Master’s Thesis 
An embedded system simulator for automotive electronics


[image: image39.wmf] 

 

 

LINKÖPINGS UNIVERSITET

 

Rapporttyp

 

Report category

 

Licentiatavhandling

 

Examensarbete

 

C

-

uppsats

 

D

-

uppsats

 

Övrig rapport

 

 

 

Språk

 

Language

 

 

Svenska/Swedish

 

 

Engelska/English

 

 

Titel

 

Title

 

Författare

 

Author

 

Sammanfattning

 

Abstract

 

ISBN

 

ISRN

 

Serietitel och serienummer

 

ISSN

 

Title of series, numbering

 

LiTH

-

IDA

-

Ex

-

 

Nyckelord

 

Keywords

 

Datum

 

Date

 

URL för elektronisk version

 

 

 

X

 

X

 

2003

-

04

-

10

 

Avdelning, institution

 

Division, department

 

Institutionen för datavetenskap

 

Department of Computer

 

and Information 

Science

 

 

A flexible simulator for control

-

dominated distributed real

-

time systems

 

En flexibel simulator för distribuerade realtids system

 

Johannes Petersson

 

Embedded systems have become indispensable in our lives and can be found almost anywhere; in th

e modern 

medical industry, cellular phones, home appliances, automotive industry, avionics, etc., with a large variety of 

constraints and requirements. Many embedded systems are implemented on heterogeneous architectures containing 

multiple programmable pr

ocessors and specific hardware components. Not only does such a distributed 

heterogeneous system contain constraints on cost, power

-

consumption, physical size, etc., it also often has to fulfil 

real

-

time requirements such as timing, dependability and perfo

rmance. 

 

 

This thesis concentrates on the simulation of control

-

dominated distributed real

-

time systems. Control

-

dominated 

systems implement a control

-

function, which describes how the system interacts with the environment. The proposed 

simulator uses an a

bstract graph representation, which captures both data

-

 and control

-

flow, to model the application. 

The graph representation also contains functionality in the nodes that the simulator executes while running. The 

scheduling of processes and communication i

n the simulator happens according to a non pre

-

emptive static cyclic 

scheduling algorithm. 

 

 

This thesis shows that a simulator can aid in the design of embedded systems. A simulator allows us to test that the 

software design is correct and that processes 

perform the way they should. It can also help us validate the timing 

requirements of the system. Special emphasis has been placed on how design transformations, such as allocation, 

functional partitioning and mapping, impact the performance of an embedded 

system. Simulation results show that 

the simulator can be successfully used to validate the timing constraints and evaluate design decisions. 

 

Real

-

time, Control

-

dominated, Distributed, Embedded systems, Simulator, SystemC

 

 

03/32

 


Final Thesis

A flexible simulator for control-dominated distributed real-time systems
by

Johannes Petersson

LiTH-IDA-Ex-03/32

2003-04-10

Supervisor: Paul Pop

Examiner: Petru Eles

Abstract

Embedded systems have become indispensable in our lives and can be found almost anywhere; in the modern medical industry, cellular phones, home appliances, automotive industry, avionics, etc., with a large variety of constraints and requirements. Many embedded systems are implemented on heterogeneous architectures containing multiple programmable processors and specific hardware components. Not only does such a distributed heterogeneous system contain constraints on cost, power-consumption, physical size, etc., it also often has to fulfil real-time requirements such as timing, dependability and performance. 

This thesis concentrates on the simulation of control-dominated distributed real-time systems. Control-dominated systems implement a control-function, which describes how the system interacts with the environment. The proposed simulator uses an abstract graph representation, which captures both data- and control-flow, to model the application. The graph representation also contains functionality in the nodes that the simulator executes while running. The scheduling of processes and communication in the simulator happens according to a non pre-emptive static cyclic scheduling algorithm. 

This thesis shows that a simulator can aid in the design of embedded systems. A simulator allows us to test that the software design is correct and that processes perform the way they should. It can also help us validate the timing requirements of the system. Special emphasis has been placed on how design transformations, such as allocation, functional partitioning and mapping, impact the performance of an embedded system. Simulation results show that the simulator can be successfully used to validate the timing constraints and evaluate design decisions. 

Acknowledgements

I would like to express my gratitude to my examiner Petru Eles and to my supervisor Paul Pop for their invaluable guidance, which has pervaded my Master’s Thesis studies. 

Many thanks also to Stephan Klaus at the Darmstadt University of Technology in Germany for lending his ideas and feedback on the early versions of the work.

I would also like to thank my colleagues in the Embedded Systems Laboratory who made my time there enjoyable and memorable. 

Last, but not least, my most sincere gratitude to my family and to all my friends. You are the reason, for good or bad, that I am who I am today.






Johannes Petersson


11
Introduction


11.1
Background


31.2
Motivation


51.3
Thesis organisation


72
Embedded systems


72.1
Introduction


82.2
Real-time systems


92.3
Control-dominated real-time systems


113
Modelling


113.1
Introduction


123.2
System model


133.3
Application model


143.3.1
The task graph


153.3.2
The Conditional Process Graph


194
Embedded system design


194.1
Introduction


204.2
The process of design


214.3
Design transformations


244.4
Scheduling introduction


264.4.1
Scheduling for time- and event-triggered systems


274.5
Non pre-emptive scheduling


284.5.1
Static non pre-emptive scheduling


284.5.2
Dynamic non pre-emptive scheduling


294.6
Pre-emptive scheduling


294.6.1
Static pre-emptive scheduling


304.6.2
Dynamic pre-emptive scheduling


304.7
Static scheduling for CPGs


355
Simulation


355.1
Introduction


365.2
Discrete- and continuous-time


365.2.1
Discrete-time


375.2.2
Continuous-time


375.3
Evaluate-update and discrete-event


385.4
The simulation engine of SystemC


405.5
Related work


436
A flexible simulator for control-dominated applications


436.1
Introduction


456.2
Detailed description


516.3
Requirements


516.3.1
Requirement levels


516.3.2
Purpose of the simulator


526.3.3
Input requirements


536.3.4
Functionality requirements


536.3.5
Output requirements


546.4
Design


546.4.1
Main system components


606.4.2
Infrastructure flowchart


626.4.3
Design foundations


626.5
Implementation


657
Experimental results


657.1
Introduction


707.2
The effect of functional partitioning


757.3
The effect of conditions and resource allocation


807.4
The effect of mapping


858
Conclusions and future work


858.1
Conclusions


878.2
Future work


89Appendix A


89Glossary of terms


91Appendix B


91Simulator files


1099
References



1 
Introduction

1.1 Background

The vast majority of all processors produced today are used in embedded systems, often with real-time constraints. Nowadays you can find embedded systems in everything from cellular phones and vending machines to cars and airplanes, obviously with a large variety of constraints and requirements. Many embedded systems are implemented on heterogeneous architectures containing multiple programmable processors and specific hardware components. Not only does such a distributed heterogeneous system often contain constraints on cost, power-consumption, size, etc., it also has to fulfil real-time requirements such as timing, dependability and performance. This makes embedded systems a very interesting research area both in the industrial and in the academic world. As the importance of embedded systems increases, so do their complexity and their area of use.

A very important aspect of distributed real-time embedded systems is the performance in terms of timing. Therefore this thesis will concentrate on the simulation of systems containing many processes implemented on different processors communicating over a bus. To simulate such a system we first need to specify it. In this thesis the specification is done with an abstract representation consisting of a Conditional Process Graph (CPG) [1], described in chapter three. After the specification of the system with such an abstract model some design tasks such as scheduling, allocation and binding should be done. Based on these results an executable simulator can be built. This is highly important since it allows for an assessment of the timing behaviour of the system, before the tedious and expensive implementation work of its core functionality is made. 

As stated before, this thesis will concentrate on the simulation of distributed embedded control systems. 

An example of such a system is the distributed embedded system in a car. It needs to handle hard real-time safety critical operations such as controlling the Anti-Blocking System (ABS) and the Steer-by-Wire system. But is also needs to handle soft real-time processes such as the electronic windows and the climate control in the car. 

The basics of the constructed simulator in this thesis are that of an evaluate-update simulator with an event-driven core as specified in [2]. This means that the advance of time is determined individually for each time step, based on the actions of the component. Events are determined by the sequence of each entity starting and finishing activities. The discrete-event simulation consists of a parallel flow of entities interacting with resources. The release of events in the simulator happens according to the scheduling policy used. In this thesis we consider that the activities are initiated based on a non pre-emptive static cyclic scheduling policy. 

Motivation

The importance of distributed real-time systems used in embedded applications is growing and so is their complexity. Therefore it’s desirable to shift the design process to a higher abstraction level and to support the possibility of an early system validation by simulation. The simulator in this thesis will separate the communication and core functionality, which gives us good possibilities to extend and refine parts of the simulator without affecting the overall functionality. The simulator is built upon the C++ library SystemC, which provides a simulation kernel and a system-level modelling language. 

The SystemC library enables us to get an execution and timing validation in the early stage of the development. This is important, since before we start the expensive construction and implementation of the system we want to be sure that it actually perform in the way that we intended. This means that with a simulator we can validate the design of a distributed system before it’s constructed and thereby we can also be sure that it fulfils its real-time constraints. 

A simulator can also allow us to evaluate several different architectures by modifying, accordingly, the execution times of processes and the communication times of messages. This makes it possible to reduce the costs for the hardware in the final mass-produced units and it can also have an effect of the actual physical size and weight of the unit. 

Basically the reward for constructing a simulator is at least threefold. 

First we’re allowed to test that the software design is correct and that the processes perform the way they should. 

Secondly, we can validate that the system keeps its hard and soft real-time deadlines and also make sure that the schedule works. 

And third, we can improve the worldly requirements of the system; a lower construction cost can be obtained and the size and the power consumption for the final product can also be reduced. 

Figure 1.1 below shows an example of how output from a system can look. The figure also reflects the fact that the simulated output curve from the system might not be sufficient and that we need to refine the design. 


[image: image1.wmf]Desired output from the

system.

Actual output from the

system.

Leads to the need of iterative

steps to refine the output curve.


Figure 1.1 – This shows why we need to simulate and refine an application.

Since the simulator can be extended to cope with different scheduling policies, it can also show the advantage or disadvantage of switching scheduling algorithms.

1.2 Thesis organisation

Chapter two discusses the general idea of embedded systems and distributed embedded systems and also describes control-dominated systems. In the beginning of chapter three the modelling of embedded systems in general is described, followed by the presentation of the particular models for the system and the application used in this thesis. Chapter four begins with a description of embedded system design and design transformations. Chapter four also gives a detailed description of the scheduling approach used in this thesis. In chapter five the simulation of embedded systems is investigated. Chapter six describes the embedded system simulator implemented in this thesis. It contains the requirements of the simulator, the design specification and also a general description of the simulator. Chapter seven presents simulation results obtained using our simulator and shows how they can support the evaluation of several different design decisions. Finally, the last chapter contains our conclusions, discussions and suggestions for future work. 

2 Embedded systems

2.1 Introduction

A loose definition of an embedded system can be found in [13] that states that it is any device that includes a programmable computer but is not itself intended to be a general-purpose computer. To clarify with an example, this means that a Personal Computer (PC) is not itself an embedded system, but a fax machine is. Embedded computing systems are used in a large variety and number of machines and areas. In [14] it is stated that more than 99% of all microprocessors manufactured today are used in embedded systems. 

Deciding what type of processor to use has an important impact on the cost, speed, size and reliability of the hardware. But it’s also important to remember that the software implementation greatly affect the behaviour of the embedded system. The functionality of an embedded system can be implemented using both hardware and software. Hardware is often used to gain speed, while software allows us to tailor and extend functionality in an easier manner. 

There is a large difference in the level of sophistication when it comes to microprocessors and they are usually classified by their word size. For example an 8-bit microcontroller might be used in low-cost applications while a 32-bit microprocessor offers high performance for computation-intensive applications. There are also specialised Central Processing Units (CPUs) that are designed to execute important algorithms, an example is a CPU designed for audio or video processing in a TV set. Such a processor is designed to implement programs for decoding audio or video signals in an efficient manner. 

While there are different ways to implement a digital system, such as custom logic and Field Programmable Gate Arrays (FPGAs), using microprocessors gives us two main advantages: Implementing digital systems with microprocessors are very efficient. And microprocessors make it easy to develop families of products that can contain different features, which can also be extended in the future. 

2.2 Real-time systems

There are different requirements on the functionality depending on which area it’s supposed to be used in. In this thesis we are especially interested in timing requirements and in embedded real-time systems. For example, the drive-by-wire system in a car is a hard real-time system, meaning that if a deadline of a process is missed then the embedded system has failed and there can be disastrous consequences. If we continue with the car example, the system for the electronic windows is considered a soft real-time system. This means that if we press the key to lower the windows, we of course want the windows to go down instantaneously. But even if the system misses its deadline by as much as half a second there is no risk of crashing the car, as it is if the drive-by-wire system fails. 

Distributed real-time embedded systems are a subgroup of embedded systems that work in distributed environments, such as cars, airplanes and industrial robots. The application and communication in such a system is also distributed amongst the nodes in the heterogeneous system. A distributed computer system definition from [15] states that a distributed system consists of multiple autonomous processing elements, which cooperate towards a common purpose or to achieve a common goal. Distributed systems as well as embedded systems, need to meet several stringent requirements in terms of reliability, speed, cost, etc. But when designing distributed systems it is also necessary to consider the communication between the different parts of the system since it induces new problems like latency and link reliability. 

The type of communication infrastructure used, is determined by the type of functionality in the system, if it’s a soft or hard real-time system. But you also need to determine what communication protocols to use, based on the desired behaviour of the system. 

In [16] the advantages of a distributed system are outlined. The advantages are that the partitioning into several cooperating computers leads to the possibility that these units can be placed close to their respective control areas, such as the wheel of a car or the joint of a robot arm. This partitioning reduces the heavy and expensive harness that is otherwise necessary to connect all sensors and actuators to one central node. Another advantage is, that this partitioning into modules makes it easier to design and verify the system. And if there are some changes in the system it probably only affects one particular module. Later when producing the system the modules can also be assembled and tested separately. Yet another advantage of a distributed system is the fact that the fault tolerance is increased. This is due to the redundancy of having many different nodes in the system, if one node fails then another can take over its workload. 

