5%}, Sb = {2, 4, 6, 8 bytes}, fb(Sb) = {20, 50, 20, 10%},
Tmin = 250 ms, tneed = 100 and bneed = 20 ms. The experiments have been per-
formed three times: Using MS, SA and AH for mappingAcurrent. In all three cases,
we were interested to see if it is possible to find a correct implementation forAfuture
on top ofAcurrent using the initial mapping and scheduling algorithm IMS (without
any modification of Ψ orAcurrent). Figure 15.27 shows the percentage of successful
implementations of Afuture for each of the three cases. In the case Acurrent has
been implemented with MS and SA (this means using the design criteria and metrics
proposed in the section) we were able to find a valid schedule for 65% and 68% of
the total cases, respectively. However, using AH to map Acurrent has led to a situ-

Development Tools 435

0

20

40

60

80

100

80 160 240 320

SA
MS
AH

Number of tasks in Acurrent

Pe
rc

en
ta

ge
 o

f s
uc

ce
ss

fu
l

im
pl

em
en

ta
tio

ns
 o

f A
fu

tu
re

 [%
]

FIGURE 15.27
Percentage of Future Applications Successfully Implemented

ation where IMS is able to find correct solutions in only 21% of the cases. Another
conclusion from Figure 15.27 is that when the total slack available is large, as when
Acurrent has only 80 tasks, it is easy for MS and, to a certain extent, even for AH to
find a mapping that allows adding future applications. However, asAcurrent grows to
240 tasks, only MS and SA are able to find an implementation of Acurrent that sup-
ports an incremental design task, accommodating the future application in more than
60% of the cases. If the remaining slack is very small, after we map an Acurrent of
320 tasks, it becomes practically impossible to map new applications without mod-
ifying the current system. Moreover, our mapping heuristic MH performs very well
compared to the simulated annealing approach SA which aims for the near-optimal
value of the objective function.

15.5.6.2 Evaluation of the Modification Cost Minimization Heuristics

For this set of experiments, we first used the same 150 task graphs as in the previous
section, consisting of 80, 160, 240, 320 and 400 tasks, for the application Acurrent.
We also considered the same system architecture as presented there.

The first results concern the quality of the solution obtained with our mapping
strategy MS using the search heuristic SH compared to the case when the simple
greedy approach GH and the exhaustive search ES are used. For the existing appli-
cations, we have generated five different sets Ψ, consisting of different numbers of
applications and tasks, as follows: 6 applications (320 tasks), 8 applications (400
tasks), 10 applications (480 tasks), 12 applications (560 tasks), 14 applications (640
tasks). The task graphs in the applications as well as their mapping and scheduling
were generated as described in the introduction to Section 15.5.6.1.

After generating the applications, we have manually assigned modification costs
in the range 10 to 100, depending on their size. The dependencies between ap-
plications (in the sense introduced in Section 15.5.3.1) were such that the total

436 Time-Triggered Communication

b) Execution times

0

200

400

600

800

1000

1200

320 400 480 560 640

AH

SH

ES

320(6) 400(8) 480(10) 560(12) 640(14)

1200

1000

800

600

400

200

0

A
ve

ra
ge

 M
od

if
ic

at
io

n
C

os
t R

(
)

G

Number of tasks (applications) in

a) Modification Cost obtained with
the GH, SH, and ES heuristics

0

20

40

60

80

100

120

140

320 400 480 560 640

AH

SH

ES

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

[m
in

]

320(6) 400(8) 480(10) 560(12) 640(14)

120

100

80

60

40

20

0

140
G

Number of tasks (applications) in

FIGURE 15.28
Evaluation of the Modification Cost Minimization

number of possible subsets Ω resulted for each set Ψ were 32, 128, 256, 1024
and 4096, respectively. We have considered that the future applications, Afuture,
are characterized by the following parameters: St = {20, 50, 100, 150, 200 ms},
ft(St) = {10, 25, 45, 15, 5%}, Sb = {2, 4, 6, 8 bytes}, fb(Sb) = {20, 50, 20, 10%},
Tmin = 250 ms, tneed = 100 ms and bneed = 20 ms.

MS has been used to produce a valid solution for each of the 150 task graphs
representing Acurrent, on each of the target configurations Ψ, using the ES, GH
and SH approaches to subset selection. Figure 15.28a compares the three approaches
based on the total modification cost needed in order to obtain a valid solution. The
exhaustive approach ES is able to obtain valid solutions with an optimal (smallest)
modification cost, while the greedy approach GH produces on average 3.12 times
more costly modifications in order to obtain valid solutions. However, in order to find
the optimal solution, ES needs large computation times, as shown in Figure 15.28b.
For example, it can take more than two hours on average to find the smallest cost
subset to be remapped that leads to a valid solution in the case of 14 applications
(640 tasks). We can see that the proposed heuristic SH performs well, producing
close to optimal results with a good scaling for large application sets. For the results
in Figure 15.28, we have eliminated those situations in which no valid solution could
be produced by MS.

Finally, we have repeated the last set of experiments discussed in the previous
section (the experiments leading to the results in Figure 15.27). However, in this
case, we have allowed the current system (consisting of Ψ ∪ Acurrent) to be modi-
fied when implementingAfuture. If the mapping and scheduling heuristic is allowed
to modify the existing system, then we are able to increase the total number of suc-
cessful attempts to implement application Afuture from 65% to 77.5%. For the case
with Acurrent consisting of 160 tasks (when the amount of available resources for
Afuture is small), the increase is from 60% to 92%. Such an increase is, of course,
expected. The important aspect, however, is that it is obtained not by randomly se-
lecting old applications to be modified, but by performing this selection such that the
total modification cost is minimized.

Development Tools 437

15.6 Integration of Time-Triggered Communication with Event-
Triggered Tasks

There has been a long debate in the real-time and embedded systems communities
concerning the advantages of TT vs. ET approaches. Several aspects have been con-
sidered in favor of one or the other approach, such as flexibility, predictability, jitter
control, processor utilization and testability. An interesting comparison of the ET
and TT approaches, from a more industrial, in particular automotive, perspective,
can be found in [205]. The conclusion there is that the right choice depends on the
particularities of the application.

Moreover, considering preemptive priority based scheduling at the task level,
with time-triggered static scheduling at the communication level, can be the right
solution under certain circumstances. TT communication protocols have been clas-
sically associated with non-preemptive static scheduling of tasks, mainly for fault-
tolerance reasons. A TT communication protocol, such as TTP, provides a global
time-base, improves fault-tolerance and predictability. At the same time, certain par-
ticularities of the application or of the underlying real-time operating system can
impose a priority based scheduling policy at the task level.

Therefore, in this section, we consider that tasks are scheduled according to
a static priority preemptive policy, while messages are scheduled using a time-
triggered protocol. In this section, we consider TTP-based systems, but the TT/ET
integration approach is valid also for other TT protocols.

Thus, we first develop a schedulability analysis for distributed tasks with preemp-
tive priority based scheduling considering a TTP-based communication infrastruc-
ture. Secondly, we propose four different approaches to message scheduling using
static and dynamic message allocation. Finally, we show how the parameters of the
communication protocol can be optimized in order to fit the communication particu-
larities of a certain application. Thus, based on our approach, it is not only possible to
determine if a certain task set implemented on a TTP-based distributed architecture
is schedulable, but it is also possible to select a particular message passing strategy
and also to optimize certain parameters of the communication protocol. By adapting
the communication infrastructure to certain particularities of the task set, we increase
the likelihood of producing an implementation which satisfies all time constraints.

15.6.1 Software Architecture

In Section 15.5.1.1, we have discussed the message passing mechanism. The orga-
nization of the message queue assembling of a frame depends on the particular ap-
proach chosen for message scheduling (see Section 15.6.3). We assume that there is
a message transfer task which is activated, at certain a priori known moments, by the
tick scheduler in order to perform the message transfer. Our assumption is that these
activation times are stored in a message handling time table (MHTT) available to the
real-time kernel in each node. Both the MEDL and the MHTT are generated off-line

438 Time-Triggered Communication

as a result of the schedulability analysis and optimization which will be discussed
later. The MEDL imposes the times when the TTP controller of a certain node has
to move frames from the MBI to the communication channel. The MHTT contains
the times when messages have to be transferred by the message transfer task from
the Out queue into the MBI, in order to be broadcasted by the TTP controller. As a
result of this synchronization, the activation times in the MHTT are directly related
to those in the MEDL and the first table results directly from the second one.

It is easy to observe that we have the most favorable situation when, at a certain
activation, the message transfer task finds in the Out queue all the “expected” mes-
sages which then can be packed into the immediate following frame to be sent by the
TTP controller. However, application tasks are not statically scheduled and availabil-
ity of messages in the Out queue cannot be guaranteed at fixed times. Worst-case
situations have to be considered, as will be shown in Section 15.6.3.

Let us consider Figure 15.16. There we assumed a context in which the broad-
casting of the frame containing message m2 is done in the slot S0 of Round 2. The
TTP controller of node N1 knows from its MEDL that it has to read a frame from
slot S0 of Round 2 and to transfer it into its MBI. In order to synchronize with the
TTP controller and to read the frame from the MBI, the tick scheduler on node N1

will activate, based on its local MHTT, a so-called delivery task D. The delivery task
takes the frame from the MBI and extracts the messages from it. For the case when
a message is split into several packets, sent over several TDMA rounds, we consider
that a message has arrived at the destination node after all its constituent packets
have arrived. When m2 has arrived, the delivery task copies it to task τ3 which will
be activated. Activation times for the delivery task are fixed in the MHTT just as
explained earlier for the message transfer task.

The number of activations of the message transfer and delivery tasks depends on
the number of frames transferred, and it is taken into account in our analysis, as also
is the delay implied by the propagation on the communication bus.

15.6.2 Optimization Problem

We model an application as a set of tasks. Each task τi is allocated to a certain proces-
sor, and has a known worst-case execution time Ci, a period Ti, a deadline Di and a
uniquely assigned priority. We consider a preemptive execution environment, which
means that higher priority tasks can interrupt the execution of lower priority tasks. A
lower priority task can block a higher priority task (e.g., it is in its critical section),
and the blocking time is computed according to the priority ceiling protocol. Tasks
exchange messages, and for each message mi we know its size Smi

. A message is
sent once in every nm invocations of the sending task, with a period Tm = nmTi
inherited from the sender task τi, and has a unique destination task. Each task is al-
located to a node of the distributed system and messages are transmitted according
to the TTP.

We are interested to synthesize the MEDL of the TTP controllers (and, as a direct
consequence, also the MHTTs) so that the task set is schedulable on an as cheap
(slow) as possible processor set.

Development Tools 439

The next section presents the schedulability analysis for each of the four ap-
proaches considered for message scheduling, under the assumptions outlined above.
In Section 15.6.4, the response times calculated using this schedulability analysis are
combined in a cost function that measures the “degree of schedulability” of a given
design alternative. This “degree of schedulability” is then used to drive the optimiza-
tion and synthesis of the MEDL and the MHTTs.

15.6.3 Schedulability Analysis

Under the assumptions presented in the previous section, [330] integrate processor
and communication scheduling and provide a “holistic” schedulability analysis in
the context of distributed real-time systems with communication based on a simple
TDMA protocol. The validity of this analysis has been later confirmed in [244]. The
analysis belongs to the class of response time analyses, where the schedulability test
is whether the worst-case response time of each task is smaller than or equal to its
deadline. In the case of a distributed system, this response time also depends on the
communication delay due to messages. In [330] the analysis for messages is done
in a similar way as for tasks: A message is seen as an unpreemptable task that is
“running” on a bus.

The basic idea in [330] is that the release jitter of a destination task depends
on the communication delay between sending and receiving a message. The release
jitter of a task is the worst-case delay between the arrival of the task and its release
(when it is placed in the run-queue for the processor). The communication delay is
the worst-case time spent between sending a message and the message arriving at the
destination task.

Thus, for a task d(m) that receives a message m from a sender task s(m), the
release jitter is

Jd(m) = rs(m) + am + rdeliver + Ttick (15.11)

where rs(m) is the response time of the task sending the message, am (worst-case
arrival time) is the worst-case time needed for message m to arrive at the communi-
cation controller of the destination node, rdeliver is the response time of the delivery
task (see Section 15.6.1) and Ttick is the jitter due to the operation of the tick sched-
uler. The communication delay for a message m (also referred to as the “response
time” of message m) is

rm = am + rdeliver (15.12)

where am itself is the sum of the access delay Ym and the propagation delayXm. The
access delay is the time a message queued at the sending processor spends waiting
for the use of the communication channel. In am, we also account for the execution
time of the message transfer task (see Section 15.6.1). The propagation delay is the
time taken for the message to reach the destination processor once physically sent by
the corresponding TTP controller. The analysis assumes that the period Tm of any
message m is longer than or equal to the length of a TDMA round, Tm ≥ TTDMA

(see Figure 15.29).

440 Time-Triggered Communication

The pessimism of this analysis can be reduced by using the notion of offset in or-
der to model precedence relations between tasks [328]. The basic idea is to exclude
certain scenarios which are impossible due to precedence constraints. By considering
dynamic offsets, the tightness of the analysis can be further improved [117, 118]. In
the present section, our attention is concentrated on the analysis of network commu-
nication delays and on optimization of message passing strategies. In order to keep
the discussion focused, we present our analysis starting from the results in [330].
All the conclusions of this research apply as well to the developments addressing
precedence relations proposed, for example, in [117, 118].

Although there are many similarities with the general TDMA protocol, the anal-
ysis in the case of TTP is different in several aspects and also differs to a large degree
depending on the policy chosen for message scheduling.

Before going into details for each of the message scheduling approaches pro-
posed by us, we analyze the propagation delay and the message transfer and delivery
tasks, as they do not depend on the particular message scheduling policy chosen. The
propagation delayXm of a messagem sent as part of a slot S, with the TTP protocol,
is equal to the time needed for the slot S to be transferred on the bus (this is the slot
size expressed in time units; see Figure 15.29). This time depends on the number of
bits which can be packed into the slot and on the features of the underlying bus.

The overhead produced by the communication activities must be accounted not
only as part of the access delay for a message, but also through its influence on the
response time of tasks running on the same processor. We consider this influence
during the schedulability analysis of processes on each processor. We assume that
the worst-case computation time of the transfer task (T in Figure 15.16) is known,
and that it is different for each of the four message scheduling approaches. Based on
the respective MHTT, the transfer task is activated for each frame sent. Its worst-case
period is derived from the minimum time between successive frames.

The response time of the delivery task (D in Figure 15.16), rdeliver, is part of
the communication delay (Equation 15.12). The influence due to the delivery task
must also be included when analyzing the response time of the tasks running on the
respective processor. We consider the delivery task during the schedulability analysis
in the same way as the message transfer task.

The response times of the communication and delivery tasks are calculated, as
for all other tasks, using the arbitrary deadline analysis from [330].

The four approaches we propose for scheduling of messages using TTP differ in
the way the messages are allocated to the communication channel (either statically or
dynamically) and whether they are split or not into packets for transmission. The next
subsections present the analysis for each approach as well as the degrees of liberty a
designer has, in each of the cases, for optimizing the MEDL.

15.6.3.1 Static Single Message Allocation (SM)

The first approach for scheduling messages using TTP is to statically (offline) sched-
ule each of the messages into a slot of the TDMA cycle, corresponding to the node
sending the message. This means that for each message we decide offline to allocate

Development Tools 441

S0 S1 S0 S1 S0 S1

m m

θ Xm

m’
m

TTDMA

Tcycle

FIGURE 15.29
Worst-Case Arrival Time for SM

space in one or more frames, space that can only be used by that particular message.
In Figure 15.29, the frames are denoted by rectangles. In this particular example,
it has been decided to allocate space for message m in slot S1 of the first and third
rounds. Since the messages are dynamically produced by the tasks, the exact moment
a certain message is generated cannot be predicted. Thus, it can happen that certain
frames will be left empty during execution. For example, if there is no message m in
the Out queue (see Figure 15.29) when the slot S1 of the first round in Figure 15.29
starts, that frame will carry no information. A message m produced immediately af-
ter slot S1 has left, could then be carried by the frame scheduled in the slot S1 of the
third round.

In the SM approach, we consider that each slot can hold a maximum of one sin-
gle message. This approach is well suited for application areas, like safety-critical
automotive electronics, where the messages are typically short and the ability to eas-
ily diagnose the system (fewer messages in a frame are easier to observe) is critical.
In the automotive electronics area, messages are typically a couple of bytes, encod-
ing signals like vehicle speed. However, for applications using larger messages, the
SM approach leads to overheads due to the inefficient utilization of slot space when
transmitting smaller size messages.

As each slot carries only one fixed, predetermined message, there is no interfer-
ence among messages. If a message m misses its allocated frame, it has to wait for
the following slot assigned tom. The worst-case access delay Ym for a messagem in
this approach is the maximum time between consecutive slots of the same node car-
rying the message m. We denote this time by θm, illustrated in Figure 15.29, where
we have a system cycle of length Tcycle, consisting of three TDMA rounds.

In this case, the worst-case arrival time am of a message m becomes θm + Xm.
Therefore, the main aspect influencing schedulability of the messages is the way
they are statically allocated to slots, which determines the values of θm. θm, as well
as Xm, depend on the slot sizes which in the case of SM are determined by the size
of the largest message sent from the corresponding node plus the bits for control and
CRC, as imposed by the protocol.

As mentioned before, the analysis in [330], done for a simple TDMA protocol,
assumes that Tm ≥ TTDMA. In the case of static message allocation with TTP (the
SM and MM approaches), this translates to the condition Tm ≥ θm.

442 Time-Triggered Communication

τ1

τ2

τ3

m1 m2 m2 m1

m2 m1 m2 m1

m2 m1 m2 m1

Release Jitter
Running task
Message
Task activation
Deadline

τ1

τ2

τ3

τ1

τ2

τ3

a) τ2 misses its deadline because of message m2 scheduled in the second and third rounds

b) All tasks meet their deadlines; m2 is scheduled in the first and third rounds and it is received by τ 2 on time

c) All tasks meet their deadlines; the release jitter is reduced by scheduling m1 and m2 in the same round

FIGURE 15.30
Optimizing the MEDL for SM and MM

During the synthesis of the MEDL, the designer has to allocate the messages to
slots in such a way that the task set is schedulable. Since the schedulability of the task
set can be influenced by the synthesis of the MEDL only through the θm parameters,
these are the parameters which have to be optimized.

Let us consider the simple example depicted in Figure 15.30, where we have
three tasks, τ1, τ2 and τ3 each running on a different processor. When task τ1 fin-
ishes executing, it sends message m1 to task τ3 and message m2 to task τ2. In the
TDMA configurations presented in Figure 15.30, only the slot corresponding to the
CPU running τ1 is important for our discussion and the other slots are represented
with light gray. With the configuration in Figure 15.31a, where the message m1 is
allocated to the rounds 1 and 4 and the message m2 is allocated to rounds 2 and 3,
task τ2 misses its deadline because of the release jitter due to the message m2 in
Round 2. However, if we have the TDMA configuration depicted in Figure 15.30b,
where m1 is allocated to rounds 2 and 4 and m2 is allocated to rounds 1 and 3, all
the tasks meet their deadlines.

15.6.3.2 Static Multiple Message Allocation (MM)

This second approach is an extension of the first one. In this approach, we allow more
than one message to be statically assigned to a slot and all the messages transmitted

Development Tools 443

in the same slot are packaged together in a frame. As for the SM approach, there is
no interference among messages, so the worst-case access delay for a message m is
the maximum time between consecutive slots of the same node carrying the message
m, θm. It is also assumed that Tm ≥ θm.

However, this approach offers more freedom during the synthesis of the MEDL.
We have now to decide also on how many and which messages should be put in a
slot. This allows more flexibility in optimizing the θm parameter. To illustrate this,
let us consider the same example depicted in Figure 15.31. With the MM approach,
the TDMA configuration can be arranged as depicted in Figure 15.30c, where the
messages m1 and m2 are put together in the same slot in the rounds 1 and 2. Thus,
the deadline is met and the release jitter is further reduced compared to the case
presented in Figure 15.31b where task τ3 was experiencing a large release jitter.

15.6.3.3 Dynamic Message Allocation (DM)

The previous two approaches have statically allocated one or more messages to their
corresponding slots. This third approach considers that the messages are dynamically
allocated to frames, as they are produced.

Thus, when a message is produced by a sender task, it is placed in the Out queue
(Figure 15.16). Messages are ordered according to their priority. At its activation, the
message transfer task takes a certain number of messages from the head of the Out
queue and constructs the frame. The number of messages accepted is decided so that
their total size does not exceed the length of the data field of the frame. This length
is limited by the size of the slot corresponding to the respective processor. Since the
messages are sent dynamically, we have to identify them in a certain way so that they
are recognized when the frame arrives at the delivery task. We consider that each
message has several identifier bits appended at the beginning of the message.

Since we dynamically package messages into frames in the order they are sorted
in the queue, the access delay to the communication channel for a message m de-
pends on the number of messages queued ahead of it.

The analysis in [330] bounds the number of queued ahead packets of messages
of higher priority than message m, as in their case it is considered that a message
can be split into packets before it is transmitted on the communication channel. We
use the same analysis but we have to apply it for the number of messages instead of
packets. We have to consider that messages can be of different sizes, as opposed to
packets which are always of the same size.

Therefore, the total size of higher priority messages queued ahead of a message
m, in the worst case, is:

Im =
∑

∀j∈hp(m)

⌈
rs(j)

Tj

⌉
Sj (15.13)

where Sj is the size of the message mj , rs(j) is the response time of the task sending
message mj and Tj is the period of the message mj .

Further, we calculate the worst-case time that a message m spends in the Out
queue. The number of TDMA rounds needed, in the worst case, for a message m

444 Time-Triggered Communication

placed in the queue to be removed from the queue for transmission is⌈
Sm + Im

Ss

⌉
(15.14)

where Sm is the size of the message m and Ss is the size of the slot transmitting m
(we assume, in the case of DM, that for any message x, Sx ≤ SS). This means that
the worst-case time a message m spends in the Out queue is given by

Ym =
⌈
Sm + Im

Ss

⌉
TTDMA (15.15)

where TTDMA is the time taken for a TDMA round.
Since the size of the messages is given with the application, the parameter that

will be optimized during the synthesis of the MEDL is the slot size. To illustrate how
the slot size influences schedulability, let us consider the example in Figure 15.31
where we have the same setting as for the example in Figure 15.30. The difference
is that we consider message m1 having a higher priority than message m2 and we
schedule the messages dynamically as they are produced. With the configuration in
Figure 15.31a, message m1 will be dynamically scheduled first in the slot of the first
round, while message m2 will wait in the Out queue until the next round comes,
thus causing task τ2 to miss its deadline. However, if we enlarge the slot so that it
can accommodate both messages, message m2 does not have to wait in the queue
and it is transmitted in the same slot as m1. Therefore, τ2 will meet its deadline as
presented in Figure 15.31b. However, in general, increasing the length of slots does
not necessarily improve schedulability, as it delays the communication of messages
generated by other nodes.

15.6.3.4 Dynamic Packet Allocation (DP)

This approach is an extension of the previous one, as we allow the messages to be
split into packets before they are transmitted on the communication channel. We
consider that each slot has a size that accommodates a frame with the data field
being a multiple of the packet size. This approach is well suited for the application
areas that typically have large message sizes. By splitting messages into packets, we
can obtain a higher utilization of the bus and reduce the release jitter. However, since
each packet has to be identified as belonging to a message, and messages have to be
split at the sender and reconstructed at the destination, the overhead becomes higher
than in the previous approaches.

