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a b s t r a c t

In this paper we propose a system-level synthesis for MPSoCs that integrates multiple Application
Specific Instruction Set Processors (ASIPs). Each ASIP is customized for a specific set of tasks. The system-
level synthesis is responsible for assigning the tasks to the ASIPs, exploring different platform
alternatives. We can allocate tasks to the different ASIPs and determine if the applications are
schedulable only knowing the worst-case execution time (WCET) of each task. We can estimate the
WCET only after establishing the micro-architecture of the ASIP. At the same time, an ASIP micro-
architecture can be derived only knowing the assignment of tasks to ASIP. To address this circular
dependency, we propose an Uncertainty Model for the WCETs, which captures the performance of tasks
running on a range of possible ASIP implementations. We propose a novel stochastic schedulability
analysis to evaluate each multi-ASIP platform. We use an Evolutionary Algorithm-based approach to
explore the design space of macro-architecture possibilities and we evaluate it using real case studies.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Embedded platforms are used for executing a wide variety of
applications from the automotive, multimedia and networking
domains. Flexibility and performance are the key design constraints
for these platforms. General Purpose Processors (GPPs) are flexible
platforms and run applications from various domains, but they fall
behind on performance in comparison to ASICs. On the other hand,
ASICs are designed to run specific applications and therefore lack
flexibility. ASIPs combine the best of both worlds by incorporating
application specific custom instructions, thereby giving more flexibility
than ASICs and better performance than GPPs. ASIPs are designed such
that they are optimized to run a specific set of functions. Recently, an
increasing number of ASIPs is used in heterogeneous multi-processor
SoC for the implementation of real-time systems (especially image/
video processing systems) [1–3].

Designing heterogeneous multi-ASIP platforms for real-time
application is a complex and time-consuming task, involving inter-
dependent decisions on hardware and software architectures
at macro-architecture (i.e., platform) and micro-architecture
(i.e., ASIP) levels. These decisions affect the number of ASIPs,
their micro-architectures and interconnections together with the

assignment of tasks to the different ASIPs and they turn the
optimization of the multi-ASIP platform into a NP-complete
problem [4]. In this paper we propose a technique for the
synthesis of a multi-ASIP platform given one or multiple applica-
tions as input. In particular, we focus on the macro-architecture (or
system-level) synthesis that is in charge of assigning the tasks to
the different ASIPs exploring different macro-architecture alter-
natives. Additionally, we show how the macro-architecture synth-
esis can be integrated into the flow. We use a design space
exploration (DSE) to evaluate the schedulability of the applications
on the candidate platform solutions to select the proper one.

To perform a schedulability analysis, we need to know the
WCETs of the tasks. However, it is possible to know the WCETs
only after all the ASIPs are synthesized. The synthesis of an ASIP
(Fig. 1) starts with the identification of the tasks which have to be
implemented by the ASIP. We call task clustering the partitioning of
the application into multiple ASIPs and task cluster each group of
tasks that corresponds to a single ASIP. Depending on the number
of tasks and ASIPs included in the platform, a very large number of
task clusters have to be evaluated during platform DSE. The micro-
architecture synthesis of a single ASIP [5] involves a number of
steps (see Fig. 1). Further, the design space of ASIP micro-
architectures is very large depending on the number and data
widths of registers (RF) and memory blocks (MEM) and the
number of functional units (FU). Hence, platform synthesis with
multiple ASIPs is non-trivial as it needs to take the design space
of ASIP micro-architectures into consideration when exploring
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various platform solutions. We will use the term micro-
architectural configuration to indicate the micro-architecture
resulting from a specific ASIP synthesis.

There has been a significant effort in the development of
platform synthesis methods. First, there are platform synthesis
approaches that do not consider ASIPs. There is a large body of
work in this category [6–12] and the assumption is that the details
of each component are known. In particular [12,8] propose
simulation frameworks for the mapping of applications on fixed
multi-processor platforms, providing separate models for the
application and the platform that are combined during the
mapping. In [9], the authors implement a UML simulation frame-
work for evaluating different mappings and platforms, but con-
sidering only a small set of processors. In [6,10], the authors
explore different macro-architecture possibilities but always con-
sidering components taken from a library with well known
performance and cost. The same happens in [11] where different
mapping are explored to optimize throughput of applications
running on a pre-defined platform where only the number of
processors is varied. Point-to-point connections are used among
the processors. In [7] the mapping is arbitrarily selected: each
application is modeled as a synchronous data flow graph and each
actor (task) is assigned to a different processor. Moreover, FIFOs
are used for interconnecting the different processors, while in the
approach presented in this paper, we consider different kinds of
buses as interconnection type.

Second, there are platform synthesis approaches, which con-
sider multiple ASIPs. Most of these approaches [13–15] assume
that the ASIPs have been synthesized, whereas in [16,3], a small
set of micro-architectural configurations is considered. In [16], the
authors focus on pipelined multi-ASIP systems and explore differ-
ent task graph partitionings, but the processors to be included in
the platform are selected from a library of pre-configured ASIPs.
They limit the interconnection network to a set of FIFO queues.
Hence, these approaches severely limit the design space, with the
risk of disregarding good solutions as they do not take into
account the ASIP micro-architecture design space during platform
synthesis.

Third, there are design approaches in which both ASIPs and
their interconnections are optimized [17]. However, the ASIPs are
synthesized starting from a template micro-architecture and the
application is arbitrarily partitioned by the designer among a
predefined number of ASIPs. In this approach, the authors do no

evaluate different task clustering solutions that can also lead to a
different interconnection selection.

All prior works address the circular dependency between the
ASIP micro-architecture and WCET values by considering that the
ASIPs, or a limited set of micro-architectural configurations of the
ASIPs, are given. Therefore, to efficiently use these approaches, the
designer needs to have some pre-existing experience and knowl-
edge on the system that he expects as output. Hence, these works
discard potentially very good solutions. To the best of our knowl-
edge, there is no work on platform synthesis with multiple ASIPs,
where the ASIPs are not synthesized beforehand and different task
clustering are explored.

Contributions: In this paper we propose a method that addresses
this circular dependency using an Uncertainty Model (UM) for the
WCETs. This model captures the performances of a wide range of ASIP
micro-architectural configurations. We use it to implement ourmacro-
architecture DSE to guide the synthesis of a platform with hetero-
geneous processing elements (PEs) including multiple ASIPs, such that
the applications have a high probability of meeting their timing
constraints under given cost constraints. Our macro-architecture DSE
is intended to be used in the very early phases of the design when no
platform is available. Using an evolutionary algorithm (EA), we decide
the clustering of tasks onto ASIPs and explore different types of bus-
based platforms, considering a variable number of ASIPs and using the
uncertainty model to predict the schedulability probability of each
explored platform. Once the task clusters are established, we can
synthesize each single ASIP, i.e., perform micro-architecture synthesis.
This paper extends the work presented in [18]; the main differences
are the use of a synchronous data flow graph (SDFG) to model the
application (instead of a task graph), a new scheduling algorithm for
exploiting both task-level and pipeline parallelism and the introduc-
tion of a new selection policy for EA. Additionally, in this paper we
present the integration of the macro-architecture with the micro-
architecture synthesis and their cooperation for the generation of a
multi-ASIP platform using real case studies. For the implementation of
the multi-ASIP platform and for obtaining a cycle accurate execution
estimation of the application, we used the Silicon Hive (now part of
Intel Corp.) tools for ASIP development [19].

The paper is organized as follows: Section 2 describes the
system model for the macro-architecture DSE and the UM for the
WCET, Section 3 defines the platform synthesis problem and
highlights the main challenges using a motivational example.
The scheduling algorithm and the EA implemented for performing
the DSE are presented in Section 4. The evaluation of our approach,
combined with the micro-architecture synthesis is presented in
Section 5.2. The conclusions are in Section 6.

2. System model

The synthesis of a multi-ASIP platform requires the definition
of both the macro- and micro-architectures. In this work we focus
on the macro-architecture DSE and show how it can be included in
the global design flow for multi-ASIP platform synthesis. This
section is organized as follows: Sections 2.1 and 2.2 describe the
application and platform models used for the macro-architecture
DSE, respectively, while Section 2.3 introduces some concepts
about ASIP micro- and macro-architecture synthesis that are
necessary to motivate this paper, and finally Section 2.4 presents
the UM for the WCET.

2.1. Application model

We assume to have an application Ai, modeled as a synchro-
nous data flow graph (SDFG). We use a SDFG to capture both task-
level and pipeline parallelism that characterize the streaming

Fig. 1. Example of ASIP micro-architecture synthesis flow [5].
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applications that we are targeting. A SDFG is defined as a tuple
Ai ¼ ðΓi;Ωi; Ii;Oi; ZiÞ [20] where each element in Γi is an actor (i.e.,
a task) and each element in Ωi is an edge (i.e., a message) that
models the communication between actors. A task is indicated as
τj and a message is indicated as mg.

Each task might have multiple input and output messages and
executes by reading tokens (i.e., data) from its input messages, and
by writing the results of the computation as tokens to the output
messages. A message mg, which models the communication
between tasks τp and τc, has two values associated: the consump-
tion and the production rate. The first corresponds to the number of
tokens available on mg and that are required by τc to fire, while the
second is the number of tokens that the execution of τp produces
onmg. Consumption and production rates are contained in the sets Ii
and Oi, respectively. A property of SDFGs is that every time a task
executes, it consumes the same amount of tokens from its input
messages and produces the same amount of tokens on its output
messages. A task can start only after the required tokens are
available at its input edges. We use the term firing to indicate a
task execution. Zi is the set of the initial tokens, i.e., the tokens
already available on the edges before the execution of the tasks.
Moreover we consider SDFGs without auto-concurrency: we do not
allow multiple and simultaneous firings of the same task. This
property can be forced adding a self-loop to each task with an
initial token [21].

We also consider consistent SDFGs [22]: a graph is consistent if
we can fire each task a fixed number of times and this will bring
the SDFG to its original state, i.e., with the same distribution of
tokens over all edges (messages). Each message has associated a
value Mg that corresponds to the amount of data transmitted, i.e.,
the size of a token in bits.

An example of SDFG graph for a motion JPEG (MJPEG) encoder
is shown in Fig. 2, in which the number inside each task indicates
the number of firing of that task. Additionally, we identify source,
sink and transformer tasks. Source tasks have no input edges, while
sink actor has no output edges. They do not contain specific
computation, but they are an interface with the environment.
For the MJPEG encoder application for example, we have two
source actors that set some environment variables and that
simulate the arrival of frames for the encoding algorithm and a
sink node that registers if the application terminated correctly. As
these tasks are not part of the application, they are not assigned to
any ASIPs and their WCET is set to zero. The tasks that are neither
sink nor source are transformer (computation) actors.