2.3 Control-dominated real-time systems 

As the name control-dominated implies, this type of embedded system implements a control function. The control function interacts with a physical environment through sensors and actuators according to the requests of the user, which for example can be the driver of a car. This is opposed to embedded systems designed for audio or video processing in a TV set, which mainly does digital signal processing. Figure 2.1 below show an example of a control-dominated system and a (human) user interacting with it. 


[image: image2.wmf]Modes

Controller

Physical

environment

User

Actuators

Sensors

Switches

Instruments


Figure 2.1 – Display of a control-dominated system. 

In the figure above the user interacts with the system through switches and gets feedback through instruments. The system implements a controller that interacts with the physical environment through sensors and actuators. 

3 Modelling

3.1 Introduction

When using the word modelling we can actually mean two different things. In science, modelling has a fundamentally explicative role, as to describe or reflect a particular aspect of the real world. An alternative use of modelling is when the modeller tries to demonstrate how the world should be. This normative category of models usually reflects an ideal to be aimed at and can contain political convictions or artistic visions [2]. 

As Turing states in [3] “every model involves some kind of transformation from the real world, we can say that a simplification, an idealisation, and, cynically, a falsification are involved.” While a model is satisfactory for experimentation, being more convenient and more controllable, the modeller can never be totally sure that his findings are totally correct, because of the transformation involved. However, the price of this uncertainty is a small one to pay for the ability to predict and simulate the future. Considering the computational power of today’s computers one can construct very rigorous models and simulators to minimise the probability of an erroneous transformation. 

According to [2] there are three basic components in the modelling process: The model, the object system it refers to, and the modeller. The modeller creates a model as a representation of the object system. Thus, the object system, often called the real world, is what the model represents. And the modeller is the one who constructs the model, employing a transformation from the object system to the model. 

When modelling for simulation we often model something that does not yet exist. This creates the problem with how we can be sure that the model actually is valid. This is up to the designer to decide. In simulation we’re moving around somewhere in the intersection between the two aspects of modelling. We’re both interested in a valid representation of the object system and in the possibility to see how it works under various assumptions and conditions. 

3.2 System model 

In this thesis I consider the system as consisting of several programmable processors and buses. The system is modelled as a set of processors, sensors and actuators connected by a bus. A sensor is a hardware unit that for example reads data from the physical environment. An actuator is a hardware unit that affects its physical environment. The bus can for example be a Controller Area Network (CAN) bus or a bus using the Time-Triggered Protocol (TTP). Different processing elements can share the same bus. The programmable processors can only execute one process at a time. Processes assigned to different processors can be executed in parallel. The computation on a processor can also be carried out simultaneously as a data transfer on the bus. But a bus can perform only one data transfer at a given moment. Each process contains an execution time and the size of each data transfer is known in advance. We also know that we have a set of processors where each process can be potentially mapped to, in advance, by a mapping function. This mapping can later change during different design transformation decisions. We also know that each data transfer or communication is mapped to a bus. Below figure 3.1 shows an example of how the architecture can be laid-out. 


[image: image3.wmf]CAN

TTP

CAN

CAN

TTP

CAN

TTP

Tasks

Tasks

Tasks

Tasks

Tasks


Figure 3.1 – Example architecture. 

It is also a basic assumption that the processes and communication in the system can be scheduled according to a scheduling algorithm. The scheduling algorithm used in this thesis performs scheduling in the context of both control and data dependencies. 

3.3 Application model

This section describes the model for the application and how it’s developed. The model of an application is more general than source code. The reasons for that are, to begin with, that there are many different software languages and with a single model we can describe them all. And secondly, when we have such a model we can analyse it, test it, tinker with it and of course simulate it. 

The application in this thesis is modelled using a Conditional Process Graph (CPG). The CPG is an extension of the task graph. For starters, the task graph model will be loosely described with reference to [19] for more information and then the CPG will be formally specified. 

3.3.1 The task graph

The task graph model, from here on called process graph model, represents the functionality of programs and their performance requirements, usually in terms of computation time. The model doesn’t specify how the functions are implemented, neither in hardware nor software. The process graph is an acyclic directed graph consisting of a set of partially-ordered processes; the directed edges in the graph between processes represent data dependencies, which means that the output of one process is the input of another. The process graph also contains a start node and an end node. The start node represents the invocation time of the application and when it’s initiated all processes directly following it can start. The instant of time when the end node is reached represents the time when all processes in the graph have completed their execution. The data communication in a process graph is denoted by a weight on a process, which represents the volume of output data communicated from the process. However, one limitation of the process graph is that it doesn’t handle control-flow information like conditions. 

Thus, the researches in [1] have proposed a model, called conditional process graph, which is able to handle conditional execution. This has later been extended in [4], which propose an Extended Task Graph (eTG) model, shown in figure 3.2 below.


[image: image4.wmf]P

0

P

2

P

1

P

3


Figure 3.2 – The eTG application model.

The eTG model doesn’t only handle conditions, but it can also contain processes with selective input as process P3 in the figure above. The select process decides, which input data is necessary in order to start its own execution. 

As mentioned earlier, we use the CPG representation developed at the Embedded Systems Laboratory at Linköping University to model the application in this thesis. The CPG is specified below. 

3.3.2 The Conditional Process Graph

The CPG is a directed acyclic polar graph and the formal specification that follows is based upon the CPG specification in [1]. Later in this section of the thesis there is an example of a CPG to make things a bit clearer. This example also comes from [1]. The CPG is an abstract representation of interacting processes. The CPG in its basic form consists of a process graph G(V, Es, Ec) where each node Pi ( V represents one process. The set of all edges, E, consists of Es and Ec, which respectively represent the sets of simple and conditional edges. It also applies that Es ( Ec = ( and Es ( Ec = E. The edges are directional and an edge eij ( E from Pi to Pj indicates that the output of Pi is the input of Pj. As with the process graph, the conditional process graph is polar, which means that it has one start and one end node, from here on called the source and sink, respectively. The source and sink nodes are introduced as dummy processes with zero execution time, so that all other nodes in the graph are the successors of the source and the predecessors of the sink. From the process graph a mapped process graph ((V*, Es*, Ec*, M) is generated by inserting additional processes on certain edges to represent communication processes, and also by mapping each process to a given processing element. 

The mapping of processes Pi ( V* to processors and buses is given by a mapping function M: V* ( PE. PE is the set of processing elements {pe1, pe2, …, pen} and it consists of programmable processors, dedicated hardware processors and buses. M(Pi) is thus the processing element to which Pi is assigned. This is how the CPG is defined; it’s simply a mapped process graph. 

Each process assigned to a processor is characterised by an execution time tPi. There are also communication processes, which are assigned during the mapping process to the edges of the CPG. These processes model interprocessor communication and their execution time tij is equal to the corresponding communication time. This means that we treat communication processes exactly as ordinary processes. 

When looking at the conditional edges, eij ( Ec, they have an associated condition value. The transmission on such an edge takes place only if the condition value is true and not, like on simple edges, every time the input process is activated. This makes it possible to take different paths through the graph depending on different conditions. A node with a condition on its output is called a disjunction node and the process mapped to it, is called a disjunction process. The disjunction process has a condition associated with it, which it computes the value of. The opposite of the disjunction node is the conjunction node, with the corresponding process called conjunction process. This is the node where the different paths from the disjunction node meet. 

All processes, except the conjunction processes, can only be activated after all their inputs have arrived. The conjunction process can start its execution after a message has arrived on one of its alternative input paths. The execution time of the system that the CPG models can be measured between the source and sink nodes. When modelling a hard real-time system the execution time has to be smaller than the deadline. 





Execution time tPi for processes Pi
tP1:
3
 tP6:
5
tP11:
6
tP16:
4

tP2:
4
tP7:
3
tP12:
6
tP17:
2

tP3:
12
tP8:
4
tP13:
8

tP4:
5
tP9:
5
tP14:
2

tP5:
3
tP10:
5
tP15:
6

Execution time ti,j for communication between Pi and Pj
t1,3:
1
t4,7:
3
t11,12:
1
t13,17:
2

t2,5:
1
t6,8:
3
t11,13:
1
t16,17:
2

t3,6:
1
t7,10:
3
t12,14:
1

t3,10:
1
t8,10:
3
t11,15:
1

Process mapping

Processor pe1:
P1, P2, P4, P6, P9, P10, P13
Processor pe2:
P3, P5, P7, P11, P14, P15, P17
Processor pe3:
P8, P12, P16
Communications are mapped to a unique bus
Figure 3.3 – CPG with execution times and mapping.

In figure 3.3 the source node is P0 and the sink node is P32. The nodes P1, P2, P3, P6, P11 and P12 are disjunction nodes and the nodes P6, P7, P10 and P17 are conjunction nodes. The disjunction nodes P2, P11 and P12 compute conditions C, D and K respectively. All processes are assumed to issue their outputs when they terminate. In figure 3.3 process P7 can be activated after it receives messages sent by either P4 or P5, while process P5 can only be activated after it receives a message from P2.

As stated above we consider all execution and communication times of processes to be given. And by capturing the conditions and the control-flow in the model it is possible to get a less pessimistic assignment of worst-case execution times for hard real-time systems. 

4 Embedded system design

4.1 Introduction

When studying embedded systems it is important to notice the fact that there are two parallel design steps; the hardware design and the software design. The hardware design is targeted at deciding what microprocessors to use and what to actually implement as a programmable processor and what to build as custom logic circuits. The software design phase consists of writing the code, scheduling it and mapping it onto the processors. 

When designing the hardware we need to decide how much computing power is actually needed. The designer can choose what type of microprocessor to use, the amount of memory, what peripheral devices to use and so on. If not enough hardware units or too slow hardware units are used, then the system might fail to meet its deadlines. On the other hand, if too much hardware is used then the system is too expensive to produce and might consume too much power or produce too much heat. If a system consumes too much power one solution is to lower the speed of the system, but this might however once again lead to missed deadlines. 

When designing the software we have to take into account the fact that we’re often developing and compiling the software on a PC and then downloading it onto the embedded system. This might later lead to platform dependent errors. During the software design we also need to consider that the different processes the software consists of should be able to meet their respective deadlines. 

Another problem that embedded systems designers have is to verify that the system performs the intended functions. We must be able to find and correct bugs in both hardware and software, most of the time before the system is even built as a prototype. It’s often difficult to generate the proper input data to test an embedded system without attaching it to the real machine. 

4.2 The process of design

Figure 4.1 from [23] summarises the major steps in the embedded system design process. When looking at the design from a top-down view, we start with the system specification. The system specification is an abstract specification, which is implementation independent. The next step is the architecture selection; this is when the designer states what components to include in the hardware architecture. During this step the designer also gives the overall structure of the system and decides how these components should be connected. Once we know what components to construct, we can design them in both hardware and software. Based on these components, the designer can move on to the partitioning step, where it’s decided what part of the functionality should be implemented on which hardware component. Finally, before the synthesis phase, the execution order is decided by scheduling the processes. Now we also introduce the task of simulation, which can help the designer validate and optimise his design. Scheduling as well as simulation can be performed during several phases of the design flow. During the architecture selection and mapping phases scheduling and simulation can be used respectively, to estimate and validate the performance in terms of timing behaviour. Scheduling and simulation can also be used in the final synthesize stages of the design process where we must make sure that time constraints are fulfilled. 

Once the system performs in a sufficient and correct manner the designer can use various tools to assist him in the synthesis of the application. When the synthesis is done, then the final stage is to integrate and test the complete system. 


[image: image6.wmf]Simulation

System

specification

Architecture

selection

Partitioning

Scheduling

Hardware

synthesis

Software

synthesis

Integration


Figure 4.1 – The design flow.

4.3 Design transformations

By using a simulator like the one in this thesis we’re able to determine if the functionality of the system is correct. When designing embedded systems it’s common to map the functional specification on to different architectures, trying to find the most cost efficient solution, which meets the timing requirements. This is often an iterative process consisting of functional partitioning, allocation and mapping, grouping interacting processes, scheduling the processes and deciding what scheduling algorithm to use. Figure 4.2 on the next page shows how this can be done and how the simulator can help us. 


[image: image7.wmf]Functional Partitioning

Splitting large processes

into smaller ones.

Allocation and Mapping

Allocating resources

and mapping processes

to them.

Scheduling

Deciding on a scheduling

algorithm and performing

the scheduling.

Tasks

Resources

Schedule table

Resource

Resource

Resource

Tasks

P

1

P

2

P

3

P

4

Merging small processes

into larger ones.

Figure 4.2 – A view of the iterations during design. 

The tasks in figure 4.2 above can be described in a more elaborate manner: 

· Functional partitioning is the task of splitting the functionality of the whole system into several different processes. Large processes are split so that they can be computed concurrently on different resources. Small processes are merged into larger ones to reduce communication overhead between them. 

· Allocation and mapping are when you decide how many and what type of processors to use and to which processor each process is assigned. To be more precise, during the allocation phase you allocate resources, which often consists of processors and buses. Then the mapping task is to assign each process to a processor and each message sent between processors to buses. Grouping of interacting processes is needed to reduce the communication overhead, which can be done by assigning similar and closely interacting processes to the same processor.

· The scheduling consists of deciding which scheduling algorithm to use and also to apply it. 

The simulator can help in all these steps. When doing the functional partitioning, the simulator can be run after each one of the iterations to see how the splitting of one or more processes affects the overall performance and quality of control of the system. The quality of control is an important aspect since it shows how well the system performs in regard to its input and output latencies considering the desired output function. In the allocation and mapping step, if one more processor is allocated then processes can be moved from other processors to the new one, and the simulator can show how this alters the performance of the system. When correctly identifying interacting processes and mapping them closely together the simulator can also show the gain in the system. 