The worst-case time a message m spends in the Out queue is given by the anal-
ysis in [330] which is based on similar assumptions as those for this approach:

Ym =
⌈
pm + Im

Sp

⌉
TTDMA (15.16)

where pm is the number of packets of messagem, Sp is the size of the slot (in number

Development Tools 445

m1 m2 m1 m2

m1 m2/packet 2 m1 m2/packet 2m2/packet 1 m2/packet 1

τ1

τ2

τ3

τ1

τ2

τ3

τ1

τ2

τ3

τ1

τ2

τ3

m1 m2 m1 m2

m1 m2 m1 m2

Release Jitter
Running task
Message
task activation
Deadline

a) τ2 misses its deadline; there is no space in the slot of the first round to schedule the lower priority message m2

b) All tasks meet their deadlines; the slot has been enlarged to hold both messages

c) τ2 misses its deadline; the slot is too small to hold both packets of message m2

b) All tasks meet their deadlines; the slot has been enlarged to hold 4 packets instead of 3

FIGURE 15.31
Optimizing the MEDL for DM and DP

446 Time-Triggered Communication

of packets) corresponding to m and

Im =
∑

∀j∈hp(m)

⌈
rs(j)

Tj

⌉
pj (15.17)

where pj is the number of packets of a message mj .
In the previous approach (DM), the optimization parameter for the synthesis of

the MEDL was the size of the slots. With this approach, we can also decide on the
packet size which becomes another optimization parameter. Consider the example in
Figure 15.31c where messages m1 and m2 have a size of 6 bytes each. The packet
size is considered to be 4 bytes and the slot corresponding to the messages has a size
of 12 bytes (3 packets) in the TDMA configuration. Since message m1 has a higher
priority than m2, it will be dynamically scheduled first in the slot of the first round
and it will need 2 packets. In the third packet, the first 4 bytes ofm2 are placed. Thus,
the remaining 2 bytes of message m2 have to wait for the next round, causing task
τ2 to miss its deadline. However, if we change the packet size to 3 bytes and keep
the same size of 12 bytes for the slot, we have 4 packets in the slot corresponding
to the CPU running τ1 (Figure 15.31d). Message m1 will be dynamically scheduled
first and will need 2 packets in the slot of the first round. Hence, m2 can be sent in
the same round so that τ2 can meet its deadline.

In this particular example, with one single sender processor and the particular
message and slot sizes as given, the problem seems to be simple. This is, however,
not the case in general. For example, the packet size which fits a particular node can
be unsuitable in the context of the messages and slot size corresponding to another
node. At the same time, reducing the packets size increases the overheads due to the
transfer and delivery tasks.

The analysis presented so far is valid only in the case the arrival time am of a
message m is smaller than or equal to its period Tm. However, in the case am > Tm
the “arbitrary deadline” analysis from [196] has to be used. We have shown in [262]
how the analysis presented here can be extended to consider arbitrary deadlines.

15.6.4 Optimization Strategy

Our problem is to analyze the schedulability of a given task set and to synthesize the
MEDL of the TTP controllers (and consequently the MHTTs) so that the task set is
schedulable on an as cheap as possible architecture. The optimization is performed
on the parameters which have been identified for each of the four approaches to
message scheduling discussed before. In order to guide the optimization task, we
need a cost function that captures the “degree of schedulability” for a certain MEDL
implementation. Our cost function is similar to that in [329] in the case an application
is not schedulable (f1). However, in order to distinguish between several schedulable
applications, we have introduced the second expression, f2, which measures, for a
feasible design alternative, the total difference between the response times and the
deadlines:

Development Tools 447

cost(optimization parameters) =


f1 =

n∑
i=1

max(0, Ri −Di), if f1 > 0

f2 =
n∑
i=1

Ri −Di), if f1 = 0

(15.18)
where n is the number of tasks in the application, Ri is the response time of a task
τi and Di is the deadline of a task τi. If the task set is not schedulable, there exists
at least one Ri that is greater than the deadline Di; therefore, the term f1 of the
function will be positive. In this case, the cost function is equal to f1. However, if the
task set is schedulable, then all Ri are smaller than the corresponding deadlines Di.
In this case, f1 = 0 and we use f2 as the cost function, as it is able to differentiate
between two alternatives, both leading to a schedulable task set. For a given set of
optimization parameters leading to a schedulable task set, a smaller f2 means that we
have improved the response times of the tasks, so the application can be potentially
implemented on a cheaper hardware architecture (with slower processors and/or bus,
but without increasing the number of processors or buses).

The response time Ri is calculated according to the arbitrary deadline analy-
sis [330] based on the release jitter of the tasks (see Section 15.6.3), its worst-case
execution time, the blocking time, and the interference time due to higher priority
tasks. They form a set of mutually dependent equations which can be solved itera-
tively. As shown in [330], a solution can be found if the processor utilization is less
than 100%.

For a given application, we are interested to synthesize a MEDL such that the cost
function is minimized. We are also interested to evaluate in different contexts the four
approaches to message scheduling, thus offering the designer a decision support for
choosing the approach that best fits his application.

The MEDL synthesis problem belongs to the class of exponential complexity
problems; therefore, we are interested to develop heuristics that are able to find ac-
curate results in a reasonable time. We have developed optimization algorithms cor-
responding to each of the four approaches to message scheduling. A first set of al-
gorithms presented in Section 15.6.4.1 is based on simple and fast greedy heuristics.
In Section 15.6.4.2, we introduce a second class of heuristics which aims at finding
near-optimal solutions using the simulated annealing (SA) algorithm.

15.6.4.1 Greedy Heuristics

We have developed greedy heuristics for each of the four approaches to message
scheduling. The main idea of the heuristics is to minimize the cost function by in-
crementally trying to reduce the communication delay of messages and, by this, the
release jitter of the tasks.

The only way to reduce the release jitter in the SM and MM approaches is through
the optimization of the θm parameters. This is achieved by a proper placement of
messages into slots (see Figure 15.30).

The OptimizeSM algorithm presented in Figure 15.32 starts by deciding on a

448 Time-Triggered Communication

OptimizeSM
01 -- set the slot sizes

02 for each node Ni do
03 sizeSi = max(size of messages mj sent by node Ni)
04 end for
05 -- find the min. no. of rounds that can hold al l the messages

06 for each node Ni do
07 nmi = number of messages sent from Ni

08 end for
09 MinRounds = max (nmi)
10 -- create a minimal complete MEDL

11 for each message mi

12 find round in [1..MinRounds] that has an empty slot for mi

13 place mi into its slot in round

14 end for
15 for each RoundsNo in [MinRounds...MaxRounds] do
16 -- inser t messages in such a way that the cost is minimized

17 repeat
18 for each task Pi that receives a message mi do
19 if Di - Ri is the smallest so far then m = mPi end if
20 end for
21 for each round in [1..RoundsNo] do
22 place m into its corresponding slot in round

23 calculate the CostFunction
24 if the CostFunction is smallest so far then
25 BestRound = round

26 end if
27 remove m from its slot in round
28 end for
29 place m into its slot in BestRound if one was identified
30 until the CostFunction is not improved
31 end for

end OptimizeSM

FIGURE 15.32
Greedy Heuristic for SM

Development Tools 449

size (sizeSi
) for each of the slots. The slot sizes are set to the minimum size that

can accommodate the largest message sent by the corresponding node (lines 1–4 in
Figure 15.32). In this approach, a slot can carry at most one message; thus, slot sizes
larger than this size would lead to larger response times.

Then, the algorithm has to decide on the number of rounds, thus determining the
size of the MEDL. Since the size of the MEDL is physically limited, there is a limit to
the number of rounds (e.g., 2, 4, 8, 16 depending on the particular TTP controller im-
plementation). However, there is a minimum number of rounds MinRounds that is
necessary for a certain application, which depends on the number of messages trans-
mitted (lines 5–9). For example, if the tasks mapped on node N0 send in total seven
messages then we have to decide on at least seven rounds in order to accommodate all
of them (in the SM approach there is at most one message per slot). Several numbers
of rounds, RoundsNo, are tried out by the algorithm starting from MinRounds up
to MaxRounds (lines 15–31).

For a given number of rounds (that determine the size of the MEDL), the initially
empty MEDL has to be populated with messages in such a way that the cost function
is minimized. In order to apply the schedulability analysis that is the basis for the
cost function, a complete MEDL has to be provided. A complete MEDL contains
at least one instance of every message that has to be transmitted between the tasks
on different processors. A minimal complete MEDL is constructed from an empty
MEDL by placing one instance of every message mi into its corresponding empty
slot of a round (lines 10–14). In Figure 15.30a, for example, we have a MEDL com-
posed of four rounds. We get a minimal complete MEDL, for example, by assigning
m2 and m1 to the slots in rounds 3 and 4, and leaving the slots in rounds 1 and 2
empty. However, such a MEDL might not lead to a schedulable system. The “de-
gree of schedulability” can be improved by inserting instances of messages into the
available places in the MEDL, thus minimizing the θm parameters. For example, in
Figure 15.30a inserting another instance of the messagem1 in the first round andm2

in the second round leads to τ2 missing its deadline, while in Figure 15.30b inserting
m1 into the second round and m2 into the first round leads to a schedulable system.

Our algorithm repeatedly adds a new instance of a message to the current MEDL
in the hope that the cost function will be improved (lines 16–30). In order to decide an
instance of which message should be added to the current MEDL, a simple heuristic
is used. We identify the task τi which has the most “critical” situation, meaning
that the difference between its deadline and response time, Di − Ri, is minimal
compared with all other tasks. The message to be added to the MEDL is the message
m = mPi received by the task τi (lines 18–20). Message m will be placed into that
round (BestRound) which corresponds to the smallest value of the cost function
(lines 21–28). The algorithm stops if the cost function cannot be further improved by
adding more messages to the MEDL.

The OptimizeMM algorithm is similar to OptimizeSM. The main difference
is that in the MM approach several messages can be placed into a slot (which also
decides its size), while in the SM approach there can be at most one message per slot.
Also, in the case of MM, we have to take additional care that the slots do not exceed
the maximum allowed size for a slot.

450 Time-Triggered Communication

OptimizeDM
01 for each node Ni do
02 MinSizeSi = max(size of messages mj sent by node Ni)
03 end for
04 -- ident i fies the size that minimizes the cost funct ion

05 for each slot Si

06 BestSizeSi = MinSizeSi

07 for each SlotSize in [MinSizeSi...MaxSize] do
08 calculate the CostFunction

09 if the CostFunction is best so far then
10 BestSizeSi = SlotSizeSi

11 end if
12 end for
13 sizeSi = BestSizeSi

14 end for
end OptimizeDM

FIGURE 15.33
Greedy Heuristic for DM

The situation is simpler for the dynamic approaches, namely DM and DP, since
we only have to decide on the slot sizes and, in the case of DP, on the packet size. For
these two approaches, the placement of messages is dynamic and has no influence
on the cost function. The OptimizeDM algorithm (see Figure 15.33) starts with
the first slot Si = S0 of the TDMA round and tries to find that size (BestSizeSi

)
which corresponds to the smallest CostFunction (lines 4–14 in Figure 15.33). This
slot size has to be large enough (Si ≥ MinSizeSi

) to hold the largest message
to be transmitted in this slot, and within bounds determined by the particular TTP
controller implementation (e.g., from 2 bits up to MaxSize = 32 bytes). Once the
size of the first slot has been determined, the algorithm continues in the same manner
with the next slots (lines 7–12).

The OptimizeDP algorithm has also to determine the proper packet size. This
is done by trying all the possible packet sizes given the particular TTP controller. For
example, it can start from 2 bits and increment with the “smallest data unit” (typically
2 bits) up to 32 bytes. In the case of the OptimizeDP algorithm, the slot size has to
be determined as a multiple of the packet size and within certain bounds depending
on the TTP controller.

15.6.4.2 Simulated Annealing Strategy

We have also developed an optimization procedure based on a simulated annealing
(SA) strategy. The main characteristic of such a strategy is that it tries to find the
global optimum by randomly selecting a new solution from the neighbors of the cur-
rent solution. The new solution is accepted if it is an improved one. However, a worse

Development Tools 451

SimulatedAnnealing

01 construct an initial TDMA round xnow

02 temperature = initial temperature TI
03 repeat
04 for i = 1 to temperature length TL

05 generate randomly a neighboring solution x’ of xnow

06 delta = CostFunction(x’) - CostFunction(xnow)

07 if delta < 0 then xnow = x’

08 else
09 generate q = random (0, 1)

10 if q < e-delta / temperature then xnow = x’ end if
11 end if
12 end for
13 temperature = α * temperature

14 until stopping criterion is met

15 return solution corresponding to the best CostFunction
end SimulatedAnnealing

FIGURE 15.34
The Simulated Annealing Strategy

solution can also be accepted with a certain probability that depends on the deterio-
ration of the cost function and on a control parameter called temperature [275].

In Figure 15.34, we give a short description of this algorithm. An essential com-
ponent of the algorithm is the generation of a new solution x starting from the current
one xnow (line 5 in Figure 15.34). The neighbors of the current solution xnow are ob-
tained depending on the chosen message scheduling approach. For SM, x is obtained
from xnow by inserting or removing a message in one of its corresponding slots. In
the case of MM, we have to take additional care that the slots do not exceed the
maximum allowed size (which depends on the controller implementation), as we can
allocate several messages to a slot. For these two static approaches, we also decide
on the number of rounds in a cycle (e.g., 2, 4, 8, 16; limited by the size of the memory
implementing the MEDL). In the case of DM, the neighboring solution is obtained
by increasing or decreasing the slot size within the bounds allowed by the partic-
ular TTP controller implementation, while in the DP approach we also increase or
decrease the packet size.

For the implementation of this algorithm, the parameters TI (initial temperature),
TL (temperature length), α (cooling ratio) and the stopping criterion have to be de-
termined. They define the so called cooling schedule and have a strong impact on the
quality of the solutions and the CPU time consumed. We were interested to obtain
values for TI , TL and α that will guarantee the finding of good quality solutions in a
short time. In order to tune the parameters, we have first performed very long and ex-
pensive runs on selected large examples and the best ever solution, for each example,
has been considered as the near-optimum. Based on further experiments, we have de-

452 Time-Triggered Communication

termined the parameters of the SA algorithm, for different sizes of examples, so that
the optimization time is reduced as much as possible but the near-optimal result is
still produced. These parameters have then been used for the large-scale experiments
presented in the following section. For example, for the graphs with 320 nodes, TI
is 300, TL is 500 and α is 0.95. The algorithm stops if for three consecutive temper-
atures no new solution has been accepted.

15.6.5 Experimental Results

For evaluation of our approaches, we first used sets of tasks generated for experi-
mental purposes. We considered architectures consisting of 2, 4, 6, 8 and 10 nodes.
Forty tasks were assigned to each node, resulting in sets of 80, 160, 240, 320 and 400
tasks. Thirty tasks sets were generated for each of the five dimensions. Thus, a total
of 150 sets of tasks were used for experimental evaluation. Worst-case computation
times, periods, deadlines and message lengths were assigned randomly within cer-
tain intervals. For the communication channel, we considered a transmission speed
of 256 kbps. The maximum length of the data field in a slot was 32 bytes and the
frequency of the TTP controller was chosen to be 20 MHz. All experiments were run
on a Sun Ultra 10 workstation.

For each of the 150 generated examples and each of the four message scheduling
approaches, we have obtained the near-optimal values for the cost function (Equa-
tion 15.18) as produced by our SA based algorithm (see Section 15.6.4.2). For a
given example, these values might differ from one message passing approach to an-
other, as they depend on the optimization parameters and the schedulability analysis
which are particular for each approach. Figure 15.35 presents a comparison based
on the average percentage deviation of the cost function obtained for each of the
four approaches, from the minimal value among them. The percentage deviation is
calculated according to the formula:

deviation =
costapproach − costbest

costbest
× 100. (15.19)

The DP approach is, generally, able to achieve the highest degree of schedu-
lability, which in Figure 15.35 translates in the smallest deviation. In the case the
packet size is properly selected, by scheduling messages dynamically we are able
to efficiently use the available space in the slots, and thus reduce the release jitter.
However, by using the MM approach we can obtain almost the same result if the
messages are carefully allocated to slots as does our optimization strategy.

Moreover, in the case of larger task sets, the static approaches suffer significantly
less overhead than the dynamic approaches. In the SM and MM approaches, the
messages are uniquely identified by their position in the MEDL. However, for the
dynamic approaches we have to somehow identify the dynamically transmitted mes-
sages and packets. Thus, for the DM approach we consider that each message has
several identifier bits appended at the beginning of the message, while for the DP
approach the identification bits are appended to each packet. Not only do the identi-
fier bits add to the overhead, but in the DP approach, the transfer and delivery tasks

Development Tools 453

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450
Number of Tasks

Av
er

ag
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

[%
]

SM
MM
DM
DP

Ad-hoc

FIGURE 15.35
Comparison of the Four Approaches to Message Scheduling

(see Figure 15.16) have to be activated at each sending and receiving of a packet,
and thus interfere with the other tasks. Thus, for larger applications (e.g., task sets
of 400 tasks), MM outperforms DP, as DP suffers from large overhead due to its
dynamic nature. DM performs worse than DP because it does not split the messages
into packets, and this results in a mismatch between the size of the messages dynam-
ically queued and the slot size, leading to unused slot space that increases the jitter.
SM performs the worst as it does not permit much room for improvement, leading
to large amounts of unused slot space. Also, DP has produced a MEDL that resulted
in schedulable task sets for 1.33 times more cases than the MM and DM. MM, in its
turn, produced two times more schedulable results than the SM approach.

Together with the four approaches to message scheduling, a so-called ad-hoc ap-
proach is presented. The ad-hoc approach performs scheduling of messages without
trying to optimize the access to the communication channel. The ad-hoc solutions
are based on the MM approach and consider a design with the TDMA configuration
consisting of a simple, straightforward allocation of messages to slots. The lengths of
the slots were selected to accommodate the largest message sent from the respective
node. Figure 15.35 shows that the ad-hoc alternative is constantly outperformed by
any of the optimized solutions. This demonstrates that significant gains can be ob-
tained by optimization of the parameters defining the access to the communication
channel.

Next, we have compared the four approaches with respect to the number of mes-
sages exchanged between different nodes and the maximum message size allowed.
For the results depicted in Figures 15.36 and 15.37, we have assumed sets of 80
tasks allocated to four nodes. Figure 15.36 shows that, as the number of messages in-

454 Time-Triggered Communication

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50

SM
MM
DM
DP

Number of Messages

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

FIGURE 15.36
Four Approaches to Message Scheduling: The Influence of the Number of Messages

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

SM
MM
DM
DP

Maximum Number of Bytes in a Message

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

FIGURE 15.37
Four Approaches to Message Scheduling: The Influence of the Message Sizes

Development Tools 455

TABLE 15.2
Percentage deviations for the greedy heuristics compared to SA.

80 tasks 160 tasks 240 tasks 320 tasks 400 tasks
SM avg. 0.12% 0.19% 0.50% 1.06% 1.63%

max. 0.81% 2.28% 8.31% 31.05% 18.00%
MM avg. 0.05% 0.04% 0.08% 0.23% 0.36%

max. 0.23% 0.55% 1.03% 8.15% 6.63%
DM avg. 0.02% 0.03% 0.05% 0.06% 0.07%

max. 0.05% 0.22% 0.81% 1.67% 1.01%
DP avg. 0.01% 0.01% 0.05% 0.04% 0.03%

max. 0.05% 0.13% 0.61% 1.42% 0.54%

creases, the difference between the approaches grows while the ranking among them
remains the same. The same holds for the case when we increase the maximum al-
lowed message size (Figure 15.37), with a notable exception: For large message sizes
MM becomes better than DP, since DP suffers from the overhead due to its dynamic
nature.

We were also interested in the quality of our greedy heuristics. Thus, we have run
all the examples presented above using the greedy heuristics and compared the results
with those produced by the SA based algorithm. Table 15.2 shows the average and
maximum percentage deviations of the cost function values produced by the greedy
heuristics from those generated with SA, for each of the graph dimensions. All four
greedy heuristics perform very well, with less than 2% loss in quality compared to the
results produced by the SA algorithms. The execution times for the greedy heuristics
were more than two orders of magnitude smaller than those with SA. Although the
greedy heuristics can potentially find solutions not found by SA, for our experiments,
the extensive runs performed with SA have led to a design space exploration that has
included all the solutions produced by the greedy heuristics.

The above comparison between the four message scheduling alternatives is
mainly based on the issue of schedulability. However, when choosing among the
different policies, several other parameters can be of importance. Thus, a static allo-
cation of messages can be beneficial from the point of view of testing and debugging
and has the advantage of simplicity. Similar considerations can lead to the decision
not to split messages. In any case, however, optimization of the bus access scheme is
highly desirable.

15.7 Configuration and Code Generation
Once the schedule has been created as described in Section 15.3, it is necessary to
transform this schedule information into a device-specific configuration, so that the
dedicated communication controller of the device knows what to do when. In TTP,

456 Time-Triggered Communication

this configuration is called Message Descriptor List (MEDL); different terms are
used in other protocols. For brevity, we call it communication configuration through-
out this section. The creation of such a communication configuration is described
below in Section 15.7.1.

While the communication configuration is the most obvious configuration item,
other parts of the system also need to be configured to be able to process it:

1. Middleware

• COM layer

• Potentially other layers, in case of a multilayer system (e.g., the
AUTOSAR Basic Software Stack [19])

2. Application

3. Operating system (OS), if applicable

The creation of middleware configurations is described in Section 15.7.2. In addi-
tion, it is also possible (and often advantageous) to even generate the complete code
of the middleware itself. This approach is discussed in Section 15.7.3. The applica-
tion also needs some knowledge of the transmitted data, its structures and timing,
and therefore requires a dedicated configuration for this specific purpose. If an oper-
ating system (OS) exists, it is also involved in the communication, and consequently
also needs a configuration for its specific tasks. For brevity, all configurations needed
in addition to the aforementioned communication and middleware configuration are
called third-party configurations throughout this section. The creation of third-party
configurations is described in Section 15.7.4.

15.7.1 Communication Configuration

The specific format and content of a communication configuration is hardware de-
pendent. Each communication controller provides some specific features, and these
features need to be configured correctly in order to bring the communication con-
troller to work and interact with the other communication controllers on the network.

But not only differences in the hardware — or, more precisely, in the communi-
cation controllers — make it necessary to adapt a communication configuration on
a per-node basis. Often, hardware buffers in the communication controller are very
limited, but user requirements exist to provide the received frame at least for a cer-
tain amount of time (validity time span). One solution might be to copy all received
frames from the hardware buffer to another location (e.g., an external RAM). But
this solution is inefficient regarding execution time and resource usage. A better way
is to only put those frames into buffers that are really needed by the specific host.

15.7.1.1 TTP — Personalized MEDLs

The cluster design defines the layout of rounds and cluster cycles, cluster modes, and
the parameters required for clock synchronization, i.e., who sends what at what time.

Development Tools 457

It does not contain node-local information about the application data storage in the
CNI of individual nodes. Each communication controller must have a personalized
MEDL, which is derived from the cluster design. It contains node-local information
and may contain special setup data required for internal purposes of specific commu-
nication controllers [340].