Moreover, we use as additional information to model the
applications, the value iteri that indicates the number of times
that we want to execute the SDFG of the application Ai. For
example the SDFG in Fig. 2 models the encoding of one frame of
data. Therefore, a value iterMJPEG ¼ 15 expresses the encoding of 15
frames of data. Each application read Ai has a deadline di

iter that is
the deadline associated to iteri execution of the SDFG.

Unlike the work done in [18], we have introduced a SDFG
model as it allows exploiting both pipeline and task level

parallelism. When it is possible to model the same application as
a task graph and as a SDFG, we can observe that a task in the task
graph corresponds to its associated task in the SDFG repeated a
certain number of times [23]. Therefore, a single execution of a
task in the SDFG is usually shorter; if multiple repetitions of the
same task are independent, they can be scheduled separately;
moreover dependent tasks can be scheduled earlier without
waiting for the completion of all iterations of the task.

2.2. Platform model

Heterogeneous bus-based multi-processor platforms may con-
tain multiple processing elements (PE) as GPPs, ASICs, digital
signal processors (DSPs) or ASIPs. In this work, we focus on
platforms containing multiple ASIPs, where the number of ASIPs
and their configured micro-architectures are unknown and will be
defined through our design method. A platform instance contains
a number of processors interconnected through a bus system.1 The
kth processor is denoted by PEk and has a frequency f PEk . A bus bf bw
is characterized by a frequency fb and a bandwidth w. We calculate
the transmission time for message mg on the bus bf bw as tg ¼ Mg

wnf b
.

The processing elements and the bus can have different
frequencies.

During the platform synthesis, our method explores different
clustering solutions. A solution is composed of a set of clusters, i.e.,
groups of tasks executed on the same PE. A solution contains also
the association of the messages to the interconnection architec-
ture. For each clustering solution evaluated, our approach allocates
an appropriate number of ASIPs. At platform level, our exploration
also accounts for different types of buses. We use a static schedul-
ing policy with non-preemption for the execution of the tasks on
the platform. Additionally, we assume that each task reads data
from local memory and writes them to remote memory. Let us
consider two communicating tasks τ1 and τ2 assigned to two
different processors PE1 and PE2. In our schedulability analysis, τ1
reads the input data from the local memory of PE1 and accesses the
memory of PE2 as a remote memory to write the data that
produces (Fig. 3 shows an example).2

2.3. ASIP synthesis

Fig. 1 highlights the generic steps for the synthesis of a single
ASIP, according to [25]. Examples of ASIP synthesis approaches are
[26–28] that use LISATek Toolkit, [29] that uses Tensilica processor
and the micro-architecture synthesis of the ASAM design flow [30]
that we use in our case studies. To perform the ASIP synthesis, we

Fig. 2. SDFG model of MJPEG encoder.

1 Preliminary results using a Network-on-Chip are shown in [24].
2 In this work, we did not consider different communication models such as

shared memories; however it is possible to include them easily modifying the code
of each task to allow both task producer and consumer to access an external shared
memory, and considering the time to access the shared resource and the
interconnection network during the schedulability analysis.
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need to know which tasks are assigned to it (task clusters). After
the analysis of the code of these tasks, a micro-architectural DSE is
performed in order to synthesize an ASIP compliant with the input
constraints (e.g., performance, cost). The starting point for this
exploration is an ASIP template (selected from a library) that most
likely will satisfy the tasks’ characteristics (according to the
application profiling and the designer's experience). The definition
of a specific ASIP micro-architecture includes the identification of
the appropriate number/type of functional units, memory, issue
slots, etc., in order to satisfy the functionalities required by the
tasks assigned to the ASIP. After an initial micro-architecture is
defined, the instruction set is generated, which can include custom
instructions. Moreover depending on the tasks’ code, it is possible
to identify and implement custom instructions that can speed up
the execution.

The next steps are the generation of the code and the HW
synthesis of the ASIP. This design flow is not fully automated and it
can take one or several days to complete [31,32]. In a multi-ASIP
platform, every time we want to evaluate a task clustering, we
would have to run a complete ASIP synthesis flow for each ASIP. As
mentioned, an ASIP synthesis can be time consuming, so it cannot
be done during the DSE at the platform level. Moreover to perform
the DSE during platform synthesis, we need the WCET of the tasks
to evaluate the schedulability, but the WCETs can only be known
after the platform has been fully synthesized. This circular depen-
dency drastically limits the number of platform alternatives that
can be considered during DSE.

The approach commonly used in the industry is to leave to the
designer the responsibility of manually identifying the task clus-
tering. However, this approach relies on the experience of the
designer and it is time consuming. Another possible alternative
that is adopted in many design methods described in the literature
(e.g., [16,3]) is to consider only a small set of predefined micro-
architecture configurations for each ASIP so that the design flow of
a multi-ASIP platform falls back into a classic MPSoC design. In this
case the risk is to ignore potentially good solutions as the micro-
architecture DSE is limited beforehand.

This paper offers an alternative approach to break this circular
dependency, using an Uncertainty Model for the WCETs that enables
a fast evaluation of more platform alternatives.

2.4. Modeling WCET uncertainties

In our problem, the WCET value depends on the ASIP micro-
architecture, which is synthesized depending on how tasks are
clustered. In this paper we propose a model to capture the design
space of possible ASIP micro-architecture configurations: the
WCET of each τj is modeled as a stochastic variable Cj and the
associated probability distribution function. Such uncertainty
models are used in practice in the early design stages [33].

Note that the variability of the worst-case execution time Cj of a
task τj is due to the variation among the possible ASIP configura-
tions on which task τj will run. It does not reflect the variation in
execution time, which is due to variations in the input data and
architectural features, such as branch prediction. The final

implementation of the ASIP running task τj will only be available
after the time-consuming ASIP micro-architecture synthesis. We
use the probability distribution of Cj during DSE in order to avoid
synthesizing every ASIP micro-architecture resulting from a
change in task clustering.

We assume that the designer captures the probability distribu-
tion function of the WCET Cj of a task τj using two bounds: the
smallest WCET value Clj (lower bound) and the largest value Cuj
(upper bound). The designer can arrive at these two values based
on his or her knowledge of the functionality of the task and the
possible range of ASIP micro-architectures. These values can also
be estimated; the lower WCET bound can correspond to the
expected WCET when τj is executed on an ideal processor accord-
ing to an as soon as possible (ASAP) scheduling without architec-
tural constraints. The upper WCET bound can correspond to a
sequential execution of τj on the slowest possible ASIP. Within
these two values, we use a normal distribution for Cj that models
the WCETs of the task executing on an undefined ASIP that has not
been synthesized yet. The reasons for using a normal distribution
are provided in Section 5.1.

More formally, the cumulative distribution function (CDF) Fj of
Cj is denoted as FjðxÞ ¼ PðCjrxÞ, where the probability Fj(x) is an
indicator of the number of ASIP configurations that lead to a Cj
smaller than a value x. The distribution is built such that
PðCjrCu

j Þ � 1. This means that task τj will finish in Cuj time units
or less on all possible ASIP micro-architecture configurations. At
the same time, we also assume that PðCjrCl

jÞ � 0.3 This means
that according to the designer's evaluation, none of the possible
micro-architecture configurations will finish faster than Clj time
units. Fig. 5(a) shows an example of CDFs for three different tasks.

Regarding messages, we assume that we know the size (in bits)
of each message mg. In this paper, we consider bus-based systems,
and our DSE can explore different types of buses (for frequency
and data width). Hence, we know the transmission time Cmg of
each message mg. Cmg is a single value and not a stochastic
variable: for each type of bus that we want to explore, we have
a different Cmg .

3. Problem formulation

Given an application Ai (see Section 2.1) with deadline d, and a
platform cost constraint PCmax, the problem is to synthesize a system-
level multi-ASIP platform, such that the probability of having a
schedulable implementation is maximized under the specified cost
constraint PCmax.

Synthesizing a system-level platform means performing a DSE
to decide the clustering of tasks and the interconnection. Our
uncertainty model takes as input the SDFG of the application, its
deadline and the cost constraint PCmax that is defined as the
maximum number4 of ASIPs that can be included in the platform,
i.e., the maximum number of task clusters. We can consider a
library of buses with different speeds and bandwidths, fromwhere
the DSE selects the appropriate bus. Also, there can be a set of
legacy components that have to be used in the architecture and it
is also possible that some tasks might be clustered on some
specific PEs by the designer. Our optimization takes these con-
straints into account.

The designer, based on his/her knowledge or an analysis of the task
code, provides the upper and lower bounds for the WCETs as
presented in Section 2.4. Given the size in bits of each message and
the library of buses, it is possible to determine the communication

Fig. 3. Reading and writing policy: τ1 reads from local memory and writes to
remote memory.

3 The CDF of the normal distribution does not reach the one and zero values.
4 We will consider the ASIP area cost in our future work.
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time for each message. The DSE evaluates different clustering solu-
tions as presented in Section 4.2 and selects the one which maximizes
the probability of having a schedulable implementation. After DSE, we
use an ASIP synthesis flow (e.g., Fig. 1) to synthesize an ASIP for each
task cluster.

At the output of our multi-ASIP platform synthesis approach,
we get a platform architecture, consisting of several ASIPs and
possibly also legacy components, and their interconnection. For
each ASIP, we have its micro-architecture, and the interconnection
consists of a bus with a certain speed and bandwidth. This
synthesis is performed under the platform cost constraint PCmax.
Fig. 6 shows our flow for the synthesis of a multi-ASIP platform.

The schedulability analysis of a task clustering for a given
application Ai checks if the application deadline di

iter is satisfied.
We consider a multi-ASIP bus-based platform, in which the ASIPs
have not been designed yet. The maximum number of PEs that
should be included into the final system (our platform cost, PCmax)
is provided as input. Additionally, we have the UM of each task, τj
in Ai, and the transmission time, Cmg , for each message (according
to the bus type).

Let us consider the application SDFG in Fig. 4a and the UM of
each task in Fig. 5a. PCmax is set to two. We evaluate two different
task clustering solutions Sol1 and Sol2 (Fig. 4b and c); the results of
our schedulability analysis are in Fig. 5b: we calculate the CDF of
each task clustering solution. We obtain it combining the CDF of
each task and the WCET of the messages. We evaluate each
solution according to the application deadline (diiter) and we obtain
a probability psol.

Sol1 has a probability p1 ¼ 0:80 while Sol2 has p2¼0.03. This
indicates that the first task clustering solution is better than the
second one: a higher probability indicates that the task clustering
is more likely to meet the application deadline when the platform
is designed.