As described above a simulator is an important tool when validating embedded systems before they are synthesised into hardware and software. Since the simulator in this thesis also allows us to write the functionality of the processes, many of the software algorithms in a program might already be implemented and tested when the actual system is built. 

4.4 Scheduling introduction

Scheduling policies are used to determine when and how a process should execute in the system. We can, for instance, use either static cyclic scheduling or fixed priority scheduling. With static cyclic scheduling a schedule table is derived before run-time, and the run-time system dispatches processes based on the progression of time. On the other hand, when using fixed priority scheduling each process is assigned a priority, and at run-time the process having a higher priority can interrupt the execution of processes with lower priority. These scheduling policies will be further investigated in the following sections. One can also see [5] and [15] for more extensive information about scheduling policies.

The reason for scheduling can be outlined using the following example. A program consisting of five independent processes, without any data-dependencies, can be executed in 120 different ways on a single processor. That is if they’re executed non pre-emptively, meaning that once one process has started executing none of the others may interrupt it. However in a multiprocessor system with pre-emptive behaviour there are infinitely more ways of executing the program. While the output from the program will be identical every time, the timing behaviour will vary considerably. Now, if one or more of the processes have strict deadlines, they need to be executed at a specific time to meet the temporal requirements of the program. Consequently a real-time system needs to restrict the non-determinism of concurrent systems. This process is known as scheduling. Scheduling policies can, in general, provide two features as outlined in [15]: 

· An algorithm for ordering the use of system resources (in particular processing units and buses). 

· A means of predicting the worst-case behaviour of the system when the scheduling algorithm is applied. 

There are some problems with scheduling, one being that if we want to obtain the optimal schedule for a program then this problem has been proven to be NP-complete (Non-deterministic Polynomial) in [17]. This means that the time required to solve NP-complete problems is exponential to the problem size. Currently, this leads to the fact that it’s not feasible to calculate a solution and obtain the optimal schedule. Therefore, one of the following approaches to solve NP-complete problems can be used:

· Approximation: An algorithm that quickly finds a sub-optimal solution that is within a certain (known) range of the optimal one. 

· Probabilistic: An algorithm that provably yields good average-quality solutions for a given distribution of the problem instances. 

· Special cases: An algorithm that gives a provably good quality result, if the problem instances belong to a certain special case.

· Heuristic: An algorithm which works “reasonably well” on many cases, but we can't prove that it always produces good solutions.

When describing scheduling, a classification into non pre-emptive and pre-emptive scheduling approaches is presented. Then I’ll describe the scheduling algorithm used in the particular case of this thesis, which is based on a static list scheduling heuristic. The scheduling of Conditional Process Graphs (CPGs) is made with an algorithm outlined in [1], [18] and [20]. 

4.4.1 Scheduling for time- and event-triggered systems

There are two basic approaches for handling processes in real-time applications and simulations, the Event-Triggered (ET) and Time-Triggered (TT) [21]. Depending on the triggering mechanisms used for the start of processes and communication in an application the ET approach and the TT approach can be identified. A trigger is an event that causes the start of some action, for example the execution of a task or the transmission of a message. When using an ET approach, tasks are initiated when a certain event occurs. On the other hand, when using a TT approach, tasks are initiated at predetermined moments in time.

In the ET approach all processes and communication are initiated whenever a significant change of state occurs. The triggering mechanism in ET systems is realised by the interrupt mechanism, which brings the occurrence of a significant event to the attention of the main processor. An ET system needs a dynamic scheduling policy to activate the appropriate process that services the event. 

In a TT system, all activities are initiated by the progression of time. The only interrupt that exists is the periodic clock interrupt which partitions the continuum of time into a sequence of equally spaced discrete time granules. The interrupt control signal is generated whenever the clock within a node reaches a preset value specified in a scheduling table. In a distributed TT system we assume that the clock of all nodes are synchronised to a global notion of time. 

There has been and still is a long and ongoing debate on whether the ET approach is better than the TT and vice versa. Several aspects can be considered when discussing the advantages of one over the other, such as, flexibility, predictability, testability, etc. The same discussion also applies when the communication issue is addressed. Here we can mention the Controller Area Network (CAN) protocol, which is the counterpart of the ET approach, and the Time-Triggered Protocol (TTP), which is the counterpart of the TT approach. Needless to say, these different approaches call for different ways of process scheduling and schedulability analysis. This also affects the way the system is modelled, how the system is specified and how the simulator is constructed.

Few real-time systems that are pure ET or TT systems exist; most real-time systems use both event-triggers and time-triggers. However, most real-time systems tend to favour either one or the other, which means that control signals are either predominantly event-triggered or they are predominantly time-triggered. 

The main advantage of an ET system is its flexibility, and the main advantage of a TT system is its predictability. 

4.5 Non pre-emptive scheduling 

Non pre-emptive scheduling means that no process can interrupt the execution of another process. When one process has started its execution in the system it doesn’t matter if a process with a higher priority becomes ready to run, it will have to wait until the first process finishes its execution. Consequently, sudden unforeseen changes in the environment of the application can’t be handled. 

Non pre-emptive scheduling can be static or dynamic. If it is static all execution decisions are taken off-line and if it is dynamic a scheduling algorithm determines on-line which process should be serviced next. 

4.5.1 Static non pre-emptive scheduling

Static non pre-emptive scheduling is done pre-run-time and basically consists of creating an off-line feasible schedule for the considered processes. The schedule must guarantee that all deadlines are met and that no processes are interrupted considering the available resources. It must also guarantee all the precedence, communication and synchronisation requirements of all processes. When creating a static non pre-emptive schedule we need to know the properties of the whole system pre-run-time and there is no place for dynamic events. The benefits of static scheduling are that it provides predictability and if a static schedule can be produced then it’s a sufficient test for schedulability.

4.5.2 Dynamic non pre-emptive scheduling

Dynamic non pre-emptive scheduling is used in systems that have to react to occurrences of significant events, but the events are not allowed to interrupt running processes. Out of the set of processes that are ready for execution, a dynamic scheduling algorithm determines on-line which process must be serviced next. The decision on which process to execute next is often based on the priority of each process. Adding to the complexity and flexibility of dynamic non pre-emptive scheduling the priority of processes can be dynamic or static and can be determined in advance, but it can also be updated on-line. The benefits of dynamic scheduling are that it is flexible and can adapt to an evolving process scenario.

4.6 Pre-emptive scheduling 

Pre-emptive scheduling means that processes can interrupt the execution of other processes. When one process has started its execution in the system, another process with a higher priority that becomes ready to run can interrupt the running process and start its own execution. The first process with the lower priority will only be allowed to finish its execution when all other processes with higher priorities have finished theirs. Consequently, sudden unforeseen changes in the environment of the application can be handled. 

Pre-emptive scheduling can also be static or dynamic. 

4.6.1 Static pre-emptive scheduling

Static pre-emptive scheduling assigns a static priority to processes off-line and pre-run-time. The priority never changes during execution. Pre-emption decisions are taken on-line during execution and processes pre-empt each other based on their fixed priority. This means that when executing an application, processes with higher priority that becomes ready to run, will always be allowed to interrupt processes with lower priority that are already running. When creating a static pre-emptive schedule we need to know the priorities of the processes in the whole system pre-run-time. Pre-emption is then done based on the fixed priority and when processes become ready for execution. The benefits of static pre-emptive scheduling are that we always know which processes are allowed to pre-empt each other and that the system can react to sudden changes in its environment by pre-empting other processes when needed.

4.6.2 Dynamic pre-emptive scheduling

Dynamic pre-emptive scheduling is mostly used in systems that have to react to occurrences of significant events. Out of the set of processes that are ready for execution, a dynamic pre-emptive scheduling algorithm determines on-line which process must be serviced next. The decision on which process to execute next is based on the priority of each process. The priority assigned to processes as well as the pre-emption decisions of processes is done on-line during run-time. This means that the priority of processes can actually change during execution and if a processes needs to be run directly the on-line scheduler can assign a high priority to it. If a process with a lower priority is already running then it’s pre-empted and only allowed to finish its execution once all processes with higher priorities have finished theirs. The benefit of dynamic pre-emptive scheduling is that it is highly flexible and can interrupt running processes at any time. 

4.7 Static scheduling for CPGs

List scheduling heuristics are based on ordered lists from which processes are extracted to be scheduled at certain moments. When it comes to executing the system, a particular subset of all the processes is activated. The activated processes correspond to the actual track followed through the CPG, which in turn depends on the values of the conditions in the CPG. In the list, processes are placed in increasing order of the time when they become ready for execution. If the process is mapped to a programmable processor or a bus, then it can be scheduled only after the respective processing element becomes free. If several processes turn out to be ready when a processing element becomes free, then the one that has the highest priority assigned to it will be scheduled first. 

The priority function is what differentiates the different list scheduling approaches and here a variant of the Critical Path (CP) method is used. The CP scheduling method assigns to a process a priority based on the maximal total execution time on a path from the current node to the sink. But in this thesis something called Partial Critical Path (PCP) [18] scheduling will be used. 


[image: image8.wmf]l

B

 

P

0

P

A

P

X

P

N

P

B

P

Y

t

B

t

A

l

A

 


Figure 4.3 - Delay estimation for PCP scheduling.

If we consider the graph in figure 4.3 originally presented in [1] and suppose that the list scheduling algorithm has to decide between scheduling process PA or PB, which are both ready to be scheduled on the same programmable processor or bus, pei. In the figure, only the critical path from PA and PB to the sink node is depicted. Now, suppose that PX is the last successor of PA on the critical path and that all processes from PA to PX are mapped to the same processing element, pei. The same holds for PY relative to PB. The total execution times of the path of processes from PA to PX and PB to PY are tA and tB respectively. (A and (B are the total execution time of the processes on the rest of the two critical paths. This means that the total critical path length of each path is:

lPA = tA + (A 

lPB = tB + (B
But since we’re using the PCP policy these critical paths will not be used. The PCP is based on the estimation of a lower bound, L, on the total delay. This lower bound takes into consideration that the two chains of processes PA – PX and PB – PY are executed on the same processor. The lower bounds if PA and PB are scheduled first are LPA and LPB.

LPA = max (TC + tA + (A, TC + tA + tB + (B)

LPB = max (TC + tB + (B, TC + tB + tA + (A)

Here TC is the current time. 

The lower bound, L, now is set to equal the smallest of LPA and LPB. To conclude, in the case of PCP scheduling the value of (Pi is used as a priority criterion instead of the length, lPi, of the whole critical path. This means that only the part of the critical path which is assigned to a processor different from M(Pi) is considered. 

When using this PCP priority in list scheduling to traverse and schedule a CPG we analyse each possible alternative track and consider for each track only the processes executed for the respective condition values. This means that the algorithm proceeds, in a depth first order, along a binary decision tree corresponding to the alternative tracks. When the algorithm comes to a disjunction process the two possible alternatives are handled separately. First, the processes associated with the true condition is added to the ready list and scheduled, and then the false condition is handled in the same manner. 

When scheduling a CPG, the actual values of the condition are unpredictable, which means that the decision on which process to activate on a given processing element at a certain time has to be taken without knowing the real value of the conditions. However, during execution, when the conditions are known, they have to be used in order to take the best possible decisions on when and which process to activate. 

The list scheduling heuristic above is used to produce a schedule table of processes such that the worst-case delay is as small as possible. 

	
	True
	D
	D(C
	D(C((K
	D(C(K
	D((C

	P1
	0
	
	
	
	
	

	P2
	3
	
	
	
	
	

	P3
	
	6
	
	
	
	

	P4
	
	
	
	
	
	

	P5
	
	
	
	
	
	

	P6
	
	
	
	21
	20
	

	P7
	
	
	
	
	
	

	P8
	
	
	
	29
	28
	

	P9
	
	
	
	26
	25
	

	P10
	
	
	
	35
	34
	

	P11
	0
	
	
	
	
	

	P12
	
	
	9
	
	
	9

	P13
	
	
	
	
	
	

	P14
	
	
	
	
	18
	

	P15
	
	
	
	19
	
	

	P16
	
	
	
	15
	15
	

	P17
	
	
	
	25
	24
	


Figure 4.4 - Part of a schedule table derived from the CPG displayed in figure 3.3.

The example schedule table in figure 4.4 is a part of the actual schedule table produced from the CPG in figure 3.3. The table contains one row for each ordinary or communicating process. The row contains activation times for the process corresponding to different values of the conditions. The columns in the schedule table represent the different conditions. Each column in the table is headed by a logical expression constructed as a conjunction of condition values. In each column there is an activation time given, which represents starting times of the processes when the respective expression is true. This implies that the schedule table contains all information needed by a distributed run-time scheduler to take decisions on activation of processes. During the execution of the system a very simple scheduler located on each processor decides on what process and communication to activate depending on the actual values of conditions and activation times. Since the scheduler is non pre-emptive, an activated process executes until it completes. Each processor only needs to store the part of the schedule table concerning the decisions that are taken by the corresponding scheduler. 

5 Simulation

5.1 Introduction

The design and implementation time of an embedded system can be reduced using a simulator. To simulate complex distributed embedded systems we can use an evaluate-update simulation approach. The technique of simulation was originally developed within Operational Research (OR), which can be described as the art of modelling managerial problems. The emergence of OR lies within the rapid advances in science and its application during the Second World War [2]. 

When looking at the production, the scientific community was pervaded by a contemplative attitude, while the management attempted to apply the successful managerial techniques developed in wartime to the rebuilding of peacetime capital-intensive industries such as the steel companies [24]. This new approach to dealing with dynamic systems gave rise to the problem that there was no mathematical structure, which would work for such a complex system of interacting components. 

Now the idea of simulation emerged, where we put all the details of the system into a computer program and then introduce a mechanism to advance time within the system. Thanks to its intuitive appeal, simulation gradually gained acceptance and is today a widespread and familiar approach. Even a simple calculating computer program in its own can be seen as an automation, or simulation, of the processes that humans would otherwise have to perform by themselves. 

