
Abstract
We present an approach to design optimization of multi-cluster embedded
systems consisting of time-triggered and event-triggered clusters, intercon-
nected via gateways. In this paper, we address design problems which are
characteristic to multi-clusters: partitioning of the system functionality
into time-triggered and event-triggered domains, process mapping, and the
optimization of parameters corresponding to the communication protocol.
We present several heuristics for solving these problems. Our heuristics
are able to find schedulable implementations under limited resources,
achieving an efficient utilization of the system. The developed algorithms
are evaluated using extensive experiments and a real-life example.

1. Introduction
An increasing number of real-time applications are today implemented
using distributed architectures consisting of interconnected clusters of
processors. Each such cluster has its own communication protocol and
two clusters communicate via a gateway, a node connected to both of
them. This type of architectures is used in several application areas: vehi-
cles, factory systems, networks on chip, etc.

Considering, for example, the automotive industry, the way functionality
has been distributed on an architecture has evolved over time. Initially,
each function was running on a dedicated hardware component. However,
in order to use the resources more efficiently and reduce costs, several
functions have been integrated in one node and, at the same time, certain
functionality has been distributed over several nodes (see Figure 1). Al-
though an application is typically distributed over one single cluster, we
begin to see applications that are distributed across several clusters, as il-
lustrated in Figure 1 where the application represented as black dots, is dis-
tributed over the two clusters. This trend is driven by the need to further
reduce costs, improve resource usage, but also by application constraints
like having to be physically close to particular sensors and actuators. More-
over, not only are these applications distributed across networks, but their
functions can exchange critical information through the gateway nodes.

Researchers have often ignored or very much simplified aspects con-
cerning the communication infrastructure. One typical approach is to con-
sider communications as processes with a given execution time (depending
on the amount of information exchanged) and to schedule them as any oth-
er process, without considering issues like communication protocol, bus
arbitration, packaging of messages, clock synchronization, etc. [14]. 

Many efforts dedicated to communication synthesis have concentrated
on the synthesis support for the communication infrastructure but without
considering hard real-time constraints and system level scheduling as-
pects [4, 15]. We have to mention here some results obtained in extending
real-time schedulability analysis so that network communication aspects
can be handled. In [11], for example, the controller area network (CAN)
protocol is investigated while the work reported in [12] deals with a sim-
ple time-division multiple access (TDMA) protocol. 

There are two basic approaches for handling tasks in real-time applications
[6]. In the event-triggered approach (ET), activities are initiated whenever a
particular event is noted. In the time-triggered (TT) approach, activities are
initiated at predetermined points in time. There has been a long debate in the
real-time and embedded systems communities concerning the advantages of
TT and ET approaches [1, 6, 13]. An interesting comparison, from a more in-

dustrial, in particular automotive, perspective, can be found in [7]. The con-
clusion there is that one has to choose the right approach depending on the
particularities of the processes. This means not only that there is no single
“best” approach to be used, but also that inside a certain application the two
approaches can be used together, some processes being TT and others ET. 

In [8] we have addressed design problems for systems where the TT and
ET activities share the same processor and bus. A fundamentally different
architectural approach to heterogeneous TT/ET systems is that of hetero-
geneous multi-clusters, where each cluster can be either TT or ET:
• In a time-triggered cluster (TTC) processes and messages are scheduled

according to a static cyclic policy, with the bus implementing a TDMA
protocol such as, for example, the time-triggered protocol (TTP) [6]. 

• On event-triggered clusters (ETC) the processes are scheduled
according to a priority based preemptive approach, while messages are
transmitted using the priority-based CAN bus [2]. 
In this context, in [9] we have proposed an approach to schedulability

analysis for multi-cluster distributed embedded systems. Starting from
such an analysis, this paper is the first one to address specific design issues
for multi-cluster systems. The proposed approaches solve the problems of
partitioning an application between the TT and ET clusters, mapping the
functionality of the application on the heterogeneous nodes of a cluster
and adjusting the parameters of the communication protocols such that the
timing constraints of the final implementation are guaranteed.

The paper is organized in 7 sections. The next section presents the ap-
plication model as well as the hardware and software architecture of our
systems. Section 3 presents the design optimization problems we are ad-
dressing in this paper, and section 4 presents our proposed heuristics for
the design optimization of multi-cluster systems. The last two sections
present the experimental results and conclusions.

