
Performance Estimation for Embedded Systems
with Data and Control Dependencies

Paul Pop, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linkoping University, S-58183 Linkoping, Sweden

{paupo, petel, zebpe}@ ida.liu.se
ABSTRACT
In this paper we present an approach to performance estimation
for hard real-time systems. We consider rurhitechups consisting of
multiple processors. The scheduling policy is based on a preemptive
strategy with static priorities. Our model of the system captures
both data and control dependencies, and the analysis is able to
d u c e the pessimism of the estimation by using the knowledge
about these dependencies. Extensive experiments as well as a real
life example demonsbate the efEciency of our approach.
1. INTRODUCTION
In this paper we present an approach to performance estimation for
hard real-time systems that have both data and control dependen-
cies. We consider applications that are implemented on distributed
architectures and, in our approach, the system is modeled by a so
called conditionul process gmph (CPG) [3]. Such a graph captures
both the flow of data and that of control. Processes are scheduled
using a priority based preemptive policy.

Process scheduling for performance estimation and synthesis of
real-time systems has been intensively researched in the last years.
Static non-preemptive scheduling of a set of processes on a multi-
processor system has bee: discussed in [3, 6, 91. In [7] an earlier
deadlinefirst strategy is used for non-preemptive scheduling of pro-
cesses with possible data dependencies. Preemptive scheduling of
independent processes with static priorities running on single pro-
cessor architectures has its roots in [8]. The approach has been later
extended to accommodate more general system models and has
been also applied to distributed systems [121. An algorithm for opti-
mal priority assignment to processes is proposed in [I]. In [l 11 and
[13] time offset relationships and phases, respectively, are used in
order to model data dependencies in the context of priority based
preemptive scheduling.

When control dependencies exist, depending on conditions, only a
subset of the set of processes is executed during an invocation of the
system. Modes have been used to model a certain class of control
dependencies [4]. Such a model basically assumes that at the starting
of an execution cycle, a particular functionality is known in advance
and is fixed for one or several cycles until another mode change is
performed. However, modes cannot handle fine grained control
dependencies or certain combinations of data and control dependen-
cies. Careful modeling using the periods of processes (lower bound
between subsequent re-arrivals of a process) is a possible solution for
some cases of control dependencies [5]. If, for example, we know
that a certain set of processes will only execute every second cycle
of the system, we can set their periods to the double of the period of
the rest of the processes in the system. However, using the worst
case assumption on periods leads very often to unnecessarily pessi-
mistic solutions. A more refined process model can produce much
better results, as will be shown later.

Pemission to make digital or hard copies ofall or part ofthis work for
personal or classroom use is granted wittiout fee provided that copies
arc not made or distributed for profit or comnicrcial advantagc and that
copies bear this notice and the full citation on the first page. *lo copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
CODES 2000 San Diego CAUSA
Copyright ACM 2000 1-581 13-268-9/00/5 ... $5.00

We propose in the next section a system model based on a con-
ditional process graph that is able to capture both data and control
dependencies. Then, we introduce a less pessimistic analysis tech-
nique in order to bound the response time of a hard real-time sys-
tem modeled in such a way. In this paper we insist on various
aspects concerning dependencies between processes in the context
of priority based preemptive scheduling. Static cyclic scheduling of
processes with both data and control dependencies has been
addressed by us in [2, 31. We have also discussed the particular
aspects concerning scheduling and communication synthesis for
distributed systems in [9, IO].

This paper is divided into 7 sections. The next section presents
our graph-based system representation. Section 3 formulates the
problem and sections 4 and 5 present the proposed performance
estimation approaches. The techniques are evaluated in section 6,
and section 7 presents our conclusions.
2. CONDITIONAL PROCESS GRAPH
As an abstract model for system representation' we use a directed,
acyclic, polar graph r(K Es, Ec) [3]. Each node PI€ V represents
one process. Such a process can be an ordinary process specified by
the designer or a so called communication process which captures
the message passing activity. Es and EC are the sets of simple and
conditional edges respectively. Es n Ec = 0 and Es U Ec = E,
where E is the set of all edges. An edge eilf E from Pi to Pi indicates
that the output of Pi is the input of Pi. The graph is polar, which
means that there are two nodes, called source and sink, that conven-
tionally represent the first and last process. These nodes are intro-
duced as dummy processes so that all other nodes in the graph are
successors of the source and predecessors of the sink respectively.