To optimize the CNI layout, a tool that has the node-local information, in par-
ticular the information about which messages a node receives, can customize the
“abstract” MEDL and thus save execution time and buffer space: Only those mes-
sages really needed by the node are processed, stored and provided to upper layers
and the application. Personalized MEDLs not only imply less processing work for
the CPU that accesses the communication controller, but they also allow for a less
strict timing of the tasks on that CPU. In addition, personalized MEDLs are usually
smaller than “abstract” ones.

15.7.1.2 Monitor MEDL for TTP

However, one special node-level MEDL is created whenever MEDLs are made by
the cluster design tool TTPPlan: The Monitor MEDL. This MEDL is generated au-
tomatically right after scheduling, and is loaded into the communication controller
of the Monitoring Node used for monitoring a TTP network. The Monitor MEDL
has a special CNI message area layout that is required by the host software operating
within the Monitoring Node. The node-level information of the Monitor MEDL does
not interfere with node-level designs of the cluster; however, changes to the cluster
design render the Monitor MEDL invalid.

15.7.1.3 Buffer Configuration for FlexRay

FlexRay controllers have configurable hardware buffers where data is written to and
read from. In the AUTOSAR stack, this concept is abstracted toward the upper layers
of the system: The FlexRay driver translates the hardware-specific (i.e., controller-
related) information into the more abstract data of the upper software layers. For
example, the FlexRay driver maps the information “which frame shall be received”
to the corresponding registers of the FlexRay controller. In contrast to the CNI, which
is available in TTP controllers, this buffer interface requires that the communication
configuration is personalized, i.e., optimized with node-level information.

One part of the driver is the buffer configuration, which places each frame into
its hardware buffer. Configuring the FlexRay driver thus generates the meta-level
specification of what happens in the cluster. This requires the introduction of logical
buffers, which are also known as “L-PDUs” in AUTOSAR. Such a buffer contains
one — but not necessarily always the same — frame at any point in time. In FlexRay,
there can be several configurations for a buffer, and even reconfiguration during run-
time is possible. AUTOSAR, however, supports only one configuration per buffer.
Depending on the type of controller, one such buffer corresponds to one or more
hardware buffers (mapping in the generated code).

In FlexRay and AUTOSAR, PDUs (Protocol Data Units) are the central elements
of data transmission. A PDU is a payload of information to be exchanged between

458 Time-Triggered Communication

different software layers on the node. In AUTOSAR, signals are not placed directly
in frames, but in PDUs, which are handled by the PDU Router, see below.

15.7.2 Middleware Configuration

Once the hardware is configured, it is also necessary to configure the “upper” layers
of the communication stack. While there may be other parts of middleware software
which do not belong to the communication stack, in most systems the communication
stack forms the largest and also most complex part. For example, in AUTOSAR [20],
the communication stack consists of at least four, but up to seven, layers for a com-
munication based on FlexRay:

• FlexRay Driver

• FlexRay Interface (FrIf)

• PDU Router

• COM Layer

• FlexRay NM (Network Management)

• FlexRay Transport Layer

• RTE (Run-Time Environment)

While some layers do not have many configuration parameters and thus are rather
straightforward to configure, other layers — like the FlexRay Interface (FrIf) layer
— imply the scheduling of send and receive tasks with respect to the timing and
the validity span of the messages sent and received. As a representative of a rather
complex layer, the FrIf layer is described in more detail in Section 15.7.2.2 below.

Another example are the communication layers for TTP. They directly access
the TTP controller and provide an interface to the application. Figure 15.38 shows
their architectural differences. Table 15.3 lists the main similarities and differences
between these communication layers.

In contrast to the other layers listed there, the fault-tolerant COM layer (FT-
COM) is completely generated by the TTPBuild design tool in order to optimize ex-
ecution time and resource consumption. It operates closely together with TTTech’s
operating system TTPOS. It supports packing and unpacking, reintegration (history
state handling), byte order (endianness) handling, message agreement functions and
handling of replicated redundant message instances. The FT-COM layer is described
in more detail in Section 15.7.3.

The table-driven COM layer (TD-COM), the hardware COM layer (HW-COM)
and the high-speed COM layer (HS-COM) are reusable engines that execute con-
figuration tables generated by the design tool. These configuration tables define the
messages that are sent and received by a specific node, and how to process them.

Both the HW-COM and the HS-COM layer decouple the TTP communication
from the application functions, also in the time domain. They provide convenient,

Development Tools 459

FIGURE 15.38
Examples of Different COM Layers

460 Time-Triggered Communication

TABLE 15.3
COM layer properties compared.

Layer FT-COM TD-COM HW-COM HS-COM
Performance ++ + +++ +++
Certification none DO-178B, le-

vel A certifi-
cation for en-
gine, verifica-
tion tool for
tables

DO-254 certi-
fication for IP
model

DO-254 certi-
fication for IP
model

Message sizes 1 to 32 bit,
arrays, struc-
tured types

1 to 32 bit 32 bit only 32, 64, and
128 bit

Implementation generated C
code

C code, table-
driven

VHDL code,
table-driven

VHDL code,
table-driven

Replication yes no no no
CPU Load yes yes no no
Asynchronous Accessno yes yes yes

buffer-based interfaces to the application software. Their buffer interface allows for
an easy mapping of ARINC 429 [10]. In addition, they are rather limited in their
functionality as compared to the other layers presented. As a representative, the HS-
COM layer is described in more detail in Section 15.7.2.3 below.

15.7.2.1 Configuration Format

Basically, there are two approaches to creating a middleware configuration:

• Source code, usually in C

• A binary block (memory area)

The C code actually comprises a big data structure, either a struct or simply
an array, or any combination thereof. It might be generated just as a header file that
is included in the main application code. In this case, it is automatically employed
whenever the application is built. Otherwise it must be compiled and linked to the
application in a separate step. As compilations are mostly done based on a Makefile,
an additional file to be compiled is acceptable. The header file, which declares the
data types used for the configuration structure in the C file, can be kept rather short.

An example is shown in Figure 15.41, representing a configuration for the HS-
COM. Apart from the usual content of a C header file, it contains the declaration of
the length of the configuration array and the array itself. The HS-COM configuration
consists of 32-bit values only because they exactly match the size of an internal data
access. This contributes to the high performance of the HS-COM. The comments
in the table show the table index of the respective entry for easier navigation. More

Development Tools 461

elaborate comments could be added if found beneficial, e.g., briefly describing each
configuration parameter.

The advantages of the C code approach include the better readability and the fact
that — due to prior compilation — only one file is present at runtime, which simpli-
fies configuration management. If the configuration is not analyzed by a verification
tool (see Section 15.8), good readability and means for easy navigation inside the
(sometimes quite big) data structure can reduce certification efforts dramatically.

A binary block contains the configuration data in a structured form, so that the
middleware directly and efficiently can access the individual parameters. It is inter-
preted by the middleware at runtime. Actually, the result of a compiled C code and a
binary block may not differ at all for a certain configuration.

The advantages of a binary block include that it can be loaded separately from the
application. If the development lifecycles of the application and the communication
system are very different, or decoupling these two development tasks is advantageous
for other reasons, the configuration can be generated and integrated into the system
independently. A binary block needs to be loaded by the application and handed over
to the middlware layer during the initialization phase.

15.7.2.2 FlexRay Interface Configuration

The FlexRay Interface (FrIf) layer is the part of the AUTOSAR communication stack
that provides access to the FlexRay bus and its timing via the FlexRay Driver layer.
Above the FrIf layer, there are the upper layers: PDU-Router (PduR) and FlexRay
Transport Protocol (FrTp). The FrIf layer performs its actions according to the gen-
erated configuration. It is responsible for two basic tasks:

• It collects PDUs from the upper layers, packs the PDUs into frames and for-
wards the frames to the driver layer for sending on the FlexRay bus.

• It collects frames from the driver layer, unpacks the PDUs from the frames and
forwards the PDUs to the corresponding upper layers (PduR or FrTp).

As can be seen from these characteristics, the FrIf appears PDU-based to the
upper layers, but accesses the FlexRay bus in a frame-based fashion.

FrIf Actions

Receiving a frame starts when the FrIf receives the frame from the driver. The PDUs
in the frame are unpacked, and the PDU data is passed to the corresponding upper
layer (PduR or FrTp). This is done by calling the upper layer’s respective API func-
tion, called RxIndication (receive indication). With this function, the PDU data is
passed to the upper layer. After all PDUs have been processed, the frame reception
is finished. Sending a frame starts with an upper layer (wanting to send a PDU) issu-
ing a transmit request to the FrIf by calling the FrIf Transmit API function. The FrIf
stores every transmission request. It is important to note that a transmission request
can occur at any point in the cluster cycle, unless the application is programmed to
run synchronously with the FlexRay bus.

462 Time-Triggered Communication

Later, when a frame is about to be transmitted, the FrIf checks each PDU in the
frame, to see if its transmission has been requested. This point in time is determined
during scheduling and can be influenced through the use of some of the advanced
scheduling features described later in this chapter. For each PDU, the FrIf gets the
PDU data that should be sent, packs the data into the frame and then sends the frame
on to the FlexRay bus.

At some even later point in time, the FrIf confirms to the upper layer the trans-
mission of each PDU by calling the TxConfirmation function. Again, this point in
time is determined during scheduling. Through the use of this function, the upper
layer can determine that a PDU has been sent.

For brevity, the receiving, sending and confirmation of a frame by the FrIf will in
the following be referred to as Actions.

FrIf Job Handling

The sending and receiving of frames has to take place at predefined points in time as
FlexRay is a time-triggered communication system. The timing is important for the
following reasons:

• A received frame is only available for a limited time at the driver layer. If the
FrIf misses the time window for getting the frame from the driver, the data of
the frame might already have been overwritten and the frame data is lost. Note
that the exact behavior in this situation is subject to the configuration, usage
and number of the available buffers.

• If a frame is sent too late by the FrIf, the reserved bandwidth slot of the frame
has already been transmitted by the driver, thus the current frame data cannot
be sent. Depending on the setting of the corresponding parameter, the FlexRay
controller sends either a Null frame or the current data from the frame buffer
(which might be outdated).

The handling of actions at predefined points in time is implemented in the TTX-
AUTOSAR FlexRay Stack by a hardware timer of the FlexRay module, which gen-
erates an interrupt each time a list of actions should be processed. A design tool with
FrIf scheduling capability is responsible for calculating the timing of the actions. The
output of the FrIf scheduler is called the FrIf schedule; it controls when an interrupt
should occur, and which actions should be handled in a particular interrupt invoca-
tion. By accessing the compiled schedule, the FrIf layer coordinates its actions.

The main part of the schedule is the JobList, which is a collection of Jobs. There
is only one JobList in the schedule. Each Job in turn is a collection of Actions; an
action has an action type, which can be either “rx frame,” “tx frame” or “tx confirm.”
The actions have already been described in the previous section.

A job stands for an invocation of the FlexRay interrupt on the target hardware.
On the invocation of a particular interrupt, all the actions of the associated job are
processed by the FrIf layer. The job activation time describes when the job’s asso-
ciated interrupt has to occur. The processing of jobs is done in the FrIf JobListExec

Development Tools 463

FIGURE 15.39
Sending and Receiving on FrIf Level

API function. This function has to be called in the interrupt service routine of the
FlexRay interrupt. Figure 15.39 shows an example of a job and its actions.

Interrupt Overhead

The activation time of the job is marked by a star in Figure 15.39. The delay between
the activation time and the actual processing of the first action (rx frame in this case)
is the interrupt overhead.

The interrupt overhead results from the fact that it takes some time for the CPU
to get from the interrupt event into the FrIf JobListExec function for the processing
of the first action. Usually this time is very short. However, this is not always the
case. Assume that an application needs to disable interrupts for a certain length of
time, let’s say 10µs. If a FrIf interrupt occurs during this phase, the FrIf JobListExec
function is in the worst case processed after 10µs at the earliest, thus the inter-
rupt overhead needs to be configured accordingly.

Frame and Application Times

In order to put the FrIf actions into the FrIf jobs and to calculate the point in time for
the interrupts, the time needed by each action must be known:

• The frame receive time is the time it takes the FrIf to receive a frame from the
driver. It is defined as the time difference from the calling of the frame receive
function until this function returns.

• The n pdu receive time is the time the FrIf needs to call the RxIndication func-
tion of the upper layer. The RxIndication function then passes the data to the
upper layer.

464 Time-Triggered Communication

• The frame send time is the time the FrIf needs to send one frame to the driver
layer.

• The n pdu send time is the time the FrIf needs to call the TriggerTransmit
function of the upper layer. With the TriggerTransmit function, the upper layer
passes the PDU data to be transmitted to the FrIf.

• The n pdu confirm time is the time the FrIf needs to call the TxConfirmation
function of the upper layer.

• The frame confirm time is not shown in the figure; it can be used to account for
a constant overhead, which occurs during the processing of the TxConfirmation
calls for all PDUs in the frame.

Using these definitions, a scheduler can calculate exactly how long the processing
of a job will take (by summing up the action times for all actions). In the example
from Figure 15.39, the execution time of the job can be computed with the following
formula:

Duration = interrupt overhead
+ frame receive time
+ (2 ∗ n pdu receive time)
+ frame send time
+ (3 ∗ n pdu send time)
+ frame confirm time
+ (2 ∗ n pdu confirm time)

(15.20)

Please note that this is the worst-case execution time (WCET) of the job. It may
happen that the actual execution time for some invocations of this job on the hardware
target is shorter; for example, if a received frame contains some PDUs which were
not updated by the sending ECU. Then the FrIf does not need to call the RxIndication
function for these PDUs, which results in a shorter runtime for this particular job
invocation.

Figure 15.40 shows parts of a configuration for the FrIf layer. The major parts
of the FrIf configuration are the definition of the PDUs as shown in the upper part
of the figure, and the definition of the actions as shown in the lower part. The list
of actions in this example contains 33 entries. Each entry specifies the type of the
action, a reference to the frame, and a reference to the PDU. Further parts of the FrIf
configuration (not shown) are the frame definitions, the definitions of the FrIf Jobs
and JobLists, the action timing and the definitions of all used constants.

FrIf Schedulers

A FrIf scheduler may provide the user with advanced configuration options, such as
“black-list” and “white-list” scheduling.

Black-list scheduling allows the user to specify reserved intervals where no FrIf
jobs may be scheduled. The intervals to be excluded from FrIf activity can be rep-
resented as a comma-separated list of ranges in microseconds. For example, setting

Development Tools 465

458 Time-Triggered Communication

PDU Definitions

const ttx_frame_to_pdu_t _ttx_frame_to_frif_pdu_v_frame_0002_s [1] =
{ { PDU_ID_FRIF_fl_pdu_measure /* pdu_idx */
, 0 /* pdu_offset */
, 8 /* pdu_len */
, 1 /* use_update */
, 17 /* updbit_bytepos */
, 7 /* updbit_bitpos */
, 0 /* is_tp_pdu */
, PDU_ID_ROUTER_fl_pdu_measure /* destination_pdu_id */
} /* [0] */

};

FrIf Action Definitions

const ttx_frame_action_t _ttx_frame_action [33] =
{ { TTX_RX_AND_INDICATE /* action */
, 1 /* frame_idx */
, 18 /* mb_tutorial_web_018_a_r */ /* fr_pdu_id */
} /* [0] */

, { TTX_TX_FRAME /* action */
, 0 /* frame_idx */
, 1 /* mb_tutorial_web_001_a_t */ /* fr_pdu_id */
} /* [1] */

...

FIGURE 15.40
FrIf Configuration as C code — An Example

FIGURE 15.40
FrIf Configuration as C code — An Example

466 Time-Triggered Communication

the reserved intervals to 0:100,5000:5100,10000:10100,15000:15100
means that FrIf jobs may not be scheduled during the first 100µs of the first four
communication cycles, assuming a cluster cycle of 20ms.

White-list scheduling provides the possibility to manually configure time inter-
vals where actions for individual PDUs may be scheduled. The PDU-specific actions
to be scheduled within a given time interval can be represented as a series of semi-
colon separated values according to the following format: “PDU/action/from:to.”
For example, setting the whitelist spec to pdu 1/S/0:100;pdu 2/R/101:201
means that the send action for the PDU “pdu 1” can only be scheduled in the interval
0 − 100µs and the receive action of the PDU “pdu 2” can only be scheduled in the
interval 101− 201µs.

Each interval of a white-list can be as large as the valid interval range or as small
as the interval of the FrIf job in which the PDU action is to be scheduled, but not
smaller. If the white-list spans more than one FrIf job, the user is in fact letting the
scheduler choose which FrIf job to use for the processing of the action defined in
the white-list. Furthermore, should the phase of the FrIf jobs vary between commu-
nication cycles, an analysis of this variation must be performed in order to ensure a
large enough interval of the white-list to encompass suitable FrIf jobs in all commu-
nication cycles. More details on the configuration of the AUTOSAR communication
stack for FlexRay, and especially of the FrIf, can be found in [341].

15.7.2.3 HS-COM Configuration

The HS-COM layer itself is a VHDL module that is part of an FPGA and provides
the following features:

• Communication support for the AS8202NF TTP controller attached to an
FPGA.

• Runtime and memory efficient packing and unpacking of messages to and from
the TTP frames.

• Asynchronous access to the TTP data (buffering).

• Support for 128-bit event messages (i.e., queued best-effort transmission).

For optimization reasons, the HS-COM layer supports messages with a size of
32, 64 and 128 bits. It is further limited to the handling of message boxes whose size
is an integer multiple of either 64 or 128 bits. A message box is a container that may
hold one or several messages, but all messages in a message box must have the same
size. The HS-COM can be executed in a highly efficient way as all these message
types are aligned with the internal layout of the data registers.

Depending on the messages defined, the HS-COM acts differently:

• 64-byte messages will be assumed to be simple state messages, and the HS-
COM will access the message box in 64-bit chunks.

• Received message boxes containing 32-bit messages will be accessed in 32-
bit chunks and an additional 32-bit frame status (i.e., information whether the

Development Tools 467460 Time-Triggered Communication

Header file

#ifndef _HS_COM_h_
#define _HS_COM_h_ 1
#include "ptypes.h"
extern const ubyte4 hscom_config_len;
extern const ubyte4 hscom_config [];

C file containing the configuration

#include "ptypes.h"
const ubyte4 hscom_config_len = 32;
const ubyte4 hscom_config [32] =

{ 0x1 /* [0] */
, 0xc /* [1] */
, 0x0 /* [2] */
, 0x0 /* [3] */

...
, 0x80000805L /* [29] */
, 0x21 /* [30] */
, 0x816 /* [31] */
};

FIGURE 15.41
Communication Configuration as C code — An Example (HS-COM)

• Received message boxes containing 32-bit messages will be accessed in 32-
bit chunks and an additional 32-bit frame status (i,e., information whether the
frame was received correctly) will be added to each message. With this feature,
the content and the validity of a message can be retrieved in one action.

• Messages of type ‘128-bit’ are always treated as event messages and are ac-
cessed in 128-bit chunks. The queue depth for event messages is 32 FIFO
entries each for sending and receiving, with 128 bits (i.e., one message) per
entry.

The HS-COM layer performs a so called destructive read when sending data on
the bus, i.e., it sets the value of a read message to 0xFFFF...FFFF. If the data
in the send memory is not updated within a cluster cycle after reading, this value
will be transmitted and tells the receiver that something went wrong, either with the
transmission or with the send memory’s update. This mechanism prevents “old” data
from being transmitted and mistaken for new.

Figure 15.41 shows an example configuration for the HS-COM layer. The HS-
COM configuration consists of 32-bit values only for performance reasons. It com-
prises entries for the Register Area, the Pointer Area and the Command Area. In the
shown example, the Register Area indicates the “SyncMode” to be 0x1, and 12 lines

FIGURE 15.41
Communication Configuration as C code — An Example (HS-COM)

frame was received correctly) will be added to each message. With this feature,
the content and the validity of a message can be retrieved in one action.

• Messages of type ‘128-bit’ are always treated as event messages and are ac-
cessed in 128-bit chunks. The queue depth for event messages is 32 FIFO
entries each for sending and receiving, with 128 bits (i.e., one message) per
entry.

The HS-COM layer performs a so-called destructive read when sending data on
the bus, i.e., it sets the value of a read message to 0xFFFF...FFFF. If the data
in the send memory is not updated within a cluster cycle after reading, this value
will be transmitted and tells the receiver that something went wrong, either with the
transmission or with the send memory’s update. This mechanism prevents “old” data
from being transmitted and mistaken for new.

Figure 15.41 shows an example configuration for the HS-COM layer. The HS-
COM configuration consists of 32-bit values only for performance reasons. It com-
prises entries for the Register Area, the Pointer Area and the Command Area. In the
shown example, the Register Area indicates the “SyncMode” to be 0x1, and 12 lines
to be used for the Pointer Area. The “host activity timeout” is set to 0. The last three
shown lines represent commands (from the Command Area). Each command con-
tains a parity bit in bit-position 31. Therefore, the first command starts with 0x8000,

468 Time-Triggered Communication

and the two others start with 0. Bits 0 to 3 of each command specify the type of the
command. For example, 0x80000805L means to read one 128-bit event message
starting from index 0. More details on the configuration of the HS-COM layer can be
found in [342].

15.7.3 Code Generation

Middleware could be written by hand, and configured as discussed in Section 15.7.2.
However, it is also possible to create the entire middleware layer with a design tool.
Such automated creation can be exactly tailored to the communication needs of the
schedule and the application, resulting in a highly optimized code. In the follow-
ing, the fault-tolerant communication (FT-COM) layer for TTP is described in more
detail as an example.

The FT-COM layer constitutes an interface between the communication services
of the hardware, the operating system and the application software. According to
Time-Triggered Architecture (TTA), each node executes an appropriate part of the
distributed application, handling not only the data communication, but also the fault
tolerance mechanisms designed for the system. As the FT-COM layer can be gen-
erated automatically by a design tool, the application code gets decoupled from the
specific communication layer and fault tolerance mechanisms. This fact allows the
application programmer to write source code that is highly reusable, easy to maintain,
and transparent to many changes in the communication and fault tolerance design of
the system. The FT-COM layer is generated as C source code for the node CPU,
compiled and linked with the application code and executed on the same hardware
as the application itself.

15.7.3.1 Feature Configuration

The FT-COM layer has several features that need configuration. A selection of these
features is presented here, and relevant aspects regarding configuration and automatic
code generation are discussed.

Subsystem Replication

A subsystem can be regarded as a set of tasks that take some input and produce some
output. Each task is part of exactly one subsystem, but each subsystem may contain
as many tasks as necessary. Several subsystems may be executed — independently
of each other — on one host. A subsystem may also be executed simultaneously on
more than one host (replicated subsystem). The first step toward fault tolerance can
thus be achieved by replicating functionality, i.e., by replicating a subsystem.

The FT-COM needs to know how often a subsystem is replicated, and on which
hosts these replicated subsystems run. It is expected that the FT-COM layer delivers
a consistent view of the entire cluster regarding the value of a message, and provides
diagnostic data to assess the “quality” of the provided data.

The Replica-Deterministic Agreement (RDA) Function

Development Tools 469

The receiver of a message m that is sent by a subsystem F , which is replicated with
a replication degree of n, will in fact receive several message instances or raw values
mi of that message — one from each Fi that is active. But what is really wanted is
the “correct” or “agreed” value. Therefore, the receiver needs to take the incoming
instances mi, run a function on them, and generate a single value m that will then be
used for the application:

m = rda(m1,m2, . . .mr) (15.21)

The upper limit for r is the replication degree n, which applies when all replicas
of F are active, the lower limit is zero. rda , the agreement function, must therefore
be able to consistently handle an input vector of any length from zero to n. It must
also be deterministic [258]. Several RDA functions exist and are selectable for the
FT-COM, depending on the type of the subsystem (fail-safe or fail-consistent) [343].
Instead of encoding an algorithm that works for any n, it might yield a better perfor-
mance to insert different implementations of the same algorithm into the FT-COM
code, depending on n.