2. Application Model and System Architecture
2.1 System Architecture
We consider architectures consisting of two interconnected clusters (see
Figure 1). A cluster is composed of nodes which share a broadcast communi-
cation channel. Let NT (NE) be the set of nodes on the TTC (ETC). Every node
Ni ∈ NT ∪ NE consists, among others, of a communication controller and a
CPU. The gateway node NG connected to both types of clusters, has two com-
munication controllers, for TTP and CAN. The communication controllers
implement the protocol services and run independently of the node’s CPU.

Communication between the nodes on a TTC is based on the TTP [6].
The bus access scheme is TDMA, where each node Ni, including the gate-
way node, can transmit only during a predetermined time interval, the so
called TDMA slot Si. In such a slot, a node can send several messages

Figure 1. A System Architecture Example
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packed in a frame. A sequence of slots corresponding to all the nodes in
the TTC is called a TDMA round. A node can have only one slot in a
TDMA round. Several TDMA rounds can be combined together in a cycle
that is repeated periodically. The TDMA access scheme is imposed by a
message descriptor list (MEDL) that is located in every TTP controller.
The MEDL serves as a schedule table for the TTP controller which has to
know when to send/receive a frame to/from the communication channel.

On an ETC the CAN [2] protocol is used for communication. The CAN
bus is a priority bus that employs a collision avoidance mechanism,
whereby the node that transmits the message with the highest priority
wins the contention. Message priorities are unique and are encoded in the
frame identifiers, which are the first bits to be transmitted on the bus.

Throughout the paper we will use the notation B = <β, π> to denote a
certain communication configuration consisting of the sequence and size
of the slots in a TDMA round on the TTC (β) and the priorities of the mes-
sages on the ETC (π). 

We have designed a software architecture which runs on the CPU in each
node, and which has a real-time kernel as its main component. A real-time ker-
nel is responsible for activation of processes and transmission of messages on
each node. On a TTC, the processes are activated based on the local schedule
tables, and messages are transmitted according to the MEDL. On an ETC, we
have a scheduler that decides on activation of ready processes and transmission
of messages, based on their priorities. For more details about the software ar-
chitecture and the message passing mechanism the reader is referred to [9]. 

The approaches presented in this paper can be easily extended to cluster
configurations where there are several ETCs and TTCs interconnected by
gateways.

2.2 Application Model
We model an application Γ as a set of directed, acyclic, polar graphs Gi(V, E)
∈ Γ. Each node Pi ∈ V represents one process. An edge eij ∈ E from Pi to Pj

indicates that this output of Pi is an input to Pj. A process can be activated
after all its inputs have arrived and it issues its outputs when it terminates.
The communication time between processes mapped on the same processor
is considered to be part of the process worst-case execution time and is not
modeled explicitly. Communication between processes mapped to different
processors is performed by message passing over the buses and, if needed,
through the gateway. Such message passing is modeled as a communication
process inserted on the arc connecting the sender and the receiver process. 

The mapping of a process graph G(V, E) is given by a function M: V → N,
where N = NT ∪ NE is the set of nodes in the architecture. For a process Pi ∈
V, M(Pi) is the node to which Pi is assigned for execution. Each process Pi

can potentially be mapped on several nodes. Let NPi
 ⊆ N be the set of nodes

to which Pi can potentially be mapped. We consider that for each Nk ∈ NPi
,

we know the worst-case execution time1 CPi
Nk of process Pi, when executed

on Nk. We also consider that the size of the messages is given.
Processes and messages activated based on events also have a uniquely as-

signed priority, pPi
 for processes and pmi

 for messages.
All processes and messages belonging to a process graph Gi have the

same period Ti = TGi 
which is the period of the process graph. A deadline

DGi
 ≤ TGi

 is imposed on each process graph Gi. In addition, processes can
have associated individual release times and deadlines. If communicating
processes are of different periods, they are combined into a hyper-graph
capturing all process activations for the hyper-period (LCM of all periods).

3. Design Optimization Problems
Considering the type of applications and systems described in section 2,
and using the analysis proposed in [9] and briefly outlined in the
section 3.2, several design optimization problems can be addressed. In
this paper, we address problems which are characteristic to applications
distributed across multi-cluster systems consisting of heterogeneous TT
and ET networks. In particular, we are interested in the following issues:
1. partitioning of the processes of an application into time-triggered and

event-triggered domains, and their mapping to the nodes of the clusters;
2. scheduling of processes and messages;
3. optimization of the access to the communication infrastructure.

The goal is to produce an implementation which meets all the timing
constraints of the application.