We consider a distributed architecture consisting of several pro-
cessors connected through buses. These buses can be shared by sev-
eral communication channels connecting processes assigned to
different processors.

We assume that each process is assigned to a processor and
each communication channel which connects processes assigned to
different processors is assigned to a bus.

Each process Pi (ordinary or communication process), assigned
to a processor or bus, is characterized by a worst case execution

Process manning
Processorpel: PI. P,, P4. p6. P9. PIO. Pi3
Processorpe2: P3. Pg, P7, P11, p14, P15. PI7
Processorpe3: Pg. P12. Pi,
Communications are mapped to a unique bus

Figure 1. Conditional Process Graph

62

time CP In the process graph depicted in Figure 1, Po and Pj2 are
the source and sink nodes respectively. Nodes denoted PI, P2, ..,
P 17, are ordinary processes specified by the designer. Figure 1 also
shows the mapping of processes to three different processors. The
communication processes are represented in Figure 1 as solid cir-
cles and are introduced for each connection which links processes
mapped to different processors. In this paper we do not consider
the communication aspects which we have analyzed in [9, 101.

An edge eoe Ec is a conditional edge (thick lines in Figure 1)
and it has an associated condition. Transmission on such an edge
takes place only if the associated condition is satisfied. We call a
node with conditional edges at its output a disjunction process.
Alternative paths starting from a disjunction process, which corre-
spond to complementary values of a certain condition, are disjoint
and they meet in a so called conjunction process. Conditions are
dynamically computed by disjunction processes and their value is
unpredictable at the start of an execution cycle of the conditional
process graph. In Figure 1 circles representing conjunction and
disjunction processes are depicted with thick borders. We assume
that conditions are independent.

A process, which is not a conjunction process, can be activated
only after all its inputs have arrived. A conjunction process can be
activated after messages coming on one of the altemative paths
have arrived. All processes issue their outputs when they terminate.
If we consider the activation time of the source process as a refer-
ence, the finishing time of the sink process is the delay of the sys-
tem at a certain execution.
3. PROBLEM FORMULATION
An application is modeled as a set yf of n conditional process
graphs ri, i = 2 . a . Every process Pi in such a graph is mapped to a
certain processor, has a known worst-case execution time Ci, a
deadline Di, and a uniquely assigned priority. All processes
belonging to the same CPG ri have the same period Tri which is
the period of the respective conditional process graph. Typically,
global deadlines 8ri on the delay of each CPG are imposed rather
than individual deadlines on processes.

We consider a priority based preemptive execution environ-
ment. We are interested to derive worst case delays for each CPG
in a given system w. The approach can be easily extended if delays
on individual processes are of interest.

To show the relevance of our problem, let us consider the
example depicted in Figure 2, where we have a system modeled as
two conditional process graphs I?, and r2 with a total of 9 pro-
cesses (the four dummy processes are not counted), and one condi-
tion. The processes are mapped on different processors as
indicated by the shading, and the worst case execution time, in mil-
liseconds, for each process on its respective processor is depicted
to the left of each node. rl has a period of 200 ms, r2 has a period
of 150 ms. The deadlines are 100 ms on r, and 90 ms on r,.

rl r2
Figure 2. System with Control and Data Dependencies

When the analysis is applied to the set of processes, ignoring
control dependencies, we get an estimated worst case delay of 120
ms for rf and 82 ms for T2. This analysis assumes as a worst case
scenario the possible activation of all nine processes for each exe-
cution of the system. This is the solution which will be obtained
using a dataflow graph representation of the system. However, con-
sidering the CPG r, in Figure 2, it is easy to observe that process
P3 on the one hand and processes P2 and P4 on the other hand will
not be activated during the same period of rl. Making use of this
information for the analysis we obtain a worst case delay of 100
ms for r,, which indicates that the system is schedulable.