As mentioned, simulation is an important part in the development of real-time systems. It serves as a validation tool for systems and scheduling policies before they are implemented in software and hardware. Simulation, although used for a long time, has more recently been made widely available since computer power and software expressiveness have increased. Alongside the popularity increase of simulators, the variety of ways to implement them has grown. There also exist a lot of different ideas of what the simulators actually should simulate and what they should take into account, depending on their target application area. 

5.2 Discrete- and continuous-time

In many cases it’s interesting to discuss the impact of discrete-time versus continuous-time in a system. However, since computers are fundamentally discrete, this will not be a major topic in the thesis.

5.2.1 Discrete-time

In a discrete-time simulation the model advances to each successive stage in a series of jumps by a fixed amount of time. This leads to a synchronous time advance. One of the problems with implementing such a simulator is that all time-dependent events occur at instants when other events are also taking place. This means that we have to implement a fictitious state-space in which to store the intermediate results of the discrete state-changes. Discrete-time systems are commonly used to simulate dynamic systems in electronics, control theory and communications. 

5.2.2 Continuous-time

The time advance in a computer is basically always discrete, but when a digital processor is used in an embedded system it often has to interact with continuous-time elements. For example, continuous-time elements can be the number of Revolutions Per Minute (RPM) of an engine or the angle of the throttle. To work in a digital environment these continuous-time elements have to be read into the system by a sensor and converted to a digital format. The processes on a processor can then make calculations based on this data and take measures as a reaction to them. The actions in the system are discrete and propagated to different actuators, which in turn have to affect a continuous-time system. Figure 5.1 below shows what the relationship between continuous-time and discrete-time in an embedded system can look like. 


[image: image9.wmf]Actuators

Sensors

Tasks

Discrete-time

Continuous-time

Vehicle


Figure 5.1 – Continuous-time vs. discrete-time.

5.3 Evaluate-update and discrete-event

An evaluate-update simulator is basically synonymous with the discrete-event simulator. The evaluate-update simulator uses a two-phase semantic consisting of the evaluate phase and the update phase. The evaluate phase is where processes that are ready to run start their execution. The update phase is when channels and signals get updated with their new values. The evaluate-update simulator has an event-driven kernel, which is the same as for a discrete-event simulator. 

The discrete-event simulator was originally designed to solve complex queuing-theory problems, such as in the steel industry where the technique found its earliest applications. The discrete-event simulator approach developed out of the synchronous, fixed-increment time advance approach, to accommodate the requirement to model random activity times. 

An evaluate-update or discrete-event simulator consists of a set of discrete events ordered along the time axis. The time axis is a discontinuity and the time advance hops from one discontinuity to the next. At each event, the appropriate actions to model the state-change are undertaken. Since we determine the time increment individually for each time step, based on the actions the component performs, we don’t need to stipulate in the value of the time increment in advance. And the system itself implicates the discretisation of time, rather than being explicitly imposed by the simulator [2].

To summarise, a discrete-event or evaluate-update based simulator is a model of a dynamic system, which handles a series of events. The events arise out of actions within the simulation carried out by previous events and are used as basic elements to advance the time in the simulator. The simulator basically consists of a parallel flow of entities interacting with resources. 

5.4 The simulation engine of SystemC

The development of SystemC is done by an open source organisation that consists of companies, universities and individuals. SystemC has been developed into a de facto standard for system-level co-design and intellectual property exchange. The modelling and simulation capabilities in SystemC, spans from simulating high-level conceptual models down to pin-accurate implementation models. 

SystemC consists of a set of libraries for C++, which is used for the implementation of the simulator in this thesis. The libraries in SystemC allow the use of Verilog or VHDL-like constructs in C++. They aim at the specification, simulation and synthesis of software and digital hardware. The advantage of SystemC is the refinement path it provides. Previously, the practice was to build a large simulator in C, verify it, and then translate it through hardware description languages down to actual hardware with all the intermediate verification steps. With SystemC you can use the same syntax and development tools throughout the refinement process. SystemC also allows virtually any discrete model of computation to be modelled. 

A SystemC model consists of hierarchical modules that may contain processes and other modules. Modules and processes communicate through signals passed through the ports of a module. SystemC provides three types of processes, synchronous-thread, asynchronous-function and asynchronous-thread. The synchronous-thread starts its execution by a clock trigger and runs until it hits a “wait” call. The asynchronous-function models purely combinational logic by re-computing its outputs whenever signals in its sensitivity list change. And finally, the asynchronous-thread process behaves in both ways; it reacts to changes on its inputs, but hold control state between invocations. This behaviour is not really represented by any hardware but it’s useful in test-benches and high-level simulators. 

SystemC supports the simulation of both hardware and pin accurate architectures as well as highly abstracted software models. This allows the simulation of an application without specifying which parts will be created in software and which parts will be implemented in hardware and for the later refinement down to both accurate hardware and software. 

For now, we’re interested in simulation of the high-level functional models, but the refinement possibilities in SystemC gives us a good stepping point to continue the future work development. 

More information about SystemC and VHDL can be found in [7] and in [8] respectively.

A summary and a clear definition of the reasons for choosing SystemC as the foundation for building the simulator are:

· SystemC provides a simulation engine, so that I don’t have to build my own from scratch. 

· It is possible to implement any scheduling policy.

· The simulator can be extended to model the behaviour of several types of resources, e.g. processors and buses.

· SystemC gives us the possibility to model both hardware and software in the same language. 

· SystemC works at virtually any abstraction level.  

5.5 Related work

While meandering through many different simulators before deciding to implement my own, I’ve found a few that will be mentioned here. 

ETG to SystemC 

To begin with I should mention the simulator, which is using Extended Task Graphs (eTGs) and the SystemC simulation kernel, developed at the Darmstadt University of Technology in Germany [4] and [6]. This is a discrete-event simulator under construction, which uses the eTG as an abstract application model specification. The eTG, much like the CPG, is a process graph where control-flow information has been introduced. 

The control units in the SystemC simulator are based on finite state machines and are responsible for the control of communication and execution order. 

Since the simulator implemented in this thesis also uses SystemC, the simulator in [6] has been an inspirational resource. During our collaboration we’ve examined the eTG specification and the library that translates from an eTG to SystemC. A similar approach to model the processes as individual threads stored in a SystemC module has been used. 

STRESS

STRESS is a scheduling analyser and simulator based on its own description language for resources, tasks, scheduling and algorithms. The simulator supports different scheduling policies and additional algorithms can be specified using the internal language. STRESS is intended for the experimentation with different scheduling approaches and can’t generate actual application code from its simulation tools. The development of STRESS is no longer active and the tool is at this point unavailable. Read [9] for more information about STRESS. 

ASSERTS

ASSERTS [10] is developed at Binghamton University in cooperation with the Lockheed-Martin corporation. It targets distributed and heterogeneous systems. It contains predefined system components such as Futurebus and Ethernet and also predefined scheduling algorithms. The simulator also allows non-standard systems to be modelled with a pseudo-code language. ASSERTS also allows tasks to be specified in various levels of detail. The software is currently unavailable to the public, due to the fact that it’s currently being considered for a commercial release. 

RapidRMA

RapidRMA, or PERTS, is a toolset that consists of a schedulability analyser and a simulator. The University of Illinois originally developed PERTS for research and the last research version is still available for download. Information on PERTS can be found in [11]. At the moment Tri-Pacific Software continues the development and distributes the commercial version. The schedulability analyser uses a system specified by using a graphical editor for both the process graph and the resource graph. The resource graph specifies several nodes with processors onto which the tasks can be mapped. The PERTS contains a set of predefined scheduling algorithms but it’s not possible to extend the tool with user defined resources or algorithms. 

The Network Simulator

The Network Simulator (NS) is a discrete-event simulator targeted at networking research. It provides support for simulating TCP (Transfer Control Protocol), routing and multicast protocols over wired and wireless networks. NS is the result of an on-going research and development and is not a polished and finished product. Don’t let this be misleading, as it is still one of the most complex and complete simulators available for networks. It allows the specification of custom network protocols in the C++ language. Since NS is a network simulator it doesn’t handle computational tasks and mapping of real-time tasks to resources, etc.

TrueTime

TrueTime is a Matlab/Simulink based simulator for real-time control systems. TrueTime makes it possible to simulate the temporal behaviour of real-time kernels consisting of controller tasks. The simulation kernel is event-driven. It is possible for the user to specify arbitrary scheduling policies and the control tasks can be implemented using C or Matlab functions. The controller tasks control processes modelled as ordinary Simulink blocks. It is also possible to simulate the timing behaviour of communication networks. See [12] for extended information on TrueTime. 

6 A flexible simulator for control-dominated applications

6.1 Introduction

This implementation of an embedded system simulator for control-dominated applications is realised in SystemC. I’ve written a C++ program to generate an executable SystemC model from the formal system and application models of the embedded system as described in the previous chapters. The Conditional Process Graph (CPG) describing the system is used together with a mapping function that assigns processes to resources to produce a static schedule table. The simulator generator program takes the schedule table generated from the scheduling program described in [18] and the system specification as input. The program then generates a SystemC model containing scheduled tasks and resources. The model is then compiled together with the SystemC library and results in an executable simulator. The simulator contains the functionality of the processes, it handles conditions within the CPG and it also takes care of the resource conflicts resulting from the distribution of processes amongst different processors and buses. 

In figure 6.1 on the next page, there is an overview of how the different parts of the simulator generator interact with each other. 


[image: image10.wmf]Scheduling

program

P

0

Sensor

Actuator

P

1

P

3

P

2

P

4

Resource 1

Resource 2

while (0!=1) {

  ...

}

graph.xml

tasks.xml

allocation.xml

graph.xml

allocation.xml

schedule.xml

schedule.xml

cpg2sc

The SystemC

generator

Executable

SystemC

code


Figure 6.1 – An overview of the different parts of the simulator generator.

6.2 Detailed description

To give a more hands-on understanding of how the system implemented during this Master’s Thesis functions, I’ll now give a detailed description of the system outlined with an example. 

To begin with, we have the embedded system that we want to simulate represented as a CPG mapped on two resources, which is shown in figure 6.2. 


[image: image11.wmf]P

0

Sensor

Actuator

P

1

P

3

P

2

P

4

Resource 1

Resource 2

while (0!=1) {

  ...

}

graph.xml

tasks.xml

allocation.xml


Figure 6.2 – An application represented using XML files.

The previous figure shows an example of a CPG. It consists of five processes or tasks (P0 … P4), which may contain functionality written in SystemC. The tasks are allocated on two different resources. In the figure we also have one sensor used to read input data from the applications physical environment, and one actuator used to output data and to affect its physical environment. The actual CPG with its allocation and tasks are represented in three separate XML (Extensible Markup Language) files, graph.xml, allocation.xml and tasks.xml. 

<task>


<name>Task_01</name>


<wcet>5</wcet>

</task>

<edge>


<name>Arc_01</name>


<wcet>1</wcet>


<connects>



<from>Task_01</from>



<to>Task_02</to>


</connects>

</edge>

Figure 6.3 – Example of a node and an edge in the CPG graph file.

The XML representation in figure 6.3 is a part of the graph.xml file that represents the CPG nodes and how they are connected with each other through the arcs. Each node contains one task and the Worst-Case Execution Time (WCET) for that task.

<processor>


<name>PR2</name>


<tasks>



<task>Task_03</task>



<task>Task_04</task>


</tasks>

</processor>

<bus>


<name>B1</name>


<edges>



<edge>Arc_01</edge>



<edge>Arc_02</edge>


</edges>

</bus>

Figure 6.4 – Example of one processor and one bus in the allocation file and the tasks and edges mapped to it.

The XML representation in figure 6.4 shows how one resource is represented in the allocation.xml file. The tasks are mapped to a processor (PR2) and the arcs are mapped to a bus (B1). 

<task>


<name>Task_02</name>


<wcet>5</wcet>


<condition>Cond_A</condition>


<sensor>Sensor_01</sensor>


<actuator>null</actuator>


<code>


<![CDATA[ while (0!=1) { ... } ]]>


</code>

</task>

Figure 6.5 – Example of one process in the task XML file. 

The XML representation in figure 6.5 shows how one task is represented in the tasks.xml file. The task has a WCET of five milliseconds and it is a disjunction node that splits on condition Cond_A. It has a sensor that gives input to the task, but no actuator, and the user-defined code goes between the code tags. 


[image: image12.wmf]Scheduling

program

graph.xml

allocation.xml

schedule.xml


Figure 6.6 – The scheduling of the application. 

The figure 6.6 above shows the input to the scheduling program. The scheduling program then generates a schedule table and stores it in the schedule.xml file.

<column>


<start_time unit=”ms”>5</start_time>


<conditions>



<cond>true</cond>



<tasks>




<task>Task_01</task>



</tasks>


</conditions>

</column>

<column>


<start_time unit=”ms”>10</start_time>


<conditions>



<cond>Cond_A</cond>



<tasks>




<task>Task_02</task>



</tasks>


</conditions>


<conditions>



<cond>!Cond_A</cond>



<cond>Cond_B</cond>



<tasks>




<task>Task_03</task>



</tasks>


</conditions>

</column>

Figure 6.7 – Example of how columns in the schedule table looks like. 

The XML snippet in figure 6.7 shows how columns in the schedule table are represented in the schedule.xml file. The schedule table together with the tasks and allocation files are then the input to the SystemC generator. 


[image: image13.wmf]graph.xml

tasks.xml

allocation.xml

schedule.xml

cpg2sc

The SystemC

generator

Executable

SystemC

code


Figure 6.8 – The cpg2sc simulator generator. 

The practical work during this thesis was to create the cpg2sc program. The program generates the executable SystemC code from the XML files as shown in figure 6.8. The SystemC code is then compiled together with the SystemC library and gives us an executable simulator that handles the features in the CPG. 

The actual requirements for the cpg2sc program are outlined in the next section of this chapter. After that, the design of the program is discussed and then I present how the implementation was performed.  

6.3 Requirements

In this section the requirements of the simulator are described. This is used to clearly define which actions the simulator needs to be able to perform. The requirements also contain some points that can be implemented in case there is more time available or as an extension during future work on the simulator. 