3.1 Partitioning and Mapping
In this paper, by partitioning we denote the decision whether a certain pro-
cess should be assigned to the TT or the ET domain (and, implicitly, to a
TTC or an ETC, respectively). Mapping a process means assigning it to a
particular node inside a cluster.

Very often, the partitioning decision is taken based on the experience and
preferences of the designer, considering aspects like the functionality imple-
mented by the process, the hardness of the constraints, sensitivity to jitter, legacy
constraints, etc. Let P be the set of processes in the application Γ. We denote
with PT ⊆ P the subset of processes which the designer has assigned to the TT
cluster, while PE ⊆ P contains processes which are assigned to the ET cluster. 

Many processes, however, do not exhibit certain particular features or
requirements which obviously lead to their implementation as TT or ET
activities. The subset P+ = P \ (PT ∪ PE) of processes could be assigned to
any of the TT or ET domains. Decisions concerning the partitioning of
this set of activities can lead to various trade-offs concerning, for example,
the schedulability properties of the system, the amount of communication
exchanged through the gateway, the size of the schedule tables, etc.

For part of the partitioned processes, the designer might have already decid-
ed their mapping. For example, certain processes, due to constraints like having
to be close to sensors/actuators, have to be physically located in a particular
hardware unit. They represent the sets PT

M ⊆ PT and PE
M ⊆ PE of already mapped

TT and ET processes, respectively. Consequently, we denote with PT
* = PT \ PT

M

the TT processes for which the mapping has not yet been decided, and similar-
ly, with PE

* = PE \ PE
M the unmapped ET processes. The set P*  = PT

* ∪ PE
* ∪ P+

then represents all the unmapped processes in the application.
The mapping of messages is decided implicitly by the mapping of process-

es. Thus, a message exchanged between two processes on the TTC (ETC)
will be mapped on the TTP bus (CAN bus) if these processes are allocated to
different nodes. If the communication takes place between two clusters, two
message instances will be created, one mapped on the TTP bus and one on
the CAN bus. The first message is sent from the sender node to the gateway,
while the second message is sent from the gateway to the receiving node.

Let us illustrate some of the issues related to partitioning in such a con-
text. In the example presented in Figure 2 we have an application2 with six
processes, P1 to P6, and four nodes, N1 and N2 on the TTC, N3 on the ETC
and the gateway node NG. The worst-case execution times on each node are
given to the right of the application graph. Note that N2 is faster than N3, and
an “X” in the table means that the process is not allowed to be mapped on
that node. The mapping of P1 is fixed on N1, P3 and P6 are mapped on N2,
P2 and P5 are fixed on N3, and we have to decide how to partition P4 be-
tween the TT and ET domains. Let us also assume that process P5 is the

1. In this paper we consider hard real-time applications where violating a timing constraint is 
not acceptable. 2. Communications are ignored for this example.

Figure 2. Partitioning Example
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highest priority process on N3. In addition, P5 and P6 have each a deadline,
D5 and D6, respectively, as illustrated in the figure by thick vertical lines.

We can observe that although P3 and P4 do not have individual deadlines,
their mapping and scheduling has a strong impact on their successors, P5 and
P6, respectively, which are deadline constrained. Thus, we would like to map
P4 such that not only P3 can start on time, but P4 also starts soon enough to
allow P6 to meet its deadline.

As we can see from Figure 2a, this is impossible to achieve by mapping
P4 on the TTC node N2. It is interesting to observe that, if preemption
would be allowed in the TT domain, as in Figure 2b, both deadlines could
be met. This, however, is impossible on the TTC where preemption is not
allowed. Both deadlines can be met only if P4 is mapped on the slower
ETC node N3, as depicted in Figure 2c. In this case, although P4 competes
for the processor with P5, due to the preemption of P4 by the higher prior-
ity P5, all deadlines are satisfied.

For a multi-cluster architecture the communication infrastructure has an
important impact on the design and, in particular, the mapping decisions. Let
us consider the example in Figure 3. We assume that P1 is mapped on node N1

and P3 on node N3 on the TTC, and we are interested to map process P2. P2 is
allowed to be mapped on the TTC node N2 or on the ETC node N4, and its ex-
ecution times are depicted in the table to the right of the application graph.

In order to meet the deadline, one would map P2 on the node it executes
fastest, N2 on the TTC, see Figure 3a. However, this will lead to a deadline
miss due to the TTP slot configuration which introduces communication
delays. The application will meet the deadline only if P2 is mapped on the
slower node, i.e., node N4 in the case in Figure 3b1. Not only is N4 slower
than N2, but mapping P2 on N4 will place P2 on a different cluster than P1

and P3, introducing extra communication delays through the gateway
node. However, due to the actual communication configuration, the map-
ping alternative in Figure 3b is desirable.