4. DELAY ESTIMATION FOR TASK GRAPHS
WITH DATA DEPENDENCIES
Methods for schedulability analysis of data dependent processes with
static priority preemptive scheduling have been proposed in [1 11 and
[13]. They use the concept of o$set orphase, respectively, in order to
handle data dependencies. [13] provides a framework that iteratively
finds the phases for all processes, and then feeds them back into the
response time analysis which in turn is used again to derive better
phases. Thus, the pessimism of the analysis is iteratively reduced.

We have used the framework provided by [131 as a starting
point for our analysis. The response time of a process Pi is:

ri = c i + , cj[.-T;.-,1 r . - O . . (1)
V j E hp(P.)

where hp(Pi) is the set of processes that have higher priority than
Pi , and 0~ is the phase of f , relative to Pi.

In [13] a system is modeled as a set S of n task graphs C, i = l..n.
The system model assumed and the definition of a task graph are
similar to our CPG, but without considering any conditions. The
aim of the analysis is to derive an as tight as possible worst case
delay on the execution time of each of the task graphs in the system.
This delay estimation is done using the algorithm DelayEstimate
described in Figure 3. The function LatestTimes calculates worst
case response times of processes and upper bounds for the offsets,
while EarliestTimes derives the lower bounds of the offsets.

During a topological traversal of the graph G within Latest-
Times, for each process Pi the worst case response time ri is calcu-
lated according to equation (1). This value is based on the values of
the offsets known so far. Once an ri is calculated, it can be used to
determine and update offsets for other successor processes. Accord-
ingly, the EarliestTimes function determines the lower bounds on
the offsets. The influence on graph G from other graphs in the sys-
tem is considered in both of the functions mentioned earlier.

These calculations can be improved by realizing that for a pro-
cess Pi, there might exist a process Pi mapped on the same proces-
sor, with priority(Pi) < priority(fj), such that their execution
windows never overlap. In this case, the term in the equation (1)
that expresses the influence of Pi on the execution of Pi can be

Dela Estimate(task graph G s stem s)
-- &rives the worst case deladoL task graph G considering -- the influence from all other task graphs in the system S

for each pair (Pi, Pj) in G
maxssp[Pb P' = -

end for
steo = 0
re-gat

LatestTimes(G
EarliestTimes(h)
for each Pie G

re-gat
LatestTimes(G
EarliestTimes(h)
for each Pie G

MaxSeparations(P;) . ..
end for

until maxsep is not chan ed or step > limit
return the worst case de& 60 of the graph G

end DeiayEstimate
Figure 3. Delay Estimation for Task Graphs

63

Figure 4. Example of two CPGs
dropped, resulting in a tighter worst case response time calcula-
tion. This situation is expressed through the so called m s e p table,
computed by the MaxSeparations function, whose value m-
s e p [P , Pj] is less than or equal to 0-if the two processes never
overlap during their execution. The m s e p table is built using the
worst case execution times and offsets determined in EarliestTimes
and LatestTimes.

Having a better view on the maximum separation between
each pair of processes, tighter worst case response times and off-
sets can be derived, which in turn contribute to the update of the
w s e p table. This iterative tightening process is repeated until
there is no modification to the maxsep table, or a certain imposed
limit on the number of iterations is reached.

Finally, the DelayEstimate function returns the worst-case delay
8~ estimated for a task graph G, as the latest time when the sink
node of G can finish its execution.
5. DELAY ESTIMATION FOR CPGs
Depending on the values calculated for the conditions, different
alternative tracks through a conditional process graph are activated
for a given activation of the system. To model this, a boolean
expression Xpi, called guard, can be associated to each node Pi in
the graph. It represents the necessary condition for the respective
process to be activated. In Figure 4, for example, Xp4=ChD,
Xp5=c, X p t r u e , Xpll=true, and X ~ I F K .

