Minimizing System Modification in an **Incremental Design Approach**

Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Department of Computer and Information Science, Linköpings universitet, Sweden

Incremental Design

- Start from an already existing system with applications
- Implement new functionality on this system Mapping and Scheduling
- To reduce design and testing time: As few as possible modifications of the existing applications
- After the new functionality has been implemented: It should be easy to add functionality in the future

■ First criterion: C₁^P, C₁^m How well the resulted slack sizes accommodate a future application

360 ms Periodic slack + P1 N1 N2 N3 min(40, 80, 0) = 0msmin(40, 0, 80) = 0msmin(80, 80, 40) = 40ms S₃S₁S₂ ^S2|^S3|^S1| = 40ms Bus a) Round 1 Round 2 Round 3 Round 0 Period 0 → Period 1 - Period 2 N 1 N 2 N 3 min(40, 40, 40) = 40msmin(40, 40, 40) = 40msmin(80, 80, 40) = 40ms s₃ = 120m Bus b)

Second criterion: C_2^P , C_2^m How well the slack is distributed in time to

accommodate T_{min} , t_{need} and b_{need}

Paul Pop, Petru Eles, Traian Pop, Zebo Peng

An approach to Incremental Design of Distributed Embedded Systems, Design Automation Conference, 2001

Summary

- Mapping and scheduling of distributed embedded systems for hard-real time applications
 - Static cyclic scheduling of processes and messages,
 - Bus access scheme: time-division multiple-access
- Incremental design process
 - Already existing system,
 - Implement new functionality,
 - a) Existing system modified as little as possible,b) new functionality can be easily added to the system.

Mapping strategy

a) Subset selection to minimize modification time, b) Two design criteria, objective function.

Problem Formulation

Input

- A set of existing applications.
- A current application to be mapped.
- The system architecture.
- Output
 - A mapping and scheduling of the current application, so that the incremental design requirements are satisfied.
- Requirements
 - a) constraints of the *current* application are satisfied and minimal modifications are performed to the existing applications.
 - b) new future applications can be mapped on the resulted system.

Mapping Strategy

- Initial mapping and scheduling
- Requirement a) Subset selection problem Select that subset $\boldsymbol{\Omega}$ of existing applications so that the current application fits and the modification cost $R(\Omega)$ is minimized:

 $R(\Omega) = \sum R_i$

Three approaches to the subset selection problem

- Exhaustive Search (ES)
- Ad-Hoc Solution (AH)
- Subset Selection Heuristic (SH)
- Requirement b)

Objective function minimization:

 $C = w_1^P(C_1^P) + w_1^m(C_1^m) + w_2^P \max(0, t_{need} - C_2^P) + w_2^m \max(0, b_{need} - C_2^m)$

Characterizing existing applications:

Characterizing future applications:

- Typical WCETs
- Typical message sizes Smallest expected period T_{min} Expected necessary processor time t_{need}
- · Expected necessary bandwidth bneed

Number of processes in the current application