3.1. Motivational example

In this section, we use a small real case study (Fig. 7a) as
motivational example to demonstrate the effectiveness of our
approach. Given the application SDFG in Fig. 7a, we want to
synthesize the platform architecture with multiple ASIPs such
that the probability of having a schedulable implementation is
maximized under the platform cost constraint PCmax ¼ 2. We
assume that each of the tasks in Fig. 7a is fired only once and
we assume iter¼1. For simplicity in Fig. 7a, as we consider a single
iteration of the SDFG and each task is fired only once, we omit the
self-loop to limit the auto-concurrency. Without the use of our
UM, a designer, willing to identify the proper task clustering for its
input applications, has to use a template of the ASIP micro-
architecture. The designer can characterize the WCET of each task
τj executing the task on the template processor. We denote this
WCET as reference WCET, Crefj and this design approach as
straightforward method (SFM). We use the SFM as a baseline to
compare the results obtained with our UM approach.

Table 1 contains the upper and lower bounds for the UM and
Crefj for the SFM for the example in Fig. 7a. These values are derived
as follows for each of the tasks in Fig. 7a. For each task, we
considered a simple functionality, consisting of a loop and opera-
tions such as multiplication and addition. We used the ASIP design
flow of Silicon Hive [19] to design the ASIPs. We implemented a
three-issue slot VLIW ASIP, and we ran the tasks to obtain their
WCETs. We considered this WCET value as the reference WCET
Crefj .5 Furthermore, we varied the micro-architecture of this ASIP to
obtain two extremes. The WCETs obtained using the slowest ASIP
were considered as the upper bounds Cuj , whereas the WCETs
obtained with the fastest ASIP were considered as the lower
bounds Clj. These values are presented in Table 1.

Fig. 4. Example of evaluation of clustering solutions.

Fig. 5. (a) Input and (b,c) output CDFs for the example in Fig. 4.

5 Even if the value obtained executing the tasks on the ASIP is not a real and
theoretical WCET determined through analysis, we believe this value is a good
approximation for our experiments: the loop bounds are known at compile time
and the input data are hard-coded in the tasks' code.
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Each task clustering solution is evaluated using the schedul-
ability analysis from Section 4, which gives the probability p of a
solution to be schedulable, once it is implemented. We have
performed an exhaustive DSE to explore the space of task cluster-
ing solutions. We did not assign the source and sink tasks to any

ASIPs and we consider their WCET equal to zero. The best
clustering solution obtained with UM is shown in Fig. 7b, having
a p¼59%. Then, we perform an exhaustive DSE of all possible
clustering solutions with the SFM approach, aiming at minimizing
the schedule length, considering the given Crefj . The clustering
obtained with SFM is shown in Fig. 7c. In order to compare the
solutions obtained with the UM and SFM approaches, we calculate
the probability p of the SFM solution to be schedulable using the
WCET uncertainty model, as in the UM approach. Thus p for the
solution with SFM approach is 24%.

To validate the results of the comparison between UM and SFM,
we have synthesized the platform solutions in Fig. 7b and c,
produced by UM and SFM, respectively. In the implemented multi-
ASIP platform, the source and sink tasks are modeled by an host

Fig. 6. Multi-ASIP platform design flow.

Fig. 7. Comparison between UM and SFM approaches.

Table 1
C values for the example of schedulability analysis (in μs).

C τ1 τ2 τ3 τ4 τ5 τ6 τ7

Cuj 702 3437 8801 702 702 702 3437
Clj 450 180 300 450 450 450 180
Crefj 602 3237 400 602 602 602 3237
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processor (more details are available in Section 5.2). Next, we have
determined the WCETs Cj of each task τj on the respective ASIP.
Then, we have calculated the schedule lengths for the two cases.
The schedule length in the case of the UM platform solution is
1955 μs, whereas for SFM is 2275 μs. For a deadline of 2000 μs, UM
solution is schedulable, while SFM solution is not. This infers that if
a UM solution has higher chances to be schedulable compared to a
SFM solution according to our evaluation (Section 4.2), this is also
true in the final implementation, as our synthesis using the Silicon
Hive tools has shown. The comparison of the two approaches
shows that with our UM approach, we are able to identify a
solution that has a higher probability to be schedulable, once it is
implemented.

4. Platform synthesis using an evolutionary approach

Given an application modeled as a SDFG, we evaluate different
task clustering solutions to find the one that maximizes the
probability of having a schedulable implementation. The DSE is
responsible for evaluating different task clustering solutions; for
each evaluated task clustering solution, we use a scheduling
algorithm to define the static-order schedule that determines the
firing order of the tasks. The scheduling algorithm is also used in
conjunction with a Monte Carlo-based schedulability analysis for
evaluating a given task clustering solution with our UM. In this
section, we present the scheduling algorithm (Section 4.1), the
schedulability analysis using the UM (Section 4.2) and the evolu-
tionary algorithm for exploring the design space of task clustering
solutions (Section 4.3).

4.1. SDFG scheduling algorithm

Given a SDFG and a task clustering solution, we use a static
non-preemptive scheduling algorithm to define the execution
order of the tasks on the different ASIPs providing a periodic
admissible parallel schedule (PAPS) as defined in [34]. In this
section, we present the algorithm assuming that the WCET of each
task in the SDFG is available, while in Section 4.2, we describe how
the algorithm can be used for schedulability analysis when
considering the UM and, therefore, stochastic WCETs.

There are multiple approaches in the literature that propose
scheduling algorithms for SDFGs that cover both the allocation of
tasks to the multi-processor platform and the definition of their
execution order. In our approach the DSE is responsible for
evaluating the allocation of tasks (i.e., task clustering). We propose
a scheduling algorithm that given a task clustering, determines the
execution order of the tasks.

A list of scheduling algorithms for SDFG is available in [35].
There is a large group of approaches (e.g., [36–38]) in which the
SDFG is transformed into its corresponding Homogeneous SDFG
(HSDFG). An HSDFG has production and consumption rates for
each actor equal to one and it has a node for each iteration of an
actor in the initial SDFG [36]. The expansion of a SDFG to a HSDFG
simplifies the scheduling algorithm, but can lead to very slow or
memory consuming scheduler performance [39]. There are also
examples of scheduling algorithm directly applied to the SDFG
model as [40,41]. In [40] the authors propose an algorithm for
minimizing the latency when an unlimited number of processing
resources are available so that any enabled actor can be fired and
all executions are feasible, while in [41], the authors define a
static-order schedule assigning time slices to each actor optimiz-
ing the throughput.

In this paper, we define a scheduling algorithm for SDFGs that
returns a static-order schedule. We do not focus on the definition
of an optimal scheduling algorithm for SDFG, but on an algorithm

that can be easily implemented on Silicon Hive's ASIPs reducing
the application code size and the amount of data memory of each
ASIP. We produce a scheduling order where we fire all tasks
according to the firing rates they have in the original SDFG. We
interleave the execution of the tasks and avoid consecutive firing
of the same task and, therefore, we consume the available tokens
as soon as possible (according to the SDFG semantic), limiting the
amount of memory required.

With static non-preemptive scheduling, we identify the sche-
dule length for the application Ai, modeled as a SDFG, as δAi

. To
identify the execution order of the tasks, we consider a single
iteration (iteri¼1) of the SDFG and we indicate as δ0Ai

the
corresponding schedule length. The pseudo-code of the imple-
mented scheduling algorithm is available in Algorithm 1. It takes
as input the SDFG of Ai and a task clustering solution, Solc. We
build a schedule assuming that the WCET Cj of each task and the
transmission time Cmg of each message are known. If commu-
nicating tasks are assigned to the same processing unit, the
message between them is ignored as the communication time is
negligible. A task can be fired

� as soon as there enough tokens on its input edges (as described
in the SDFG semantic),

� as soon as the hardware resource to which the task is assigned
is available.

The variable activeTaskList contains the list of tasks that can be
scheduled because their data dependencies are satisfied (source
tasks or tasks with enough tokens at their input messages). At
each iteration of the algorithm (while loop at line 1), we update
activeTaskList; the head element of the list is the next task to
schedule. Function 2 describes the steps for scheduling a single
task τj. We need to determine the starting time for τj (lines 1–4)
that depends on the availability of the hardware resource. Then we
can calculate the finishing time of τj, update the number of tokens
produced (lines 6–8) and consumed (lines 9 and 10) and schedule
the messages in output of τj (lines 11–13). Every time we schedule
a task τj, we also schedule its output messages if they are
connecting τj with a task in a different cluster. Once the scheduling
of a task is completed, we need to update the activeTaskList as
specified in Function 3.

Finally, Function 4 is used to determine which is the next task
in activeTaskList that can be scheduled. For each message we
calculate the rate between the number of firing of the target task
(task consumer) and the number of firing of the source task (task
producer) and we call this idealRate. At each iteration of the
algorithm, we calculate, for each message, the realRate that is
the rate between the actual number of times the task consumer
and producer have been fired. When the algorithm starts, we
initialize the realRate variable to 1. Then we estimate the relative
error (distanceRate) between the realRate and the idealRate of each
message and we sort the messages in descending order according
to their relative error. The sorted order of the messages determines
the firing order for the tasks. If the realRate for a message mg is
bigger than the idealRate, then we should fire the task producer
associated to mg, otherwise the task consumer (the task must be
available in the activeTaskList).

In Fig. 8c there is an example of eight iterations of Function 4
for the application in Fig. 8a. We reported the steps for the
scheduling of one iteration of the SDFG (Fig. 8a). Fig. 8b contains
the values of the idealRate variable for each message. At each
iteration, we fire τnext and we update the values of the realRate and
distanceRate. Then we consider one message at a time, starting
with the one with the highest distanceRate (when multiple
messages mg have the same distanceRate, we prioritize them
according to their identifier g). For the selected message, we verify
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if we should fire its source or target task; for clarity, in Fig. 8c
(columns 15–18), we reported the task that we should fire
according to the realRate and idealRate of each message. The
selected source/target task must be available in the activeTaskList,
otherwise we select the message with the next highest distance-
Rate until it is possible to assign the variable τnext. If no task can be
assigned according to this policy, we assign to τnext, the last task
that has been added to activeTaskList. As an example, let us
consider the row corresponding to Time¼4 in Fig. 8c: we calculate
the realRate and differenceRate for each message. Then, we sort the
messages according to their differenceRate in descending order,
obtaining the following sorted list: m1, m4, m2 and m3. We start
considering the first message in this sorted list:m1. Afterwards, we
determine if we should fire the source or target task of m1 (column
15 in Fig. 8c). As the realRate of m1 is smaller than its idealRate (0
and 0.5, respectively), we select the target task (i.e., τ2). As the last
step, we verify if τ2 is in the activeTaskList (column 14); if this is the
case, we can set τnext ¼ τ2, otherwise, we proceed with the next
message in the sorted list (i.e., m4), until we find a task that can be
fired. Using Function 4, we guarantee that during the schedul-
ability analysis we fire the tasks in a order that can be easily
reproduced on the Silicon Hive's ASIPs.