We call an alternative track through a conditional process
graph, resulting from a combination of conditions, an uncondi-
twnuf subgraph, denoted by g . For example, the CPG rl in Figure 4
has three unconditional subgraphs, corresponding to the following
combinations of conditions: ChD, C a , and c. %e unconditional
subgraph corresponding to the combination C m in the CPG FI
consists of processes P I , P2, P4, P6. P , P9 and P I P
5.1 Ignoring Conditions (IC)
A straightforward approach to delay estimation for systems
represented as CPGs is to ignore control dependencies and to apply
the analysis as described in section 4.

This means that conditional edges in the CPGs are considered
like simple edges and the conditions in the model are dropped.
What results is a system S consisting of simple task graphs Gi,
each one resulted from a CPG rj of the given system y. The system
S can then be analyzed using the algorithm in Figure 5 .

DEIIC(system w) -- denves worst case delays for each CPG in the system \y
transform each r i c w into the corresponding Gic S
for each task graph Gi E S

DelayEstimate(Gi, S)
end for

end DUlC
Figure 5. Delay Estimation Ignoring Conditions

DUCPG(CPG r system
-- derives the w k t case d?ay of a CPG l- considering
-- the influence from all other task gra hs in the system S

extract all unconditional subgrapKs gjfrom r
for each g

end for
return the largest of the dela s which is

Delay&timate(gi, S)

the worst case delay 6, of &G r
end DElCPG
a) DUCPG - Delay Estimate for Conditional Process Graphs
DUBF(system w) -- denves worst case delays for each CPG in the system w

transform each Ti E w into the corresponding Gi E s
for each ri E y~
end for

end DUBF
b) DUBF -- Delay Estimation: the Brute Force approach

DE/CPG(Ti, [GI , Ga ...Gi.l, Gi+19 GJ)

Figure 6, Brute Force Analysis
This approach, which we call IC, is, of course, very pessimis-

tic. However, this is the current practice when worst case arrival
periods are considered and classical data flow graphs are used for
modeling and scheduling.

The pessimism of the previous approach can be reduced by using a
conditional process graph model. A simple, brute force solution is
to apply the analysis presented in section 4, after the CPGs have
been decomposed into their constituent unconditional subgraphs.

Consider a system y which consists of n C P G s ri, i = I..n. Each
CPG ri can be decomposed into ni unconditional subgraphs g/ , j =
l..ni. In Figure 4, for example, we have 3 unconditional subgraphs
g l l , g2I, g i derived from rl and two, g12, 822 derived from r p

At the same time, each CPG ri can be transformed (as shown in
subsection 5.1) into a simple task graph Gi, by transforming condi-
tional edges into ordinary ones and dropping the conditions. When
deriving the worst case delay on ri we apply the analysis from sec-
tion 4 (algorithm DelayEstimate in Figure 3) separately to each
unconditional subgraph g; in combination with the graphs (G I , G2,
... Gi-,. Gi+l, G,). This means that we consider each alternative track
from ri in the context of the system, instead of the whole subgraph
Gi as in the previous approach. This is described by the algorithm
DE/CPG in Figure 6 a). Estimation for the whole system is per-
formed as shown in the algorithm DWBF in Figure 6 b).

Such an approach, we call it BF, while producing tight bounds
on the delays, can be expensive from the runtime point of view,
because it is applied for each unconditional subgraph. In general,
the number of unconditional subgraphs can grow exponentially.
However, for many of the practical systems this is not the case, and
the brute force method can be used. Alternatively, less expensive
methods, like those presented below, should be applied.
5 3 Condition Separation (CS)
In some situations, the explosion of unconditional subgraphs
makes the brute force method inapplicable. Thus, we need to find
an analysis that is situated somewhere between the two alternatives
discussed in 5.1 and 5.2, which means it should not be too pessi-
mistic and should run in acceptable time.