Application code that accesses the message m should never need to access the
individual instances mi, and can therefore be “ignorant” of the replication degree of
the sender of m. A change of this replication degree only requires an update of the
FT-COM layer, but not of the application itself.

Reintegration with H-State

Each (application) task generally takes some input, performs some function on it and
produces a result as output; both input and output are messages. Furthermore, the
task can contain static internal data that influences the computation and hence the
output. The set of this internal data is called h-state.

For fast reintegration and enhanced robustness of the whole system, it might be
necessary for a replicated instance of a subsystem to know this h-state of its partner
instances. The network designer has to define a global message (“h-state message”)
that contains this information. Now the output can be considered solely a function
of the input, no “hidden” data is involved anymore. For performance reasons, these
h-state messages should only be received and processed when no valid h-state is
currently present. The generated FT-COM layer needs to monitor the h-state, and to
provide it when necessary.

Receiver Status

From the RDA mechanism, the number of correctly received message copies can
immediately be derived by setting up a counter that is initialized with zero at the be-
ginning of the message transmission interval, and increased by one for each message
copy that is received correctly, finally giving r. This counter is called the receiver
status of a message m. The receiver status is useful for several RDA functions. For
example, the application software can use the receiver status to derive confidence
information on how “good” m is. Another example is averaging: All valid mi are
summed up, and the result is divided by the receiver status. It would be incorrect to

470 Time-Triggered Communication

divide the sum by n, because in case of a failure of one or more replicas of F , the
sum would contain less than n components.

In a programming language that treats the number zero as the Boolean equiv-
alent of “false” and any number other (or at least greater) than zero as “true,” the
receiver status can also be queried like a Boolean flag that yields “true” if the mes-
sage is present, meaning that it was received correctly at least once and the RDA has
yielded a result, and “false” if the message was not received correctly in this message
transmission interval.

Sender Status

If an ECU hosts several subsystems, and one (fail-safe) subsystem fails, the others
still should be able to send their data. Turning off the entire ECU is thus not an option.
But as the communication controller works, it sends all messages, and potentially
incorrect values for messages produced by the failed subsystem.

One classic strategy to handle this problem is to define an “invalid” value. This is
unfavorable because it introduces a hidden information channel; if some application
program fails to check for this special value in the right way, the system becomes
inconsistent. Also, the “invalid” value might fall into the range of valid values after
a software extension or upgrade. Any RDA function calculated in the FT-COM layer
must take this into account.

The sender status of a message is part of the message itself, and therefore part
of the input vector to the RDA function. The RDA will then consider a message that
was correctly received, but has a sender status of “invalid,” to be non-present. Clearly,
the FT-COM code performs better if the sender status is only considered for those
messages actually having one, and no such code or if-statement exists for messages
that have no sender status.

The receiver status of a message is generated at the receiver and is always avail-
able. Therefore, it can always be used for checking the availability of a message. But
it does not carry the same amount of information that the sender status delivers: This
information is generated by the sender, exists only if the system design requires it
and allows the sender to explicitly invalidate the message contents while still send-
ing the message; this can be necessary for a more complex node design where more
than one subsystem is executed on the node.

The sender status implies additional effort for the sender, i.e., the FT-COM code
generated for the sender. It must be updated, and additional bandwidth (even if only
a single bit) is needed on the communication bus. Furthermore, the receiver must
explicitly check this sender status, in addition to the receiver status that is always
processed.

Message Timing

The message timing should not be done by the application software because, besides
becoming unnecessarily complex, this could raise timing problems due to program-
ming errors or faults during execution. Based on the separation of concerns, message
timing should be handled by the FT-COM layer, which takes full responsibility and

Development Tools 471

can be reused across different applications. The FT-COM code generator needs to
respect all these timing constraints and “schedule” its tasks so that all messages are
processed in time.

Message Buffer Handling

A replicated subsystem F that sends a message m may also want to receive this
message. This sounds trivial, but requires some effort when replication is used, be-
cause in this case it is not correct to simply access the message in the local RAM.

Say N is a node where one of the replicas of F is executed, and assume that
another subsystem G, which also runs on N , uses m as input. Receiving a message
from a replicated subsystem requires an RDA (this is valid even for the subsystem
that sends this message). Therefore, m exists twice on N : One instance is the value
which is sent by F , to be entered in the RDA at all receivers (including N), the other
one is the result of the RDA at N . Usually these will be equal, but if, for example, m
is a sensor reading with an agreement function that computes the average, the local
sensor may produce a slightly different result than the other redundant sensors in the
system, and the value m that is actually used by the receivers (including G) is an
average of all mi that were transmitted in the previous round.

It follows that several message buffers can be required for a message, depending
on whether the message is replicated or not:

• A transmit buffer for the message instance that is sent to all the receivers; this
buffer is required for any message

• Receive buffers for each of the mi

• A result buffer for the result of the RDA; this buffer is only required for repli-
cated messages

Each of these buffers has the size (i.e., RAM requirements) of the message itself.
A generated FT-COM may only provide all these buffers for messages where it is
really needed, and save RAM if a message is not consumed by F or if the RDA
function allows to directly use the sent value (e.g., “one-valid”).

Packing of Bit Messages

Due to the CPU architecture of a node, the C variables containing the message values
often use more memory than their data representation requires. The most common
representatives of such a message type are Boolean messages, which have a data
content of one bit, but are usually stored in a byte or even an int, depending on the
CPU architecture and compiler.

However, since transmission bandwidth is rather expensive, the available net data
rate should be optimally utilized. For this purpose, a Boolean message should be
packed into a single bit, because it wastes a lot of space if it requires 16 or more bits
for transmission. Similarly, a message which can take only one of 20 different values
should not require 8 bits of transmission capacity, because the data content fits into

472 Time-Triggered Communication

5 bits. Likewise, sensor data from an A/D unit that has a significant range of 10 bits
does not need to be transmitted in a 16 bit word — but the packing algorithm needs
to know which of the 16 bits are the 10 relevant ones.

At the receiver, the message needs to be expanded into a variable that is again
easy to handle, like an int. The algorithm needs to be the exact inverse of the pack-
ing one, but must take into account several architectural properties that may differ
between sender and receiver — the most prominent of all being the byte order.

On the other hand, the effort to efficiently (in terms of computation and code
size) pack bit messages must be minimized, and there are much more efficient ways
to achieve this than to simply consider the transmission buffer (frame) a long bit field
and store all messages sequentially in this bit field. This is even true for standard
messages of a size of 1, 2 or 4 bytes, and proper alignment can result in considerable
performance gains.

However, manually programming such packing and unpacking routines for each
bit message, and changing them consistently if something changes in the system
specification (like a 10-bit A/D result being upgraded to 12 bits), is highly error-
prone. Therefore, a layer that provides packing at the sender and unpacking at the
receiver needs to be configured or created automatically, and must be supported by
proper tools.

An automatically generated FT-COM layer may be optimized so that it only
contains code that is really necessary for this particular platform, and that as many
branches as possible are eliminated from the final code.

15.7.3.2 Implementation

The FT-COM layer must handle three major operations, specifically:

• Updating of the lifesign of the communication controller

• Packing of the messages into the proper frame buffers

• Unpacking and agreement calculation of all messages used by the application

All these operations are performed by special tasks (FT-tasks). One fundamental
configuration option is the location of the frame buffers. If there exists a fast access
to the CNI of the TTP controller, all packing and unpacking operations can be per-
formed directly there. If not, it is more efficient to create local copies of the frames
and to perform all operations locally. By setting this configuration option, the entire
code can be created as it is best suited for the actual hardware.

Depending on the kind of the FT-task, it has to run either before or after an
application task. The scheduler then has to ensure that the deadlines of the application
tasks are met in any case. For all operations, the design tool needs to determine
an interval within which the specific operation must be performed. To reduce task
switching overhead, the design tool also should try to merge as many overlapping
intervals as possible and to generate one FT-task for each of the resulting intervals;
this leads to a minimal number of tasks.

Development Tools 473

The following sections describe how the schedule interval is determined for spe-
cific tasks.

Lifesign Update

The lifesign of the communication controller must be updated (by the host) at least
once every round. In the pre-send-phase (the phase before the actual sending slot,
dpsp), the controller checks if an update has been performed. Let Ts(n) be the start
of the controller’s own sending slot of round n. The interval for the update of the
lifesign in round n then is:

[Ts(n−1) . . . Ts(n) − dpsp] (15.22)

If the controller notices that the lifesign has not been updated, it goes into a
passive state because there does not seem to be an application. Appropriate code for
updating the lifesign has to be created and inserted into an FT-task that is scheduled
for execution within this time interval.

Sender Tasks

The packing of messages into the proper frames in the CNI is done by sender tasks.
The scheduling interval of these sender tasks must meet the following requirements:

• The latest possible finish time Tf for the packing of messages is the start of the
pre-send-phase of the slot (i.e., start time of the slot minus the pre-send-phase).

• The earliest task activation time Ta is the time when the message is stable.
This time is determined by the activation time of the application task plus its
deadline. If at this point in time the message is not stable (i.e., the application
task violates its deadline), the sender task must not start.

If the task has a period that is different from the period of the message trans-
mission on the network (defined in the cluster schedule), the activation instance
leading to the shortest interval shall be considered, so that the latest value pro-
duced by the application is being sent over the network.

The interval Ta . . . Tf is computed for all messages sent by the application. All
overlapping intervals should then be merged and a single FT-task should be gener-
ated, considering the runtime necessary for processing the messages and for updating
the frames. To further reduce the number of required tasks, the sender tasks can also
be merged with the lifesign tasks, if their intervals overlap and there is still enough
runtime left for the lifesign updating.

Receiver Tasks

The receiver tasks must perform two operations; first the unpacking of the message
instances (these instances will be used for the agreement), and then the computing of
the specified agreement function. There are two different approaches to this:

474 Time-Triggered Communication

• Store and Process: Unpack all message instances, store them in temporary
buffers and perform the agreement function using the temporary buffers.

The advantage of this approach is that it works with any kind of agreement
(including majority voting) and also allows access to the individual raw values
of the message.

The disadvantage is increased memory demand: Every single message instance
has to be stored.

• Incremental: Unpack only one message instance, perform the agreement on
this instance, unpack the next message instance, . . . After all message instances
have been agreed, the finalization of the agreement (e.g., divide the result by
the number of values added to achieve the average) can be performed.

The advantage is the lower memory consumption and often faster execution.

The disadvantage is that it cannot be applied to all kinds of agreements, only
to those which can be done sequentially. It must also be noted that in this case
the raw values are not available to a diagnosis function at the receiver (usually
not required).

The design tool can select the appropriate computation strategy for the selected
agreement function, and then only insert this code into the receiver task. Dead or
temporarily unused code can thus be avoided.

When it comes to optimization, it is not sufficient to just look at messages and
message instances, but also their temporal distribution needs to be considered. Each
time a periodically sent message is transmitted, this is called a message generation,
not to be confused with a message instance. Consider a sender application that sends
a specific message every 10ms; further assume that this message is transmitted on
two channels every 2ms. This means that each message value generated by the sender
is actually received 10 times at the receiver: Five different generations are received
(one every 2ms), and each generation contains two instances of the message.

In order to minimize the amount of global memory required by the FT-COM
layer, it is necessary to perform the complete agreement for one message generation
in a single FT-task. However, it is not always possible to pack all the steps of the
complete agreement into a single task, since the individual (replicated) instances of a
message generation may be spread throughout a whole round, and thus may have dif-
ferent and potentially non-overlapping validity spans. For the incremental approach,
only some intermediate results need to be allocated globally if the agreement cannot
be performed in a single task. Consequently, a good default is to use the incremental
approach wherever possible.

For the receiver task generation, the validity interval of a message instance may
be used as a possible scheduling interval. All overlapping intervals should then be
merged and a single FT-task generated, considering the runtime necessary for the
unpacking of the messages and for computing the agreement function.

To further optimize the memory footprint, the required RAM, and the execution
time of the FT-COM layer, the design tool that creates the FT-COM code may filter

Development Tools 475

out all message generations that are not used by application tasks. This can be done
by comparing the activation times of the application tasks receiving the message with
the validity intervals of the message generations. Only this reduced set of message
generations will be retrieved from the network and provided to the application.

Code Generation

The TTP design tool TTPBuild, which is available from TTTech, is able to automat-
ically create FT-COM layer C code. TTPBuild creates three files for each node (the
names of these files are defaults and can be changed to any desired filename by the
user):

• The message definition file ttpc msg.h contains macro and variable dec-
larations for the message buffers of incoming and outgoing messages on the
specific node. This file, when included into application code, provides access
to the message buffers, which are the only interface between the application
program and the FT-COM layer. Function calls are not provided as they are
not necessary for communication purposes.

Some function-like C macros are offered to increase the readability of the gen-
erated code; for example,

tt Message Status (temperature)

is provided as a macro (looking like a function) to access the sender status of
a message named temperature. In fact, the macro simply expands to the
name of a variable, which is the message buffer containing the sender status
of temperature, but the macro call improves the clarity of the statement.
It will continue to work even if the implementation of the sender status should
change in the future.

• The FT-COM layer C code is written to ttpc ftl.c and comprises individ-
ual tasks called by the operating system (OS).

The generated code is documented (the comments are also generated automat-
ically, of course) to provide some insight into the workings of the FT-COM
layer, but should never be changed manually. All changes will be lost when
the code is generated again.

• ttpos conf.c contains the configuration tables of the operating system,
which tell the OS about the activation times and deadlines of all tasks on the
node (application and FT-COM tasks alike). Although these tables are not part
of the FT-COM layer, they are crucial for its proper operation, and are therefore
also automatically generated by TTPBuild.

The contents of this file, although correct C code, are not intended to be
human-readable, because they represent binary configuration data rather than
program code (see option (a) in Section 15.7.2). As different operating sys-
tems require different formats, this file needs to be generated differently for
each operating system that is supported by the design tool.

476 Time-Triggered Communication

Additionally, a personalized MEDL can be generated to be loaded into the con-
trollers of the host. This enables the definition of host-specific user interrupts and an
optimized CNI layout.

15.7.4 Configuration of Third-Party Software

The operating system (OS), if one is present, and the application itself need to be
configured, too. Design tools specifically designed to create communication config-
uration also need to interact with the development environment and configuration
interfaces already available for the particular OS, the application or any other third-
party software, e.g., a diagnostic module.

Typically, third-party software that interacts with the middleware, and in specific
with the part that handles the communication, the communication stack, needs to
know about a couple of things:

• Layout and position of the messages: The application must know by some
means where the messages it reads and writes are located and how big they are.
The most practical way is to have a memory-mapped interface. In this case, a C
header file is required which contains #define statements. The application
can refer to a certain message by name, and, based on the definitions in the
header file, this name is mapped to a location in the memory. Of course, it
is mandatory that the communication stack also has the same knowledge, but
this is part of the communication configuration. Another possibility is to have
a function call interface. Here, too, it is advantageous to have a mapping of
message names (e.g., as defined in the design tool where all messages are
specified) to certain IDs.

• Interrupts: The design of the communication stack may require the config-
uration of an interrupt for internal use in the communication stack. It might
be helpful if any time a frame has been received by the hardware, a distinct
interrupt is raised to indicate the arrival of the frame. Usually, this is a very
high-priority interrupt. In the Interrupt Service Routine (ISR), the respective
functions from the communication stack are called to handle this frame. These
function calls must be registered beforehand, and the OS needs to know which
interrupt to look at and to propagate. In addition, it may be possible to specify
the interrupt priority level, the required stack size of the ISR and the vector to
the service request register of the CPU.

• Task properties and activation times: If the communication stack is not
interrupt-driven, it might need the activation of certain functions or tasks at
certain times. Especially in a fully time-triggered environment, where the ap-
plication and the OS are also synchronized to the communication network,
this approach is favorable. As the OS dispatches tasks, it needs to know which
communication task to start when, and with which assigned resources. In a
real-time and time-triggered environment, the OS also needs to know the dead-
line of this communication task. Usually, one task is created for every message

Development Tools 477

that has to be received or sent. For performance reasons, such tasks may be put
together, forming task chains. For task chains, the OS needs to know similar
properties as for tasks, in order to correctly interact with the communication
stack.

• Timer configuration: If a timer is needed by the middleware, it has to be
configured. All relevant details of this timer configuration also need to be part
of the data that is shared between the middleware and the OS.

Development tools may generate parts of an OS configuration in the standardized
OSEK Implementation Language (OIL) [242] format. As OIL comes in many vendor-
specific flavors, it is very important to precisely determine the OIL version as well
as the vendor-specific variant the generated file should have. The data can then be
transferred to the OS by an OS configuration tool. In contrast to a complete OS
configuration, a development tool for the communication stack may only provide the
basic information necessary to run the various layers of the communication stack.

Development tools may also provide the relevant information as discussed above
in other formats, e.g., in an XML-style fashion. Many operating systems come along
with their own — and sometimes very specific — definition of the structure and
possible content of OS configuration files. In such cases, either the development tool
for the communication stack can be extended to write these files, or an additional
conversion step needs to be introduced. A special-purpose tool or a self-written script
may do the conversion job, too.

If the integration of the development tool and the OS is very good, the tool creates
C files that fit the application. One C file may contain the message declaration and
the type definition for every message that is sent or received by the application tasks.
Another file may contain the configuration tables for the OS and comprise basic
information on the respective node and task schedule. Ideally, the configuration tables
for the OS are read, extended and then written back so that a configuration of a
different origin is preserved. These configuration files are compiled and linked to the
respective application to ensure the proper dependencies.

15.8 Verification
Society and law often request evidence that a particular system is fit for use and
will not fail (or only in very rare cases), especially where the safety of humans is
concerned. Certification by an accepted authority provides this kind of evidence;
hence, most systems need to get certified for a particular use. For example, without
permission granted by the Federal Aviation Administration (FAA), a commercial
aircraft is not allowed to be operated in the US. Similar legal directives apply in
other countries.

There exists a variety of certification standards, most prominently DO-
178B [269] for software in aerospace, ISO 26262 [153] for automotive and

478 Time-Triggered Communication

IEC 61508 [147] for industrial applications. For example, the FAA applies DO-178B
for guidance to determine if the software will perform safely and reliably in an air-
borne environment [97].

Verification is one means listed in said standards to provide evidence for safe and
reliable operation. To get a whole system certified, verification of certain artifacts that
are part of the final system is hence necessary. As the schedule and the configuration
items as described in Sections 15.3 and 15.7 are part of the final system, this need
for verification applies to them. Details of the verification process and the area where
verification is applicable are described in the respective standard.

To actually conduct verification, the use of tools is allowed and well established.
Such tools are called verification tools. They need to be developed according to cer-
tain processes, also described in the standards mentioned above, and need to be qual-
ified to be considered fit for their purpose. Tool qualification of verification tools is
thus a crucial process on the way to getting a system certified.

In this section, we will discuss the impact of the different stages of verification
on the software development process and the software itself, with the focus on the
benefit of verification tools and their qualification.

The requirements for the verification of configuration items, imposed by cer-
tification standards, are discussed in Section 15.8.1. Various means to reduce cost
during the verification process and related activities are presented in Section 15.8.2.
A very prominent way is to use verification tools instead of manual verification per-
formed in reviews. The verification of configuration items as well as the approach to
use verification tools to assist the certification is presented in Section 15.8.3. Such
verification tools must have a certain quality that can be reached by performing a
tool qualification process. Details of this process and the implications posed on the
development of the verification tools and the structure of the configuration items are
also discussed there.

15.8.1 Process Requirements

In the aerospace industry, highly integrated safety-critical systems have been de-
veloped for decades. The FAA and other authorities have thus developed stringent
certification requirements to meet the needs of the industry. Safety has always been
the main focus of the system development. The regulations driving the safety of an
aircraft are reflected in the Federal Aviation Regulations (FAR) 25 Paragraph 1309
(for the US) or — internationally spoken — in the Joint Aviation Regulations (JAR).
For the methods of compliance with the FAR and JAR 25 requirements for a new sys-
tem design, five methodologies are generally adopted, some of which are described
in more detail in ARP 4754 [302] and ARP 4761 [303]:

1. Analysis including engineering analysis, stress analysis, system modeling and
similarity modeling.

2. Failure analysis including FMEA (Failure Mode and Effects Analysis), FTA
(Fault Tree Analysis) and safety analysis (including Functional Hazard Assess-

Development Tools 479

ment (FHA), (Preliminary) System Safety Assessment ((P)SSA) and Common
Cause Analysis (CCA)).

3. Laboratory tests including component tests, qualification tests, system tests
and tests on an integrated systems test rig.

4. Ground tests — On-aircraft ground tests.

5. Flight tests — On-aircraft flight tests.

Nowadays, the aerospace environment is strongly influenced by software certifi-
cation authorities. The rapid increase in the use of software in airborne systems in the
early 1980s resulted in a need for industry-accepted guidance for satisfying airwor-
thiness requirements. DO-178, and subsequent revisions, have been written to satisfy
this need and provide guidance for system software development. These certification
requirements are illustrated with an overview of the DO-178B development process
below.

The emergence of safety-critical x-by-wire systems in the automotive industry
now leads to similar certification bodies and standards. Safety-related recommenda-
tions are already published, such as the MISRA guidelines [230] and recently the
ISO 26262 standard. The latter has been derived from the Functional Safety standard
IEC 61508 to better suit the needs in automotive electric and electronic systems.
However, a mandatory certification authority for the hardware and software of au-
tomotive control units is not yet established. We believe that much benefit can be
gained from the aerospace industry’s certification experiences and recent activities to
reduce certification costs of safety-critical systems [128].

Common to all safety standards is the ALARP principle [129]. ALARP stands
for “as low as reasonably practicable” and means that the residual risk shall be as low
as reasonably practicable. For a risk to be ALARP, it must be possible to demonstrate
that the cost involved in reducing the risk further would be grossly disproportionate
to the benefit gained. Adherence to state-of-the-art standards is widely accepted to
be reasonably practicable.

15.8.1.1 DO-178B

DO-178 [269] was first published by the RTCA in 1980. It is intended to be used
as a guideline for the software development and verification of airborne software
systems. Since its first publication, the standard has been revised twice (DO-178A in
1985, DO-178B in 1992) and a third revision is ongoing (DO-178C).

DO-178B classifies software according to five assurance levels, rated by the crit-
icality of the software functionality. Level A, the highest criticality level, is required
for software whose anomalous behavior causes a catastrophic failure condition. Level
E, the lowest level, is required for software whose anomalous behavior has no effect
on the system’s operational capacity. For each of the classification levels, DO-178B
prescribes guidelines for the planning, development, verification, configuration man-
agement, software quality assurance, certification and maintenance of the system
software.

480 Time-Triggered Communication

DO-178B is a process oriented document; however, it does not prescribe the use
of a particular lifecycle or structured methodology. This decision is left to the prac-
titioner; however, the guidelines do require both the lifecycle model (with transition
criteria) and the development methodology to be formally identified in the software
plans and agreed with the certification authority, e.g., the FAA via a Designated En-
gineering Representative (DER).