3.2 Multi-Cluster Scheduling
Once a partitioning and a mapping is decided, and a communication config-
uration is fixed, the processes and messages have to be scheduled. For the
TTC this means building the schedule tables, while for the ETC the priori-
ties of the ET processes have to be determined and their schedulability has
to be analyzed. In [9] we have proposed an analysis for hard real-time ap-
plications mapped on multi-cluster systems. The aim is to find out if a sys-
tem is schedulable, i.e. all the timing constraints are met. 

The basic idea is that on the TTC an application is schedulable if it is
possible to build a schedule table such that the timing requirements are
satisfied. On the ETC, the answer whether or not a system is schedulable
is given by a schedulability analysis. In [9], for the ETC we used a re-
sponse time analysis, where the schedulability test consists of the compar-
ison between the worst-case response time ri of a process Pi and its
deadline Di. We used the concept of offset in order to handle data depen-
dencies. Thus, each process Pi is characterized by an offset Oi, measured

from the start of the process graph, that indicates the earliest possible start
time of Pi. For example, in Figure 3, O3 is the offset of P3, determined to
guarantee that when P3 is activated, message m2 is already available.

Determining the schedulability of an application mapped on a multi-
cluster system cannot be addressed separately for each type of cluster,
since the inter-cluster communication creates a circular dependency: the
static schedules determined for the TTC influence through the offsets the
response times of the processes on the ETC, which on their turn influence
the schedule table construction on the TTC.

The MultiClusterScheduling (MCS) algorithm proposed in [9] takes as input
an application Γ, a mapping M and a bus configuration B, builds the TT sched-
ule tables, sets the ET priorities for processes, and provides the global analysis.

3.3 Bus Access Optimization
As shown in section 3.1, the communication has an important impact on
the partitioning and mapping process. Hence, we are interested to deter-
mine the parameters B = <β, π> (see section 2.1) of the communication in-
frastructure such that the implementation is schedulable.

Figure 4 presents a bus access optimization example. An application
consisting of processes P1 to P4 and messages m1 to m4 is mapped on a
two-cluster architecture with node N1 on the TTC and node N2 on the
ETC. Let us assume that the mapping is already determined such that pro-
cesses P1 and P4 are mapped on N1 and P2 and P3 are mapped on N2, with
the execution times given in the table in Figure 4. Moreover, we assume
that all messages have the same size, but the transmission times on the
CAN bus are two times faster than on the TTP.

In the situation depicted in Figure 4a we have the TDMA configuration
with slot S1 able to hold one message, followed by slot SG which can hold
two messages. The priority on the CAN bus is pm2

< pm3
. In this case, P3’s

input message m2 will be delayed by the transmission of m3, and hence
P3’s output message m4 will miss the slot SG in round 4, and will have to
take the next round, leading to a deadline miss.

However, if we set the priority pm2
 greater than pm3

, the transmission of the
message m4 on the CAN bus will not be delayed, and will catch round 4, reduc-
ing the response time of the application, which, however, is still unschedulable. 

Further improvements can be achieved by changing the order of the
slots and their length in the TDMA round as indicated in Figure 4c where
SG is now the first slot, and S1 is the second slot. SG has been shortened to
hold only one message, while S1 has been enlarged to hold two messages.
Let us consider that pm2

 > pm1
 on the CAN bus. With such a configuration,

the implementation in Figure 4c meets the deadline.

1. Process T in Figure 3b executing on the gateway node NG is responsible for transferring 
messages between the TTP and CAN controllers.

Figure 3. Mapping Example
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3.4 Exact Problem Formulation
As an input we have an application Γ given as a set of process graphs
(section 2.2) and a two-cluster system consisting of a TT and an ET clus-
ter. As introduced previously, PT and PE are the sets of processes already
partitioned into TT and ET, respectively. Also, PT

M ⊆ PT and PE
M ⊆ PE are

the sets of already mapped TT and ET processes.
We are interested to:

1. find a partitioning for processes in P+ = P \ (PT ∪ PE) and decide a
mapping for processes in P* = PT

*  ∪ PE
* ∪ P+, where PT

* = PT \ PT
M, and

PE
* = PE \ PE

M;
2. determine a bus configuration B = <β, π>, where β is the sequence and

size of the slots in a TDMA round on the TTC, and π is the set of
message priorities on the ETC

such that imposed deadlines are guaranteed to be satisfied.