Algorithm 1. Scheduling algorithm, δAi
for Solc.

1: activeTaskList: source tasks in Ai

2: WHILE (activeTaskList NOT EMPTY) do
3: τj≔activeTaskList:head

4: ftfj ; SsPEk ; S
f
PEk

; SsCE ; S
f
CEg:¼ Schedule τj (Function 2)

5: Update activeTaskList (Function 3)
6: Select from activeTaskList the next task τnext to be

scheduled (Function 4)
7: Set τnext as activeTaskList.head
8: end while
9: δ0Ai

: Find the maximum tfj of the sink tasks

Function 2. Schedule τj.

1: dataDependencyList≔Find data dependencies of τj
2: SfPEk≔Find last time the resource PEk has been used (τj

assigned to PEk)

3: tfdep≔Find the maximum of tfj1 for each τj1 in

dataDependencyList

4: tsj≔Find the maximum between tsdep and SfPEk
5: tfj: Calculate the finishing time
6: if first time PEk used then
7: SsPEk≔tsj
8: end if

9: SfPEk≔tfj
10: fOR EACH of the input messages mg of τj do
11: Update the number of token available on mg (token

consumed)
12: end for
13: for EACH of the output messages mg of τj do
14: Update the number of token available on mg (token

produced)
15: if mg connect τj to a task in a different cluster then
16: Schedule mg on the bus CE
17: if first time CE used then
18: SsCE≔tsmg

19: end if

20: SfCE≔tfmg

21: end if
22: end for

Function 3. Update activeTaskList.

1: for EACH of the input messages mg of τj do
2: if NOT enough token in input then
3: Remove τj from activeTaskList
4: end if
5: end for
6: for EACH of the output messages mg of τj do
7: Identify target task τj1 (connected to mg)

8: for ALL input messages mg1 of τj1 do
9: if enough token in input then
10: Add τj1 to activeTaskList
11: end if
12: end for
13: end for

Function 4. Select from activeTaskList, the next task τnext to be
scheduled.

1: if First invocation of Function 4 then
2: for EACH of the messages mg of Ai do
3: idealRate[mg]:¼ Calculate (Total number of firing of

target task of mg)/(Total number of firing of source task of
mg)

4: end for
5: end if
6: for EACH of the messages mg of Ai do
7: realRate[mg]:¼ Calculate (actual number of firing of target

task of mg)/(actual number of firing of source task of mg)

Fig. 8. (a) Input SDFG, (b) idealRate for each message of the SDFG, (c) results of the first eight iteration of Function 4.
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8: distanceRate[mg]:¼ Calculate relative error between
realRate[mg] and idealRate[mg]

9: end for
10: sortedMessagesList≔Sort messages in descending order

based on the distanceRate
11: for EACH of the messages mg in sortedMessagesList do
12: if realRate½mg�4 idealRate½mg� then
13: τtemp≔source task of mg

14: else
15: τtemp≔target task of mg

16: end if
17: if τtemp is in activeTaskList then

18: τnext¼τtemp

19: exit
20: end if
21: end for
22: τnext≔last task that added to activeTaskList

4.2. Schedulability analysis

Our schedulability analysis determines the likelihood of a
clustering solution to be schedulable once the corresponding
multi-ASIP platform is implemented. With our UM, the WCET of
each task is modeled with a stochastic variable; therefore, we
cannot calculate the schedule table and perform a schedulability
check. Instead, we can perform a schedulability analysis to
determine the probability of having a schedule length δAi

that
meets the deadline. Thus, the probability that an application Ai

would meet the deadline di
iter is defined as the schedulability

probability p¼ PðδAi
rditeri Þ.

The schedulability analysis using stochastic variables is done
combining the scheduling algorithm presented in Section 4.1 and
Monte Carlo simulation (MCS). We use MCS to extract n random
samples of Cj for each task τj according to the normal distribution
of the WCET. For the messages, we have arrays that contain n equal
values, i.e., the transmission time Cmg associated to the message.
This means that for evaluating a task clustering solution, we run n
times the scheduling algorithm and we collect the results of the
iterations to obtain the schedulability probability.

Note that even if we use the same naming convention for the
stochastic variable Cj and for the array of n elements that are
modeling the probability distribution of the variable, we use the
boldface formatting to indicate the n-element array (the same
convention applies to the WCET of a message and its correspond-
ing n-element array).

The operations needed by our analysis are þ(sum), � (sub-
tract), n (multiply) and max (maximum element selection). Each
operation is performed element by element on arrays of n samples.

In our analysis we consider both task level and pipeline parallelism
at macro-architecture level (among different ASIPs and interconnec-
tions). This analysis is executed during DSE and wewant to reduce the

computation time for the evaluation of a single clustering solution (as
Monte Carlo simulation is already time consuming). Therefore instead
of estimating the schedulability probability for a SDFG Ai that is
periodically repeated iteri times (as explained in Section 2.1), we
perform two separated analysis. First, we perform a schedulability
analysis of Ai for a single iteration (iteri ¼ 1) that we indicate as δ0Ai

.
Second, we use the output of this first analysis and the pipeline
properties to estimate the schedulability probability for the required
number of iterations (e.g iteri¼5) to obtain δAi

. We call these two
analysis Task-Level Analysis (TLA) and Pipeline Analysis (PA). The TLA
uses the scheduling algorithm defined in Section 4.1.

In the following subsections, we use the application in Fig. 9a as an
illustrative example of our schedulability analysis with stochastic
variables. For simplicity we assume that each task produces and
consumes a single token and that it is fired a single time. Additionally
we set iter¼3. We cluster the application in Fig. 9a on a two-ASIP
platform according to the task clustering in Fig. 9b where tasks are
assigned to PE1 and PE2 and the messages are assigned to the bus
(indicated as a communication element, CE).

4.2.1. Example of task-level analysis
Fig. 10 shows the TLA for the example in Fig. 9. We perform a

schedulability analysis of a single iteration of the entire SDFG. For
each firing of a task or execution of a message we calculate its
starting and finishing time. For a task τj, we indicate the starting
time as tsj and the finishing time as tfj . For a message mg, we use
the symbols tsmg

and tfmg
. Each starting and finishing time is a

stochastic variable and is represented by an array of n samples. The
maximum finishing time of all sink tasks is the output of the TLA,
δ0Ai

. When multiple tasks and messages are assigned to the same
resource and are ready for execution, their scheduling order is
determined by our scheduling algorithm presented in Section 4.1
(Function 4). For this analysis we use the operators max and þ
(described in Section 4.2).

When it starts, the TLA identifies the tasks that can be fired (i.e.,
source tasks and transformer tasks that have enough tokens at
their input edges). For the example in Fig. 10, we assume that the
WCET of source and sink tasks is equal to zero and we also assume
zero bits of data for the mso and msi. Note that the designer can
include the source and sink tasks in the schedulability analysis
specifying an input option to the DSE tool.

We schedule the source task (τso) and the output message (mso)
and we set their starting and finish times to zeros. Then we can
schedule τ1: its starting time ts1 is given by the maximum of the
finishing times (we apply the max operator) of all the tasks and
messages that τ1 depends on, in this case only mso. The finishing
time tf1 of τ1 is given by the sum of the estimated starting time and
the n samples extracted by the WCET probability distribution of
task τ1, i.e., ts1þC1 (þ operation). We can then schedule the
remaining tasks following the same rules. All steps are described
in Fig. 10. The finishing time of task τsi is a set of n samples that

Fig. 9. Example of application and clustering for δAi
calculation.
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corresponds to δ0Ai
. The algorithm and functions used for TLA are

described in Section 4.1 (Functions 2–4).
During the TLA, we also collect additional information that is

needed by the PA. To estimate the pipeline parallelism at macro-
architecture level, we need to identify the size of the pipeline
stages. In our case, each pipeline stage S corresponds to an
hardware resource, i.e., PEs and CE. We use SPEk (or SCE) to indicate
the size of a pipeline stage: these are also stochastic variables and
their probability distribution is modeled by a set of n samples
(obtained through MCS). We estimate the size of the pipeline stage
SPEk as described in Eq. (1), where SsPEk

and SfPEk
represent the

probability distribution of the first and last time the resource PEk
has been used during the TLA. We use the � operator between the
MCS n-element arrays. More precisely, SsPEk

is equal to the starting

time of the first task scheduled on PEk (first firing of the task),
while SfPEk

is equal to the finishing time of the last task scheduled
on PEk (last firing of the task). For example, for PE2 in Fig. 11a and b
we have SsPE2

¼ ts2 and SfPE2
¼ tf4. The same approach is used for the

messages to evaluate SCE

SPEk
¼ SfPEk

�SsPEk
ð1Þ

4.2.2. Example of pipeline analysis
In general, the pipelined execution of N elements can be

estimated as the sum of the time required by the first element
to go through the entire pipeline plus the time required by the
other ðN�1Þ elements to complete their execution when all
pipeline stages are fulfilled. When the stages of the pipeline have
different sizes, the time needed for the elaboration of one of the
ðN�1Þ elements corresponds to the stage of the pipeline with the
maximum size. We use this definition of pipelined execution to
define our PA. The time required by the first element to go through
the entire pipeline is the δ0Ai

produced by the TLA. From the TLA we
also have the probability distributions modeling the WCET of each
pipeline stage (SPEk or SCEk ). Then we can apply Eq. (2) to obtain the
set of n samples modeling the biggest pipeline stage Smax and Eq.
(3) to get δAi

. In Fig. 11b and c, there is an example of the different
pipeline stages and of the computation of the n-element array δAi

.
Having the n-element array, we can calculate the distribution of
the n samples and obtain the CDF associated to δAi

Smax ¼maxðSPE1 ;…; SPEPCmax
Þ ð2Þ

δAi
¼ δ0

Ai
þSmaxnðiteri�1Þ ð3Þ

The PA can be applied to speed up the schedulability analysis only
if there are no data dependencies between successive iterations of the
SDFG. In case of dependencies, it is possible to use TLA to compute
the schedulability analysis for all the iterations of the SDFG; the
main disadvantage is a higher computation time to perform the
schedulability analysis.Fig. 10. Calculation of the δAi

for the example in Fig. 9.