A first idea is to go back to the DelayEstimate algorithm in
Figure 3, and use the knowledge about conditions in order to update
the w s e p table. Thus, if two processes Pi and P, never overlap
their execution because they execute under alternative values of
conditions, then we can update mmsep[Pi , Pj] to 0, and thus
improve the quality of the delay estimation. Two processes Pi and
Pi never overlap their execution if there exists at least one condi-

5.2 Brute Force Solution (BF)

64

DVCS(system w) -- denves worst case delays for each CPG in the system w
transform each Ti E w into the corresponding Gi€ S

for each Gi E S
and keep guard Xmfor each Pi

-- derives the worst case delay of a task graph Gi considering
-- the influence from all other task graphs in the system S
for each pair (Pi , Pj) in Gi

maxsep[Ph Pj = -
end for
step = 0
remat . LatestTimes(Gi)

EarliestTimes(Gi)
for each Pie Gi

MaxSeparations(Pi)
end for
for each pair (P i , PAID Gi

if 3C, C c X p i ~ CcXmthen
maxsep[Pi, 51 = 0

end if
until maxsep is not changed or step > limit

S, is the worst case delay for r;
end for

- . end for
end DE/-

Figure 7. Delay Estimation using Condition Separation
tion C, so that C c Xpi (Xpi is the guard of process Pi) and i? c Xpi.

In this approach, called CS, we practically use the same algo-
rithm as for ordinary task graphs and try to exploit the information
captured by conditional dependencies in order to exclude certain
influences during the analysis. In Figure 7 we show the algorithm
DWCS which performs dglay estimation based on this heuristic.
5.4 Relaxed Tightness Analysis (RT)
The two approaches discussed here are similar to the brute force
algorithm (Figure 6) presented in subsection 5.2. However, they by to
improve on the execution time of the analysis by reducing the com-
plexity of the DelayEstimate algorithm (Figure 3) which is called
f" the DWCPG function (Figure 6 a). This will reduce the execu-
tion time of the analysis, not by reducing the number of subgraphs
which have to be visited (like in subsection 5.3). but by reducing the
time needed to analyze each subgraph. As our experimental results
show (section 6) this approach can be very effective in practice. Of
course, by the simplifications applied to DelayEstimate the quality of
the analysis is reduced in comparison to the brute force method.

We have considered two alternatives of which the first one is
more drastic while the second one is trying a more refined trade-off
between execution time and quality of the analysis.

With both these approaches, the idea is not to run the iterative
tightening loop in DelayEstimate that repeats until no changes are
made to m s e p or until the limit is reached. While this tightening
loop iteratively reduces the pessimism when calculating the worst
case response times, the actual calculation of the worst case
response times is done in LatestTimes, and the rest of the algorithm
in Figure 3 just tries to improve on these values. For the first

DaIayEstimateRTl(mk gmph G, system S)
LatestTimes(G)

end DelavEstimateRTl
a) Delay Estimation for RTI
DelayEstimateRT2 task raph G, system S)

for each pair (Ai, ?fin Gi
maxseofP;. Pjl = - . - .. ,"

end for
LatestTimes(G)
EarliestTimes(G)
foreach P;E G

MaxSeparations(Pi)
end for
LatestTimes(G)

end DelavEstimateRT2
b) Delay &timation for RT2

Figure 8. Delay Estimation for the RT Approaches

approach, called RT1, the function DelayEstimate has been trans-
formed like in Figure 8 a).

However, it might be worth using at least the MaxSeparations in
order to obtain tighter values for the worst case response times. For
the alternative RT2 in Figure 8 b), DelayEstimateRT2 first calls Lab
estTimes and EariiestTimes, then MaxSeparations in order to build
the marsep table, and again LatestTimes to tighten the worst case
response times.
6. EXPERIMENTAL RESULTS
We have performed several experiments in order to evaluate the
different approaches proposed. The two main aspects we were
interested in are the quality of the delay estimation and the scal-
ability of the algorithms for large examples. A first set of massive
experiments were performed on conditional process graphs gener-
ated for experimental purpose.