4. Design Optimization Strategy
The design problem formulated in the previous section is NP complete.
Our strategy, outlined in Figure 5, is to divide the problem into several,
more manageable, subproblems. The MultiClusterConfiguration strategy
(MCC) has three steps:

In the first step (lines 1–3) we decide very quickly on an initial bus access
configuration B0, and an initial partitioning and mapping M0. The initial bus
access configuration (line 1) is determined, for the TTC, by assigning in or-
der nodes to the slots (Si = Ni) and fixing the slot length to the minimal al-
lowed value, which is equal to the length of the largest message in the
application. For the ETC we calculate the message priorities π based on the
deadlines of the receiver processes. The initial partitioning and mapping al-
gorithm (line 2 in Figure 5) is described in section 4.1. Once an initial par-
titioning and bus configuration are obtained, the application is scheduled
using the MultiClusterScheduling algorithm outlined in section 3.2 (line 3). 

If the application is schedulable the optimization strategy stops. Other-
wise, it continues with the second step by using an iterative improvement
PMHeuristic (line 4), presented in section 4.2, to improve the partitioning
and mapping obtained in the first step. 

If the application is still not schedulable, we use, in the third step, the algo-
rithm in section 4.3 to optimize the access to the communication infrastructure
(line 6). If the application is still unschedulable, we conclude that no satisfac-
tory implementation could be found with the available amount of resources. 

4.1 Initial Partitioning and Mapping (IPM)
Our IPM algorithm (Figure 6) receives as input the merged graph G and
the bus configuration B. G is obtained by merging all the graphs of the ap-
plication, and has a period equal to the LCM of all constituent graphs [10].

The IPM algorithm uses a list scheduling based greedy approach. A pro-
cess Pi is placed in the ready list L if all its predecessors have been already
scheduled. In each iteration of the loop (lines 2–7), all ready processes
from the list L are investigated, and that process Pi is selected for mapping
by the SelectProcess function, which has the largest delay δi = ri + li. In the
previous equation, ri is the response time of process Pi on the fastest node
in NPi

, and li is the critical path starting from process Pi, defined as:

(1)

where πik is the kth path from process Pi to the sink node of G (not includ-
ing Pi), and rτj

 is the response time of a process or message on πik. The
response times are calculated using the MultiClusterScheduling function,
under the following assumptions:
• Every yet unpartitioned/unmapped process Pi ∈ P*

 is considered mapped
on the fastest node from the list of potential nodes NPi

.
• The worst-case response time for messages sent or received by yet

unpartitioned/unmapped processes is considered equal to zero.
Let us consider the design example in Figure 7 where we have five process-

es, P1 to P5, and three nodes, N1 on the TTC, N2 on the ETC and the gateway
node NG. The initial bus configuration, consisting of the slots order and size,
together with the ET message priorities, is also given. The mapping of P3 is
fixed on N1, P5 is fixed on N2, and we have to decide where to partition and map
P1, P2 and P4. In the first iteration of IPM, SelectProcess has to decide between
P1 and P2 which are ready for execution. The critical path of P1 is l1 = max(rm1
+ r3 + rm4

 + r5, rm2
 + r4 + rm5

 + r5) = max(0 + 40 + 40 + 40, 0 + 30 + 0 + 40) =
120, while l2 = rm3

 + r4 + rm5
 + r5 = 0 + 30 + 0 + 40 = 70. Thus, the delay of P1

is δ1 = C1
N2 + l1 = 30 + 120 = 150, and the delay of P2 is δ2 = C2

N2 + l2 = 60 + 70
= 1301. Therefore, SelectProcess will select P1 because it has a larger delay.

Once a process Pi is selected, all mapping alternatives of Pi to nodes2 in
NPi

 are tested by the SelectNode function. Out of these alternatives,
SelectNode returns that node Nk which leads to the smallest end-to-end de-
lay δi

Nk on the application graph:

. (2)

In the previous equation, Oi
Nk is the offset of process Pi when mapped on

node Nk (i.e., the earliest possible starting time taking into account the prede-
cessors and the communication delay of the incoming messages) calculated
by our scheduling algorithm. 

The worst-case response time ri
Nk is equal to the worst-case execution time

Ci
Nk if Nk is in the TTC (Nk ∈ NT). If Nk is in the ETC (Nk ∈ NE), the worst-

case response time is calculated according to the equations below:

(3)

(4)

where Ji is the worst-case jitter of process Pi, and wi represents the worst-
case interference on Pi caused by lower priority processes in their critical
section (the term Bi in Equation 4) and by higher priority processes
Pj ∈ hp(Pi) running on the same node Nk with Pi (the second term3 in
Equation 4). Tj represents the period of process Pj and Oij is a positive val-
ue representing the relative offset of processes Pi and Pj.