Fig. 11. Calculation of the δAi
for the example in Fig. 9.
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4.2.3. Comparison of clustering solutions
Given the δAi

of multiple task clustering solutions, we compare
them calculating their probability of meeting the deadline di

iter. Let
us consider the task graph in Fig. 4a. The CDFs of the WCET of the
tasks are in Fig. 5a. We evaluate two clustering solution: Sol1
(Fig. 4b) and Sol2 (Fig. 4c). The resulting p¼ PðδAi

rditeri Þ are shown
in Fig. 5b: Sol1 has a probability pi of 0.82 while Sol2 of 0.03. This
indicates that the first clustering solution is much more likely to
meet the application deadline diteri ¼ 65 when the platform is
synthesized. Additionally, during DSE, we may need to compare
clustering solutions with the same probability (e.g. Fig. 5c where
both solutions have p� 1 for a deadline diteri ¼ 80). To discriminate
between these solutions we use the inverse of the CDF, the
quantile function C0:5 ¼ P�1ðp0:5Þ: we select the solution Solid that
has the smallest WCET C0:5 at a probability p0:5 ¼ 0:5. In the
example in Fig. 5c, the value of quantile function at p0:5 is 63 time
units for Sol1 and 72 time units for Sol2. Therefore during our
exploration we will select Sol1.

4.3. Evolutionary algorithm

We use a Steady State Evolutionary Algorithm (SSEA) [42] to
decide the clustering of tasks. SSEA takes as input the application
(including the uncertainty model), the legacy components and
task assignment constraints, and the maximum number of ASIPs
allowed, PCmax. The algorithm returns one or more task clustering
solutions, which maximize the schedulability probability p, under
the given cost constraint PCmax. When multiple solutions have the
same probability we select the one with the smaller quantile
function P�1ðp0:5Þ as discussed in Section 4.2.3.

SSEA is inspired from the process of natural evolution, where a
set of solutions is called a population and each solution is encoded
using a string called a chromosome. The population is evolved by
performing recombination and mutation, and the population is
replaced with the offspring population, which has better fitness
according to the cost function. SSEA has been chosen because it is
suitable for the case when the computation of the cost function is
time-consuming due to MCS (a small portion of the population is
replaced at each new generation). The algorithm works by adding
the offspring of the individuals selected from each generation to
the pre-existing one, so individuals are retained between
generations.

We define the chromosome (a single clustering solution) as an
array of tasks and messages; the value of each element (gene)
represents the identifier of the PE or bus on which the tasks and
messages are respectively clustered. We assume that a task is
always assigned to the same processor for all its firings. We use a
two-point crossover operator [42]. The parameters used for the
execution of the SSEA are crossover probability Pc, mutation
probability Pm and the population size Pop. SSEA finishes when a
given time-limit has been reached (r30 min). The tuning of these
parameters has been done running multiple executions of the
algorithm with different synthetic applications. The parameters
used for the execution of the SSEA are Pc ¼ 30%; Pm ¼ 10% and
Pop¼100. Using MCS together with evolutionary algorithms may
lead to scalability problems. In order to reduce the impact of MCS
on the computation of the cost function (i.e. our schedulability
analysis), we have moved the generation of the n random samples

outside of the DSE loop. In this way, we extract them only once
(during the initialization phase of the evolutionary algorithm),
then we store them and we re-use them for the evaluation of
every design point.

5. Experimental evaluation

5.1. Validation of the normal distribution for UM

In this section we describe how we have validated the pro-
posed WCET uncertainty model for which we use a normal
distribution. We have performed two different types of
evaluations:

1. We have considered one task at a time and, using an ASIP
simulator, we have verified the distribution of the WCETs
obtained from running the task on a considerable number
(� 500) of ASIP micro-architecture configurations.

2. We have considered an entire application Ai and we have
verified that the normal distribution enables our DSE to find
the best task clustering solution. We have substituted the
normal with a Gumbel and uniform distributions. We have
compared the results obtained with a reference solution found
by a DSE in which the WCET of each task is a deterministic and
well-known value.

In the next subsections, we present the details of evaluations 1 and 2.

5.1.1. Evaluation 1
We use this evaluation to verify the probability distribution of a

single task. We have applied this evaluation to two tasks, τjpeg and
τmp3 of different sizes and complexities. τjpeg contains the sequen-
tial code of a JPEG decoder [43], while τmp3 contains the sequential
code of a MP3 decoder, part of the MAD library [44].

We are interested in determining how the WCET of these tasks
varies depending on the micro-architecture features, and if our
WCET uncertainty model proposed in Section 2.4 is able to capture
this variation. We have run these tasks on a VLIW architecture
similar to the ASIP architectures considered in this paper. We have
used the VLIW Example (VEX) [45], which is a VLIW compiler and
simulator developed at HP Laboratories. VEX is highly configur-
able; we have used a set of configurations which captures the
variability of a micro-architecture design, considering the features
of VLIW processors available on the market (e.g., [46]) and the
characteristics of the tasks considered. Table 2 presents the micro-
architecture design space used for the experiments. Thus, we have
varied the number of arithmetic and logic units (ALU), multipliers
(MUL), registers in the register file (RF), the issue, load and store
slots, the data cache size and the data cache line size. For each
micro-architecture configuration, VEX performs the compilation of
the C code of the task, simulates its execution and returns the
number of execution cycles.

Using the parameters in Table 2 we have evaluated a large
number of micro-architecture configurations. In total, we have
simulated 490 micro-architecture configurations for the MP3
decoder task and 560 for the JPEG decoder task.

Table 2
Micro-architecture features explored.

Task Issue width num. ALU num. MUL RF size Load slot Store slot

MP3 decoder 1, 2, 3, 4, 5, 6, 7, 8 4, 5, 6, 7, 8 2, 3, 4, 5, 6, 7, 8 32, 64 4 2
JPEG decoder 2, 3, 4, 5, 6, 7, 8 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8 32, 64 4 2
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For each micro-architecture configuration, we have compiled
and run the task. We have used the m3explorer tool [47] for
performing DSE in an automatic way; m3explorer is a generic tool
for DSE that can be interfaced to any simulation/evaluation tool
using XML files. We have used the tool to perform an exhaustive
DSE. Using scripting languages, we have created the interfaces
between VEX and m3explorer: the scripts automatically generate
the micro-architecture configuration file and collect the results
(number of cycles) produced by VEX. For each micro-architecture
configuration explored, we assume a frequency of 100 MHz to
calculate the execution time in ms (given the characteristics of the
micro-architectures explored, we can safely assume a frequency of
100 MHz by comparison with other commercial VLIW processors,
e.g., [46]). For a particular micro-architecture, after simulations
with multiple input files, we have considered as WCET the largest
value of the execution time. We know that such a value does not
represent the WCET, which is a theoretical upper bound deter-
mined through analysis, but we believe this value is a good
approximation for our model validation experiments.

The results for the MP3 decoder are presented in Fig. 12 and
those for JPEG in Fig. 13.

Each figure shows two CDF curves: the CDF resulted after
experiments (depicted with a continuous blue line) and the CDF
obtained by using our model (the green dotted line). Our WCET
model (the green dotted CDF) is obtained as explained in Section
2.4, considering a normal distribution between a lower bound Cl

and an upper bound Cu of the WCET (we took the fastest and
lowest micro-architecture configurations). The micro-architec-
tures, corresponding to the upper and lower bounds of the WCET
for the two tasks, are summarized in Table 3.

This experiment shows that the WCET of multiple micro-
architecture configurations can be modeled as a normal distribu-
tion and that our proposed uncertainty model is a valid and safe
approximation. Note that the CDF of our model leads to more
pessimistic (larger) WCETs compared to experimental measure-
ments. This is acceptable as the WCETs produced by our experi-
ments might be optimistic (smaller), since they are not a
theoretical upper bound obtained through analysis. It is important
to mention that the proposed WCET uncertainty model is used
only for design space exploration, and not for providing timing
guarantees in the final implementation.

5.1.2. Evaluation 2
With this evaluation, we want to verify if a WCET model based

on the normal distribution can guide our DSE and find the best
clustering solution when compared with other probability dis-
tributions and with a deterministic DSE in which we know the
exact value of the WCET of each task (i.e., there is no probability
distribution associated with it).

We consider three probability distributions: normal (N), Gum-
bel (G) and uniform (U). We select the Gumbel distribution as it is
commonly used to model the WCET [48,49] and the uniform
distribution for its simplicity. In Fig. 14 there is an example of the
CDF for normal, Gumbel and uniform distributions.

Given an application Ai, we have modeled the WCET of its tasks
using the three distribution types (we have available the ½Cl

j;C
u
j � of

each task τj) and we have run our DSE. Additionally, we have run a

Fig. 12. Comparison of our proposed CDF (PðCioxÞ) with the simulation results
obtained with VEX for MP3 decoder task. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 13. Comparison of our proposed CDF (PðCioxÞ) with the simulation results
obtained with VEX for JPEG decoder task. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Table 3
Microarchitectures associated with the WCET upper and lower bounds.

Task WCET Issue
width

num.
ALU

num.
MUL

RF
size

Load
slot

Store
slot

MP3
decoder

Cl 5 8 5 64 4 2

Cu 1 4 2 64 4 2
JPEG

decoder
Cl 7 5 3 64 4 2

Cu 2 8 6 64 4 2

Fig. 14. Cumulative distribution function (CDF).
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deterministic DSE: having well-known values for the WCET of the
tasks, we can calculate the exact scheduling length.

DSEUM
type indicates our DSE with UM where type is the distribu-

tion used (type¼ fN;G;Ug); DSEdet indicates the DSE using deter-
ministic WCETs. We want to compare the task clustering solutions
obtained with DSEUM

type and DSEdet; therefore we need to guarantee
that the two DSE are comparable. We need to run the DSEdet
multiple times using different WCETs for each tasks and we need
to use the same optimization function for both DSE. In the
deterministic DSE the optimization function is the minimization
of the scheduling length. Instead, in our DSE with UM, the
optimization function is the maximization of the probability of
meeting the application deadline. We have modified our DSEUM

type,
so that the exploration is guided by the minimization of the
scheduling length at different probabilities. We use the inverse of
the CDF, i.e. the quantile function Ci ¼ F �1ðpÞ, to obtain the Ci of a
clustering solution at a specific probability pi, where piAPi ¼
f0:02;0:50;0:98g. We have selected three different probabilities to
take the shape of the different CDFs into account and not to favor
any distribution types.

For each pair {pi, type} we have run the DSEUM
type for a total of

nine times. For each execution we have obtained a different task
clustering solution.

Then we have run the DSEdet multiple times: for each execution
of the DSEdet and for each task τj in the application Ai, we assign a
deterministic WCET randomly extracted from the range ½Cl

j;C
u
j �. We

assume that this WCET corresponds to a specific ASIP micro-
architecture configuration. For each execution of the DSEdet, we
have saved the set of WCETs used. We have run the DSEdet
5000 times.