6.3.1 Requirement levels

For the purpose of being able to decide between what main parts have to be implemented, and what parts can be left for future work I use two requirement levels. The first level requirements have to be implemented for the simulator to work sufficiently. The second level requirements should be implemented if there is time available, or as future work. The second level requirements are not unimportant, but the simulator will work without them, and therefore they can be seen mainly as additional features. The requirements are not necessary for the system to work but they will improve the attractiveness and usability of the system.

6.3.2 Purpose of the simulator

The simulator has to allow the possibility to simulate general distributed embedded systems without having to write any new code. The users will only have to define the processes and the resources in an intuitive way, as described previously. Then the scheduling program will output a schedule table for the simulator program. 

The processes can contain conditions, distribution amongst different processors and can also contain a certain amount of functionality. The program will then generate an executable simulator that will display how well the simulated system works in regard to real-time requirements. 

When simulating an application it’s possible to validate that the software design is correct and that the processes perform in the intended way. We can also validate that the system meets its hard and soft real-time deadlines. And finally, since we’re allowed to test different execution times, we can reduce the production cost, the size and the power consumption of the final product. 

6.3.3 Input requirements

First level requirements

User input – The user should supply an allocation specification, mapping processes to processing elements. The user should also give an application containing the processes to the scheduling program, which will output a schedule table. And the task specification outlining the functionality in the tasks should also be supplied. 

SystemC generator input – The SystemC generator, cpg2sc, takes the schedule table, the CPG, the allocation and the task specification as inputs and generates SystemC code. The code is executable together with SystemC and reflects the functionality of the specification.  

Second level requirements

Single executable – The scheduling program should be incorporated in the SystemC generator and thereby the user only needs to execute one command to get an executable SystemC model. 

Erroneous input – The scheduling program should contain rigorous error checking on the input files. If there is a parse error the program should report what’s wrong and where.

6.3.4 Functionality requirements

First level requirements

Processes containing functionality – The processes can contain C-style code that has to be executed, instead of just containing the WCETs. The simulator will then, when running the process, execute the code it contains. The code can for example do data processing or compute condition values. 

Processes starting on conditions – The schedule table can contain conditions that decide which process to start next. The condition values can be computed dynamically by the functionality in the processes and then used to decide which path in the program to take next. 

Simulator handling distribution – The mapping file specifies which process to execute on which processing element. This should be reflected in the simulator by being able to run many processes assigned to different processing elements at the same time. 

Second level requirements

Modelling communication protocols – The simulator should simulate communication protocols in a correct manner. It should contain the possibility to specify what protocol to use. 

Modelling distribution – The simulator should actually model the distribution in the system in a correct way, and not only handle it by running processes concurrently. 

6.3.5 Output requirements

First level requirements

Text output – The simulator should generate a text output showing when and for how long the processes are executed. It should also be able to show the values the processes compute. The text output can then be the input to a visualising program showing the waveforms of the simulator. 

Second level requirements

Graphic output – The simulator should generate a graphic output displaying the quality of control, the activation of processes and the communication times. 

6.4 Design

This design section will describe how the system is implemented, the general structure of the system, the main components of the system and how they interact with each other. 

6.4.1 Main system components

CPG container

Figure 6.9 below shows the UML (Unified Modelling Language) diagrams for the CPG container classes. These classes are grouped together to form a library, which is then included in the main executable program. Later, in figure 6.10 the data structures containing the CPG information are displayed. These structures are added to lists in each of the containers and used to generate executable code in the generation library. The lists in the different containers are made public to other classes to be able to iterate through them in an easy fashion. The classes also contain basic functions for adding elements to the lists and for printing the lists to the screen to be able to check them for correctness. 

The graph container class holds the graph structure from the graph XML file. The XML file is parsed and each node and edge in the file is allocated in lists in the class. The lists contain elements such as “Node” and “Edge” which are defined as data structures in the container library.

The schedule container class holds the schedule table generated from the scheduling program. It basically consists of a list holding schedule columns, thereby representing the schedule table. In the schedule table things like start time for the tasks and under which condition to start the tasks are represented. 

The task container class holds the extended information about the tasks from the tasks XML file. It also holds the information about the sensors and actuators since they are similar to tasks in the way they are specified in the XML file and in the way they are represented in SystemC code. 

The allocation container class holds the information from the allocation XML file. It is used to store the different processors and the different buses in the system. It also contains information about to which processor each process is mapped and to which bus each data transfer is assigned. This is important information to the scheduling program. 


[image: image14.wmf]+Allocation_container()

+~Allocation_container()

+add_processor(in name : string, in t : list<string>)

+print_processors()

+add_bus(in name : string, in e : list<string>)

+print_busses()

+processor_list : list<Processor>

+bus_list : list<Bus>

Allocation_container

+Graph_container()

+~Graph_container()

+add_node(in name : string, in wcet : int)

+add_edge(in name : string, in wcet : int, in from : string, in to : string)

+add_join_node(in name : string)

+add_cond(in cond : string, in edge : string)

+print_nodes()

+print_edges()

+node_list : list<Node>

+edge_list : list<Edge>

+join_node_list : list<string>

+cond_list : list<Cond>

Graph_container

+Schedule_container()

+~Schedule_container()

+add_schedule_column(in start_time : int, in ...)

+get_schedule_column() : Schedule_column *

+print_schedule_column()

+print_schedule()

+schedule_table : list<Schedule_column>

Schedule_container

+Task_container()

+~Task_container()

+add_task(in name : string, in wcet : int, in condition : string, in ...)

+print_tasks()

+add_sensor(in name : string, in wcet : int, in code : string)

+print_sensors()

+add_actuator(in name : string, in wcet : int, in code : string)

+print_actuators()

+task_list : list<Task_data>

+sensor_list : list<Sensor_data>

+actuator_list : list<Actuator_data>

Task_container


Figure 6.9 – The UML diagram for the CPG container library.


[image: image15.wmf]+print_actuator()

+name : string

+wcet : int

+code : string

«struct»

Actuator_data

+name : string

+edges : list<string>

«struct»

Bus

+cond : string

+edge : string

«struct»

Cond

+conds : list<string>

+tasks : list<string>

«struct»

Conditions

+name : string

+wcet : int

+from : string

+to : string

«struct»

Edge

+name : string

+wcet : int

«struct»

Node

+name : string

+tasks : list<string>

«struct»

Processor

+start_time : int

+conditions_list : list<Conditions>

«struct»

Schedule_column

+print_sensor()

+name : string

+wcet : int

+code : string

«struct»

Sensor_data

+print_task()

+name : string

+wcet : int

+condition : string

+sensor : string

+actuator : string

+code : string

«struct»

Task_data


Figure 6.10 – The UML diagram for the data structures in the CPG container library.

Generate SC

The UML diagram for the SystemC generator library is shown in figure 6.11. The library is built upon a base class from which the derived classes inherit some virtual and abstract methods. The generator library is used by the cpg2sc program to generate the SystemC code from the XML files that are represented in the container library. 

The abstract base class declares that the derived classes must have functions for adding the head and the end of the generated H- and CPP-files. It also defines the virtual method to write the SystemC code to files and to output the code to the screen. 

The class that generates the code for the SystemC main file defines the abstract methods from the base class and also overrides the virtual method that writes the code to file. The reason it overrides the write method is since the main file doesn’t need to have an H-file. The main file in SystemC instantiates the tasks and the controllers. But the file also specifies which signal is connected to which and how the arcs are connected to the nodes in the CPG. The class extends the base class by adding functions to add code that is specific for the main SystemC file. 

The task code generator is used to generate the code for the tasks in the SystemC simulator. It is also responsible for generating the code for the sensors and actuators since they are similar to the tasks. The code of the sensors and the actuators are also stored in the same CPP-file as the tasks. The class extends the base class by adding functions to add code that is specific for the tasks SystemC file. 

The generate controller class is used to generate the code for the controller in the SystemC simulator. The controller is responsible for enforcing the scheduling policy. In this case the controller generator basically takes the schedule table represented in the CPG container library and translates it into SystemC code. As in the case with the other derived classes in the library this class also extends the base class by adding functions to add code that is specific for the controller in the SystemC file. 


[image: image16.wmf]#merge_code_lists(in ...) : bool

+~Generate_SC_base()

+add_header_h() : bool

+add_header_cpp() : bool

+add_ender_h() : bool

+add_ender_cpp() : bool

+print_h()

+print_cpp()

+write_code(in cName : string) : bool

#sc_code_h : list<string>

#sc_code_cpp : list<string>

Generate_SC_base

+add_header_h() : bool

+add_header_cpp() : bool

+add_ender_h() : bool

+add_ender_cpp() : bool

-add_reset_cpp(inout tcTasks : Task_container)

+Generate_SC_controller()

+~Generate_SC_controller()

+add_controller_h(in ...) : bool

+add_controller_cpp(in ...) : bool

Generate_SC_controller

+add_header_h() : bool

+add_header_cpp() : bool

+add_ender_h() : bool

+add_ender_cpp() : bool

+write_code(in cName : string) : bool

+Generate_SC_main()

+~Generate_SC_main()

+add_main_h() : bool

+add_main_cpp(in ...) : bool

Generate_SC_main

+add_header_h() : bool

+add_header_cpp() : bool

+add_ender_h() : bool

+add_ender_cpp() : bool

+Generate_SC_tasks()

+~Generate_SC_tasks()

+add_tasks_h(in ...) : bool

+add_tasks_cpp(in ...) : bool

Generate_SC_tasks

Figure 6.11 – The UML diagram for the Generate SC library.

Cpg2sc 

The cpg2sc program includes the libraries shown above and uses them to produce the SystemC simulator. The UML diagram for the cpg2sc program is shown below in figure 6.12. The program consists of a main function that takes the CPG XML files as input, parses them and then generates the equivalent code. The parse-functions read the XML files and stores them in the data structures of the respective container class. The main function then uses the generate library to write the SystemC simulator code to file. The generated SystemC code is then compiled together with the SystemC library and gives us an executable simulator. 


[image: image17.wmf]+parseTasks(inout tcTasks : Task_container, in ...) : bool

+parseGraph(inout gcGraph : Graph_container, in ...) : bool

+parseSchedule(inout scSchedule : Schedule_container, in ...) : bool

+main(in argc : int, in argv[] : char*) : int

«utility»

cpg2sc


Figure 6.12 – The UML diagram for the cpg2sc program.

6.4.2 Infrastructure flowchart

The flowchart in figure 6.13 describes how the different components that are used in the system interact with each other. The chart is supposed to give you a general idea of how the different parts of the system are entwined. The parts in grey have been designed and implemented during this thesis work. 


[image: image18.wmf]SystemC

Simulator

User

XML files

Intermediate

files

Schedule

table

XML files

CPG

Container

(C++ Lib)

Generate

SystemC

(C++ Lib)

CPG2SC

(C++)

XML to

Schedule

(C++)

Schedule

Program

SystemC

Library

XML parser

XML files

Intermediate

files


Figure 6.13 – Infrastructure flowchart of the system. 

6.4.3 Design foundations

C++

To complete the implementation part in the thesis C++ is used. The choice of C++ over, for example, Java is more a matter of personal taste than because of any special language features that is used. But since SystemC is also a C/C++ implementation I thought that it would be a good idea to keep my library within the same language. 

CMarkup

Because the specification files for the CPG are in an XML format, I either needed to develop my own XML parser or use an already existing one. Since hundreds of XML parsers exist, I chose to use an already existing one. I tested a few and decided to use one called CMarkup from First Objective Software [22]. The reasons I decided to use CMarkup are that they provide a lightweight library and that their source code is also available. Since the source code was available I could extract the parts of the XML parser that I needed to use and discard the rest. The shrinking of the CMarkup library led to an even lighter library than originally. And the fact that CMarkup works on most platforms should lead to a more portable program. 

6.5 Implementation

During the implementation of the C++ programs and libraries described above everything went well and as planned. Of course, the usual exceptions consisting of minor glitches and bugs in the programming existed, leading to the need of some tweaks and corrections. Otherwise there were no huge conceptual errors in the design and all the first level requirements were implemented. One thing that was overlooked in the design, though, was the need for a converter between the XML files and the file format needed for the scheduling program. This small converter program is outlined below. 

The XML to schedule format converter

While getting acquainted with the scheduling program and at the same time constructing the cpg2sc program and the associated libraries, I soon realised that I needed a converter. The converter should work between the XML format used to describe the CPG for the cpg2sc program and the text-file format used to describe the CPG for the scheduling program. 

This turned out to be a small problem since I had already written the CPG container classes, which stored all the CPG information from the XML files in C++ objects. The xml2date program I had to add was very similar to the cpg2sc program. The UML diagram for the xml2date program is shown in figure 6.14.


[image: image19.wmf]+parseGraph(inout gcGraph : Graph_container, in ...) : bool

+parseAlloc(inout acAlloc : Allocation_container, in ...) : bool

+main(in argc : int, in argv[] : char*) : int

«utility»

xml2date

+Generate_date()

+~Generate_date()

+add_graph(inout gcGraph : Graph_container) : bool

+add_allocation(inout acAlloc : Allocation_container) : bool

+print_graph()

+print_allocation()

+write_graph(in fName : string) : bool

+write_allocation(in fName : string) : bool

-date_graph : list<string>

-date_allocation : list<string>

Generate_date


Figure 6.14 – The UML diagram for the xml2date program.

The figure 6.14 above shows the UML diagram for the xml2date program. The main function takes the files that need to be converted as input. The parse functions then read the XML files and stores them in the container classes. The main function calls the date generation class which outputs the specification files in the correct format. 

Implementation conclusion

As stated previously in this section of the thesis, the implementation worked out well. During the implementation I had much help from the different simulators I’d read about and tried while researching the simulation area. In particular, the simulator using SystemC developed at the Darmstadt University of Technology in Germany [6] is worth mentioning as an inspirational resource both for SystemC constructs and ideas. 