We considered architectures consisting of 2,4,6,8 and 10 pro-
cessors. 40 processes were assigned to each node, resulting in
graphs of SO, 160,240,320 and 400 processes, having 2,4,6,8 and
10 conditions, respectively. The number of unconditional sub-
graphs varied for each graph dimension depending on the number
of conditions and the randomly generated structure of the CPGs.
For example, for CPGs with 400 processes, the maximum number
of unconditional subgraphs is 64. 30 graphs were generated for
each graph dimension, thus a total of 150 graphs were used for
experimental evaluation. Worst case execution times were assigned
randomly using both uniform and exponential distribution. All
experiments were run on a Sun Ultra 10 workstation.

In order to evaluate the quality of the results, we need a cost
function that captures, for a certain system, the tightness of the
delays produced by the proposed approaches. Our cost function is
the difference between the deadline and the estimated worst case
delay of a CPG, summed for al! the CPGs in the system:

where n is the number of CPGs in the system, 6ri is the estimated worst
case delay of the CPG r, and hi is the deadline on ri. A higher value
for this cost function, for a given system, means that the corresponding
approach produces better results (the estimation is less pessimistic).

For each of the 150 generated example systems and each of the
five approaches to delay estimation we have calculated the cost
function. Figure 9 presents the average percentage deviations of
the cost function obtained in each of the five approaches, compared
to the value of the cost function obtained with the BF approach.
The BF is the least pessimistic approach and therefore has the larg-
est value for the cost function. A smaller value for the percentage
deviation means a larger cost function, thus a better result. The per-
centage deviation is calculated according to the formula:

CoStBF - Costapproach . deviation = CostBF

O!O - 100 156 200 %O 300 - 3iO 4@3
Number of Processes

Figure 9. Quality of Estimation with Number of Processes

65

/ I
100

50

0
50 100 150 200 250 300 350 400

Number of Processes
Figure 10. Average Execution Time

Figure 10 presents the average runtime of the algorithms, in sec-
onds. The brute force approach, BF, performs best in terms of quality
at the expense of a large execution time. At the other end, the
straightforward approach IC, that ignores the conditions, performs
worst and becomes more and more pessimistic as the system size
increases. It is interesting to mention that the low quality IC
approach has also an average execution time which is equal or
comparable to the much better quality heuristics (except the BF, of
course). This is because it tries to improve on the worst case delays
through the iterative loop presented in DelayEstimate, Figure 3.

Let us tum our attention to the three approaches CS, RT1, and
RT2 that, like the BF, consider conditions during the analysis but
also try to perform a trade-off between quality and execution time.
Figure 9 shows that the pessimism of the analysis is dramatically
reduced by considering the conditions during the analysis. The RTl
and RT2 approaches, that visit each unconditional subgraph, per-
form in average better than the CS approach that considers condition
separation for the whole graph. However, CS is comparable in qual-
ity with RT1, and even performs better for graphs of size smaller
than 240 processes (4 conditions, maximum 16 subgraphs). The RT2
analysis, that tries to improve the worst case response times using
the MaxSeparations, as opposed to RT1, performs best among the
non-brute-force approaches. As can be seen from Figure 9, RT2 has
less than 20% average deviation from the solutions obtained with the
brute force approach. However, if faster runtimes are needed, RTl
can be used instead, as it is twice faster in execution time than RT2.

We were also interested to compare the five approaches with
respect to the number of unconditional subgraphs in a system. For
the results depicted in Figure 11 we have assumed CPGs consisting
of 2,4,8, 16, and 32 unconditional subgraphs of maximum 50 pro-
cesses each, allocated to 8 processors. Figure 11 shows that as the
number of subgraphs increases, the differences between the
approaches grow while the ranking among them remains the same,
as resulted from Figure 9. The CS approach performs better than
RT1 with a smaller number of subgraphs, but RTl becomes better
as the number of subgraphs in the CPGs increases.