Figure 5. The General Strategy

 MultiClusterConfiguration(Γ)
 1 Step 1:B0 = InitialBusAccess(Γ)
 2 M0 = InitialPM(Γ, B0)
 3 if MultiClusterScheduling(Γ, M0, B0) returns schedulable then stop end if
 4 Step 2:M = PMHeuristic(Γ, M0, B0)
 5 if MultiClusterScheduling(Γ, M, B0) returns schedulable then stop end if
 6 Step 3:B = BusAccessOptimization(Γ, M)
 7 MultiClusterScheduling(Γ, M, B)
 end MultiClusterConfiguration

Figure 6. The Initial Partitioning and Mapping

 InitialPM(G, B) -- Initial Partitioning and Mapping
 1 L = {source of G} -- start initial mapping with the first node of the merged graph
 2 while L ≠ ∅ do -- visits ready processes in the order of list scheduling
 3 P = SelectProcess(L)
 4 N = SelectNode(NP)
 5 M(P) = N -- map process P on node N
 6 L = UpdateReadyList(L)
 7 end while
 end InitialPM

1. According to the first assumption, both P1 and P2 are considered mapped on the fastest node.
2. NPi

 is the set of nodes on which process Pi could, potentially, be executed. If the process is 
already partitioned to a certain cluster, only nodes in that cluster are considered.

3.  is the positive ceiling, returning the smallest integer greater than x, 0 if x is negative.
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The third term of the delay δi
Nk represents the critical path from process

Pi to the sink node (as introduced in Equation 1) in the case Pi is mapped
on node Nk. The delay δi

Nk is calculated by the MultiClusterScheduling func-
tion, under the same assumptions mentioned earlier.

Let us go back to the example in Figure 7. IPM has decided in the first two
iterations of the while loop (lines 2–7 in Figure 6) that P1 should be mapped
on N1 and P2 on N2. In the third iteration, P4 has been selected by Select-
Process, and now the mapping alternatives on N1 and N2 are tested by the
SelectNode function. According to Equation 2, if P4 is mapped on N1 we
have δ4

N1 = O4
N1 + r4

N1 + l4
N1 = 120 + 40 + (40 + 40) = 240 (see Figure 7a).

Similarly, for the alternative on N2 we have δ4
N2 = O4

N2 + r4
N2 + l4

N2 = 80 + 30
+ (0 + 40) = 150 (see Figure 7b). Thus, P4 will be mapped on N2 which pro-
duces the smallest delay of 150. IPM will finally produce the schedulable so-
lution presented in Figure 7b.

4.2 Partitioning and Mapping Heuristic (PMH)
If, after the initial partitioning, mapping and bus setup we do not obtain a
schedulable application, we apply an iterative improvement algorithm, the
PMHeuristic in Figure 8. The algorithm receives as input the application Γ,
the initial partitioning and mapping M0 produced by IPM, and the bus con-
figuration B0, and produces a partitioning and mapping for processes in P*. 

We investigate each unschedulable graph Gi ∈ Γ, i.e., the response time
rGi

 is larger than the deadline DGi. Our heuristic is to perform changes to
the mapping of processes in Γ that would reduce the critical path of Gi,
and thus the worst-case response time rGi. 

In each iteration, the algorithm selects that unschedulable process graph
Gi which has the maximum delay ∆Gi

 = rGi
 – DGi

 between its response time
and the deadline (line 2). Let us denote the maximum delay with ∆max, and
the corresponding graph with Gmax. Next, we determine the critical path PCP

of the process graph Gmax. For example, for the process graph in Figure 7
scheduled as in case (a), the critical path is composed of P2, P4 and P5.

The intelligence of the heuristic lies in how it determines changes (i.e.,
design transformations) to the mapping of processes that potentially can
lead to a shortening of the critical path (lines 7 and 9). The list of proposed
changes List leading to a potential improvement are then evaluated (lines
11–18) to find out the change that produces the largest reduction of ∆max,
which is finally applied to the system configuration (line 20). Reducing ∆max

means, implicitly, reducing the response time of the process graph Gmax in-
vestigated in the current iteration. The algorithm terminates if all graphs in
the application are schedulable, or no improvement to ∆max is found.