DO-178B implies a requirements-driven development process. System require-
ments are decomposed into top level software requirements, which are in turn de-
composed further into lower level requirements. This decomposition continues until
module-level code can be directly implemented from the lowest level of requirements
definition. In addition to design requirements driven by software requirements, de-
rived design requirements are created to facilitate completeness of the software de-
sign. It follows that each element of the code base is traceable to a system-driven
requirement or derived design requirement. Source code not directly traceable to re-
quirements is strongly discouraged by the DO-178B guidelines. Such code is termed
“dead code” and must be removed before certification. Deactivated code, that is, code
utilized by the control unit but not exercised in application environment (e.g., man-
ufacturing related code), is permitted, but only when the method of deactivation is
proven and verified.

The verification activities recommended by DO-178B are also requirements-
driven. The level of verification effort prescribed is once again proportional to the
assigned software criticality level. Level A defines the most stringent verification
process. Level E requires no verification of code or configuration items at all.

Level A development requires a full independent review of all of the verifica-
tion artifacts, which consist of test cases and procedures. It also mandates that full
structural coverage, including modified condition decision coverage (MC/DC), is
achieved for all of the software. The generation of suitable test cases and expected
results to yield such coverage drives much of the cost of level A development. Even
outside the aerospace industry, testing and verification can account for as much as
40% to 70% of the total development effort [29, 111].

DO-178B also requires the adherence to strict configuration management prac-
tices. These practices require the practitioner to configure the entire software life
cycle environment such that it can be reconstructed upon request. It also requires
that software artifacts can be reproduced in their entirety from the configured data.

15.8.1.2 IEC 61508

IEC 61508 [147] is an international standard of rules applied in industry. It is titled
“Functional safety of electrical/electronic/programmable electronic safety-related
systems.” The goal of functional safety is to use suitable methods to reduce the prob-
ability of dangerous errors to an acceptable level.

The safety categorization of a system is determined by the quantitatively defined
probability of errors (see Figure 15.42). There, the categorization as seen by the other
standards mentioned here is also shown, giving a comparison of the various levels.

The residual error rate of the data communication should not rise above the ac-

Development Tools 481

E

D

C

A

B

1

2

3

4

A
B
C
D

IEC 61508

DO-254
DO-178B

ISO 26262

ISO 26262 is the adaptation of
IEC 61508 for the automotive
industry

Industry /
Off-Highway

Automotive

Aerospace

10-7

10-5

10-9

10-6

10-8

No safety
related

systems

Fa
ilu

re
ra

te
 (

p
er

 h
o
u
r)

FIGURE 15.42
Comparison of Assurance Levels in Different Certification Standards

ceptable limit of 1% of the total errors of the system. For example, the following is
valid for safety-relevant network signals in a SIL3 system according to IEC 61508:
the probability of undetected corruption of such signals, which can lead to danger-
ous system errors, must be less than 10−9 per hour of operation (1% of the system
error rate of 10−7/h). When a transmission error is detected, a corresponding system
response must be triggered. In the case of a fail-safe system with only one commu-
nication bus, this means switching to a safe state; a fail-operational system must be
able to transmit the data using an alternative transmission path.

IEC 61508 is less focused on requirements and, consequently, on verification of
code and configuration items to satisfy these requirements. It is more concerned with
functional safety: It is sufficient to show that the error rate is as low as requested, and
that the system goes to a safe state in case of an error. Verification and thus the usage
of verification tools is less commonly used, but may increase in the future.

15.8.1.3 ISO 26262

ISO 26262 [153] is an emerging norm for safety-relevant electrical and electronic
systems in automobiles. It defines a process framework and process model together
with required activities and work products, as well as applicable methods. The im-
plementation of the norm is meant to guarantee the functional safety of an elec-
trical/electronic system in a motor vehicle. The norm is derived from IEC 61508
specifically with regard to the domain of automobiles; compliance with this norm
will tentatively start being mandatory in mid 2011 for all safety-relevant functions in
motor vehicles.

In distributed control and regulating systems, data signals are transmitted over
a network. The transmission route of such signals encompasses a sending device,
one or more data buses (possibly including gateways), and one or more devices that

482 Time-Triggered Communication

receive and process the signals. Each of these components can, in case of errors,
cause corruption, delay, loss, or repetition of the transmission or make it incorrect in
some other way. To safeguard against errors in communication in vehicles, measures
must be taken in order to detect errors during transmission. These errors must under
no circumstances lead to a critical vehicle state.

ISO 26262 also contains lists of communication error classes that need to be
dealt with, and measures that are known to be effective for recognizing these errors.
In case a distributed system with safety requirements is being developed, in which
safety-relevant data signals are transmitted over a network, it must be proven that all
of these communication errors are detected reliably enough through effective mech-
anisms, so that the probability of an undetected communication error is below the
required threshold. The calculation is done based on bit error rates of the network,
the reliability of hardware (e.g., CRC units and RAM cells) and the applied methods
(e.g., CRC polynomials and code word lengths).

15.8.2 Verification Best Practices

Verification is widely known as a time-consuming and costly activity. With the help
of verification tools, costs can be reduced dramatically. But it is also necessary to
obey a couple of best practices, so that the tools can be utilized best, and in as many
steps as possible. In this section, we briefly present some best practices.

15.8.2.1 Reuse of Processes

Quality Assurance (QA) in aerospace is especially critical due to the relatively small
production quantities and potentially large impact of failures on safety of operation.
Accordingly, well-defined processes and many best-practice approaches exist. The
development process for safety-relevant software development in the automotive sec-
tor can be derived from the time-tested development process for safety-relevant soft-
ware development in aerospace. Since cost-effectiveness is a driving force behind
innovation in the automobile industry, the efficient reuse of existing components is
seen as one of the most effective factors in cost reduction. The savings of develop-
ment and quality-assurance costs, as well as the robustness that results from time-
tested and available components, contribute significantly to the realization of savings
potential.

Due to the similar intentions of the above-mentioned standards, the development
processes that are used for aerospace, automotive or industrial software development
can be quite similar, too. It makes perfect sense to design a series of individual pro-
cesses for all areas of business in an identical way.

• The processes for formal reviews and for change request management can be
carried out with the help of tools that are uniform across the entire company in
all areas of software development, and are carried out according to the same
rules.

• The use of a common build framework for all lifecycle documents of software

Development Tools 483

development makes it possible to simplify configuration management and to
get an overview in the formal domain.

• A proven automatic certified test framework can be used to carry out several
unit- and system-level tests in a particularly economical and exactly checkable
manner.

15.8.2.2 Extending Checklists

QA stretches through the development, production, and operation and maintenance
phases of an aircraft. During the development phase, a “verification and validation
plan” has to be created in order to comply with any standard mentioned above. The
plan contains checklists in addition to detailed descriptions of the checking pro-
cedures, test environments, test tools, documentation and result validation. These
checklists are applied in the creation process of the corresponding lifecycle docu-
ments, as well as during their formal reviews.

The basis for project-specific checklists are the checklists from the standard soft-
ware development process which usually exists in any company that develops safety-
critical software. They are extended with the checklist points from the respective
standard.

15.8.2.3 Use of COTS Products

When developing safety-related systems, testing indisputably causes the biggest
overhead compared to development of conventional, non safety-related systems.
However, the biggest savings potential also lies within this testing phase. A big pro-
portion of testing time and cost can be saved when using off-the-shelf (COTS) com-
ponents that are already safety-certified. Such components can either be complete
units, or just sensors, or software modules like software drivers or protocol stacks. If
these components or modules have already been tested by the supplier to the neces-
sary degree required for the respective safety level, only the application layer and the
interfaces to the COTS components need to be tested. The number of test cases for
the application can be therefore significantly reduced.

Important prerequisites for the usage of COTS software modules are:

• A certificate indicating the safety integrity level of the component and the com-
ponent failure rates that are needed for calculating the overall system failure
rate.

• The availability of a safety manual that provides clear guidance on how to use
the component in a safety-critical system.

The effort for the remaining required tests can be reduced by making use of
appropriate tools for requirements management, configuration management, test ex-
ecution, checking of coding standards, etc. However, all these tools also have to be
qualified for use in safety-critical development.

484 Time-Triggered Communication

15.8.2.4 Modular Certification

Modular certification according to DO-297 [270] is a rather new approach based on
the need for certification of integrated modular avionics (IMA) and the correspond-
ing system architectures [23]. The standard uses an architectural approach which
enables the certification of small, reusable modules and applications. The needed
functionality is established by connecting the single parts of the distributed applica-
tion with a communication system. The standard breaks down the whole system into
the following levels to map to the modular approach:

• Module Acceptance: A module is a component or a collection of components
which may be software, hardware or a combination of both, which provides
resources to the application and/or the system platform.

• Application Acceptance: An application is based on modules and performs a
function.

• System-level Acceptance: The system level consists of one or several plat-
forms which provide a computing environment, managing resources for at least
one application. Furthermore, it establishes support services and platform-
related capabilities like health monitoring and fault management.

• Aircraft-level Acceptance: The aircraft level considers the integration of the
system into the aircraft and its systems.

Using such an architectural approach forces the reuse of legacy systems and pro-
vides the possibility of using modular platforms [175]. Therefore, the certification
activities have to consider the certification of modules and especially their integra-
tion into the platform. An interesting approach considered for the future is to use
formal methods to verify the integration.

The certification of single modules in this approach is fairly similar to the certi-
fication effort needed for reusable software components, i.e., for developing COTS
products. Therefore, the reduction of certification effort applies here, too. In addition,
the communication system which connects the modules needs to be fully approved.

15.8.2.5 Requirements Management

The requirements and design phases at the beginning are the most important parts
of the software lifecycle process. The requirements define the expected output, and
therefore need to be clear and easy to understand. The design is derived from the re-
quirements and describes how they should be implemented. Every fault or obscurity
in this phase has much impact later on. Requirements are the building blocks of the
system. Therefore, the quality of the system depends on the quality of every single
requirement.

Usually, the outcome of the design phase is stated in requirements, too. They
are called low-level requirements, as opposed to high-level (software) requirements
or system requirements, which are processed in the requirements phase. It is highly
cost-efficient to apply the same processes for review and traceability checking on all

Development Tools 485

requirements, rather than developing new processes for the design. Following this
idea, the design thus consists of detailed low-level requirements, which mostly have
to be traceable to the high-level requirements, and design components that describe
complex algorithms and data structures to support the understanding.

Another major point is the traceability from the requirements to the design and
further on to the test cases, down to the source code. This ensures that nothing is
missing and everything has a reason for its existence. To ensure a constant quality
level for the requirements and guarantee the traceability throughout the process, some
basic points have to be recognized.

Tool Support

A database-centric requirements management tool provides a lot of advantages to
the development and certification process. Firstly, several process steps are already
included in the tool, hence the formal handling is simplified. Secondly, the waterfall-
based top-down lifecycle process may be split up, which allows moving forward
from requirements to implementation and verification without the need for consid-
eration of other parts of the system. Furthermore, such a tool checks that all rele-
vant traceability information is available. Additionally, some of these tools provide
the possibility of creating evidence media which contain all necessary lifecycle and
traceability information in an easy-to-review form. According to this efficient way to
deal with the process, the effort for these steps may be reduced by about 20% with
respect to the process necessary without tooling support.

Standardized Requirements Definitions

There should be standards for requirements definition, which provide guidelines for
the development in order to facilitate their understanding. Furthermore, each require-
ment has to be self-contained because this supports the verification of each require-
ment.

Design Components

If a requirement describes a complex functionality, the developer should add def-
initions, figures and additional information which support the understanding. This
encourages the demand for self-contained low-level requirements and helps to com-
prehend the whole system.

Testability

Each requirement has to be checked for testability. This has to be done by the require-
ments developer and especially by the reviewer. The easiest way to handle this is to
write functional test cases in parallel to the requirements to find testability problems
at an early stage of the requirements process. If this is not possible, the developer
should at least give some advice or hints, regarding what to test, to the verification
staff for efficient verification.

486 Time-Triggered Communication

15.8.2.6 Test Vectors

In addition to the above, requirements-based test vectors (test cases and the input to
automatic test procedures) can be automatically generated for each software product
via a tool that is independent of the one used to generate the product code. These
test vectors can cover nominal, MC/DC and robustness testing at the software mod-
ule level. As with the code, these test vectors may have the requirements under test
automatically inserted into them for better readability and traceability. All test vec-
tors can then be parsed to create a complete test-vectors-to-requirements traceability
matrix that is automatically inserted into the requirements management tool.

With different tools being used to generate test vectors and code, independence
can be maintained, and therefore the test vector tool can be qualified as a verification
tool as defined in DO-178B. With this qualification, peer reviews of the module (i.e.,
low-level diagram) tests are not required, resulting in a very large reduction of costs.

15.8.2.7 Test Suite

Another major concern regarding the verification process is the use of a test suite.
The advantage of such a test suite is the possibility to automatically verify test cases
and structural coverage. If the tool qualification package, which has to be provided to
the authority, is already available for the chosen test suite tool, the verification effort
may be optimized by about 10% compared to a process implementation without test
suite tooling.

15.8.3 Verification Tooling Approach

The (automatic) generation of code and configuration items can be viewed as a step in
the build process, similar to compilation. In a typical time-triggered communication
system, these items can be grouped into three main blocks:

1. Communication configuration (i.e., MEDL) verification

2. Node-specific COM-layer verification

3. Application (control code) verification

This view eases the discussion about which processes shall be applied, and which
measures and quality assurance metrics are applicable to source code generators
and configuration generators. This view also implies, especially when applying DO-
178B, that such generators are classified as development tools: It has to be shown
that the output of said generators is correct with respect to the stated requirements,
and that there is no code or configuration that is not covered by requirements. Tool
verification is seen as less strict in the other mentioned standards; however, the con-
siderations necessary for DO-178B form a valuable basis [63].

15.8.3.1 Output Correctness

To show evidence for output correctness, basically two different approaches are pos-
sible, and both are accepted and described in the standards. The first approach is to

Development Tools 487

develop and test the generating tool in such a manner that for every possible input,
the output is correct and adheres to the requirements stated in the input. Although
such a development and certification of a code or configuration generator is costly,
it removes the requirement to perform verification — often conducted by means of
peer reviews — of the code or configuration itself. The tool is considered trustworthy.
Thus, the one-time cost of certification is far less than the continual cost of perform-
ing verification of code and configuration.

The second approach is to develop the generating tool without respecting any
processes. The tool might be non-deterministic, based on unreliable libraries or other
components or even produce false output in some cases. It actually may “guess” the
output. Obviously, the tool itself and thus its output cannot be considered trustworthy.
But such freedom to choose any strategy to get to a possible solution allows for much
more advanced algorithms and a higher chance to find a solution for a particular
problem. In a subsequent, additional step — the verification — it has to be shown that
for the particular given input, the output is correct with respect to the requirements
stated in that input. It should be noted that if the output of the tool is verified, the
tool can be used without qualification according to the standards. Such is the case for
nearly all code generators and schedulers.

15.8.3.2 Manual vs. Automated Verification

Verification of the output can be done manually or automated. For manual verifi-
cation, usually peer reviews are conducted, and checklists and a detailed process
description for the reviewers exist. Manual verification can be cost-effective if done
only once or only a few times. But the result of manual verification may depend on
the assigned reviewers and their experience and expertise, and the result may not be
exactly reproducible.

Automated verification pays off if the configuration data is expected to change
several times during development. This is definitely the case when iterative develop-
ment processes are used. It may also pay off if potential changes during the mainte-
nance phase are considered, too. Verification can be done much faster if a verification
tool exists. But also with other development processes, automated verification may
be advantageous: The expertise of all involved persons gets cumulated in the veri-
fication tool, and is utilized in all subsequent versions of the tool. In addition, the
result provided by the verification tool is exactly reproducible.

The largest portion of today’s software costs is driven by the generation of the test
cases and verification data. This is especially true for the development of verification
tools. Verification data is required for each possible aspect of a configuration item.
Verification data extend the test cases with input vectors and output vectors. The
generation of verification data may also be automated, and the same requirements
regarding tool qualification apply as for verification tools.

DO-178B classifies tools used during the development phase into two categories:

• Development tools: Tools whose output forms part of the airborne software
and thus can introduce errors in the source code base (e.g., code generators).

• Verification tools: Tools that cannot introduce errors but may fail to detect

488 Time-Triggered Communication

them. For example, a static analyzer that automates a software verification
process activity should be qualified if the function that it performs is not ver-
ified by another activity. Type checkers, analysis tools and test tools are other
examples.

The use of verification tools is an interesting aspect of DO-178B. It provides
the possibility of getting complex algorithms, like schedulers, easily certified. The
verification tools have to verify the results of these algorithms, to prove their safe
and deterministic behavior. Furthermore, a tool qualification package is needed for
the verification tool, which provides confidence regarding the tool. The verification
tool and its tool qualification package are mostly less expensive, if the verification
for correctness has to be done several times, than to certify the development tool
— containing the constructive algorithm — itself. Moreover, it is possible to hide
intellectual property in the development tools, as their interior need not be assessed.
Only the verification tool is assessed.

15.8.3.3 Qualification of Verification Tools

Tool qualification of verification tools is easier and thus more cost-effective than
certification of development tools due to several aspects. Basically, it must only be
shown that the tool does not accept any invalid, incomplete, incorrect or malicious
code or configuration. However, the tool may (although not favorable) mark correct
configurations as incorrect. In such a case, manual verification is necessary. Usually,
such an incident results in an updated version of the verification tool, which is able
to also handle this case correctly, as the intention of tool-based verification is to have
no need for manual revision.

Any configuration that contains at least one element not having a matching re-
quirement, or whose matching requirement implies another value, must be consid-
ered incorrect. Quite often, several requirements have an impact on the value of a
certain output element. The verification tool does not need to tell the correct value
of an output element — it is sufficient if it marks the element (or set of elements) as
incorrect. The fact that the verification tool need not be constructive contributes to
the cost-effectiveness of verification tools.

Another big advantage in the qualification of verification tools is the possibility to
view the tool as black box. Internals need not be assessed. Consequently, there may
be unused or even dead code inside the verification tool. It is not necessary to provide
a detailed design and low-level requirements. Low-level test cases are not necessary,
either. Only high-level requirements and the corresponding test cases are necessary.
The total number of test cases and test vectors is thus significantly smaller than for
the certification of a development tool. It is also possible to qualify a third-party tool,
of which no internals are known. And it is further possible to qualify a tool just for a
particular use case.

With the automation of requirements testing (i.e., the verification of the output
generated by development tools, with respect to the requirements stated in the input
to these tools), and MC/DC testing at the module level, the majority of (manual)
testing emphasis can be directed at the system level, toward hardware-software inte-

Development Tools 489

gration and robustness testing. This results in a higher quality product, with reduced
testing costs. At the system level there is limited automation because the testing re-
quires system-level knowledge not captured in the software requirements. As such,
these tests still need to be created and mostly also executed by hand. Consequently,
an ideal process removes much of the manual work required to create safety-critical
software, leaving the system and software design engineers to work at the system
integration and test level, resulting in an overall product quality improvement.

The verification of MEDLs using TTPVerify will be discussed next, followed by a
discussion of the verification of the configuration of a certain COM layer, the TTPTD-
COM Layer.

15.8.3.4 TTPVerify
TTPVerify is a comprehensive tool for the verification of TTP cluster designs, based
on MEDLs. A TTP cluster contains a number of hosts exchanging messages in a
statically defined temporal pattern. Any TTP controller in the cluster has stored this
temporal pattern in its MEDL. This MEDL defines the whole transmission behav-
ior on the bus and the local CNI interface behavior to the host controller. TTPVerify
reads the MEDL files and verifies their integrity as well as their conformance to the
TTP protocol. It is verified that the MEDLs belong to the same cluster and do not
contradict each other. Some aspects of fault tolerance of the whole cluster are also
checked.

The output of TTPVerify is a file that is divided into chapters for better readability.
To allow a condensed view of the verification results, the user can customize the
report to his needs. But the user cannot influence the verification algorithms to avoid
conditions where the tool may fail due to bad user input. The command file structure
and the output file structure are especially designed to support automatization (e.g.,
for extracting specific data), since the purpose of TTPVerify is to support and improve
the verification process for TTP-based systems.

TTPVerify automates the verification of the TTP schedule and the MEDLs where
this schedule table is stored inside the TTP communication controllers. The cor-
rectness of this schedule is analyzed by TTPVerify and the resulting report has to
be checked by additional tools or manually. Therefore, it is necessary to allow for
easy extraction of information by tools as well as to provide a human readable rep-
resentation of this data. TTPVerify is designed to specifically support safety-critical
application software. Based on the Time-Triggered Architecture (TTA) and the TTP
communication system, TTPVerify supports distributed fault-tolerant hard real-time
application software.

TTPVerify not only verifies the correctness of MEDLs, it also provides informa-
tion about a MEDL or the cluster schedule. TTPVerify provides a summary for any
verified controller, including scalar data (e.g., macrotick length, membership posi-
tion) as well as different tables summarizing specific properties of a MEDL. This
includes properties of all round-slots in any cluster mode which is provided for any
controller type. Additional tables will be provided for specific controller-dependent
properties. Different controller types will provide different types of properties that

490 Time-Triggered Communication

are reported. This controller data is not only informative for the user. It can also be
used to manually verify issues that are beyond the scope of TTPVerify (e.g., order of
slots). Furthermore, if TTPVerify detects a problem in a MEDL, the controller sum-
maries may also be of help in finding the root cause behind the reported fault. These
controller summaries are written in the report in the respective chapter of the MEDL.

TTPVerify also provides a complete dump of the MEDL content in a human-
readable form. This is necessary for verification activities that go beyond the scope
of TTPVerify, and allows a significant gain of productivity for these purposes.

15.8.3.5 TTPTD-COM-Verify

The TTP Table-Driven Communication Layer (TTPTD-COM Layer) is a static table-
driven communication layer between the application and the TTP controller. It is
designed for multiple TTP networks that are attached to one single CPU, and includes
optimization for redundant messages. The TTPTD-COM Layer is a static embedded
library written in C, which is certified according to DO-178B.

As the name suggests, it is driven by configuration tables. These tables are usually
generated by TTPBuild in C source code format, then compiled and linked into the
embedded application, and will then reside in the ROM of the embedded target. Since
this data influences the correct behavior of the embedded TTPTD-COM code, the used
configuration data needs to be verified. This is the main application of TTPTD-COM-
Verify.

What TTPTD-COM-Verify is:

• A tool to verify the correctness of the provided configuration data, which is
used by the embedded source code of the TTPTD-COM Layer.

• A tool that checks the configuration data in binary form (as an S19 file, a
Motorola-specific ASCII text encoding for binary data). This guarantees an
end-to-end verification and no further need to verify a compilation or another
transformation step.

• A tool that verifies the configuration data for integrity and consistency.

• A tool that verifies the configuration data for internal and global consistency
against all participating hosts’ configurations.

• A tool that verifies the correctness of scheduled user-interrupts.

What TTPTD-COM-Verify is not:

• A verification tool which verifies the correctness of the embedded code.

• A verification tool which verifies the correctness of the code of the configura-
tion generation tool.

• A WCET measurement tool for the given configuration data.

• A blackbox test of the embedded TTPTD-COM code.

Development Tools 491

• A verification tool to check the C source code in any form (coding guidelines,
correctness, etc.).

TTPTD-COM-Verify reads a tool configuration file (in XML format), which on
one hand contains switches for the tool behavior, and on the other hand the input
file names of all other involved files. The latter include the requirement specifica-
tion as an Interface Control Document (ICD), as well as the configuration tables and
MEDLs to be verified. The configuration tables and MEDLs are read as S19 im-
ages together with unified map-files. In addition, TTPTD-COM-Verify uses the MHL
partition header files. Optionally, the worst-case execution times (WCETs) can be
supplied to TTPTD-COM-Verify to check the timing requirements.