Finally, we considered a real-life example implementing a vehi-
cle cruise controller modeled using a conditional process graph. The
graph has 32 processes, two conditions (4 subgraphs), and it was
mapped on an architecture consisting of 4 nodes (processors), namely:
Anti Blocking System, Transmission Control Module, Engine Con-
trol Module and Electronic Throttle Module. The period of the CPG
was 200 ms, and the deadline was set to 110 ms. Without considering
the conditions, IC obtained a worst case delay of 138 ms. The same
result was obtained with the CS approach, and this is because the
alternative tracks were mapped on different processors, thus not influ-
encing each other. However, the brute force approach BF produced a
worst case delay of 104 ms which proves that the system implement-
ing the vehicle cruise controller is, in fact, schedulable. Both RT1 and
RT2 produced the same worst case delay of 104 ms as the BF.

-*--,..-/------
BF- RTI+‘

” 4

RT2& IC-
a+

Number of Unconditional Sugraphs

-
10 15 20 25 30

Figure 11. Quality of Estimation with Number of Subgraphs
7. CONCLUSIONS
In this paper we proposed solutions to performance estimation for
hard real-time systems with control and data dependencies.

The systems are modeled through a set of conditional process
graphs that are able to capture both the flow of data and that of
control. We consider distributed architectures and a scheduling
policy based an a static priority preemptive strategy.

Five approaches to delay estimation of such systems are pro-
posed. Extensive experiments and a real-life example show that by
considering the conditions during the analysis, the pessimism of
the analysis can be drastically reduced.

While the brute force approach BF performed best, at the
expense of execution time, the RT2 approach is able to obtain results
with less than 20% average loss in quality, in a very short time.
REFERENCES
[11 N.C. Audslay, K.W. Tindell, A. Burns, “The End of the Road

for Static Cyclic Scheduling”, Proc. Euromicro Workshop on
Real-Time Systems, 36-41, 1993.

[2] A. Doboli, P. Eles, “Scheduling under Control Dependencies
for Heterogeneous Architectures”, Proc. International Confer-
ence on Computer Design, 602-608, 1998.

[3] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop, “Schedul-
ing of Conditional Process Graphs for the Synthesis of
Embedded Systems”, Roc. DATE, 23-261998.

[4] G. Fbhler, ‘Realizing Changes of Operational Modes with Pre
Run-time Scheduled Hard Real-Time Systems”, Responsive
Computer Systems, H. Kopetz-Y. Kakuda ed., 287-300,
Springer, 1993.

[5] R. Gerber, D. Kang, S. Hong, M. Saksena, “End-to-End
Design of Real-Time Systems”, Formal Methods in Real-
7ime Computing, D. Mandrioli-C. Heitmeyer ed., John Wiley
8~ Sons, 1996.

[6] P.B. Jorgensen, J. Madsen, “Critical Path Driven Cosynthesis
for Heterogeneous Target Architectures”, Proc. International
Workshop on Hardware-Software CO-design, 15-19, 1997.

[7] C. Lee, M. Potkonjak, W. Wolf, “Synthesis of Hard Real-
Time Application Specific Systems”, Design Automation for
Embedded Systems, 4,215-241, 1999.

181 C. L. Liu. J. W. Lavland. “Scheduling Algorithms for Multi- - -
programking in a Hard-Real-Time ~nv i&nen t” , Journal of

191 P. POD. P.. Eles. Z.. PenE. “Scheduling with %timized Corn-
the ACM, 20(1), 46-61, 1973.

- _
munkation for.Time-T&gered Embaded $stems”, Proc.
International Workshop on Hardware-Software Co-design, 78-
82, 1999.

[lo] P. Pop, P., Eles, Z., Peng, “Bus Access Optimization for Dis-
tributed Embedded Systems based on Schedulability Analy-
sis’’, Roc. DATE, 2000.

[1 I] K. Tindell, “Adding Time-Offsets to Schedulability Analy-
sis’’, Department of Computer Science, University of York,
Report Number YCS-94-221, 1994.

[12] K. Tindell, J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”, Microprocessing and
Microprogramming, 40,117-134, 1994.

[13] T. Yen, W. Wolf, “Performance estimation for real-time dis-
tributed embedded systems”, IEEE Tmnsactions on Parallel
and Distributed Systems, Volume: 9(1 l), 1125 - 1136, Nov.
1998.

66