Since a call to MultiClusterScheduling that evaluates the changes is costly
in terms of execution time, it is crucially to find out a short list of proposed
changes that will potentially lead to the largest improvement. Looking at
Equation 2, we can observe that the length of the critical path PCP would be
reduced if, for a process Pi ∈ PCP, we would:

1. reduce the offset Oi (first term of Equation 2);
2. decrease the worst-case response time ri (second term);
3. reduce the critical path from Pi to the sink node (third term).

To reduce (1) we have to reduce the delay of the communication from
Pi’s predecessors to Pi. Thus, we consider transformations that would
change the mapping of process Pi and of predecessors of Pi such that the
communication delay is minimized. However, only those predecessors are
considered for remapping which actually delay the execution of Pi. Let us
go back to Figure 7, and consider that PMH starts from an initial partition-
ing and mapping as depicted in Figure 7a. In this case, to reduce the offset
O4 of process P4, we will consider mapping P4 on node N2 as depicted in
Figure 7b, reducing thus the offset from 120 to 80.

The approach to reduce (2) depends on the type of process. Both for TT
and ET processes we can decrease the worst-case execution time Ci by se-
lecting a faster node. For example, in Figure 7, by moving P4 from N2 to N1

we reduce its worst-case execution time from 40 to 30. However, for ET
processes we can further reduce ri by investigating the interference from
other processes on Pi (Equation 4). Thus, we consider mapping processes
with a priority higher than Pi on other nodes, reducing thus the interference. 

Point (3) is concerned with the critical path from process Pi to the sink
node. In this case, we are interested to reduce the delay of the communica-
tion from Pi to its successor process on the critical path. This is achieved by
considering changes to the mapping of Pi or to the mapping of the succes-
sor process (e.g., by including them in the same cluster, same processor,
etc.). For example, in Figure 7a, the critical path of P4 is enlarged by the
communication delay due to m5 exchanged by P4 on the TTC with P5 on
the ETC. To reduce the length of the critical path we will consider mapping
P4 to N2, and thus the communication will take place on the same processor.

4.3 Bus Access Optimization (BAO)
The BusAccessOptimization function (line 6 in Figure 5) determines the
configuration B consisting of the sequence and size of the slots in a
TDMA round on the TTC (β) and the priorities of messages on the ETC
(π). This optimization is performed as a last attempt to obtain a schedula-
ble configuration. The optimization of the β and π parameters starts from
the initial values set by the InitialBusAccess function. 

The algorithm performs a greedy optimization whereby the ET priorities
π are determined using the HOPA heuristic [5], where priorities in a dis-
tributed real-time system are determined based on the local deadlines,
which are calculated for each activity considering the end-to-end (global)
deadlines. Next, the TTP configuration β is determined. Thus, simulta-
neously with searching for the right node Ni ∈ NT ∪ {NG} to be assigned
to the first slot, the algorithm looks for the optimal slot length. Once a node
was selected for the first slot and a slot length fixed, the algorithm contin-
ues with the next slots, trying to assign nodes (and to fix slot lengths) from
those nodes which have not yet been assigned. When calculating the length
of a certain slot we consider the feedback from the MultiClusterScheduling
algorithm which recommends slot sizes to be tried out. Before starting the
actual optimization process for the bus access scheme, a scheduling of the
initial solution is performed which generates the recommended slot
lengths. We refer the reader to [3] for details concerning the generation of
the recommended slot lengths for the time-triggered protocol.

5. Experimental Results
For the evaluation of our algorithms we used applications of 50, 100, 150,
200, and 250 processes (all unpartitioned and unmapped), to be imple-
mented on two-cluster architectures consisting of 2, 4, 6, 8, and 10 differ-
ent nodes, respectively, half on the TTC and the other half on the ETC,
interconnected by a gateway. 

Thirty examples were randomly generated for each application dimen-
sion, thus a total of 150 applications were used for experimental evalua-
tion. We generated both graphs with random structure and graphs based on
more regular structures like trees and groups of chains. Execution times
and message lengths were assigned randomly using both uniform and ex-
ponential distribution within the 10 to 100 ms, and 2 to 8 bytes ranges, re-
spectively. The experiments were done on SUN Ultra 10 computers.Figure 8. The Partitioning and Mapping Heuristic

 PMHeuristic(Γ, M, B) -- Partitioning and Mapping Heuristic
 1 while (∃ Gi ∈ Γ ∧ rGi