Once we have collected all the results from the nine executions
of the DSEUM

type and of the 5000 executions of the DSEdet, we need to
compare them. The schedule length obtained with DSEdet repre-
sents the optimal scheduling that we can obtain when knowing
the exact values of the WCET for each task. We take the nine
clustering solutions produced by the DSEUM

type and we calculate the
scheduling length of each of them using the 5000 sets of WCET
generated during the DSEdet. This means that we obtained 5000
scheduling lengths for each of the nine task clustering solutions.

Then we have compared the scheduling length of the 5000
clustering solutions found through DSEdet with the scheduling
length of the clustering solutions found with DSEUM

type, which we
have evaluated with the same sets of WCET values. This compar-
ison is used to identify which probability distribution type allows
finding a task clustering solutions with the closest scheduling
length to the one found with DSEdet.

We have run this evaluation on six synthetic case studies,
which characteristics are specified in Table 4. In Table 5, for each
case study, and for each pair {pi,type} we have the average relative
error in the scheduling length obtained with the DSEUM

type when
compared to the DSEdet. The average relative error is calculated as
follows. Let us consider the task clustering obtained using a
normal distribution (DSEUMN ) at pi¼0.50. We have evaluated this
task clustering solution with one of the sets of WCETs generated
during the DSEdet and we have obtained its scheduling length. We
have compared it with the scheduling length obtained by the
DSEdet when using the same set of WCETs and we have calculated

the relative error among them. We have repeated this comparison
for each of the 5000 sets of WCETs. The average of these relative
errors returns the average relative error.

We can observe that the uniform distribution is the one with
the bigger errors. Even if normal and Gumbel distributions return
comparable errors for some case studies, the first one is a better fit
for most of them. Figs. 16 and 17 represent the distributions of the
relative error, i.e. percentage difference in the scheduling length
for case studies 1 and 4 (Table 4). For each case study, the normal,
Gumbel and uniform distributions are represented. For each
distribution, we have grouped together the results obtained for
the different pi, for a total of 15,000 evaluated schedulings. The
normal distribution is the one that returns schedulings with
length closer to the DSEdet. In fact for all case studies is the one
with the highest number of scheduling length difference equal
zero. For example, let us observe Fig. 16. The histogram containing
the results obtained with a normal distribution has most of the
schedulings (� 8000) with 0% error when compared to the
schedulings obtained with DSEdet. This value decreases to
� 3000 for Gumbel and � 1800 for the uniform distributions.
Depending on the case studies, the distribution of the errors can
vary: we observed that for the case studies with a higher number
of tasks, the errors are centered around zero, but are distributed
on a wider range (see Fig. 17). However, in all cases, we verified
that the normal distribution produces scheduling lengths closer to
the one obtained using a deterministic DSE.

5.2. Evaluation of the DSE with UM

To evaluate our approach for multi-ASIP platform synthesis, we
have used three real case studies taken from the multimedia and
medical domains: the motion JPEG (MJPEG) encoder [50], the
Spatial Coding (SC) algorithm from MPEG4 encoder (property code
of STMicroelectronics [51]) and the Electrocardiogram (ECG)
applications (code provided by [52]).

We have applied the design flow6 shown in Fig. 15 to the three
applications: starting from the C code we have implemented a
multi-ASIP system using our DSE and UM to determine the task
clustering and the number of ASIP to use.

The design flow requires as inputs:

� the sequential C code of the application Ai,� the deadline di
iter of the application,

� the desired working frequency f for the multi-ASIP system,
� initial platform description with the corresponding platform

cost (PCmax) and bus types that we want to explore.

For our case studies, we are limiting the interconnection explora-
tion to a single bus type, b32f (i.e. a 32 bit width bus with the same
frequency f of the multi-ASIP system) as that is the one that we

Table 4
Case studies for the comparison of CDF types.

Case study ID 1 2 3 4 5 6

No. of apps. 4 5 18 10 39 48
No. of tasks 14 15 24 26 44 60
No of ASIPs 11 14 14 11 10 13

Table 5
Results of the comparison of CDF types (% average relative error).

Case
study ID

{0.02,
N}

{0.50,
N}

{0.98,
N}

{0.02,
G}

{0.50,
G}

{0.98,
G}

{0.02,
U}

{0.50,
U}

{0.98,
U}

1 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.04
2 0.06 0.13 0.06 0.11 0.04 0.07 0.11 0.11 0.11
3 0.16 0.05 0.05 0.18 0.05 0.05 0.08 0.16 0.98
4 0.05 0.06 0.06 0.08 0.22 0.05 0.07 0.06 0.15
5 0.07 0.09 0.11 0.10 0.09 0.13 0.12 0.13 0.12
6 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.08

6 This design flow has been proposed in the European research project ASAM
[53] for the automation of the design and the construction of ASIP-based MPSoCs
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have available during platform synthesis.7 The input constraints
for each of the analyzed case studies are summarized in Table 6.

In the design flow, we use the support of external tools. We use
Compaan tool [54] for the partition of the application into tasks.
Compaan elaborates sequential C code and builds the correspond-
ing Kahn Process Network (KPN). From Compaan KPN model of
the application, we build the corresponding SDFG.

Then we use the code analysis tool described in the ASIP DSE
(Phase 1 of ASAMmicro-architecture DSE) of [30] to determine the
upper and lower bounds (Cl and Cu) for each of the task of the
application. The code analysis tool profiles the application code
(using LLVM compiler [55]) and, for each task, it estimates the
number of cycles required by a sequential execution (Cu) and by a
parallelized execution (Cl) of the code. As mentioned in Section 2.1,
the source and sink actors of each applications are used for data
initialization (i.e. for writing the input data into a local or external
memory of the multi-ASIP platform that we want to design), and
for providing feedback to the user about the completion and exit
status of the application. For this reason, we consider their
execution time equal to zero and they will not be mapped to
any ASIPs.

Then we can build the CDF for each task using the estimated Cl

and Cu and the input frequency f, and execute our macro-

architecture DSE to identify the task clustering solution with
higher chances of being schedulable after synthesis. For each
cluster of tasks found, we invoke the micro-architecture DSE
(Phase 2 of ASAM micro-architecture DSE [30]). It defines a single
ASIP given as input a task cluster and a library of predefined ISs
built using Silicon Hive tools. Silicon Hive ASIPs are single-
threaded VLIWs that are configurable depending on the function-
alities required by the applications. An ASIP is composed of one or
more ISs. The micro-architecture DSE uses a library of predefined
ISs: they contain a RF, multiple functional units and a data
memory. Moreover there is a default IS that is always included
and contains the program counter, the instruction memory, a
default data memory (also used as stack memory) and a fixed
number of FIFO ports. After the definition of the ASIP micro-
architecture, we use the Silicon Hive tools to build a retargetable
compiler for the ASIPs and a cycle-accurate simulation environ-
ment for the estimation of the execution of the application C code

Fig. 15. Semi-automatic design flow for multi-ASIP synthesis.

Fig. 16. Histogram of the percentage (%) differences in the scheduling length for
case study 1. Fig. 17. Histogram of the percentage (%) differences in the scheduling length for

case study 4.

Table 6
Input constraints for MJPEG encoder, ECG and SC.

Case study d ðμsÞ f ðMHzÞ PCmax Bus type

MJPEG encoder 500,000 166 3 b16632

ECG 16,000,000 1 2 b132
SC 205,000 1600 3 b160032

7 This limitation does not derive from Silicon Hive's tools, but from our
definition of the ASIP micro-architectures.
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on the multi-ASIP platform. Silicon Hive tools allow the definition
of a multi-ASIP platform in which the ASIPs are connected among
them and to external memories through a hierarchy of buses.

In the following sections we analyze our three case studies.

5.2.1. MJPEG encoder
In the second row of Table 6, there are the input constraints for

the MJPEG encoder application: we consider the elaboration of 15
frames and a desired throughput of 30 frames per second (fps)
that give a deadline dMJPEG

15 of 0.5 s.
The SDFG of the MJPEG encoder obtained starting from the

Compaan KPN model is depicted in Fig. 18.
We have used the code analysis tool described in the ASIP DSE

(Phase 1) of [30] to determine the upper and lower bounds (Cl and
Cu) of the tasks of the application. The code analysis tool does not
return a theoretical estimation of the WCET. It returns an esti-
mated number of cycles of a profiled execution of the MJPEG
encoder. Therefore, we have run the tool with multiple input data
(frames with same size, but different content) and we took the
ones producing the highest estimated execution time. We have
used this input to set the upper and lower bounds. We consider
that these values are good enough to verify our UM as the
variability in the estimated execution time given by the different
input data is 2%.

We have used the estimated Cl and Cu and the input frequency
f¼166 MHz to build the CDFs (Fig. 19). Looking at the CDFs, it is
possible to identify the most consuming tasks and how the WCET
of each task varies depending on the exploited instruction level
parallelism. The amount of data expressed in bits of each message
is shown in Table 7. Wehave calculated the transmission time of
the messages on the bus considering the bus b32

f .
Thenwe can execute our macro-architecture DSE that performs the

schedulability analysis of different clustering solutions. We have run
the SSEA for 200 s and we have used n¼5000 for the Monte Carlo
simulation. We indicate with SolDSE the task clustering solution found
by our DSE with UM, which is available in the second row of Table 8.
SolDSE has a p� 1 (where p¼ PðδAMJPEG

od15MJPEGÞ) to meet the deadline
and uses two ASIPs. In the second row of Table 8 (columns 2–4) there
are the task clustering solution, the probability of the application to
meet the deadline and the quantile function value at a probability of
0.5 (C0:5 ¼ P�1ðp0:5Þ).

To verify our result, we have used the micro-architecture
synthesis tool described in [30] and we have obtained a descrip-
tion of the micro-architecture of the two ASIPs, each of them with
three ISs (including the default one).

Then with Silicon Hive tools, wehave implemented the two-
ASIP platform and we have mapped the application code to the
ASIPs as suggested by our UM.

Moreover, we have added two FIFOs between each couple of
ASIPs that needs to exchange data. The FIFOs are used only for
synchronization purposes while the data are transferred on the
bus. We have also adjusted our algorithm for the evaluation of a
clustering solution to be consistent with Silicon Hive simulator as
follows. We have added offsets in the schedulability analysis for
modeling the time required for starting the execution of the tasks
on the ASIPs, for modeling the synchronization time (access to the
FIFOs), and also for considering additional bus parameters as the
hand-shake time to gain access to the bus and the setup time for
transferring the data.

In columns 5 and 6 of Table 8 there are the number of exe-
cution cycles obtained from Silicon Hive simulator and the
corresponding time in μs (at a frequency f¼166 MHz). After the
synthesis of the multi-ASIP platform, we have also verified that
our implementation is schedulable.