7 Experimental results

7.1 Introduction

In this chapter the experimental results will be presented. I’ve run six different test examples, which will be shown later to help me evaluate the usefulness of the constructed simulator. The test examples have all been based on, and differ only slightly to, the Conditional Process Graph (CPG) in figure 7.1. 


[image: image20.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

A

A

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1

Resource 2


Figure 7.1 - The original CPG for the following examples. 

The figure 7.1 above shows the CPG from where the other examples have originated. It consists of 16 processes (P0, …, P15), one sensor, one condition (A and not A) and four actuators. The complete specification of the application can be found in appendix B. The processes P3 to P12 are allocated on two different resources. It is the processes on these resources that will be tinkered with in the following experiments. The processes on resource one will compete for that processing resource and vice versa for resource two. The experiments will show how different approaches to conditions, mapping, resource allocation and functional partitioning of processes will affect the performance of the system. 

The application used as an example in figure 7.1 and in the following examples can be considered as a simplified view of a cruise-controller in a car. A cruise-controller reads the desired speed from the driver by a sensor and then actuates the control-functions to its physical environment, for example the engine of the car. The input is read by the sensor in the figure and depending on if the driver wants to accelerate or decelerate it decides to take the path of condition A or condition not A, respectively. 

The functions displayed below can be considered as reference curves with the desired rise and fall times. The simulation curves shown in each example will then vary from these depending on which design transformations have been undertaken. 

If the path according to condition A is taken, then the processes assigned to resource one computes two different functions and processes P11 and P8 actuates the function values through their two actuators, actuator1 and actuator2. The functions can be considered to be the amount of fuel injected to the engine and the angle of the throttle. The functions are displayed in figures 7.2 and 7.3.

[image: image21.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.2 – The increasing fuel injection function.

Figure 7.2 above shows how the fuel injection to the engine increases over time as actuated from actuator1 assigned to process P11. The Y-axis displays the amount of fuel that is injected each millisecond (ms) in order to reach the desired speed given by the driver. The X-axis shows the time progression in milliseconds in the application. 

[image: image22.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.3 – The increasing throttle angle function. 

Figure 7.3 above shows how the throttle angle changes over time as actuated from actuator2 assigned to process P8. The Y-axis shows how the throttle opens up more and more in order to reach the angle needed to accelerate and then sustain the desired speed given by the driver. The X-axis shows the time progression in the application.

If the path according to condition not A is taken, then the processes assigned to resource two executes. The functions computed on resource two are similar to the functions previously shown if condition A was taken, but now instead of increasing they decrease. Figure 7.4 and 7.5 below shows these functions. 

[image: image23.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.4 – The decreasing fuel injection function. 

Figure 7.4 shows how the fuel injection, actuated from process P12 on actuator3, decreases over time when the driver wants to slow down. The path corresponding to the condition not A in the application is taken accordingly. 

[image: image24.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.5 – The decreasing throttle angle function. 

Figure 7.5 shows how the throttle angle, actuated from process P10 on actuator4, decreases over time when the driver wants to slow down. The path corresponding to the condition not A in the application is taken accordingly.

The decreasing functions computed on resource two are, as mentioned before, similar to the ones computed on resource one. Therefore only the increasing functions according to resource one are displayed and used to prove the motivation of the simulator in the following examples. 

7.2 The effect of functional partitioning 

This simulation example will show the effect of partitioning processes in an application. The first CPG in figure 7.5 shows an application, which has two large un-partitioned processes on each resource. This is to be compared with the CPG in figure 7.6 that has split processes P3 and P4 into smaller partitioned ones. 


[image: image25.wmf]P

1

P

7

P

9

P

2

P

8

P

0

A

A

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1

Resource 2

P

4

P

3

P

5

P

6


Figure 7.5 – A CPG with large un-partitioned processes. 

Depending on which process that’s scheduled to be executed first in figure 7.5 the other process will be severely delayed. The length of the delay depends on the execution time of the process that starts it execution first.


[image: image26.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

A

A

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1

Resource 2


Figure 7.6 – A CPG with small partitioned processes.

In figure 7.6 the large processes from figure 7.5 have been split to smaller ones (P3 is now partitioned into P3, P7 and P11 and P4 has been split to P4 and P8). This leads to the fact that each of the smaller processes will compete to be executed on resource one. Now it’s not as important which process starts executing first, since the execution time of the small process is shorter than in figure 7.5. Thus, the next process won’t be delayed as much before it can start its execution. 

The following figures show the output functions from actuator1 and actuator2 in the two CPGs above. 

[image: image27.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.7 – The throttle angle function from the CPGs in figures 7.5 and 7.6.

Figure 7.7 above shows the throttle angle function computed on resource one and actuated on actuator2 in the two CPGs above. The solid line curve (Ex1) is outputted from the un-partitioned CPG and the dashed line curve (Ex2) is the output from the partitioned CPG. As it’s visible in figure 7.7, the un-partitioned CPG reaches the desired throttle angle faster than the partitioned one, and is thereby the better alternative. This is due to the fact that the large process computing the value for actuator2 is scheduled to run before the other large process, which means that it’s not delayed. 

If we compare this with figure 7.8 below instead, we see that the solid line curve, according to actuator1 in the un-partitioned CPG, is more delayed than its dashed line curve counterpart from the partitioned CPG. This is since this un-partitioned process is scheduled to execute after the other large process and is thereby significantly delayed. 

[image: image28.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.8 – The fuel injection function from the CPGs in figures 7.5 and 7.6.

Figure 7.8 shows that the partitioned CPG is the better alternative compared to the un-partitioned one since it approaches the desired fuel injection value faster. 

To conclude on the effect of partitioning processes, it has to be mentioned that it doesn’t always provide a better solution. As we’ve seen above, un-partitioned processes gave, on one hand a better performing output function, but on the other hand the other process on the same resource was delayed. The partitioned processes interfere with each other and actuate their output closer together. However, one of the outputs is delayed more than in the un-partitioned case since it’s not allowed to complete it computation without letting other processes run in between. But on the good side, the previously very delayed process in the un-partitioned CPG isn’t that delayed anymore since it’s allowed to run in parts between the other partitioned processes. 

7.3 The effect of conditions and resource allocation 

This simulation example will show the advantage of introducing conditions in an application model. We will also see the effect of adding extra resources. The first CPG in figure 7.9 shows an application where all processes are mapped to the same resource. This is to be compared with the CPG in figure 7.10 where we’ve introduced a condition, and with the CPG in figure 7.11 where we have introduced an extra resource. 


[image: image29.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1


Figure 7.9 – A CPG containing only one resource and no condition.

In the application in figure 7.9 all processes mapped to resource one have to compete for execution time. And, since there is no condition assigned on the edges going out from P0, both branches going from P1 and P2 have to be considered at the same time. 


[image: image30.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

A

A

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1


Figure 7.10 – A CPG containing only one resource, but it also considers a condition.

In figure 7.10 we have the same CPG as in figure 7.9 but now we have introduced a condition (A and not A) on the edges going out from P0. This means that only the path following P1 or the path following P2 has to be considered at the same time while scheduling the CPG for execution. 


[image: image31.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1

Resource 2


Figure 7.11 – A CPG containing two resources and no condition. 

In figure 7.11 above, we have introduced a new resource instead of introducing the condition as we did in figure 7.10. Now only the processes mapped to resource one have to compete for execution time since the processes mapped to resource two have their own resource. 

The following figures show the output functions from actuator1 and actuator2 in the three CPGs above.

[image: image32.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.12 – The throttle angle function from the CPGs in figures 7.9, 7.10 and 7.11.

The dotted line curve (Ex6) in figure 7.12 represents the output from actuator2 in the CPG in figure 7.9. The output is very delayed since all processes are mapped to the same resource. And since we don’t have a condition in the CPG, all processes have to be considered for execution at the same time. 

If we look at the dashed and solid line curves (Ex5 and Ex4) they represent the actuator2 output in the CPGs from figures 7.10 and 7.11, respectively. Their performance is equally good, since the CPGs are interchangeable functionality-wise. This means that if we introduce a condition then only the processes in the path following the condition has to be considered for execution each time. The other solution is to allocate an extra resource, this way only the processes mapped to resource one or two, respectively, have to be considered for execution at a time. 

[image: image33.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.13 – The fuel injection function from the CPGs in figures 7.9, 7.10 and 7.11.

In figure 7.13 we see the output from actuator1 in the CPGs displayed earlier in this section. The functions show exactly the same points as the functions in figure 7.12. That is, we either need to consider conditions or allocate extra resources to increase performance. 

To conclude, the effects of introducing conditions and allocating extra resources in a CPG differ a bit. Although the output functions will perform the same way, we have to consider other requirements. To begin with, there are a few downsides of introducing an extra resource. First, we increase the cost of the produced unit since we allocate an extra processing element. And secondly, we also increase the size, weight and power consumption of the unit. This means that if it’s possible to introduce a condition in the application this is more efficient than allocating extra resources. 

7.4 The effect of mapping

This simulation example will show how different approaches to mapping of processes to resource can be evaluated. The first CPG in figure 7.14 shows an application where all processes are mapped to the same resource. The next CPG in figure 7.15 shows an application where the processes are mapped to two different resources. This is to be compared with the CPG in figure 7.16 where we also have two resources but now the processes are mapped differently. 


[image: image34.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

A

A

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1


Figure 7.14 - A CPG containing only one resource, but it also considers a condition.

In figure 7.14 we have the same CPG as in figure 7.10 to be able to show how different mapping strategies effect the application. Here, all the processes are mapped to the same resource.


[image: image35.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

A

A

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1

Resource 2


Figure 7.15 - A CPG containing two resources.

The CPG in figure 7.15 is also the same as shown in figure 7.11 earlier. In this CPG we have the processes mapped to two different resources. 


[image: image36.wmf]P

1

P

3

P

7

P

11

P

13

P

15

P

2

P

5

P

9

P

6

P

14

P

4

P

0

A

A

P

12

P

10

P

8

Sensor

Actuator

1

Actuator

4

Actuator

3

Actuator

2

Resource 1

Resource 2

Resource 1

Resource 2


Figure 7.16 – A CPG containing two resources with differently mapped processes. 

In the CPG in figure 7.16 above, we also have two resources as in figure 7.15. However, now the processes are mapped in a different way to the resources. The processes following the path of condition A are mapped to resource one and two, respectively, and the same goes for the processes following condition not A. This leads to the fact that the processes never need to interfere and compete with each other for execution time on the resources. 

[image: image37.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.17 – The throttle angle function from the CPGs in figures 7.14, 7.15 and 7.16.

The dotted and dashed line curves (Ex5 and Ex4) in figure 7.17 above show the output from actuator2 in the CPGs in figures 7.14 and 7.15. Their performance, timing wise, is identical since they function in the same way, as described in the previous section. The interesting comparison in this simulation is to see how the different approaches to mapping affect the output of the application. This can be done by comparing the solid line curve that shows the output from the CPG in figure 7.16 with the dashed line curve from the CPG in figure 7.15. Both these CPGs have two resources allocated but the processes are mapped differently. And as we can see in figure 7.17 the output function from the CPG in 7.16 reaches it desired output value faster and should thereby be the preferred one. This is since the processes in figure 7.16 don’t have to compete with each other for the resources, since they’re all mapped to their own resource with respect to the paths following the conditions A and not A. 

[image: image38.wmf]Title:

Creator:

gnuplot

Preview:

This EPS picture was not saved

with a preview included in it.

Comment:

This EPS picture will print to a

PostScript printer, but not to

other types of printers.


Figure 7.18 – The fuel injection function from the CPGs in figures 7.14, 7.15 and 7.16.

In figure 7.18 we see the output from actuator1 in the CPGs displayed earlier in this section. The functions show exactly the same points as the functions in figure 7.17. That is, while mapping processes we should try to map them in the most effective way. 

To conclude, the effect of mapping processes to resources in a CPG differs depending on the way we decide to map the processes. We might have to consider mapping processes to different resources to be able to execute them concurrently or we should consider mapping processes to the same resource to reduce communication overhead on the bus. If we’ve decided that it’s needed to have several resources in an application to meet its deadlines then we should make sure that we map the processes as efficiently as possible. As mentioned before, there are a few downsides of introducing an extra resource. But if we have allocated additional resources we should make sure that we map the processes to them in the most effective way to get the most out of the application. 

8 Conclusions and future work

In this thesis I’ve presented an approach to simulating functionality and communication in control-dominated distributed real-time systems. The idea has been to capture both data- and control-flow dependencies. The simulator constructed is based on an application model consisting of an abstract graph representation, which at process level captures, both dataflow and control-flow. 

This chapter will summarise the work presented in the thesis and conclude with ideas for future work. 

8.1 Conclusions

In this thesis I’ve considered control-dominated distributed real-time systems consisting of several processes mapped to different resources and interconnected by a communication channel. The applications targeted for simulation have been modelled using conditional process graphs that capture data- and control-dependencies between processes. The nodes in the conditional process graphs have been extended to also contain functionality, which can be used while simulating the application. 

During this thesis work a non pre-emptive static cyclic scheduling policy has been used in the simulator. It works by creating a feasible schedule table off-line before the execution of the application. 

The simulator constructed uses SystemC as a simulation engine. The program that generates the simulator takes the representation of an abstract process graph as input and builds an executable simulator. 

First, let’s examine the extension of the conditional process graph. The original graph handles data dependencies by the directed edges between the nodes. The graph also handles the control-flow in the application by assigning conditions to the edges and thereby constructing sub-graphs and execution paths in the process graph. The extension proposed in this thesis is the introduction of functionality in the nodes of the process graph. The functionality is of paramount importance for the simulation since it allows the simulator to compute values based on the data and to assign dynamic values to the conditions. This way we can generate an executable simulation containing the meaningful functionality of an application described as a process graph. 

The simulator presented in this thesis simulates any real-time application modelled as a conditional process graph. The program constructed to generate executable simulators uses a specification of the process graph to solve data- and control-dependencies. The functionality supplied is specified in each process or node of the graph. When using a static scheduling policy we also need to supply the schedule table to the simulator. With the finally generated simulator we can execute an application and verify that it performs in the intended way. 