> DGi
) and (∆max improved in the previous iteration) do

 2 ∆max = maximum of rGi
- DGi

, ∀ Gi ∈ Γ ∧ rGi
> DGi

 3 Gmax = graph corresponding to ∆max
 4 PCP = FindCriticalPath(Gmax)
 5 for each Pi ∈ PCP do -- find changes with a potential to improve rGmax
 6 if M(Pi) ∈ NT then
 7 List = ProposedTTChanges(Pi)
 8 else -- in this case M(Pi) ∈ NE
 9 List = ProposedETChanges(Pi)
 10 end if
 11 for each ProposedChange ∈ List do -- determine the improvement
 12 Perform(ProposedChange); MultiClusterScheduling(Γ, M, B)
 13 ∆max = maximum of rGi

- DGi
, ∀ Gi ∈ Γ ∧ rGi

> DGi
 14 if ∆max smallest so far then 
 15 BestChange = ProposedChange 
 16 end if
 17 Undo(ProposedChange)
 18 end for
 19 -- apply the move improving the most
 20 If ∃ BestChange then Perform(BestChange) end if
 21 end for
 22end while
 23return M
 end PMHeuristic
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We were interested to evaluate the proposed approaches. Hence, we
have implemented each application, on its corresponding architecture, us-
ing the MultiClusterConfiguration (MCC) strategy from Figure 5. Figure 9a
presents the number of schedulable solutions found after each step of our
optimization strategy (N/S stands for “not schedulable”). Together with
the MCC steps, Figure 9a also presents a straightforward solution (SF).
The SF approach performs a partitioning and mapping that tries to balance
the utilization among nodes and buses. This is a configuration which, in
principle, could be elaborated by a careful designer without the aid of op-
timization tools like the one proposed in the paper.

Out of the total number of applications, only 19% were schedulable with
the implementation produced by SF. However, using our MCC strategy, we
are able to obtain schedulable applications in 85% of the cases: 30% after
step one (IPM), 76% after step two (PMH), and 85% after step three (BAO).
It is easy to observe that, for all application dimensions, by performing the
proposed optimization steps, large improvements over the straightforward
configuration could be produced. Moreover, as the applications become larg-
er, it is more difficult for SF to find schedulable solutions, while the optimi-
zation steps of MCC perform very well. For 150 processes, for example,
MCC has been able to find schedulable implementations for 83% of the ap-
plications. The bottom bar, corresponding for 26%, is the percentage of
schedulable applications found by IPM. On top of that, PMH, depicted by a
black bar, adds another 47%. The top bar from the stack, represented using a
hashed rectangle, represent the additional 10% of schedulable implementa-
tions found after performing the bus access optimization (BOA).

Figure 9b presents the execution times for each of the three steps of our
multi-cluster configuration strategy, as well as for the complete algorithm
(MCC). Note that the times presented in the figure for MCC include a com-
plete optimization loop, that performs partitioning, mapping, bus access op-
timization and scheduling. The complete optimization process implemented
by the MCC strategy takes under five hours for very large process graphs of
250 processes, while for applications consisting of 100 processes it takes on
average 2.28 minutes.

Finally, we considered a real-life example implementing a vehicle cruise
controller (CC). The process graph that models the CC has 32 processes, and
is described in [10]. The CC was mapped on an architecture consisting of
five nodes: Engine Control Module (ECM) and Electronic Throttle Module
(ETM) on the TTC, Anti Blocking System (ABS) and Transmission Control
Module (TCM) on the ETC, and the Central Electronic Module (CEM) as
the gateway. We have considered a deadline of 150 ms. 

In this setting, the SF approach failed to produce a schedulable implemen-
tation, leading to response time of 392 ms. After IPM (first step of MCC), we
were able to reduce the response time of the CC to 154, which is still larger
than the deadline. However, applying PMH (step two) we are able to obtain a
schedulable implementation with a response time of 146 ms. Applying the
BAO step is able to reduce it further to 144 ms. All these three steps taken to-
gether execute for under two minutes for the CC.

6. Conclusions
In this paper we have presented design optimization strategies for real-
time applications distributed over multi-cluster systems. We have consid-
ered systems of time-triggered and event-triggered clusters, interconnect-
ed via gateways. 

The proposed approaches solve the problems characteristic to such
multi-cluster systems: partitioning, mapping the functionality of the ap-
plication on the heterogeneous nodes of a cluster and adjusting the param-
eters of the communication protocols such that the timing constraints of
the application are guaranteed.

Extensive experiments using synthetic applications, as well as a real-
life example, show that by using our optimization approaches we are able
to find schedulable implementations under limited resources, achieving
an efficient utilization of the system.
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