It is important to note that our DSE works through comparison:
we can evaluate different task clustering solutions and determine
which one has the highest chances to produce a schedulable
implementation once the final platform is available, but we are
not guaranteeing the schedulability of the application. We use our
approach in the very early phases of the design when there is no
implementation available for the platform and it can help the
designer to determine the platform composition and the partition-
ing of the application. To demonstrate the effectiveness of the
result provided by our DSE (SolDSE), we compare it with other
clustering solutions that we have arbitrarily selected: we evaluate
them with our schedulability analysis with UM and we implement
and simulate them with Silicon Hive's tools. The results that we
have obtained are shown in Table 8; they confirm that our DSE is
able to determine which solution is better than the other. The last
column in Table 8 shows that only SolDSE is schedulable.

We have arbitrarily selected those task clustering solutions
with two ASIPs (Sol1 and Sol2) that are a fair alternative to the
clustering solution found by our DSE. Additionally, we have
verified the performance of a solution with a single processor
(Sol4) and the performance that can be achieved using three ASIPs
(Sol3 and Sol5). We have selected these task clustering solutions
considering that mainDCT is the task with the highest number of
cycles, and, therefore, there should be a dedicated ASIP for its
execution. Additionally, it is better to cluster successive tasks on

Fig. 18. SDFG model for MJPEG encoder.

Fig. 19. Cumulative distribution functions for the tasks of the MJPEG encoder
application (with f¼166 MHz).

Table 7
Message sizes (in bits) for MJPEG encoder

m1 m2 m3 m4 m5 m6

128 8192 8192 8192 4096 32
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the same ASIP: for example, clustering mainDCT and mainVLE
together (and mainQ and mainVideoOut together) is inconvenient
as it forces multiple exchanges of data between the two ASIPs and
produces bigger pipeline stages at platform level (this implies also
that the processors will stall waiting for the data). Moreover, we
have verified that using an additional processor (Sol3 and Sol5),
there are no improvements in the performances: with having a
dedicated processor formainDCT and splitting mainVLE,mainQ and
mainVideoOut into two processors we cannot not speed up the
execution. In fact mainDCT is still the task defining the speed of the
entire system and we have obtained a higher number of cycles due
to the additional communication and synchronization time intro-
duced by the extra processor. These results are confirmed by our
schedulability analysis and the simulation with Silicon Hive's tools.

When multiple solutions have the same probability, we prefer
the one with the smaller number of clusters and the smaller
quantile value C0:5. Sorting the task clustering solutions (from the
best to the worst one) according to our schedulability analysis, we
find that their order matches the results obtained with the cycle-
accurate simulator from Silicon Hive. This shows that our schedul-
ability analysis with UM is able to properly evaluate the different
task clustering solutions and find the ones that are more promis-
ing for platform synthesis, supporting the designer and speeding
up the design process.

5.2.2. ECG case study
For the ECG application we follow the same design steps of the

MJPEG encoder case study (Fig. 15). The SDFG of the ECG applica-
tion is shown in Fig. 20. In Table 6 (second row), there are the
input constraints for the ECG case study. The amount of data
expressed in bits of each message is shown in Table 9.

We have run our DSE for 200 s and with n¼5000: the best
clustering solution found has a probability pECG ¼ 0:56 and uses
two ASIPs. The task clustering and its cost are summarized in the
second row of Table 10 (SolDSE). As for the MJPEG encoder case
study, we have generated the ASIPs, each of them with three-issue
slots. Then we have synthesized the cores and the platform using
Silicon Hive's tools and we have run the ECG code obtaining a
schedulable solution. Columns 5 and 6 of Table 10 show the

number of cycles and the execution time (at a frequency f¼1 MHz)
that we have obtained with Silicon Hive's simulator.

In Table 10, there are also the results of the schedulability
analysis for other task clustering solutions (Sol1, Sol2, Sol3 and Sol4)
that we have arbitrarily defined (as they are a fair alternative to
SolDSE). We have compared them with SolDSE and verified that our
DSE with UM is able to identify the best task clustering solution
previous the actual synthesis of the multi-ASIP platform. There is a
correspondence between the probability of meeting the deadline
(and the value of the quantile function) that we have obtained
with our schedulability analysis and the actual schedule length
that we have obtained from the Silicon Hive's simulator: to a
higher probability corresponds a shorter schedule length. Except
for Sol4, all solutions are schedulable.

5.2.3. SC case study
In this section, we present the Spatial Coding application (part

of MPEG4) [51]. The SDFG of the SC application is shown in Fig. 21.
In Table 6 (third row), there are the input constraints for the SC
case study: we have considered the elaboration of 5 frames, each
of them composed of 40�30 blocks.8 As we are considering a
throughput of 24 fps, for the SDFG in Fig. 21, we have a deadline
d6;000SC ¼ 205;000 μs. The size in bits of each message of the SDFG is
shown in Table 11. The design space for the SC case study is bigger
than the one of the MJPEG and ECG; hence, we need to run our
macro-architecture DSE for 1800 s. We have used n¼5000. Our
DSE has found a task clustering solution with pSC ¼ 0:99 and that

Table 8
Comparison of clustering solutions for MJPEG encoder.

SolID
DSE

Clusters p C0:5 ðμsÞ sim (cycles) sim (μs) sched

PE1 PE2 PE3

mainDCT mainQ, mainVLE, mainVideoOut – �1 292,700 79,088,561 476,437.11 Yes
1 mainDCT, mainQ mainVLE, mainVideoOut – �1 345,300 85,740,371 516,508.26 No
2 mainDCT, mainQ, mainVLE mainVideoOut – 0.85 460,100 124,194,971 748,162.48 No
3 mainDCT mainQ, mainVLE mainVideoOut �1 294,700 83,617,556 503,720.22 No
4 mainDCT, mainQ, mainVLE, mainVideoOut – – 0.77 470,800 126,635,428 762,864.02 No
5 mainDCT mainQ mainVLE, mainVideoOut �1 294,700 83,636,411 503,833.80 No

Fig. 20. SDFG model for ECG.

Table 9
Message sizes (in bits) for ECG

m1 m2 m3 m4 m5 m6 m7

32 32 32 32 32 32 96

8 We set the frequency to 1600 MHz to find a schedulable solution after the
implementation of the platform; however, we are aware that it is not a realistic
frequency and the optimization of the application code and additional processors
should be used to achieved the desired performances at a lower frequency.
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uses three ASIPs. The details of the solution found (SolDSE) are
summarized in the second row of Table 12. We have implemented
SolDSE using Silicon Hive's tools and we have obtained a schedul-
able solution that runs for 274,847,324 cycles (171,799.58 μs at
f¼1600 MHz). As for the previous case studies, to demonstrate the
validity of the solution found, we have compared it with other task
clustering solutions that are summarized in Table 12: Sol1 has a
single ASIP, while Sol2, Sol3 and Sol4 use three ASIPs. Note that

depending on the clustering solution, the ASIPs and their inter-
connections may change. Except for Sol1 that has a probability � 0
to meet the deadline, the other task clustering solutions, once
synthesized, provide schedulable implementations. Due to the
high number of tasks in the SC application, it is possible to select
multiple task clustering solutions to compare with. We have
selected Sol1 in which a single ASIP is used and task level and
pipeline parallelism (at system level) cannot be exploited. We have
selected Sol2 and Sol3 because they do not differ very much from
the task clustering found by our DSE: we have evaluated those
solutions in which the pipeline parallelism can be conveniently
exploited and in which the communication and synchronization
between processors are not the bottleneck. In particular, analyzing
Sol2, we have verified that it is not convenient to cluster other
tasks with MMTC_fquantSR, as it has the highest Cl and Cu;
therefore, clustering it with other tasks penalizes the pipeline

Fig. 21. SDFG model for spatial coding case study.

Table 11
Message sizes (in bits) for SC.

m2–m7 ; m31–m39 m28–m30 m18–m19, m23–

m24

m1, m8–m17, m20–m22, m25–

m27

2048 224 128 256

Table 10
Comparison of clustering solutions for ECG.

SolID
DSE

Clusters p C0:5 ðμsÞ sim (cycles) sim (μs) sched

PE1 PE2

Lowpass, highpass, derivative, square Integral, detect 0.56 15,783,000 13,790,796 13,790,796 Yes
1 Lowpass, highpass, derivative Square, integral, detect 0.54 15,853,000 14,000,776 14,000,776 Yes
2 Lowpass, highpass Derivative, square, integral, detect 0.52 15,928,000 14,460,733 14,460,733 Yes
3 Lowpass, highpass, derivative, square, integral Detect 0.23 16,942,800 15,934,010 15,934,010 Yes
4 Lowpass, highpass, derivative, square, integral, detect – 0.22 16,991,000 16,692,594 16,692,594 No
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parallelism (even if MBZero4 is a task with almost negligible
WCET). When we have evaluated Sol2 and Sol3 with our UM, we
have obtained a probability of 0.99 but with higher values in the
quantile function C0:5; these results are reflected in higher sche-
duling lengths. In Sol4 we have explored a clustering solution in
which the task level parallelism between tasks fxIDCT_1 and
fxIDCT_2 can be exploited. In this case we have a lower probability
(0.95) and a higher scheduling length than the previous solutions
after synthesis. Consequently, with our UM, we could determine
before synthesis which are the better solutions to consider for
implementation.

We have demonstrated that our UM and the associated DSE can
explore in a reasonable time (less than 1 h) multiple clustering
solutions and provide a good indication of which task clustering
should be selected. Even if we cannot claim to find a schedulable
task clustering solution with our UM, we have demonstrated that
we can find a clustering solution that has high probability of being
schedulable after synthesis. Additionally, we have showed that the

probability and the quantile function values can be used to
compare different clustering solutions and that the results
obtained after synthesis are consistent with our evaluations. Our
approach can offer a valid starting point for a designer that has to
implement a multi-ASIP platform in which the ASIPs have not
being synthesized yet.

5.2.4. Accuracy of Cl
j and Cu

j
In this section, we analyze the impact of the selection of the

upper and the lower bound (Cu
j and Cl

j) of each task τj. First, we
verify how accurate the Cl

j and Cu
j found by the code analysis tool

[30] are. For each case study, we have compared the upper and
lower bound values estimated by the code analysis tool (Cl

j and Cu
j )

with the number of cycles obtained for the execution of the entire
applications on a synthesized ASIP. We have used an oversized
ASIP with a large number of ISs to theoretically exploit all
instruction level parallelism of the application (the parallelism

Table 12
Comparison of clustering solutions for SC.

