Schedulability Analysis for Systems with Data and Control Dependencies

Paul Pop, Petru Eles, Zebo Peng
Department of Computer and Information Science
Linköpings universitet
Sweden
Motivation

Performance estimation:
- Based on schedulability analysis.

Schedulability analysis:
- Worst case response time of each process.
- Models in the literature:
 - Independent processes;
 - Data dependencies: release jitter, offsets, phases;
 - Control dependencies: modes, periods, recurring tasks.
Characteristics and Message

Characteristics:

- Heterogeneous system architecture.
- Fixed priority preemptive scheduling.
- Systems with data and control dependencies.
- Tighter worst case delay estimations.

Message:

- The pessimism of the analysis can be drastically reduced by considering the conditions during the analysis.
Conditional Process Graph

Subgraph corresponding to \(D \land C \land K \)
Problem Formulation

Input
- An application modelled as a set of conditional process graphs (CPG).
- Each CPG in the application has its own independent period.
- Each process has an execution time, a deadline, and a priority.
- The system architecture and mapping of processes are given.

Output
- Schedulability analysis for systems modelled as a set of conditional process graphs (both data and control dependencies).
- Fixed priority preemptive scheduling.
- Communication of messages not considered, but can be easily added.
Example

\[\Gamma_1: 200 \]

\[\Gamma_2: 150 \]

<table>
<thead>
<tr>
<th>CPG</th>
<th>Worst Case Delays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No conditions</td>
</tr>
<tr>
<td>(\Gamma_1)</td>
<td>120</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>82</td>
</tr>
</tbody>
</table>
Task Graphs with Data Dependencies

- K. Tindell: Adding Time-Offsets to Schedulability Analysis, Research Report
 Offset: fixed interval in time between the arrival of sets of tasks. Can reduce the pessimism of the schedulability analysis. Drawback: how to derive the offsets?

 Phase (similar concept to offsets). Advantage: gives a framework to derive the phases.
Schedulability Analysis for Task Graphs

DelayEstimate(task graph G, system S)

```plaintext
for each pair (P_i, P_j) in G
    maxsep[P_i, P_j]=\infty
end for
step = 0
repeat
    LatestTimes(G)
    EarliestTimes(G)
    for each P_i \in G
        MaxSeparations(P_i)
    end for
until maxsep is not changed or step < limit
return the worst case delay \( \delta_G \) of the graph G
end DelayEstimate
```

- **worst case response times and upper bounds for the offsets**
- **lower bounds for the offsets**
- **maximum separation:**
 \(\text{maxsep}[P_i, P_j]=0 \) if the execution of the two processes never overlaps
Two extreme solutions:

- **Ignoring Conditions (IC)**

 Ignore control dependencies and apply the schedulability analysis for the (unconditional) task graphs.

- **Brute Force Algorithm (BF)**

 Apply the schedulability analysis after each of the CPGs in the application have been decomposed in their constituent unconditional subgraphs.
In between solutions:

- **Conditions Separation (CS)**

 Similar to *Ignoring Conditions* but uses the knowledge about the conditions in order to update the maxsep table:

 $\text{maxsep}[P_i, P_j] = 0$ if P_i and P_j are on different conditional paths.

- **Relaxed Tightness Analysis (two variants: RT1, RT2)**

 Similar to the *Brute Force Algorithm*, but tries to reduce the execution time by removing the iterative tightening loop (relaxed tightness) in the *DelayEstimation* function.
Experiments Setup

- Number of Graphs: 150
 30 for each dimension of 80, 160, 240, 320, 400 nodes;
 2, 4, 6, 8, 10 conditions.
- Graphs Structure:
 Random and regular (trees, groups of chains).
- Architecture:
 2, 4, 6, 8, 10 nodes.
- Mapping:
 40 processes / node; random and using simple heuristics.

- Cost function: degree of schedulability

\[
Cost\ function = \sum_{i=1}^{n} \left(D_{\Gamma_i} - \delta_{\Gamma_i} \right)
\]
Experimental Results

The graph shows the average percentage deviation for different methods as a function of the number of processes. The methods compared are:

- Ignoring Conditions
- Conditions Separation
- Relaxed Tightness 1
- Relaxed Tightness 2
- Brute Force

The y-axis represents the average percentage deviation, while the x-axis represents the number of processes.
Experimental Results (Cont.)

![Graph showing experimental results]

- **Average execution time [s]**
- **Number of processes**

Lines represent different scheduling strategies:
- **Brute Force**
- **Ignoring Conditions**
- **Relaxed Tightness 1**
- **Conditions Separation**
- **Relaxed Tightness 2**
Real Life Example

- **Vehicle cruise controller.**
- Modelled with a CPG of 32 processes and two conditions.
- Mapped on 5 nodes: CEM, ABS, ETM, ECM, TCM.

Deadline 130:
- Ignoring Conditions: 138 ms
- Conditions Separation: 132 ms
- Relaxed Tightness 1, 2: 124 ms
- Brute Force: 124 ms
Conclusions

- Schedulability analysis for hard real-time systems with control and data dependencies.

- The systems are modelled using conditional process graphs that are able to capture both the flow of data and that of control.

- Distributed architectures, fixed priority scheduling policy.

- Five approaches to the schedulability analysis of such systems.

- Extensive experiments and a real-life example show that: considering the conditions during the analysis the pessimism of the analysis can be significantly reduced.