Data Flow

Figure 15.43 shows the interaction between the development tools and the verifi-
cation tools. On the left side, the standard TTP toolchain with TTPPlan, TTPBuild
and TTPLoad is shown, which finally results in several MEDLs and TTPTD-COM
Layer configurations, one for every host. These source files are compiled by a C-
compiler chosen by the customer. They might be linked with the user application
and the TTPTD-COM embedded library. Finally, the linker has to provide an S19 file
which serves as the verification input for TTPTD-COM-Verify.

Additionally, the compiler provides a map-file mapping symbols to ad-
dresses inside the S19 image. Since every compiler has its own map-
file format, TTPTD-COM-Verify will only accept a unified XML-based
map-file. In this map-file the MHB allocations — which are given in the
tt tdc application data mhb alloc *.h files — are included as well.
This map-file handling is shown in Figure 15.43 between the C-compiler and the
map.xml file(s). It includes the process of converting a compiler-specific map-file
and the MHB message allocations into a unified XML-format map-file map.xml.
Several requirements ensure that this conversion is done correctly. For checking
those requirements, an additional small verifying tool is provided.

The following arrows show activities which have to be done by the user:

• The arrows from the customer database requirement specification files (com-
mand file for TTPVerify, tool configuration file for TTPTD-COM-Verify and the
ICD) show the responsibility of the user to define application requirements
inside those files independently of input data to the tool chain.

• The dashed line between TTPVerify and TTPTD-COM-Verify illustrates the re-
sponsibility of the user to check if all MEDL requirements that are needed for
TTPTD-COM-Verify passed the tests correctly. Before TTPTD-COM-Verify is
allowed to be operated, the MEDLs need to be checked for internal and global
consistency by TTPVerify. To this end, TTPVerify uses a special command file
as input for a cross-check with application requirements. This command file is
usually provided directly by the user.

Besides the MEDLs, TTPTD-COM-Verify needs some further input. Similar to

492 Time-Triggered Communication
cxxxiv Time-Triggered Communication

content to
be verified

.s19

TTP-Plan

Toolchain

customer database

verified by customer

.ddb

.cdb

TTP-Verify

TTP-Build

TTP-Load

app.c

not qualified
development tools

C-compiler

.cmd

qu
al
ifi
ed

ve
rifi
ca
tio
n
to
ol
s

cfg.xml

wcet.xml

map.xml

TD-COM
Verify

ICD

.h

.c

medl.c

* mhb alloc 0.h

tt tdc application data 0.h

report

map-file
handling

report

report

map.xml

*.map

* mhb alloc 0.h
map-file
Verify

map-file
Converter

FIGURE 44
Interaction of the development tools with the verification tools

FIGURE 15.43
Interaction of the Development Tools with the Verification Tools

Development Tools 493

TTPVerify’s command file, the application requirements needed for TTPTD-COM-
Verify must be provided as ICD. While TTPVerify supports verification for different
cluster modes, the TTPTD-COM Layer does not support cluster mode switches and
has only one active cluster mode during the whole runtime. This active cluster mode
needs to be provided to TTPTD-COM-Verify through the ICD. The worst-case execu-
tion times (WCETs) of the frame copy tasks can be supplied to TTPTD-COM-Verify
in wcet.xml files. Every host needs a separate file. If these files are not present,
TTPTD-COM-Verify will just skip the timing requirements analysis.

Hence, a correct verification process would look like this:

1. Run TTPTD-COM-Verify without WCET files to guarantee correctness of the
binary table data.

2. If the tables are correct, use those tables to measure the WCETs of every frame
copy task, and enter these times into the WCET files.

3. Rerun TTPTD-COM-Verify with the newly created WCET files to check the
scheduling timing requirements of the TTPTD-COM Layer.

Certification Aspects

The host applications contain a number of high-level requirements for opera-
tion and interface to the TTPTD-COM Layer. The TTPTD-COM Layer has specific
requirements for the proper delivery and retrieval of messages to/from the CNI.
These requirements are composed of requirements derived from the TTPTD-COM
embedded code and the configuration tables. However, this procedure is very time
consuming and expensive for large systems, and might slow down the development
cycle dramatically. Therefore, a tool-based approach is considered. In such a tool-
based approach, the interface requirements and the high-level requirements are pro-
vided as input to TTPBuild, which produces the code containing the C data structures
used by the TTPTD-COM Layer. TTPBuild and the C compiler suite are considered
development tools according to the guidelines of DO-178B section 12.2, whereas
TTPTD-COM-Verify is considered a verification tool. TTPTD-COM-Verify must ex-
amine the S19 images containing data from the configuration tables. Additionally,
TTPTD-COM-Verify has to validate them for correctness according to the application
high-level requirements, the controller requirements and the TTPTD-COM high-level
and low-level requirements. By qualifying TTPTD-COM-Verify in accordance with
DO-178B, TTPBuild and the C compiler suite do not need to be qualified.

Bibliography

[1] A. Ademaj. Slightly-off-specification failures in the time-triggered architec-
ture. In Proc. of the 7th IEEE International High-Level Design Validation and
Test Workshop, page 7, Washington, DC, USA, IEEE Computer Society, 2002.

[2] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin. Evaluation of fault handling
of the time-triggered architecture with bus and star topology. In Proc. of the
International Conference on Dependable Systems and Networks (DSN), pages
123–132, 22–25 2003.

[3] T. Amnell, G. Behrmann, J. Bengtsson, P.R. D’Argenio, A. David, A. Fehnker,
T. Hune, B. Jeannet, K.G. Larsen, M.O. Möller, P. Pettersson, C. Weise, and
W. Yi. UPPAAL - Now, Next, and Future. In F. Cassez, C. Jard, B. Rozoy,
and M. Ryan, editors, Modelling and Verification of Parallel Processes, num-
ber 2067 in Lecture Notes in Computer Science Tutorial, pages 100–125.
Springer–Verlag, 2001.

[4] E. Anceaume and I. Puaut. A taxonomy of clock synchronization algorithms.
Research Report 1103, Institut National de Recherche en Informatique et
Systèmes Aléatoires (IRISA), Rennes, France, July 1997.

[5] E. Anceaume and I. Puaut. Performance evaluation of clock synchronization
algorithms. Research Report 3526, Institut National de Recherche en Infor-
matique et Systèmes Aléatoires (IRISA), Rennes, France, October 1998.

[6] C. Scheidler, P. Puschner, S. Boutin, E. Fuchs, G. Gruensteidl, and Y. Pa-
padopoulos. Systems engineering of time-triggered architectures—the Setta
Approach. In Proceedings of the 16th IFAC Workshop on Distributed Com-
puter Control Systems, 2000.

[7] ARINC. ARINC Specification 629: Multi-Transmitter Data Bus – Part 1:
Technical Description. Aeronautical Radio, Inc., Annapolis, MD, USA,
November 1991.

[8] ARINC. Backplane Data Bus. ARINC Specification 659. Aeronautical Radio,
Inc., 2551 Riva Road, Annapolis, MD 21401, December 1993.

[9] ARINC. Multi-transmitter data bus: Part 1 technical description. arinc speci-
fication 629p1-5. Technical report, Aeronautical Radio Inc., Annapolis, MD,
USA, March 31st 1999.

495

496 Time-Triggered Communication

[10] ARINC. Arinc specification 429. digital information transfer system (DITS)
parts 1,2,3. Standard ARINC 429, Aeronautical Radio Inc., 2001.

[11] ARTEMIS. The ARTEMIS strategic research agenda. http://www.
artemisia-association.org/sra, 2006. [Online; accessed 25-
August-2010].

[12] K. Arvind. Probabilistic clock synchronization in distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 5(5):474–487, May 1994.

[13] Association for Standardisation of Automation and Measuring Systems
(ASAM). ASAM MCD-2 NET, Data Model for ECU Network Systems (Field
Bus Data Exchange Format), Version 3.1.0, 2009.

[14] Atmel Corporation. AVR 308: Software LIN Slave, May 2002. Application
note available at http://www.atmel.com.

[15] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc. Volcano Com-
munication Technologies AB, Volkswagen AG, and Volvo Car Corporation.
LIN specification and LIN press announcement. SAE World Congress Detroit,
http://www.lin-subbus.org, 1999.

[16] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc. Volcano Commu-
nication Technologies AB, Volkswagen AG, and Volvo Car Corporation. LIN
specification v2.0, 2003.

[17] N.C. Audsley, I.J. Bate, and A. Grigg. The role of timing analysis in the cer-
tification of IMA systems. IEEE Certification of Ground/Air Systems Seminar
(Ref. No. 1998/255), Dept. of Comput. Sci., York Univ., London, UK, Febru-
ary 1998.

[18] Autosar. AUTOSAR – Technical Overview V3.0, 2006.

[19] Autosar. General Requirements on Basic Software Modules, Release 3.1, Doc-
ument Version 2.2.2, 2008.

[20] Autosar. List of Basic Software Modules, Release 3.1, Document Version 1.3.0,
2009.

[21] A. Avizienis, J.C. Laprie, and B. Randell. Fundamental concepts of depend-
ability. Research Report 01-145, LAAS-CNRS, Toulouse, France, April 2001.

[22] O. Babaoglue and R. Drummond. (Almost) no cost clock synchronization. In
Proceedings of the 7th International Symposium on Fault-Tolerant Comput-
ing, pages 42–47, Pittsburgh, PA, USA, IEEE Computer Society Press, July
1987.

[23] A. Bahrami. Complex integrated avionic systems and system safety. In Online
Proceedings of the The Europe-US International Aviation Safety Conference,
2005.

Bibliography 497

[24] M.B. Barron and W.F. Powers. The role of electronic controls for future au-
tomotive mechatronic systems. IEEE/ASME Transactions on Mechatronics,
1(1):80 –88, March 1996.

[25] G. Bauer and H. Kopetz. Transparent redundancy in the time-triggered archi-
tecture. In Proc. of the Int. Conference on Dependable Systems and Networks
(DSN 2000), New York, pages 5–13, June 2000.

[26] G. Bauer, H. Kopetz, and W. Steiner. The central guardian approach to enforce
fault isolation in a time-triggered system. In Proc. of the 6th Int. Symposium on
Autonomous Decentralized Systems (ISADS 2003), pages 37–44, Pisa, Italy,
April 2003.

[27] G. Bauer and M. Paulitsch. An investigation of membership and clique avoid-
ance in TTP/C. In Proc. of the 19th IEEE Symposium on Reliable Distributed
Systems, pages 118–124, 2000.

[28] G. Behrmann, A. David, K.G. Larsen, O. Müller, P. Pettersson, and W. Yi.
UPPAAL - present and future. In Proc. of 40th IEEE Conference on Decision
and Control. IEEE Computer Society Press, 2001.

[29] B. Beizer. Software Testing Techniques (2nd ed.). Van Nostrand Reinhold Co.,
New York, NY, USA, 1990.

[30] R. Benesch. TCP für die Time-Triggered Architecture. Master’s thesis, Tech-
nische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-
1, 1040 Vienna, Austria, June 2004. ARTEMIS

[31] C. Bergenhem and J. Karlsson. A process group membership service for active
safety systems using tt/et communication scheduling. In Dependable Comput-
ing, 2007. PRDC 2007. 13th Pacific Rim International Symposium on, pages
282 –289, December 2007.

[32] M. Bertoluzzo. Experimental activities on ttcan protocol. In Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications,
2005. IDAACS 2005. IEEE, pages 22 –27, 5-7 2005.

[33] P. Binns. A robust high-performance time partitioning algorithm. The Digital
Engine Operating System Approach. In Digital Avionics Systems Conference.
AIAA/IEEE, IEEE, 2001.

[34] P. Bishop. A methodology for safety case development. Technical report, Ade-
lard, London, UK, 1998.

[35] P. Bjorn-Jorgensen and J. Madsen. Critical path driven cosynthesis for het-
erogeneous target architectures. In Proceedings of the 5th International Work-
shop on Hardware/Software Co-Design, pages 15–19. IEEE Computer Soci-
ety, 1997.

498 Time-Triggered Communication

[36] G. Bloor, G. Karsai, R. Reuter, S. Gulati, and S. Hutchings. The integration
of anomaly, prognostics, and diagnostics reasoners to optimize overall vehicle
health management goals. In Proc. of the IEEE Aerospace Conference, page
469, vol.2, 1999.

[37] B.W. Boehm, R. Madachy, and B. Steece. Software Cost Estimation with Co-
como II with Cdrom. Prentice Hall PTR Upper Saddle River, NJ, USA, 2000.

[38] M. Borovicka. Design of a gateway for the interconnection of real-time com-
munication hierarchies. Master’s thesis, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2003.

[39] BOSCH. CAN specification - version 2.0. available at http://www.bosch.de.

[40] J.D. Boskovic and R.K. Mehra. Multi-mode switching in flight control. In
Proc. of the 19th Digital Avionics Systems Conferences (DASC), pages 6F2/1
–6F2/8, vol.2, 2000.

[41] D. Bosnacki and D. Dams. Discrete-time promela and spin. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, volume 1486 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998.

[42] D. Bosnacki and D. Dams. Integrating real time into spin: A prototype im-
plementation. In FORTE XI / PSTV XVIII ’98: Proceedings of the FIP TC6
WG6.1 Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE XI) and Protocol
Specification, Testing and Verification (PSTV XVIII), pages 423–438, Deven-
ter, The Netherlands, Kluwer, B.V., 1998.

[43] A. Bouajjani and A. Merceron. Parametric verification of a group membership
algorithm. In Proc. of the Symposium on Formal Techniques in Real-Time and
Fault Tolerant System (FTRTFT), LNCS Vol. 2469, pages pp. 83–105, Olden-
burg, Germany, Springer-Verlag, September 2002.

[44] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing real-time commu-
nication under electromagnetic interference. 2004.

[45] T. Bultan and T. Yavuz-Kahveci. Action language verifier. In Proc. of the 16th
Annual International Conference on Automated Software Engineering (ASE
2001), pages 382 – 386, 26-29 2001.

[46] E.K. Burke and G. Kendall. Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques. Springer Verlag, 2005.

[47] D. Butler, T. Schmidt, and T. Waclawczyk. LIN protocol implementation us-
ing picmicro mcus. available at www.microchip.com, 2000. Microchip
AN729.

Bibliography 499

[48] R.W. Butler, J.L. Caldwell, and B.L.Di Vito. Design strategy for a formally
verified reliable computing platform. In Proc. of the 6th Annual Conference
on Computer Assurance (COMPASS) Systems, pages 125–133, Gaithersburg,
MD, USA, NASA Langley Res. Center, June 1991.

[49] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Springer-Verlag New York Inc, 2005.

[50] I. Cardei, R. Jha, M. Cardei, and A. Pavan. Hierarchical architecture for real-
time adaptive resource management. In Proc. of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware ’00), pages 415–
434, Secaucus, NJ, USA, Springer-Verlag New York, Inc., 2000.

[51] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. ARINC 659 schedul-
ing: problem definition. Real-Time Systems Symposium, 1994., Proceedings,
pages 165–169, December 1994.

[52] W.C. Carter. A time for reflection. In Proc. of the 8th IEEE Int. Symposium on
Fault Tolerant Computing (FTCS-8), page 41, Santa Monica, June 1982.

[53] CAST, Inc., IP Provider. LIN bus controller core, 2010. Available at www.
cast-inc.com/ip-cores/interfaces/lin/index.html.

[54] CENELEC. EUROPEAN STANDARD 50128: Railway applications - Com-
munications, signalling and processing systems - Software for railway control
and protection systems, March 2001.

[55] CENELEC. EUROPEAN STANDARD 50159-1: Railway applications - Com-
munication, signalling and processing systems; Part 1: Safety-related Com-
munication in closed transmission systems, March 2001.

[56] CENELEC. EUROPEAN STANDARD 50159-2: Railway applications - Com-
munication, signalling and processing systems; Part 2: Safety-related Com-
munication in open transmission systems, March 2001.

[57] CENELEC. EUROPEAN STANDARD 50128: Railway applications - Com-
munications, signalling and processing systems - Safety related electronic sys-
tems for signalling, February 2003.

[58] P. Cholasta. LIN 2.0 mirror unit slave based on the MC68HC908EY16 MCU
and the LIN 2.0 communication protocol. Application Note AN2885, Rev. 0,
11/2004, Freescale Semiconductor, 2004.

[59] G. Ciardo and C. Lindemann. Comments on ”analysis of self-stabilizing clock
synchronization by means of stochastic Petri nets.” IEEE Transactions on
Computers, 43(12):1453–1456, 1994.

[60] V. Claesson, H. Lönn, and N. Suri. An efficient TDMA start-up and restart
synchronization approach for distributed embedded systems. IEEE Transac-
tions on Parallel and Distributed Systems, 15(7), July 2004.

500 Time-Triggered Communication

[61] D.D. Cofer and M. Rangarajan. Event-triggered environments for verification
of real-time systems. In Simulation Conference, 2003. Proceedings of the 2003
Winter, pages 915 – 922, vol.1, 7-10 2003.

[62] E.G. Coffman and R.L. Graham. Optimal scheduling for two-processor sys-
tems. Acta Informatica, 1(3):200–213, 1972.

[63] M. Conrad, P. Munier, and F. Rauch. Qualifying software tools according to
ISO 26262. In Tagungsband Dagstuhl-Workshop MBEES: Modellbasierte En-
twicklung eingebetteter Systeme VI, 2010.

[64] FlexRay Consortium. FlexRay protocol specification ver. 2.1, 2005.

[65] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
micro, 23(4):14–19, 2003.

[66] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design. Int. Computer Science Series, Addison-Wesley, second edition,
1994.

[67] F. Cristian. Probabilistic clock synchronization. Distributed Computing,
3:146–158, 1989.

[68] F. Cristian. Reaching agreement on processor-group membership in syn-
chronous distributed systems. Distributed Computing, 4:175–187, 1991.

[69] F. Cristian. Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2):56–78, 1991.

[70] F. Cristian, H. Aghili, and R. Strong. Clock synchronization in the presence of
omission and performance failures, and processor joins. In Proc. of 16th Int.
Symp. on Fault-Tolerant Computing Systems, July 1996.

[71] F. Cristian and C. Fetzer. Fault-tolerant external clock synchronization. In Pro-
ceedings of the 15th International Conference on Distributed Computing Sys-
tems, pages 70–77, Los Alamitos, CA, USA, IEEE, May 30–June 2 1995.

[72] P.H. Dana. Global Positioning System (GPS) time dissemination for real-time
applications. Real-Time Systems, 12(1):9–40, January 1997.

[73] C.T. Davies. Computing Systems Reliability, Data Processing Integrity, pages
288–354. Cambridge University Press, 1979.

[74] L. de Moura, S. Owre, H. Rue, J. Rushby, N. Shankar, M. Sorea, and A. Ti-
wari. SAL 2. In Computer Aided Verification, volume 3114 of Lecture Notes
in Computer Science, pages 251–254. Springer Berlin / Heidelberg, 2004.

[75] J.A. Debardelaben, V.K. Madisetti, and A.J. Gadient. Incorporating cost
modeling in embedded-system design. IEEE Design & Test of Computers,
14(3):24–35, 1997.

Bibliography 501

[76] S. Dolev. Possible and impossible self-stabilizing digital clock synchroniza-
tion in general graphs. Real-Time Systems, 12(1):95–107, January 1997.

[77] S. Dolev and J.L. Welch. Self-stabilizing clock synchronization with Byzan-
tine faults. In Proceedings of the 14th ACM Symposium on Principles of Dis-
tributed Computing, page 256. ACM Press, 1995.

[78] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona. The real
Byzantine generals. In Proc. 23rd Digital Avionics Systems Conf., volume
6.D.4, pages 61–11, October 2004.

[79] K. Driscoll and K. Hoyme. The airplane information management system:
An integrated real-time flight-deck control system. Real-Time Systems Sym-
posium, pages 267–270, December 1992.

[80] K. Driscoll, G.M. Papadoupoulos, S. Nelson, G.L. Hartmann, and G. Ramo-
halli. Multi-processor flight control system. Technical Report AFWAL-TR-
84-3076, Honeywell Systems and Research Center, September 1984.

[81] K.R. Driscoll. Apparatus and method for fault detection on redundant signal
lines via encryption. Patent U.S. 5307409, Honeywell, April 26th 1994.

[82] K.R. Driscoll. Apparatus and method for transmitting information between
dual redundant components utilizing four signal paths. Patent U.S. 5386424,
Honeywell, January 31st 1995.

[83] B. Dutertre and M. Sorea. Modeling and Verification of a Fault-Tolerant Real-
time Startup Protocol using Calendar Automata. In Proc. of the Joint Con-
ference Formal Modelling and Analysis of Timed Systems (FORMATS), For-
mal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), Lecture
Notes in Computer Science. Springer-Verlag, September 2004.

[84] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Com-
puter, 42(4):42–52, 2009.

[85] S.A. Edwards. Languages for Digital Embedded Systems. Springer Nether-
lands, 2000.

[86] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access opti-
mization for distributed embedded systems. IEEE Transactions on Very Large
Scale Integration(VLSI) Systems, 8(5):472–491, 2000.

[87] W. Elmenreich. Time-triggered smart transducer networks. IEEE Transactions
on Industrial Informatics, 2(3):192–199, 2006.

[88] W. Elmenreich and M. Delvai. Time-triggered communication with UARTs.
In Proceedings of the 4th IEEE International Workshop on Factory Commu-
nication Systems, pages 97–104, 2002.

502 Time-Triggered Communication

[89] W. Elmenreich, W. Haidinger, P. Peti, and L. Schneider. New node integra-
tion for master-slave fieldbus networks. In Proceedings of the 20th IASTED
International Conference on Applied Informatics (AI 2002), pages 173–178,
February 2002.

[90] W. Elmenreich and S. V. Krywult. A comparison of fieldbus protocols: LIN
1.3, LIN 2.0, and TTP/A. In Proceedings of the 10th IEEE International Con-
ference on Emerging Technologies and Factory Automation, pages 747–753,
2005.

[91] C. Elmore. Electronic controls. OEM Off-Highway, November 2008.

[92] C. Engel, E. Jenn, P.H. Schmitt, R. Coutinho, and T. Schoofs. Enhanced dis-
patchability of aircrafts using multi-static configurations. In Proc. of the Em-
bedded Real Time Software and Systems, Toulouse, France, May 2010.

[93] J. Erjavec and R. Scharff. Automotive Technology: A Systems Approach. Del-
mar Cengage Learning, 5th edition, 2009.

[94] J.A. Estefan. Survey of model-based systems engineering (MBSE) method-
ologies. Incose MBSE Focus Group, 25, 2007.

[95] FAA. Aviation databus assurance. Advisory Circular 20-156, Federal Aviation
Administration, August 4th 2006.

[96] Federal Aviation Administration (FAA). Airworthiness directives; dassault
model Falcon 2000ex and 900ex series airplanes. Airworthiness Directive
Federal Register: (Volume 70, Number 39, Page 9853-9856), FAA, Docket
No. FAA-2005-20425; Directorate Identifier 2005-NM-014-AD; Amendment
39-13987; AD 2005-04-15, March 1st 2005.

[97] Federal Aviation Administration (FAA). Advisory Circular AC 20-115B,
1993.

[98] C. Ferdinand and R. Heckmann. aiT: Worst-case execution time prediction
by static program analysis. Building the Information Society, pages 377–383,
2004.