SolID
DSE

Clusters p C0:5 ðμsÞ sim (cycles) sim (μs) sched

PE1 PE2 PE3

MBGetLine1, DCT_{1,2}, MBZero{0,1,2,3,4,5},
MBPackGetLine{1,2}, keep2x2

MMTC_fquantSR iquantizeSR, slRow3,
MBPackGetLine{3,4}, fxIDCT8_
{1,2,3,4}, fefoIDCT8_{1,2}, srTrim,
srAddRow3, MBPack6, MBPack3

0.99 172,000 274,847,324 171,799.58 yes

1 MBGetLine1, DCT_{1,2}, MBZero{0,1,2,3,4,5},
MBPackGetLine{1,2}, keep2x2, MMTC_fquantSR,
iquantizeSR, slRow3, MBPackGetLine{3,4}, fxIDCT8_
{1,2,3,4}, fefoIDCT8_{1,2}, srTrim, srAddRow3,
MBPack6, MBPack3

– – 0 242,600 573,715,348 358,572.09 no

2 MBGetLine1, DCT_{1,2}, MBZero{0,1,2,3,5},
MBPackGetLine{1,2}, keep2x2

MBZero4,
MMTC_fquantSR

iquantizeSR, MBPackGetLine{3,4},
slRow3, fxIDCT8_{1,2,3,4},
fefoIDCT8_{1,2}, srTrim,
srAddRow3, MBPack6, MBPack3

0.99 185,400 275,255,614 172,034.76 yes

3 MBGetLine1, DCT_{1,2}, MBZero{0,1,2,3,4,5},
MBPackGetLine{1,2}, keep2x2, iquantizeSR

MMTC_fquantSR MBPackGetLine{3,4}, slRow3,
fxIDCT8_{1,2,3,4}, fefoIDCT8_1,2,
srTrim, srAddRow3, MBPack6,
MBPack3

0.99 185,500 278939,568 174,337.23 yes

4 MBGetLine1, DCT_{1,2}, MBZero{0,1,2,3,4,5},
MBPackGetLine{1,2}, keep2x2

MMTC_fquantSR,
iquantizeSR,
MBPackGetLine3,
slRow3, fxIDCT8_1

MBPackGetLine4, slRow3,
fxIDCT8_{2,3,4}, fefoIDCT8_{1,2},
srTrim, srAddRow3, MBPack6,
MBPack3

0.95 194,300 303,402,927 189,626.83 yes

Table 13
Comparison between the number of cycles estimated by the profiling tool [30] and the ones obtained from simulation for MJPEG.

Task Name Clj Cuj sim %TotCl
j

%Totsim Err 8 j%TotCl
j
�%Totsim j

mainDCT 25,695,360 71,617,920 69,815,040 51.52 55.13 3.61
mainQ 6,401,280 8,868,480 12,150,620 12.83 9.59 3.24
mainVLE 16,212,735 24,024,690 40,942,298 32.51 32.33 0.18
mainVideoOut 1,565,550 1,934,250 3,168,482 3.14 2.50 0.64
Total (cycles) 49,874,925 106,445,340 126,635,428

Table 14
Comparison between the number of cycles estimated by the profiling tool [30] and the ones obtained from simulation for ECG.

Task name Cl
j (cycles) Cu

j (cycles) Sim (cycles) %TotCl
j

%Totsim Err j%TotCl
j
�%Totsim j

Lowpass 400,015 450,010 750,016 3.39 4.55 1.16
Highpass 450,084 840,021 1,330,203 3.81 8.08 4.26
Derivative 10,000 10,000 350,012 0.08 2.12 2.04
Square 10,000 10,000 100,000 0.08 0.61 0.52
integrative 10,830,071 20,370,915 12,753,683 91.78 77.42 14.36
Detect 99,614 155,070 358,661 0.84 2.18 1.33
Total (cycles) 11,799,784 21,836,016 16,472,592
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during the real execution can be lower depending on the compiler
optimization). For the comparison, we have used the estimated (Cl

j
and Cu

j ) and simulated (sim) values of all iterations of the tasks. The
values obtained for MJPEG encoder, ECG and SC are summarized in
columns 2–4 of, Tables 13–15, respectively. The Cl

j; C
u
j and sim

values for each task τj are quite different and the sim values in
most of the cases are not included in the range [Cl

j;C
u
j ] as expected

(when we compare the Cu
j with the results obtained with simula-

tion, we have relative errors up to 38% for MJPEG, 41% for ECG and
up to 98% for SC).

These differences can be justified by considering some inaccu-
racy in the estimation tool described in [30]. The analysis of the
accuracy of the code analysis tool is provided in [56]. For the case
studies analyzed in [56], there is less than 10% underestimation for
the evaluated number of cycles compared to the simulated one. In
our case, the biggest differences between estimation and simula-
tion results can derive from the higher complexity of the applica-
tion code in which LLVM and Silicon Hive's compilers perform
different types of optimization. Another factor that impacts the
estimation is the number of stalls (e.g. hardware stalls) that are
considered by Silicon Hive simulator and not by the code analysis
tool. Moreover in Silicon Hive simulation, there are some cycles of
overhead for starting the tasks execution and for synchronization
with the host processor; these cycles are ignored by the code
analysis tool (however, we are considering these extra cycles
during our scheduling analysis to compensate the code analysis
tool evaluation). It is also important to mention that the code
analysis tool provides better results when we are comparing the
execution of the entire applications and not the single contribu-
tion of the different tasks: in this case we have errors up to 16% for
MJPEG, 32% for ECG and 18% for SC.

After these analyses we have verified which elements were
influencing our design space exploration and our UM to understand
why with such relevant errors in the upper and lower bound
estimations, it is still possible to get good results for our case studies.
We have noticed that the absolute value of the Cl

j and Cu
j of each task is

not relevant. On the contrary it is relevant its relative value when
compared to the other tasks in the application (this is true until a
certain extent as there is also the influence of the messages and the
interconnection network). Therefore, we have evaluated the contribu-
tion of each task to the total number of cycles of the application: we
have performed this check for Cl

j and sim values. We have used the
lower bound value because it corresponds to the most parallelized
version of the application and we have run the entire application on an
ASIP with a large number of ISs, also to get the most parallelized

execution. The results obtained are available in columns 5 and 6 of
Tables 13 (MJPEG encoder), 14 (ECG) and 15 (SC). Using the relative
contribution of each task to the total number of cycles (for the
estimated Cl and simulated sim), we have calculated the absolute
error between them. The absolute error is available in column 7 of
Tables 13 (MJPEG encoder), 14 (ECG) and 15 (SC). For each task, we
have verified how much it contributes to the total number of cycles in
the lower bound estimation compared to the task contribution to the
total number of cycles in the Silicon Hive simulation (sim). According to
this evaluation, the estimated upper bound shows which tasks are
more time consuming than others and this is reflected also in the
simulation results on a real ASIP. For our case studies, we have gotten
errors up to 3.31% for MJPEG encoder, 14.36% for ECG and 29.06% and
for SC. Additionally, we have run an experiment to check how big
could be the difference between the estimated and simulated perfor-
mance values before having an impact on the DSE results. We have
considered the MJPEG encoder case study that has the most accurate
estimated values for the Cl

j and Cu
j . We have increased the upper and

lower bounds for each task of 10%, 20%, 35% and 45%. Then we have
run our DSE and in all cases we have found the same task clustering
obtained with the original values (with different probability and
different quantile values at 50%). This suggests that our DSE is not
sensitive to quite relevant variations in the upper and lower bound
estimations.

6. Conclusion

In this paper we have proposed an approach for the synthesis of
multi-ASIP platforms for streaming applications. We have modeled the
applications as SDFGs in order to exploit both task level and pipeline
parallelism. The synthesis of a multi-ASIP platform includes defining
the number and type of ASIPs and their interconnection. Each ASIP is
synthesized according to the cluster of tasks that it has to run. At the
same time, to explore different platform alternatives, we need to
perform a schedulability analysis of the application on the candidate
platform. This schedulability analysis requires information about the
WCET of the tasks running on a certain ASIP. This information is not
available as an ASIP can be defined (and optimized) only after knowing
the cluster of tasks that it has to run. Therefore, we have observed a
circular dependency that we have broken using an Uncertainty Model
for the WCET. The UM captures the WCET of a task running on a wide
range of possible ASIP micro-architecture implementations.

We have developed a schedulability analysis that uses the UM
and evaluates different task clustering solutions selecting the one

Table 15
Comparison between the number of cycles estimated by the profiling tool [30] and the ones obtained from simulation for SC.

Task name Cl
j (cycles) Cu

j (cycles) sim (cycles) %TotCl
j

%Totsim Err j%TotCl
j
�%Totsim j

MBPackGetLine3 2,556,000 3,708,000 16932000 0.83 2.95 2.12
fxIDCT8_{1,2,3,4} 7,680,000 22,416,000 23,688,000 2.50 4.13 1.62
keep2x2 792,000 936,000 8,040,000 0.26 1.40 1.14
srAddRow3 768,000 1,680,000 2,496,000 0.25 0.44 0.18
srTrim 5,856,000 7,008,000 6,240,022 1.91 1.09 0.82
iquantizeSR 10,908,003 15,090,000 37,308,000 3.56 6.51 2.95
MBPack3 1,500,000 2,268,000 12,720,000 0.49 2.22 1.73
MBPackGetLine{2,4} 1,806,000 2,574,000 17,700,000 0.59 3.09 2.50
MBPack6 750,000 1,134,000 12,720,000 0.24 2.21 1.97
slRow3 768,000 1,248,000 2,016,000 0.25 0.35 0.10
fefoIDCT8_{1,2} 768,000 1,824,000 3,216,000 0.25 0.56 0.31
MMTC_fquantSR 236,579,118 312,956,828 275,885,112 77.17 48.10 29.06
MBPackGetLine1 2,094,000 2,910,000 17,700,000 0.68 3.09 2.40
MBZero{0,1,2,3,4,5} 36,000 72,000 6,048,000 0.01 1.05 1.04
DCT_{1,2} 3,360,000 10,320,000 13,488,000 1.10 2.35 1.26
MBGetLine1 1,296,000 1,728,000 12,624,000 0.42 2.20 1.78
Total (cycles) 306,581,121 469,928,828 573,521,134
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which has a high chance of meeting the application's deadline
under an imposed platform cost. Through experimental evaluation
we have validated the use of a Normal distribution for the UM.
Additionally, we have used three real case studies to demonstrate
the effectiveness of our DSE. We compared the results obtained by
our DSE with the ones obtained after the multi-ASIP synthesis
with Silicon Hive's tools. Our experimental results have shown
that by considering the range of possible ASIP micro-architectural
implementations during DSE, we can identify the task clustering
solution that should be considered for platform synthesis.

Additional note

The results obtained using Silicon Hive's tools should not be
used in any way as a reference to evaluate Intel technology or to
compare Silicon Hive's technology with other commercial and/or
research tools, as only a subset of the functionalities and optimiza-
tion offered by the tools have been used and/or made available
under our University license agreement.
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