The results from this thesis are that with the introduction of the proposed simulator we can verify the correct behaviour of an application before implementing it. With correct behaviour we mean with regard to both timing and functionality. The simulator can help guide the designer of an embedded system during the design transformations of partitioning, allocation and mapping. We have also shown that with a simulator we can reduce the cost, size, weight and power-consumption of a control-dominated distributed real-time system. 

8.2 Future work 

The future work on the simulator constructed during this thesis could focus on the following points:

· Implementation of additional scheduling policies.

· Refinement of communication. 

Considering the first point, to implement additional scheduling policies would make the simulator even more flexible. The simulator could then be used to visualise the effects of using different scheduling policies in addition to the effects of applying the design transformations described earlier. 

Considering the second point, to refine the communication would make the simulator more usable and truer to reality. If we also take into account the possibility of implementing several different communication protocols, the simulator would again, become more flexible. Then we could also test how the performance of an application is affected by switching transfer protocols between processes. 

Appendix A

Glossary of terms

ABS

Anti-Blocking System

ASIC

Application-Specific Integrated Circuit

CAN

Controller Area Network

CP

Critical Path

CPG 

Conditional Process Graph

Cpg2sc

Conditional Process Graph To SystemC

CPP-file
C-Plus-Plus file

CPU

Central Processing Unit

ET

Event-Triggered

ETG

Extended Task Graph

FPGA

Field Programmable Gate Array

H-file

Header file

MS

Millisecond 

NP

Non-Deterministic Polynomial

NS

Network Simulator

OR

Operational Research

PC

Personal Computer

PCP

Partial Critical Path

RPM

Revolutions Per Minute

RT

Real-Time

TCP

Transfer Control Protocol

TT

Time-Triggered

TTP

Time-Triggered Protocol

UML

Unified Modelling Language 

VHDL

Very high speed integrated circuits Hardware Description Language 

WCET

Worst Case Execution Time

XML

Extensible Markup Language 

Appendix B

Simulator files

File “graph.xml”

<graph>


<tasks>



<task>




<name>Task_1</name>




<wcet>0</wcet>



</task>



<task>




<name>Task_2</name>




<wcet>1</wcet>



</task>



<task>




<name>Task_3</name>




<wcet>1</wcet>



</task>



<task>




<name>Task_4</name>




<wcet>1</wcet>



</task>



<task>




<name>Task_5</name>




<wcet>6</wcet>



</task>



<task>




<name>Task_6</name>




<wcet>9</wcet>



</task>



<task>




<name>Task_7</name>




<wcet>6</wcet>



</task>



<task>




<name>Task_8</name>




<wcet>9</wcet>



</task>



<task>




<name>Task_9</name>




<wcet>6</wcet>



</task>



<task>




<name>Task_10</name>




<wcet>9</wcet>



</task>



<task>




<name>Task_11</name>




<wcet>6</wcet>



</task>



<task>




<name>Task_12</name>




<wcet>9</wcet>



</task>



<task>




<name>Task_13</name>




<wcet>6</wcet>



</task>



<task>




<name>Task_14</name>




<wcet>6</wcet>



</task>




<task>




<name>Task_15</name>




<wcet>1</wcet>



</task>



<task>




<name>Task_16</name>




<wcet>1</wcet>



</task>



<task>




<name>Task_17</name>




<wcet>1</wcet>



</task>



<task>




<name>Task_18</name>




<wcet>0</wcet>



</task>


</tasks>


<edges>



<edge>




<name>Arc_1</name>




<wcet>0</wcet>




<connects>





<from>Task_1</from>





<to>Task_2</to>




</connects>



</edge>



<edge>




<name>Arc_2</name>




<wcet>0</wcet>




<connects>





<from>Task_2</from>





<to>Task_3</to>




</connects>



</edge>



<edge>




<name>Arc_3</name>




<wcet>0</wcet>




<connects>





<from>Task_2</from>





<to>Task_4</to>




</connects>



</edge>



<edge>




<name>Arc_4</name>




<wcet>0</wcet>




<connects>





<from>Task_3</from>





<to>Task_5</to>




</connects>



</edge>



<edge>




<name>Arc_5</name>




<wcet>0</wcet>




<connects>





<from>Task_3</from>





<to>Task_6</to>




</connects>



</edge>



<edge>




<name>Arc_6</name>




<wcet>0</wcet>




<connects>





<from>Task_4</from>





<to>Task_7</to>




</connects>



</edge>



<edge>




<name>Arc_7</name>




<wcet>0</wcet>




<connects>





<from>Task_4</from>





<to>Task_8</to>




</connects>



</edge>



<edge>




<name>Arc_8</name>




<wcet>0</wcet>




<connects>





<from>Task_5</from>





<to>Task_9</to>




</connects>



</edge>



<edge>




<name>Arc_9</name>




<wcet>0</wcet>




<connects>





<from>Task_6</from>





<to>Task_10</to>




</connects>



</edge>



<edge>




<name>Arc_10</name>




<wcet>0</wcet>




<connects>





<from>Task_7</from>





<to>Task_11</to>




</connects>



</edge>



<edge>




<name>Arc_11</name>




<wcet>0</wcet>




<connects>





<from>Task_8</from>





<to>Task_12</to>




</connects>



</edge>



<edge>




<name>Arc_12</name>




<wcet>0</wcet>




<connects>





<from>Task_9</from>





<to>Task_13</to>




</connects>



</edge>



<edge>




<name>Arc_13</name>




<wcet>0</wcet>




<connects>





<from>Task_10</from>





<to>Task_15</to>




</connects>



</edge>



<edge>




<name>Arc_14</name>




<wcet>0</wcet>




<connects>





<from>Task_11</from>





<to>Task_14</to>




</connects>



</edge>



<edge>




<name>Arc_15</name>




<wcet>0</wcet>




<connects>





<from>Task_12</from>





<to>Task_16</to>




</connects>



</edge>



<edge>




<name>Arc_16</name>




<wcet>0</wcet>




<connects>





<from>Task_13</from>





<to>Task_15</to>




</connects>



</edge>



<edge>




<name>Arc_17</name>




<wcet>0</wcet>




<connects>





<from>Task_14</from>





<to>Task_16</to>




</connects>



</edge>



<edge>




<name>Arc_18</name>




<wcet>0</wcet>




<connects>





<from>Task_15</from>





<to>Task_17</to>




</connects>



</edge>



<edge>




<name>Arc_19</name>




<wcet>0</wcet>




<connects>





<from>Task_16</from>





<to>Task_17</to>




</connects>



</edge>



<edge>




<name>Arc_20</name>




<wcet>0</wcet>




<connects>





<from>Task_17</from>





<to>Task_18</to>




</connects>



</edge>


</edges>


<join_tasks>



<task>Task_17</task>


</join_tasks>


<conditions>



<cond>Cond_A</cond>



<edge>Arc_2</edge>


</conditions>


<conditions>



<cond>!Cond_A</cond>



<edge>Arc_3</edge>


</conditions>

</graph>

File “allocation.xml”

<allocation>


<resources>



<processor>




<name>P1</name>




<tasks>





<task>Task_1</task>





<task>Task_2</task>





<task>Task_3</task>





<task>Task_4</task>





<task>Task_15</task>





<task>Task_16</task>





<task>Task_17</task>




</tasks>



</processor>



<processor>




<name>P2</name>




<tasks>





<task>Task_5</task>





<task>Task_6</task>





<task>Task_9</task>





<task>Task_10</task>





<task>Task_13</task>




</tasks>



</processor>



<processor>




<name>P3</name>




<tasks>





<task>Task_7</task>





<task>Task_8</task>





<task>Task_11</task>





<task>Task_12</task>





<task>Task_14</task>




</tasks>



</processor>



<processor>




<name>P4</name>




<tasks>





<task>Task_18</task>




</tasks>



</processor>



<bus>




<name>B1</name>




<edges>





<edge>Arc_1</edge>





<edge>Arc_2</edge>





<edge>Arc_3</edge>





<edge>Arc_4</edge>





<edge>Arc_5</edge>





<edge>Arc_6</edge>





<edge>Arc_7</edge>





<edge>Arc_8</edge>





<edge>Arc_9</edge>





<edge>Arc_10</edge>





<edge>Arc_11</edge>





<edge>Arc_12</edge>





<edge>Arc_13</edge>





<edge>Arc_14</edge>





<edge>Arc_15</edge>





<edge>Arc_16</edge>





<edge>Arc_17</edge>





<edge>Arc_18</edge>





<edge>Arc_19</edge>





<edge>Arc_20</edge>




</edges>



</bus>


</resources>

</allocation>

File “tasks.xml”

<processes>


<tasks>



<task>




<name>Task_1</name>




<wcet>0</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>





<![CDATA[





//User defined code





]]>




</code>





</task>



<task>




<name>Task_2</name>




<wcet>1</wcet>




<condition>Cond_A</condition>




<sensor>Sensor_1</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




if (intrn_Sensor_1_VALUE > 0) {





Cond_A = true;





comm_Task_2_DATA_OUT = 





intrn_Sensor_1_VALUE;




}




else {





Cond_A = false;





comm_Task_2_DATA_OUT = 





intrn_Sensor_1_VALUE;




}




]]>




</code>




</task>



<task>




<name>Task_3</name>




<wcet>1</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_3_DATA_OUT = 




comm_Task_3_DATA_IN_Task_2;




]]>




</code>




</task>



<task>




<name>Task_4</name>




<wcet>1</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_4_DATA_OUT = 




comm_Task_4_DATA_IN_Task_2;




]]>




</code>




</task>



<task>




<name>Task_5</name>




<wcet>6</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_5_DATA_OUT = 




comm_Task_5_DATA_IN_Task_3;




]]>




</code>




</task>



<task>




<name>Task_6</name>




<wcet>9</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_6_DATA_OUT = 




comm_Task_6_DATA_IN_Task_3;




]]>




</code>




</task>



<task>




<name>Task_7</name>




<wcet>6</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_7_DATA_OUT = 




comm_Task_7_DATA_IN_Task_4;




]]>




</code>




</task>



<task>




<name>Task_8</name>




<wcet>9</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_8_DATA_OUT = 




comm_Task_8_DATA_IN_Task_4;




]]>




</code>




</task>



<task>




<name>Task_9</name>




<wcet>6</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_9_DATA_OUT = 




comm_Task_9_DATA_IN_Task_5;




]]>



</code>




</task>



<task>




<name>Task_10</name>




<wcet>9</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>Actuator_2</actuator>




<code>




<![CDATA[




intrn_Actuator_2_VALUE = 




0.5*intrn_Actuator_2_VALUE+0.5





*comm_Task_10_DATA_IN_Task_6; 




]]>




</code>




</task>



<task>




<name>Task_11</name>




<wcet>6</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




comm_Task_11_DATA_OUT = 




comm_Task_11_DATA_IN_Task_7;




]]>




</code>




</task>



<task>




<name>Task_12</name>




<wcet>9</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>Actuator_4</actuator>




<code>




<![CDATA[




intrn_Actuator_4_VALUE = 




0.5*intrn_Actuator_4_VALUE+0.5




*comm_Task_12_DATA_IN_Task_8;




]]>




</code>




</task>



<task>




<name>Task_13</name>




<wcet>6</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>Actuator_1</actuator>




<code>




<![CDATA[




intrn_Actuator_1_VALUE = 




0.7*intrn_Actuator_1_VALUE+0.3




*comm_Task_13_DATA_IN_Task_9; 




]]>




</code>




</task>



<task>




<name>Task_14</name>




<wcet>6</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>Actuator_3</actuator>




<code>




<![CDATA[




intrn_Actuator_3_VALUE = 




0.7*intrn_Actuator_3_VALUE+0.3




*comm_Task_14_DATA_IN_Task_11;




]]>




</code>




</task>



<task>




<name>Task_15</name>




<wcet>1</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




//User defined code




]]>




</code>




</task>



<task>




<name>Task_16</name>




<wcet>1</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




//User defined code




]]>




</code>




</task>




<task>




<name>Task_17</name>




<wcet>1</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




//User defined code




]]>




</code>




</task>



<task>




<name>Task_18</name>




<wcet>0</wcet>




<condition>null</condition>




<sensor>null</sensor>




<actuator>null</actuator>




<code>




<![CDATA[




//User defined code




]]>




</code>




</task>


</tasks>


<sensors>



<sensor>




<name>Sensor_1</name>




<wcet>0</wcet>




<code>




<![CDATA[




cout << "Give the desired speed 




for Sensor_1: ";




cin >> intrn_Sensor_1_VALUE;




]]>




</code>




</sensor>


</sensors>


<actuators>



<actuator>




<name>Actuator_1</name>




<wcet>0</wcet>




<code>




<![CDATA[




cout << "Value actuated on 




Actuator_1: " << 




intrn_Actuator_1_VALUE << endl;




]]>




</code>




</actuator>



<actuator>




<name>Actuator_2</name>




<wcet>0</wcet>




<code>




<![CDATA[




cout << "Value actuated on 




Actuator_2: " << 




intrn_Actuator_2_VALUE << endl;




]]>




</code>




</actuator>



<actuator>




<name>Actuator_3</name>




<wcet>0</wcet>




<code>




<![CDATA[




cout << "Value actuated on 




Actuator_3: " << 




intrn_Actuator_3_VALUE << endl;




]]>




</code>




</actuator>



<actuator>




<name>Actuator_4</name>




<wcet>0</wcet>




<code>




<![CDATA[




cout << "Value actuated on 




Actuator_4: " << 




intrn_Actuator_4_VALUE << endl;




]]>




</code>




</actuator>


</actuators>

</processes>

File “schedule.xml”

<schedule>


<column>



<start_time unit="ms">0</start_time>



<conditions>




<cond>true</cond>




<tasks>





<task>Task_1</task>





<task>Task_2</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">1</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<task>Task_3</task>




</tasks>



</conditions>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<task>Task_4</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">2</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<edge>Arc_4</edge>