[99] M. Fernström and D. Ungerdahl. TTCAN Reference Application - An investi-
gation on time-triggered network performance. Master’s thesis, Chalmers Uni-
versity of Technology, 2006.

[100] C. Fetzer and F. Cristian. Lower bounds for function based clock synchro-
nization. In Proc. of 14th Int. Symp. on Principles of Distributed Computing,
August 1985.

[101] C. Fetzer and F. Cristian. An optimal internal clock synchronization algorithm.
In Proceedings of the 10th Conference on Computer Assurance, pages 187–
196, Gaithersburg, MD, USA, IEEE, June 1995.

Bibliography 503

[102] C. Fetzer and F. Cristian. Integrating external and internal clock synchroniza-
tion. Real-Time Systems, 12:123–171, March 1997.

[103] M. Fletcher. Progression of an open architecture: from Orion to Altair and
ISS. Companion to report (Presentation) S65-5000-20-0, Honeywell, May
2009. FaultTolerant Spaceborne Computing Employing New Technologies
2009 Conference.

[104] FlexRay Consortium. FlexRay communications system – preliminary central
bus guardian specification version 2.0.9. Technical report, BMW AG., Daim-
lerChrysler AG., Robert Bosch GmbH, and General Motors/Opel AG, 2002.

[105] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Cor-
poration, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volk-
swagen AG. FlexRay Communications System Protocol Specification Version
2.1, May 2005.

[106] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Cor-
poration, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volk-
swagen AG. Node-Local Bus Guardian Specification Version 2.0.9, December
2005.

[107] A. Galleni and D. Powell. Consensus and membership in synchronous and
asynchronous distributed systems. Technical report, 1995.

[108] GAMA. ASCB: Avionics Standard Communications Bus Version C. General
Aviation Manufacturers Association (GAMA), Washington, DC, April 15
1996.

[109] M.-C. Gaudel, V. Issarny, C. Jones, H. Kopetz, E. Marsden, N. Moffat,
M. Paulitsch, D. Powell, B. Randell, A. Romanovsky, R. Stroud, and F. Taiani.
Final version of the DSoS conceptual model. DSoS Project (IST-1999-11585)
Deliverable CSDA1, December 2002. Available as Research Report 54/2002
at http://www.vmars.tuwien.ac.at.

[110] M. Ghetie, H. Noura, and M. Saif. Fault diagnosis using balance equations
methods and the algorithmic redundancy approach. In Proc. of the 37th IEEE
Conference on Decision and Control, pages 586–591, vol.1, 1998.

[111] M. Ghiassi and K. I. S. Woldman. Dual programming approach to software
testing. Software Quality Journal, 3(1):45–59, 1994.

[112] Robert Bosch GmbH. E-Ray FlexRay IP-module users manual revision 1.2.7,
2009.

[113] S. Godavarty, S. Broyles, and M. Parten. Interfacing to the on-board diagnostic
system. In Proc. of the 52nd IEEE Vehicular Technology Conference, pages
2000 –2004, vol.4, 2000.

504 Time-Triggered Communication

[114] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal of Computing, pages
281–308, April 1988.

[115] R. Gusella and S. Zatti. An election algorithm for a distributed clock synchro-
nization program. In Proc. of 6th Int. Conf. on Distributed Computing Systems,
pages 364–373, 1986.

[116] R. Gusella and S. Zatti. The accuracy of the clock synchronization achieved
by tempo in Berkeley UNIX 4.3BSD. IEEE Trans. on Software Engineering,
15(7):847–853, July 1989.

[117] J. C. Palencia Gutiérrez and M. González Harbour. Schedulability analysis for
tasks with static and dynamic offsets. In Proceedings of the 19th IEEE Real
Time Systems Symposium, pages 26–37, December 1998.

[118] J. C. Palencia Gutiérrez and M. González Harbour. Exploiting precedence re-
lations in the schedulability analysis of distributed real-time systems. In Pro-
ceedings of the 20th IEEE Real-Time Systems Symposium, page 328. IEEE
Computer Society, 1999.

[119] B. Heppner and H. Brauner. Assessment of whole vehicle behaviour by means
of simulation. Technical report, Daimler AG, 2008.

[120] W. Haidinger and R. Huber. Generation and analysis of the codes for TTP/A
fireworks bytes. Research Report 5/2000, Technische Universität Wien, Insti-
tut für Technische Informatik, Vienna, Austria, 2000.

[121] B. Hall and K. Driscoll. A new aerospace network family. Presentation to
INCOSE, Honeywell, October 2009.

[122] B. Hall, K.R. Driscoll, M. Paulitsch, and S. Dajani-Brown. Ringing out fault
tolerance. A new ring network for superior low-cost dependability. Depend-
able Systems and Networks, International Conference on, 0:298–307, 2005.

[123] B. Hall, M. Paulitsch, and K.R. Driscoll. FlexRay BRAIN fusion: A FlexRay-
based braided ring availability integrity network. SAE World Congress, Paper
No 2007-01-1492, 2007.

[124] J.Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock syn-
chronization. In Proceedings of the 3rd ACM Symposium on Principles of
Distributed Computing, pages 89–102, 1984.

[125] F. Hartwich. TTCAN IP Module - User’s Manual. Bosch, 1.6 edition, 11 2002.

[126] F. Hartwich, B. Müller, T. Führer, and R. Hugel. Timing in the TTCAN Net-
work. Technical report, Robert Bosch GmbH, 2003.

[127] C. Haubelt, J. Teich, K. Richter, and R. Ernst. System design for flexibility.
In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 854–861. IEEE Computer Society, 2002.

Bibliography 505

[128] K. Hayhurst, C. Dorsey, J. Knight, N. Leveson, and G. McCormick. Stream-
lining software aspects of certification: Report on the SSAC survey. Technical
report, NASA Technical Memorandum 1999-209519, August 1999.

[129] Health and Safety Executive (HSA). Reducing Risks, Protecting People –
HSEs Decision-Making Process, 2001.

[130] M. Hecht, D. Tang, and H. Hecht. Quantitative reliability and availability as-
sessment for critical systems including software. In Proc. of the 12th Annual
Conference on Computer Assurance, Gaithersburg, MD, USA, June 1997.

[131] G. Heiner and T. Thurner. Time-triggered architecture for safety-related dis-
tributed real-time systems in transportation systems. In Proc. of the Twenty-
Eighth Annual Int. Symposium on Fault-Tolerant Computing, pages 402–407,
June 1998.

[132] R. Hexel. FITS: a fault injection architecture for time-triggered systems. In
Proc. of the 26th Australasian Computer Science Conference (ACSC ’03),
pages 333–338, Darlinghurst, Australia, Australian Computer Society, Inc.,
2003.

[133] D. Höchtl and U. Schmid. Long-term evaluation of GPS timing receiver fail-
ures. In Proceedings of the 29th Precise Time and Time Interval Systems and
Applications Meeting, Long Beach, USA, December 1997.

[134] G.J. Holzmann. The model checker Spin. Software Engineering, IEEE Trans-
actions on, 23(5):279 –295, May 1997.

[135] Honeywell. http://www.honeywell.com. accessed August 2010.

[136] K. Hoyme and K. Driscoll. SAFEbus. IEEE Aerospace and Electronic Systems
Magazine, pages 34–39, March 1993.

[137] I. Hwang, S. Kim, Y. Kim, and C.E. Seah. A survey of fault detection, iso-
lation, and reconfiguration methods. IEEE Transactions on Control Systems
Technology, 18(3):636 –653, May 2010.

[138] IEC: Int. Electrotechnical Commission. IEC 61508-7: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems – Part
7: Overview of Techniques and Measures, 1999.

[139] IEEE. Standard IEEE 802.4 – Information Processing Systems– Local Area
Networks—Part 4: Token-Passing Bus Access Method and Physical Layer
Specifications, 1990.

[140] IEEE. IEEE standard 802.3 – carrier sense multiple access with collision de-
tect (CSMA/CD) access method and physical layer. Technical report, IEEE,
2000.

506 Time-Triggered Communication

[141] IEEE. Draft Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems (V0.19.13). IEEE Press, New York,
NY, USA, May 2002. IEEE Standard No. P1588; Product No. DS5905-TBR.

[142] IEEE. IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. IEEE Press, New York, NY, USA,
IEEE Standard No. 1588, March 2008.

[143] Aeronautical Radio Inc. Avionics Application Software Standard Interface
Part 1 – Required Services, ARINC specification 653P1-2 edition, December
2005.

[144] Aeronautical Radio Inc. Avionics Application Software Standard Interface
Part 3 – Conformity Test Specification, ARINC specification 653P-3 edition,
October 2006.

[145] Aeronautical Radio Inc. Avionics Application Software Standard Interface
Part 2 – Extended Services, ARINC specification 653P2-1 edition, 12 2009.

[146] National Instruments. FlexRay automotive communication bus overview.
Technical report, August 2009.

[147] International Electrotechnical Commission (IEC). IEC 61508: International
Standard Functional Safety of Electrical / Electronic / Programmable Elec-
tronic Safety-Related Systems, 1998.

[148] International Standardization Organisation (ISO). Road Vehicles – Controller
Area Network (CAN) – Part 4: Time-Triggered Communication, ISO 11898-4,
1993.

[149] International Standardization Organisation (ISO). Road Vehicles – Inter-
change of Digital Information – Controller Area Network (CAN) for High-
Speed Communication, ISO 11898, 1993.

[150] International Standardization Organisation (ISO). Road Vehicles - Controller
Area Network (CAN) – Part 1: Data Link Layer and Physical Signalling, ISO
11898-1, 1993.

[151] International Standardization Organisation (ISO). Road Vehicles - Controller
Area Network (CAN) – Part 2: High-Speed Medium Access Unit, ISO 11898-2,
1993.

[152] International Standardization Organisation (ISO). ISO/IEC 15765-3:2004 -
Road Vehicles – Diagnostics on Controller Area Networks (CAN) – Part 3:
Implementation of Unified Diagnostic Services (UDS on CAN), 2004.

[153] International Standardization Organisation (ISO). ISO/DIS 26262: Interna-
tional Standard Road Vehicles – Functional Safety, 2009.

Bibliography 507

[154] C. Jeffrey, N. Dumas, Z. Xu, F. Mailly, F. Azas, P. Nouet, R.J.T. Bunyan, D.O.
King, H. Mathias, J.P. Gilles, and A.M.D. Richardson. Sensor testing through
bias superposition. Sensors and Actuators A: Physical, 136(1):441–455, 2007.
25th Anniversary of Sensors and Actuators A: Physical.

[155] S.C. Johnson and R.W. Butler. Design for validation. IEEE Aerospace and
Electronic Systems Magazine, 7(1):38–43, January 1992.

[156] H. Kantz and N. König. Tas control platform: A vital computer platform for
railway applications. Alcatel Telecommunications Review, 2nd Quarter 2004.

[157] H. Kantz and C. Koza. The ELEKTRA railway signalling system: Field expe-
rience with an actively replicated system with diversity. In Proc. of the 25th
International Symposium on Fault-Tolerant Computing (FTCS), pages 453 –
458, 27–30 1995.

[158] R. Kapeller. Design and implementation of a TTP/A master and gateway con-
troller on a 32-bit microcontroller. Master’s thesis, Technische Universität
Wien, Institut für Technische Informatik, Vienna, Austria, 2001.

[159] J. Karlsson, J. Arlat, and G. Leber. Application of three physical fault injec-
tion techniques to the experimental assessment of the MARS architecture. In
Proc. of the 5th Annual IEEE International Working Conference on Depend-
able Computing for Critical Applications, pages 150–161. IEEE Computer
Society Press, 1995.

[160] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, and G. Leber. Integration and
comparison of three physical fault injection techniques. In B. Randell, J. La-
prie, H. Kopetz, and B. Littlewood, editors, Predictably Dependable Comput-
ing Systems, pages 309–327. Springer Verlag, Heidelberg edition, 1995.

[161] S. Katz, P. Lincoln, and J. M. Rushby. Low-overhead time-triggered group
membership. In WDAG, pages 155–169, 1997.

[162] B. Keinhuis, K. Vissers Deprettere, and P. van der Wolf. An Approach for
Quantitative Analysis of Application-Specific Dataflow Architectures. In Pro-
ceedings of the 8th IEEE International Conference on Application-Specific
Systems, Architectures and Processors, pages 338–350, 1997.

[163] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonalization of concerns and platform-
based design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523, 2000.

[164] M.S. Khan. Political and economic dimensions of Global Navigation Satel-
lite System (GNSS). In IEEE Proceedings of the Aerospace Conference, vol-
ume 3, pages 3/1271 – 3/1276. IEEE, 2001.

508 Time-Triggered Communication

[165] H. Kopetz. Event triggered versus time triggered. In Proc. International Work-
shop on Operating Systems of the 90s and Beyond, volume 563 of Lecture
Notes in Computer Science, pages 87–101. Springer Verlag, 1992.

[166] H. Kopetz. Sparse time versus dense time in distributed real-time systems. In
Proc. of 12th Int. Conference on Distributed Computing Systems, Japan, June
1992.

[167] H. Kopetz. TTP/A – A time-triggered protocol for body electronics using stan-
dard uarts. In International Congress and Exposition, Detroit, MI, USA, The
Engineering Society for Advancing Mobility Land Sea Air and Space, SAE
International, February-March 1995.

[168] H. Kopetz. Why time-triggered architectures will succeed in large hard real-
time systems. In Proc. of the 5th IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, Cheju Island, Korea, August 1995.

[169] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, 1997.

[170] H. Kopetz. Elementary versus composite interfaces in distributed real-time
systems. In Proc. of the Int. Symposium on Autonomous Decentralized Sys-
tems, Tokyo, Japan, March 1999.

[171] H. Kopetz. TTP/C Protocol – Version 1.0. TTTech Computertechnik AG, Vi-
enna, Austria, July 2002. Available at http://www.ttpforum.org.

[172] H. Kopetz. Fault containment and error detection in the time-triggered archi-
tecture. In Proc. of the Sixth Int. Symposium on Autonomous Decentralized
Systems, April 2003.

[173] H. Kopetz. Time-triggered real-time computing. Annual Reviews in Control,
27(1):3–13, 2003.

[174] H. Kopetz. The fault-hypothesis of the time-triggered architecture. In Proc. of
the 18th Edition of the IFIP World Computer Congress, August 2004.

[175] H. Kopetz. From a federated to an integrated architecture for dependable real-
time embedded systems. In Proceedings of the Eighth Annual High Perfor-
mance Embedded Computing (HPEC) Workshop, 2004.

[176] H. Kopetz. On the fault hypothesis for a safety-critical real-time sys-
tem. In Keynote Speech at the Automotive Software Workshop San Diego
(ASWSD 2004), San Diego, CA, USA, January 10–12, 2004.

[177] H. Kopetz and G. Bauer. The time-triggered architecture. IEEE Special Issue
on Modeling and Design of Embedded Software, January 2003.

[178] H. Kopetz, G. Bauer, and S. Poledna. Tolerating arbitrary node failures in the
time-triggered architecture. In Proc. of the SAE 2001 World Congress, Detroit,
MI, USA, March 2001.

Bibliography 509

[179] H. Kopetz et al. The Time-Triggered Ethernet (TTE) design. In Proc. of 8th
IEEE Int. Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), May 2005.

[180] H. Kopetz and G. Grunsteidl. TTP-A protocol for fault-tolerant real-time sys-
tems. Computer, 27(1):14–23, 1994.

[181] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart transducer
interface: TTP/A. International Journal of Computer System Science & Engi-
neering, 16(2):71–77, March 2001.

[182] H. Kopetz and R. Nossal. Temporal firewalls in large distributed realtime sys-
tems. In Proc. of IEEE Workshop on Future Trends in Distributed Computing,
Tunis, Tunisia, IEEE Press, 1997.

[183] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time
systems. IEEE Transactions on Computers, 36(8):933–940, 1987.

[184] H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: A solution
to a real-time synchronisation problem. In Proc. of the 14th Real-Time Systems
Symposium, 1993.

[185] J.M. Krause, M.J. Englehart, and D.A Shaner. Achievable performance of
fault tolerant avionics clocks. In AIAA Computing in Aerospace Conference,
8th, Technical Papers. Vol. 2 (A92-17576 05-61), pages p. 608–622, Balti-
more, MD, American Institute of Aeronautics and Astronautics, Oct. 21-24
1991.

[186] A. Krüger. Interface Design for Time-Triggered Real-Time System Architec-
tures. PhD thesis, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 1997.

[187] J.H. Lala and R.E. Harper. Architectural principles for safety-critical real-time
applications. Proc. of the IEEE, 82:25–40, January 1994.

[188] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of
faults. Journal of the ACM, 32(1):52–78, January 1985.

[189] L. Lamport and P.M. Melliar-Smith. Byzantine clock synchronization. In Pro-
ceedings of the 3rd ACM Symposium on Principles of Distributed Computing,
pages 68–74, 1984.

[190] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–
401, 1982.

[191] L. Lavagno and C. Passerone. Embedded Systems Handbook, chapter 3, pages
3–1–3–22. CRC Press, 2006.

510 Time-Triggered Communication

[192] M. Lebedev. GLONASS as instrument for precise UTC transfer. In Proceed-
ings of the 12th European Frequency and Time Forum, Warsaw, Poland, March
1998.

[193] E.A. Lee. Cyber physical systems: Design challenges. In Proc. of the 11th
IEEE International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), pages 363–369, 2008.

[194] P.A. Lee and T. Anderson. Fault Tolerance Principles and Practice, volume 3
of Dependable Computing and Fault-Tolerant Systems. Springer Verlag, 1990.

[195] G. Leen and D. Heffernan. Modeling and verification of a time-triggered net-
working protocol. In Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technolo-
gies, 2006. ICN/ICONS/MCL 2006, pages 178–178, 23-29 2006.

[196] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proceedings of 11th IEEE Real-Time Symposium, pages 201–
209, 1990.

[197] W. Lewandowski, J. Azoubib, and W.J. Klepczynski. GPS: Primary tool for
time transfer. Proceedings of the IEEE, 87(1):163–172, January 1999.

[198] C. Li and S. Dey. Software-based self-testing methodology for processor
cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20(3):369 –380, March 2001.

[199] R. Lichtenecker. Terrestrial time signal dissemination. Real-Time Systems,
12(1):41–61, January 1997.

[200] LIN Consortium. LIN specification package revision 2.1, 2006.

[201] B. Liskov. Practical use of synchronized clocks in distributed systems. In Pro-
ceedings of 10th ACM Symposium on the Principles of Distributed Computing,
pages 1–9. ACM Press, 1991.

[202] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[203] C.D. Locke. Software architecture for hard real-time applications: cyclic ex-
ecutives vs. fixed priority executives. Real-Time Systems, 4(1):37–53, 1992.

[204] H. Lönn. Initial synchronization of TDMA communication in distributed real-
time systems. In 19th IEEE Int. Conf. on Distributed Computing Systems,
pages 370–379, Gothenburg, Sweden, 1999.

[205] H. Lönn and J. Axelsson. A comparison of fixed-priority and static cyclic
scheduling for distributed automotive control applications. In Proceedings of
the 11th Euromicro Conference on Real-time Systems, pages 142–149. IEEE
Computer Society Press, June 1999.

Bibliography 511

[206] H. Lönn and P. Pettersson. Formal verification of a TDMA protocol start-up
mechanism. In Pacific Rim International Symposium on Fault-Tolerant Sys-
tems (PRFTS ’97), pages 235–242, Taipei, Taiwan, IEEE, December 1997.

[207] T. Losert. Extending CORBA for Hard Real-Time Systems. PhD thesis, Vienna
University of Technology, Institute of Computer Engineering, 2005.

[208] M. Lu, D. Zhang, and T. Murata. Analysis of self-stabilizing clock synchro-
nization by means of stochastic Petri nets. IEEE Transactions on Computers,
39(5):597–604, 1990.

[209] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchro-
nization. In ACM Symp. on Principles of Distributed Computing, pages 75–88,
1984.

[210] J. Lundelius and N. Lynch. An upper and lower bound for clock synchroniza-
tion. Information and Control, 62:190–204, 1984.

[211] J. Luo, K.R. Pattipati, L. Qiao, and S. Chigusa. Agent-based real-time fault di-
agnosis. In Aerospace Conference, 2005 IEEE, pages 3632–3640, 5-12 2005.

[212] S.R. Mahaney and F.B. Schneider. Inexact agreement: accuracy, precision, and
graceful degradation. In Proceedings of the 4th ACM Symposium on Princi-
ples of Distributed Computing, pages 237–249. ACM Press, 1985.

[213] S.M. Mahmud and A. Arora. Performance Analysis of Fault Tolerant TTCAN
System. 2005.

[214] R. Maier, G. Bauer, G. Stoger, and S. Poledna. Time-triggered architecture: a
consistent computing platform. IEEE Micro, 22(4):36–45, July/August 2002.

[215] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. Wiley, New York, 1990.

[216] G. Martin, F. Schirrmeister, and C.D.S. Inc. A design chain for embedded
systems. Computer, 35(3):100–103, 2002.

[217] K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In
Proceedings of the 2nd ACM Symposium on Principles of Distributed Com-
puting, pages 295–305, 1983.

[218] K.A. Marzullo. Maintaining the Time in a Distributed System: An Example of
a Loosely Coupled Distributed Service. PhD thesis, Department of Electrical
Engineering, Stanford University, Stanford, CA, USA, February 1984.

[219] M. McCabe, C. Baggerman, and D. Verma. Avionics architecture interface
considerations between constellation vehicles. In Proc. of the 28th Digital
Avionics Systems Conference (DASC), pages 1.E.2–1 – 1.E.2–10. IEEE/AIAA,
October 2009.

512 Time-Triggered Communication

[220] M.D. Mesarovic and Y. Takahara. Abstract Systems Theory, chapter 3.
Springer-Verlag, 1989.

[221] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[222] D. Michaud. Maintenance Avionique - ATA 100 34 Test Automatique Bus
Avionique Langage C. Institut de Maintenance Aronautique, Universit Bor-
deaux I, 2006.

[223] V. Mikolasek, A. Ademaj, and S. Racek. Segmentation of Standard Ethernet
Messages in the Time-Triggered Ethernet. Technical Report 22/2008, Technis-
che Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1,
1040 Vienna, Austria, 2008.

[224] D.L. Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications, 39(10):1482–1493, October 1991.

[225] P.S. Miner. Verification of fault-tolerant clock synchronization systems. Tech-
nical Report NASA Technical Paper 3349, NASA Langley Research Center,
November 1993.

[226] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer, E. Fuchs,
B. Hedenetz, W. Kuffner, A. Krüger, P. Lohrmann, D. Millinger, M. Peller,
J. Ruh, A. Schedl, and M. Sprachmann. FlexRay – the communication system
for advanced automotive control systems. In Society of Automotive Engineers
World Congress, Detroit, MI, USA, SAE International. Document No 2001-
01-0676, March 2001.

[227] M. Morgan. The Avionics Handbook, chapter Boeing B-777. CRC Press, Boca
Raton, FL, USA, 2001.

[228] J. Morris, G. Lee, K. Parker, G.A. Bundell, and P.L. Chiou. Software compo-
nent certification. Computer, 34(9):30–36, September 2001.

[229] MOST Cooperation, Karlsruhe, Germany. MOST Specification Version 2.2,
November 2002.

[230] Motor Industry Software Reliability Research Association (MISRA). Devel-
opment Guidelines for Vehicle Based Software, 1994.

[231] B. Müller, T. Führer, F. Hartwich, R. Hugel, and H. Weiler. Fault tolerant
TTCAN networks. Technical report, Robert Bosch GmbH, 2002.