<edge>Arc_5</edge>





<task>Task_5</task>




</tasks>



</conditions>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<edge>Arc_6</edge>





<edge>Arc_7</edge>





<task>Task_7</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">8</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<task>Task_9</task>




</tasks>



</conditions>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<task>Task_8</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">14</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<task>Task_6</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">17</start_time>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<task>Task_12</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">23</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<task>Task_13</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">26</start_time>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<edge>Arc_15</edge>





<task>Task_11</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">29</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<edge>Arc_16</edge>





<task>Task_10</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">32</start_time>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<task>Task_14</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">38</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<edge>Arc_13</edge>





<task>Task_15</task>




</tasks>



</conditions>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<edge>Arc_17</edge>





<task>Task_16</task>




</tasks>



</conditions>


</column>


<column>



<start_time unit="ms">39</start_time>



<conditions>




<cond>Cond_A</cond>




<tasks>





<task>Task_17</task>




</tasks>



</conditions>



<conditions>




<cond>!Cond_A</cond>




<tasks>





<task>Task_17</task>




</tasks>



</conditions>


</column>

</schedule>

File “date.g”

(MODULE process_graph 

(pr 

(PROCESS PR1 (%EXT 0)) 

(PROCESS PR2 (%EXT 1)) 

(PROCESS PR3 (%EXT 1)) 

(PROCESS PR4 (%EXT 1)) 

(PROCESS PR5 (%EXT 6)) 

(PROCESS PR6 (%EXT 9)) 

(PROCESS PR7 (%EXT 6)) 

(PROCESS PR8 (%EXT 9)) 

(PROCESS PR9 (%EXT 6)) 

(PROCESS PR10 (%EXT 9)) 

(PROCESS PR11 (%EXT 6)) 

(PROCESS PR12 (%EXT 9)) 

(PROCESS PR13 (%EXT 6)) 

(PROCESS PR14 (%EXT 6)) 

(PROCESS PR15 (%EXT 1)) 

(PROCESS PR16 (%EXT 1)) 

(PROCESS PR17 (%EXT 1)) 

(PROCESS PR18 (%EXT 0)) 

(ARCS ARC1 (Connect PR1 PR2) (%EXT 0)) 

(ARCS ARC2 (Connect PR2 PR3) (%EXT 0)) 

(ARCS ARC3 (Connect PR2 PR4) (%EXT 0)) 

(ARCS ARC4 (Connect PR3 PR5) (%EXT 0)) 

(ARCS ARC5 (Connect PR3 PR6) (%EXT 0)) 

(ARCS ARC6 (Connect PR4 PR7) (%EXT 0)) 

(ARCS ARC7 (Connect PR4 PR8) (%EXT 0)) 

(ARCS ARC8 (Connect PR5 PR9) (%EXT 0)) 

(ARCS ARC9 (Connect PR6 PR10) (%EXT 0)) 

(ARCS ARC10 (Connect PR7 PR11) (%EXT 0)) 

(ARCS ARC11 (Connect PR8 PR12) (%EXT 0)) 

(ARCS ARC12 (Connect PR9 PR13) (%EXT 0)) 

(ARCS ARC13 (Connect PR10 PR15) (%EXT 0)) 

(ARCS ARC14 (Connect PR11 PR14) (%EXT 0)) 

(ARCS ARC15 (Connect PR12 PR16) (%EXT 0)) 

(ARCS ARC16 (Connect PR13 PR15) (%EXT 0)) 

(ARCS ARC17 (Connect PR14 PR16) (%EXT 0)) 

(ARCS ARC18 (Connect PR15 PR17) (%EXT 0)) 

(ARCS ARC19 (Connect PR16 PR17) (%EXT 0)) 

(ARCS ARC20 (Connect PR17 PR18) (%EXT 0)) 

(JOINNODE PR17) 

(CONDITION 1 ARC2) 

(CONDITION -1 ARC3) 

)

)

File “date.a”

(ALLOCATION allocation 

(PROCESSOR P1 PR1 PR2 PR3 PR4 PR15 PR16 PR17) 

(PROCESSOR P2 PR5 PR6 PR9 PR10 PR13) 

(PROCESSOR P3 PR7 PR8 PR11 PR12 PR14) 

(PROCESSOR P4 PR18) 

(BUS B1 ARC1 ARC2 ARC3 ARC4 ARC5 ARC6 ARC7 ARC8 ARC9 ARC10 ARC11 ARC12 ARC13 ARC14 ARC15 ARC16 ARC17 ARC18 ARC19 ARC20) 

END)

9 References

[1] P. Eles, A. Doboli, P. Pop and Z. Peng. Scheduling with Bus Access Optimization for Distributed Embedded Systems. IEEE Trans. VLSI Systems, vol. 8, no. 5, 2000.

[2] J. B. Evans. Structures of discrete event simulation, an introduction to the engagement strategy. Chichester, UK: Ellis Horwood Limited, 1988.

[3] A. Turing. A Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society, Series B 237, 37-72, 1952.

[4] S. Klaus and S. Huss. Interrelation of Specification Method and Scheduling Results in Embedded System Design. Proc. ECSI Int. Forum on Design Languages, 2001.

[5] H. Lönn and J. Axelsson. A Comparison of Fixed-Priority and Static Cyclic Scheduling for Distributed Automotive Control Applications. In Proc. 11th Euromicro Conf. on Real-Time Systems, pp. 142-149, 1999. 

[6] S. Klaus, S. Huss and T. Trautmann. Automatic Generation of Scheduled SystemC Models of Embedded Systems From Extended Task Graphs. Proc. Int. Forum on Design Languages, 2002.

[7] T. Grötker, S. Liao, G. Martin and S. Swan. System Design with SystemC. Norwell, MA: Kluwer Academic, 2002.

[8] P. Eles, K. Kuchcincki and Z. Peng. System Synthesis with VHDL. Dordrecht, Netherlands: Kluwer Academic, 1998. 

[9] N.C. Audsley, A. Burns, M.F. Richardson and A.J. Wellings. STRESS: A Simulator for Hard Real-Time Systems. RTRG 106, University of York, UK, 1991.

[10] K. Ghose, S. Aggarwal, P. Vasek, S. Chandra, A. Raghav, A. Ghosh and D. Vogel.  ASSERTS: A Toolkit for Real-Time Software Design, Development and Evaluation. 9th Euromicro workshop on Real-Time Systems, pp 224, 1997.

[11] J. W. S. Liu, J. Redondo, Z. Deng, T. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha, and W. Shih. PERTS: A prototyping environment for real-time systems. Technical Report UIUCDCS-R-93-1802, University of Illinois, IL, 1993.

[12] D. Henriksson, A. Cervin and K.E Årzén. TrueTime: Simulation of Control Loops Under Shared Computer Resources. 15th IFAC World Congress on Automatic Control, 2002. 

[13] W. Wolf. Computers as Components: Principles of Embedded Computing System Design. San Francisco, CA: Morgan Kaufman, 2001.

[14] J. Turley. Embedded Processors by the Numbers. Embedded Systems Programming, May, 1999. 

[15] A. Burns and A. Wellings. Real-Time Systems and Programming Languages, Second Edition. Harlow, UK: Addison Wesley Longman, 1997. 

[16] H. Lönn. Synchronization and Communication Results in Safety-Critical Real-Time Systems. Technical Report 374, Chalmers University of Technology, Sweden, 1999.

[17] J. D. Ullman. NP-Complete Scheduling Problems. Journal of Computer System Science, 10, 384-393, 1975. 

[18] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli and P. Pop. Scheduling of Conditional Process Graphs for the Synthesis of Embedded Systems. Design, Automation and Test in Europe, DATE, 23-26, 1998.

[19] T. Yen and W. Wolf. Hardware-Software Co-synthesis of Distributed Embedded Systems. Dordrecht, Netherlands: Kluwer Academic, 1996.

[20] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli and P. Pop. Process Scheduling for Performance Estimation and Synthesis of Hardware/Software Systems. 24th Euromicro Conference, 1998.

[21] H. Kopetz. Real-Time Systems - Design Principles for Distributed Embedded Applications. Norwell, MA: Kluwer Academic, 1997.

[22] CMarkup XML parser from First Objective Software can be found at URL: www.firstobject.com. 2003-01-01.

[23] P. Pop. Scheduling and communication synthesis for distributed real-time systems. Thesis No. 832, Linköping University, Sweden, 2000. 

[24] P. Checkland. O. R. And the systems movement: Mappings and conflict, Journal of the operational research society 34 8 661-675, 1983.

























� EMBED Word.Document.8 \s ���











Johannes Petersson, 790524-3072

Master of Science in computer science student, year four

University of Linköping, 2001-10-05


[image: image40.wmf] 

 

 

LINKÖPINGS UNIVERSITET

 

Rapporttyp

 

Report category

 

Licentiatavhandling

 

Examensarbete

 

C

-

uppsats

 

D

-

uppsats

 

Övrig rapport

 

 

 

Språk

 

Language

 

 

Svenska/Swedish

 

 

Engelska/English

 

 

Titel

 

Title

 

Författare

 

Author

 

Sammanfattning

 

Abstract

 

ISBN

 

ISRN

 

Serietitel och serienummer

 

ISSN

 

Title of series, numbering

 

LiTH

-

IDA

-

Ex

-

 

Nyckelord

 

Keywords

 

Datum

 

Date

 

URL för elektronisk version

 

 

 

X

 

X

 

2003

-

04

-

10

 

Avdelning, institution

 

Division, department

 

Institutionen för datavetenskap

 

Department of Computer

 

and Information 

Science

 

 

A flexible simulator for control

-

dominated distributed real

-

time systems

 

En flexibel simulator för distribuerade realtids system

 

Johannes Petersson

 

Embedded systems have become indispensable in our lives and can be found almost anywhere; in th

e modern 

medical industry, cellular phones, home appliances, automotive industry, avionics, etc., with a large variety of 

constraints and requirements. Many embedded systems are implemented on heterogeneous architectures containing 

multiple programmable pr

ocessors and specific hardware components. Not only does such a distributed 

heterogeneous system contain constraints on cost, power

-

consumption, physical size, etc., it also often has to fulfil 

real

-

time requirements such as timing, dependability and perfo

rmance. 

 

 

This thesis concentrates on the simulation of control

-

dominated distributed real

-

time systems. Control

-

dominated 

systems implement a control

-

function, which describes how the system interacts with the environment. The proposed 

simulator uses an a

bstract graph representation, which captures both data

-

 and control

-

flow, to model the application. 

The graph representation also contains functionality in the nodes that the simulator executes while running. The 

scheduling of processes and communication i

n the simulator happens according to a non pre

-

emptive static cyclic 

scheduling algorithm. 

 

 

This thesis shows that a simulator can aid in the design of embedded systems. A simulator allows us to test that the 

software design is correct and that processes 

perform the way they should. It can also help us validate the timing 

requirements of the system. Special emphasis has been placed on how design transformations, such as allocation, 

functional partitioning and mapping, impact the performance of an embedded 

system. Simulation results show that 

the simulator can be successfully used to validate the timing constraints and evaluate design decisions. 

 

Real

-

time, Control

-

dominated, Distributed, Embedded systems, Simulator, SystemC

 

 

03/32

 

_1109577150.vsd

_1110290804.vsd

_1110807640.vsd

_1111842214.vsd

_1111928234.vsd

_1110807717.vsd

_1110807784.vsd

_1111566881.doc
 [image: image1.wmf]

LINKÖPINGS UNIVERSITET


Rapporttyp


Report category


Licentiatavhandling


Examensarbete


C-uppsats


D-uppsats


Övrig rapport






Språk


Language



Svenska/Swedish



Engelska/English




Titel


Title


Författare


Author


Sammanfattning

Abstract


ISBN

ISRN


Serietitel och serienummer
ISSN
Title of series, numbering

LiTH-IDA-Ex-


Nyckelord

Keywords


Datum


Date


URL för elektronisk version


X


X


Avdelning, institution



Division, department



Institutionen för datavetenskap



Department of Computer�and Information Science















A flexible simulator for control-dominated distributed real-time systems



En flexibel simulator för distribuerade realtids system







Johannes Petersson







Embedded systems have become indispensable in our lives and can be found almost anywhere; in the modern medical industry, cellular phones, home appliances, automotive industry, avionics, etc., with a large variety of constraints and requirements. Many embedded systems are implemented on heterogeneous architectures containing multiple programmable processors and specific hardware components. Not only does such a distributed heterogeneous system contain constraints on cost, power-consumption, physical size, etc., it also often has to fulfil real-time requirements such as timing, dependability and performance. 







This thesis concentrates on the simulation of control-dominated distributed real-time systems. Control-dominated systems implement a control-function, which describes how the system interacts with the environment. The proposed simulator uses an abstract graph representation, which captures both data- and control-flow, to model the application. The graph representation also contains functionality in the nodes that the simulator executes while running. The scheduling of processes and communication in the simulator happens according to a non pre-emptive static cyclic scheduling algorithm. 







This thesis shows that a simulator can aid in the design of embedded systems. A simulator allows us to test that the software design is correct and that processes perform the way they should. It can also help us validate the timing requirements of the system. Special emphasis has been placed on how design transformations, such as allocation, functional partitioning and mapping, impact the performance of an embedded system. Simulation results show that the simulator can be successfully used to validate the timing constraints and evaluate design decisions. 







03/32







Real-time, Control-dominated, Distributed, Embedded systems, Simulator, SystemC







2003-04-10




















_1110807750.vsd

_1110807660.vsd

_1110803662.vsd

_1110803744.vsd

_1110807598.vsd

_1110801739.vsd

_1110288905.vsd

_1110289022.vsd

_1109599369.vsd

_1109764288.vsd

_1107262720.vsd

_1107590144.vsd

_1107592311.vsd

_1107604126.vsd

_1107590518.vsd

_1107263647.vsd

_1107589878.vsd

_1107246237.vsd

_1107257070.vsd

_1106728985.vsd

_1107092276.vsd

_1106661871.vsd