[232] C.J. Murray. Time-triggered protocol gains aerospace mileage. EE Times,
September 2002.

[233] NXP Semiconductor. Fault-tolerant CAN/LIN fail-safe system basis chip.
product data sheet, 2010. Available at www.nxp.com/documents/
data_sheet/UJA1061.pdf.

Bibliography 513

[234] R. Obermaisser. CAN Emulation in a Time-Triggered Environment. In
Proc. of the 2002 IEEE Int. Symposium on Industrial Electronics (ISIE), vol-
ume 1, pages 270–275, 2002.

[235] R. Obermaisser. Message reordering for the reuse of CAN-based legacy ap-
plications in a time-triggered architecture. In Proc. of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 301–
310, April 2006.

[236] R. Obermaisser and A. Kanitsar. Application of TTP/A for the Otto Bock
Axon bus. Technical Report 27/2000, Technische Universität Wien, Institut
für Technische Informatik, Vienna, Austria, July 2000.

[237] R. Obermaisser and P. Peti. A fault hypothesis for integrated architectures. In
Proc. of the 4th Int. Workshop on Intelligent Solutions in Embedded Systems,
June 2006.

[238] Object Management Group. The Common Object Request Broker: Architec-
ture and Specification, July 2002.

[239] Object Management Group (OMG). Smart Transducers Interface V1.0, Jan-
uary 2003. Specification available at http://doc.omg.org/formal/2003-01-01 as
document ptc/2002-10-02.

[240] A. Olson and K. Shin. Fault-tolerant clock synchronization in large multicom-
puter systems. IEEE Trans. on Parallel and Distributed Systems, 5(9):912–
923, 1994.

[241] OMG. Smart Transducers Interface V1.0. Available Specification document
number formal/2003-01-01, Object Management Group, Needham, MA,
U.S.A., January 2003. available at http://doc.omg.org/formal/
2003-01-01.

[242] OSEK/VDX. OIL: OSEK Implementation Language, Version 2.5, 2004.

[243] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans-
actions on Software Engineering, 21(2):107–125, February 1995.

[244] J. C. Palencia, J. J. Gutiérrez Garcia, and M. González Harbour. On the
schedulability analysis for distributed hard real-time systems. In Proceedings
of the Euromicro Conference on Real Time Systems, pages 136–143, 1997.

[245] J.C. Palencia and M.G. Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems Sym-
posium, pages 26–37. IEEE Computer Society, 1998.

[246] M. Papatriantafilou and P. Tsigas. Self-stabilizing wait-free clock synchro-
nization. In Proceedings of the 4th Scandinavian Workshop on Algorithm
Theory, volume 824 of Lecture Notes in Computer Science, pages 267–277.
Springer-Verlag Berlin Heidelberg, Germany, July 1994.

514 Time-Triggered Communication

[247] R.J. Patton. Fault detection and diagnosis in aerospace systems using ana-
lytical redundancy. In IEEE Colloquium on Condition Monitoring and Fault
Tolerance, pages 1/1–120, 6 1990.

[248] M. Paulitsch and B. Hall. Insights into the sensitivity of the BRAIN (braided
ring availability integrity network)–on platform robustness in extended opera-
tion. Dependable Systems and Networks, International Conference on, 0:154–
163, 2007.

[249] M. Paulitsch and B. Hall. Starting and resolving a partitioned BRAIN. Object-
Oriented Real-Time Distributed Computing, IEEE International Symposium
on, 0:415–421, 2008.

[250] M. Paulitsch, J. Morris, B. Hall, K.R. Driscoll, E. Latronico, and P. Koopman.
Coverage and the use of cyclic redundancy codes in ultra-dependable systems.
Dependable Systems and Networks, International Conference on, 0:346–355,
2005.

[251] P. Pedreiras and L. Almeida. Combining event-triggered and time-triggered
traffic in FTT-CAN: Analysis of the asynchronous messaging system. In
Proc. of 3rd IEEE Int. Workshop on Factory Communication Systems, Septem-
ber 2000.

[252] P. Peti, R. Obermaisser, and H. Kopetz. Out-of-norm assertions. In Proc. of the
11th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’05), pages 280–291, San Francisco, CA, USA, March 2005.

[253] P. Peti, R. Obermaisser, and H. Paulitsch. Investigating connector faults in
the time-triggered architecture. In Proc. of the IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA’06), pages 887 –896, 20-22
2006.

[254] P. Peti and L. Schneider. Implementation of the TTP/A slave protocol on the
Atmel ATmega103 MCU. Technical Report 28/2000, Technische Universität
Wien, Institut für Technische Informatik, Vienna, Austria, August 2000.

[255] H. Pfeifer. Formal verification of the TTP group membership algorithm. In
Proc. of Formal Methods for Distributed System Development (FORTE XIII /
PSTV XX 2000), pages 3–18. Kluwer Academic Publishers, 2000.

[256] H. Pfeifer, D. Schwier, and F.W. von Henke. Formal verification for time-
triggered clock synchronization. In Proc. of the 7th IFIP InternationalWorking
Conference on Dependable Computing for Critical Applications (DCCA-7),
pages 207–226, November 1999.

[257] M. Pfluegl and D. Blough. A new and improved algorithm for fault-tolerant
clock synchronization. Journal of Parallel and Distributed Computing, 27:1–
14, 1995.

Bibliography 515

[258] S. Poledna. Replica determinism in distributed real-time systems: A brief sur-
vey. Real-Time Systems, 6:289–316, 1994.

[259] S. Poledna. Fault Tolerant Real-Time Systems: The Problem of Replica Deter-
minism. Kluwer Academic Publishers, Boston, 1996.

[260] P. Pop, P. Eles, and Z. Peng. Scheduling with optimized communication for
time-triggered embedded systems. In Proceedings of the Seventh International
Workshop on Hardware/Software Codesign, pages 178–182. ACM, 1999.

[261] P. Pop, P. Eles, and Z. Peng. Analysis and Synthesis of Distributed Real-Time
Embedded Systems. Kluwer Academic Pub, 2004.

[262] P. Pop, P. Eles, and Z. Peng. Schedulability-driven communication synthe-
sis for time triggered embedded systems. Real-Time Systems, 26(3):297–325,
2004.

[263] P. Pop, P. Eles, and Z. Peng. Schedulability-driven frame packing for multi-
cluster distributed embedded systems. ACM Transactions on Embedded Com-
puting Systems (TECS), 4(1):140, 2005.

[264] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization of time-
and cost-constrained fault-tolerant embedded systems with checkpointing and
replication. IEEE Trans. on Very Large Scale Integrated (VLSI) Systems Vol-
ume, 17(3):389–402, 2009.

[265] T. Pop, P. Eles, and Z. Peng. Schedulability analysis for distributed heteroge-
neous time/event triggered real-time systems. In 15th Euromicro Conference
on Real-Time Systems, 2003. Proceedings, pages 257–266, 2003.

[266] T. Pop, P. Pop, P. Eles, and Z. Peng. Optimization of hierarchically scheduled
heterogeneous embedded systems. In Proceedings of 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applica-
tions, pages 67–71, 2005.

[267] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay
communication protocol. Real-Time Systems, 39(1):205–235, 2008.

[268] D. Powell. Failure mode assumptions and assumption coverage. In Proc. of the
22nd IEEE Annual Int. Symposium on Fault-Tolerant Computing (FTCS-22),
pages 386–395, Boston, USA, July 1992.

[269] Radio Technical Commission for Aeronautics, Inc. (RTCA). DO-178B: Soft-
ware Considerations in Airborne Systems and Equipment Certification, 1992.

[270] Radio Technical Commission for Aeronautics, Inc. (RTCA). DO-297: In-
tegrated Modular Avionics (IMA) Development Guidance and Certification
Considerations, 2005.

516 Time-Triggered Communication

[271] D. Ragan, P. Sandborn, and P. Stoaks. A detailed cost model for concurrent use
with hardware/software co-design. In Proceedings of the 39th annual Design
Automation Conference, pages 269–274. ACM, 2002.

[272] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant clock synchroniza-
tion in distributed systems. IEEE Computer, 23(10):33–42, October 1990.

[273] J.C. Ramirez and A.S. Piqueras. Learning Bayesian networks for systems di-
agnosis. In Proc. of the Electronics, Robotics and Automotive Mechanics Con-
ference, volume 2, pages 125 –130, September 2006.

[274] Mathias Rausch. FlexRay Grundlagen, Funktionsweise, Anwendung.
HANSER, 2008.

[275] C. R. Reeves. Modern Heuristic Techniques for Combinatorial Problems.
Blackwell Scientific Publications, 1993.

[276] FAST Report. Study of worldwide trends and r&d programmes in embedded
systems. Technical report, 2005.

[277] RTCA. Software considerations in airborne systems and equipment certifica-
tion. Standard DO-178B, RTCA, Inc., 1828 L Street, NW, Suite 805, Wash-
ington, DC 20036-5133, USA, December 1, 1992.

[278] RTCA. Design assurance guidance for airborne electronic hardware. Standard
DO-254, RTCA, Inc., 1828 L Street, NW, Suite 805, Washington, DC 20036-
5133, USA, April 19, 2004.

[279] RTCA. Environmental conditions and test procedures for airborne equipment.
Standard DO-160E, RTCA, Inc., 1828 L Street, NW, Suite 805, Washington,
DC 20036-5133, USA, December 9, 2004.

[280] B. Rumpler and W. Elmenreich. Considerations on the complexity of embed-
ded real-time system design tasks. In Proceedings of the IEEE International
Conference on Computational Cybernetics 2006 (ICCC’06), pages 55–60,
2006.

[281] J. Rushby. Partitioning for avionics architectures: Requirements, mechanisms,
and assurance. NASA Contractor Report CR-1999-209347, NASA Langley
Research Center, June 1999.

[282] J. Rushby. Systematic formal verification for fault-tolerant time-triggered
algorithms. IEEE Transactions on Software Engineering, 25(5):651–660,
September 1999.

[283] J. Rushby. Formal verification of transmission window timing for the time-
triggered architecture. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA 94025 USA, March 2001.

Bibliography 517

[284] J. Rushby. Modular certification. Technical report, Computer Science Labo-
ratory SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025,
USA, September 2001.

[285] J. Rushby. An overview of formal verification for the time-triggered architec-
ture. In Proc. of the Symposium on Formal Techniques in Real-Time and Fault
Tolerant System (FTRTFT), LNCS Vol. 2469, pages 83–105, Springer-Verlag,
Oldenburg, Germany, September 2002.

[286] J. Rushby and F. von Henke. Formal verification of the interactive conver-
gence clock synchronization algorithm. Technical Report CSL-89-3R, Com-
puter Science Laboratory, SRI International, CA, Menlo Park, USA, February
1989.

[287] SAE. ARP 5107 (aerospace recommended practice). guidelines for time-
limited-dispatch analysis for electronic engine control systems. Technical Re-
port Rev. B, Society of Automotive Engineers, November 2006.

[288] I. Saha and S. Roy. A finite state analysis of time-triggered CAN (ttcan) pro-
tocol using Spin. In Computing: Theory and Applications, 2007. ICCTA ’07.
International Conference on, pages 77 –81, 5-7 2007.

[289] I. Saha, S. Roy, and K. Chakraborty. Modeling and verification of TTCAN
startup protocol using synchronous calendar. In Software Engineering and
Formal Methods, 2007. SEFM 2007. Fifth IEEE International Conference on,
pages 69 –79, 10-14 2007.

[290] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system de-
sign. ACM Transactions on Computer Systems (TOCS), 2, 1984.

[291] A. Sangiovanni-Vincentelli. Electronic-system design in the automobile in-
dustry. IEEE Micro, 23(3):8–18, 2003.

[292] A. Schedl. Design and Simulation of Clock Synchronization in Distributed
Systems. Doctoral thesis, Institut für Technische Informatik, Technische Uni-
versität Wien, Treitlstr. 1-3/3/182-1, Vienna, Austria, April 1996.

[293] F. Scheler and W. Schröder-Preikschat. Time-triggered vs. event-triggered: A
matter of configuration? In Proc. of the Workshop on Model-Based Testing,
Nürnberg, Germany, 2006.

[294] U. Schmid. Orthogonal accuracy clock synchronization. Chicago Journal of
Technical Computer Science, 2000(3):3–77, August 2000.

[295] U. Schmid and K. Schossmaier. Interval-based clock synchronization. Real-
Time Systems, 12:173–228, March 1997.

[296] F.B. Schneider. A paradigm for reliable clock synchronization. Technical Re-
port TR86-735, Computer Science Department, Cornell University, February
1986.

518 Time-Triggered Communication

[297] F.B. Schneider. Understanding protocols for Byzantine clock synchronization.
Research Report 87-859, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, USA, August 1987.

[298] W. Schwabl. Der Einfluss zufälliger und systematischer Fehler auf die Uhren-
synchronisation in verteilten Echtzeitsystemen. Doctoral thesis, Institut für
Technische Informatik, Technische Universität Wien, Treitlstr. 1-3/3/182-1,
Vienna, Austria, October 1988.

[299] K.G. Shin and R. Ramanathan. Clock synchronization of large multiprocessor
systems in the presence of malicious faults. IEEE Transactions on Computers,
36(1):2–12, 1987.

[300] O. Sinnen. Task Scheduling for Parallel Systems. Wiley-Blackwell, 2007.

[301] H. Sivencrona, P. Johannessen, M. Persson, and J. Torin. Heavy-ion fault in-
jections in the time-triggered communication protocol. In Dependable Com-
puting, Lecture Notes in Computer Science, volume 2847/2003, pages 69–80.
Springer Berlin/Heidelberg, 2003.

[302] Society of Automotive Engineers (SAE). ARP 4754: (Aerospace Recom-
mended Practice) - Certification Considerations for Highly Integrated or
Complex Aircraft Systems, 1996.

[303] Society of Automotive Engineers (SAE). ARP 4761: (Aerospace Recom-
mended Practice) - Guidelines and Methods for Conducting the Safety As-
sessment Process on Civil Airborne Systems and Equipment, 1996.

[304] T.K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the
ACM, 34(3):626–645, 1987.

[305] W. Steiner. Startup and Recovery of Fault-Tolerant Time-Triggered Commu-
nication. PhD thesis, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2004.

[306] W. Steiner. TTEthernet Executable Formal Specification. Research report,
2009. Available at http://www.ttagroup.org/.

[307] W. Steiner. An Evaluation of SMT-based Schedule Synthesis For Time-
Triggered Multi-Hop Networks. In RTSS’10: Proceedings of the 31st IEEE
Real-Time Systems Symposium. IEEE, 2010.

[308] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In AMICS 2011: Proceedings of the 1st International
Workshop on Architectures and Applications for Mixed-Criticality Systems.
IEEE, 2011.

[309] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan. TTEthernet
dataflow concept. In NCA, pages 319–322, 2009.

Bibliography 519

[310] W. Steiner and B. Dutertre. SMT-Based formal verification of a TTEthernet
synchronization function. In FMICS, pages 148–163, 2010.

[311] W. Steiner and W. Elmenreich. Automatic recovery of the TTP/A sen-
sor/actuator network. In W. Elmenreich, editor, Proceedings of the First Work-
shop on Intelligent Solutions in Embedded Systems, pages 25–37, 2003.

[312] W. Steiner and H. Kopetz. The startup problem in fault-tolerant time-triggered
communication. International Conference on Dependable Systems and Net-
works (DSN 2006), June 2006.

[313] W. Steiner and M. Paulitsch. The transition from asynchronous to syn-
chronous system operation: An approach for distributed fault-tolerant systems.
In Proc. of the International Conference on Distributed Computing Systems,
pages 329–336, 2002.

[314] W. Steiner, M. Paulitsch, and H. Kopetz. The TTA’s approach to resilience
after transient upsets. Real-Time Syst., 32(3):213–233, 2006.

[315] K. Steinhammer. Design of an FPGA-Based Time-Triggered Ethernet System.
PhD thesis, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2006.

[316] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz. A Time-Triggered
Ethernet (TTE) switch. In Proc. of Design, Automation and Test in Europe,
Munich. Germany, March 2006.

[317] J. Stelzer. LIN bus emerging standard for body control apps. EE Times Asia,
September 2004.

[318] S. Subbiah and S. Nagaraj. Issues with object orientation in verifying safety-
critical systems. In Object-Oriented Real-Time Distributed Computing, 2003.
Sixth IEEE International Symposium on, pages 99 – 104, 14-16 2003.

[319] Sunplus Technology Co., Ltd. LIN bus master note application using UART
module. available at mcu.sunplus.com, 2006. V1.3.

[320] J. Swingler, J.W. McBride, and C. Maul. Degradation of road tested automo-
tive connectors. IEEE Transactions on Components and Packaging Technolo-
gies, 23(1):157–164, March 2000.

[321] Systems Integration Requirements Task Group, Society of Automotive En-
gineers. ARP 4754: Certification Considerations in for Highly-Integrated or
Complex Aircraft Systems, April 1996.

[322] Systems Integration Requirements Task Group, Society of Automotive Engi-
neers. ARP 4761 (Aerospace Recommended Practice) - Guidelines and Meth-
ods for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, December 1996.

520 Time-Triggered Communication

[323] B. Tabbara, A. Tabbara, and A. Sangiovanni-Vincentelli. Func-
tion/Architecture Optimization and Co-Design of Embedded Systems.
Springer Netherlands, 2000.

[324] C. Tanzer. TTPos - the time-triggered and fault-tolerant RTOS. In Real-Time
Magazine 99-4, 1999.

[325] Time-Triggered Technology TTTech Computertechnik AG, Schönbrunner
Strasse 7, A-1040 Vienna, Austria. TTP-Load: The Download Tool for the
Time-Triggered Protocol – Version 6.1.6, 2004.

[326] Time-Triggered Technology TTTech Computertechnik AG, Schönbrunner
Strasse 7, A-1040 Vienna, Austria. TTP Bootloader: User Manual, Novem-
ber 2005.

[327] K. Tindell and H. Hansson. Babbling idiots, the dual-priority protocol, and
smart can controllers. In Proceedings of the 1st Int. CAN Conference, 1994.

[328] K. W. Tindell. Adding time-offsets to schedulability analysis. Technical Re-
port YCS 221, Department of Computer Science, University of York, January
1994.

[329] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks:
an np-hard problem made easy. Real-Time Systems, 4(2):145–165, 1992.

[330] K. W. Tindell and J. Clark. Holistic schedulability analysis for distributed real-
time systems. Euromicro Journal on Microprocessing and Microprogramming
(Special Issue on Parallel Embedded Real-Time Systems), 40:117–134, 1994.

[331] F. Tisato and F. DePaoli. On the duality between event-driven and time-drivern
models. In Proc. of the 13th IFAC DCCS, Toulouse, France, 1995.

[332] Aviation Today. Parker selects TTTech for fly-by-wire system. Press release,
July 2010.

[333] G. Torrisi, J. Notaro, G. Burlak, and M. Mirowski. Evolution and trends in
automotive electrical distribution systems. In Proc. of the IEEE Conference
on Vehicle Power and Propulsion, page 7, 7-9 2005.

[334] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. Layer
two tunneling protocol ”L2TP.” RFC 2661, Internet Engineering Task Force,
August 1999.

[335] C. Trödhandl. Architectural requirements for TTP/A nodes. Master’s thesis,
Technische Universität Wien, Institut für Technische Informatik, Vienna, Aus-
tria, 2002.

[336] C.H. Tsai and C.W. Wu. Processor-programmable memory bist for bus-
connected embedded memories. In Proceedings of the Asia and South Pacific
Design Automation Conference, pages 325 –330, 2001.

Bibliography 521

[337] TTChip. TTP/C Controller C2: Controller Schedule (MEDL) Structure – Doc-
ument Protocol Version 2.1. Schönbrunner Strasse 7, A-1040 Vienna, Austria,
September 2002.

[338] TTChip Entwicklungsges.m.b.H. TTP/C Controller C2 Controller–Host Inter-
face Description Document, Protocol Version 2.1, November 2002.

[339] TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vienna, Aus-
tria. TTPPlan The Cluster Design Tool for the Time-Triggered Protocol
TTP/C, April 2002.

[340] TTTech Computertechnik AG. Time-Triggered Protocol TTP/C, High-Level
Specification Document, Document Number D-032-S-10-028, Protocol Ver-
sion 1.1, 2003.

[341] TTTech Computertechnik AG. TTX-AUTOSAR FlexRay Stack User Manual,
Document Number D-110-G-70-006, Document Edition 4.3.1, 2009.

[342] TTTech Computertechnik AG. Interface Control Document HS-COM Layer,
Document Number D-115-G-10-005, Version 0.1.1, 2010.

[343] TTTech Computertechnik AG. TTP-Build User Manual, Document Number
D-001-G-01-002, Manual Edition 8.1.4, 2010.

[344] TTTech Computertechnik AG. TTP-Plan User Manual, Document Number
D-001-G-01-003, Manual Edition 8.1.2, 2010.

[345] Honeywell Tuscon. Design, implementation, and verification of
fault-tolerant modular aerospace controls, Honeywell ncc-1-377.
http://shemesh.larc.nasa.gov/fm/talks/Honeywell–TTTech.ppt, accessed
August 2010, April 2003. Aviation Safety Program Single Aircraft Accident
Prevention. Coop. Agreement NCC-1-377.

[346] Vector Informatik GmbH. Product catalog ECU software, page 80-81: CAN
embedded LIN communication. available at www.vector.com, 2010.

[347] P. Verı́ssimo, L. Rodrigues, and A. Casimiro. CesiumSpray: A precise and
accurate global time service for large-scale systems. Real-Time Systems,
12(3):243–294, May 1997.

[348] D.D. Davidson and V.Y. Chiu. Fail-operational global time reference in a re-
dundant synchronous data bus system. Patent Application US 2005/0102586
A1, Honeywell, May 12, 2005.

[349] C.J. Walter, M.M. Hugue, and N. Suri. Advances in Ultra-Dependable Dis-
tributed Systems. IEEE Computer Society, 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720, January 1995.

[350] H.F. Wedde and W. Freund. Harmonious internal clock synchronization. In
12th Euromicro Conference on Real-Time Systems, pages 175–182, Infor-
matik III, Dortmund University, Dortmund, Germany, June 2000. IEEE Press.

522 Time-Triggered Communication

[351] N. Weininger and D.D. Cofer. Modeling the ASCB-D synchronization algo-
rithm with SPIN: A case study. In Proceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification, pages 93–112,
Springer-Verlag, London, UK, 2000.

[352] J. Welch and L. Lynch. A new fault-tolerant algorithm for clock synchro-
nization. Information and Computation (formerly Information and Control),
77(1):1–36, 1988.

[353] J. Widder. Booting clock synchronization in partially synchronous systems. In
DISC, pages 121–135, 2003.

[354] A.T. Winfree. The Geometry of Biological Time. Springer Verlag, New York,
2001.

[355] B. Witwer. Developing the 777 airplane information management system
(AIMS): a view from program start to one year of service. Aerospace and
Electronic Systems, IEEE Transactions on, 33(2):637 –641, April 1997.

[356] www.softing.com. CAN, CANOpen, DeviceNet. Website, August 2010.

[357] J. Zhang. Improved on-line process fault diagnosis using stacked neural net-
works. In Proc. of the International Conference on Control Applications,
pages 689 – 694, vol.2, 2002.

[358] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli.
Extensible and scalable time triggered scheduling. In Fifth International Con-
ference on Application of Concurrency to System Design, 2005. ACSD 2005,
pages 132–141, 2005.

