2" Mediterranean Conference on Embedded Computing ,I,-'I" MECO - 2013

Budva, Montenegro

Hierarchical DSE for multi-ASIP platforms

Laura Micconi*, Rosilde Corvinof, Deepak Gangadharan*, Jan Madsen*, Paul Pop* and Lech Jozwiak+

Technical University of Denmark*, Technische Universiteit Eindhoven, The Netherlands¥
E-mail: Imic@dtu.dk, r.corvino@tue.nl, dega@dtu.dk, jama@dtu.dk, paupo@dtu.dk, 1.jozwiak@tue.nl

Abstract—This work proposes a hierarchical Design Space
Exploration (DSE) for the design of multi-processor platforms
targeted to specific applications with strict timing and area
constraints. In particular, it considers platforms integrating
multiple Application Specific Instruction Set Processors (ASIPs)
and each ASIP is automatically synthesized and tuned for a
specific set of tasks. The definition of the platform (number of
processors and their interconnection) and of the micro-
architecture of each single ASIP are tightly coupled. Tasks can be
allocated to the different ASIPs only knowing their performance
and therefore the ASIP micro-architecture. At the same time an
ASIP can be derived only knowing the functionality that it has to
implement, i.e. the tasks that are assigned. We break this circular
dependency with an iterative hierarchical DSE, applied at
platform and micro-architecture level. We evaluate different
platforms and micro-architecture alternatives to find a multi-
ASIP platform targeted to the input application and able to meet
the design constraints. We evaluate our design flow using a
MJPEG encoder application.

Multi-ASIP; platform synthesis; hierarchical DSE

L. INTRODUCTION

State-of-the-art embedded systems rely on heterogeneous
multi-processor platforms to satisfy the requirements of highly
demanding applications. In particular, they integrate
Application Specific Instruction Set Processors (ASIPs), which
due to their high degree of customization, offer a good trade-
off between performance and cost. Designing heterogeneous
multi-ASIP platforms is a complex and time-consuming task,
involving inter-dependent decisions on hardware and software
architectures at platform and processor levels, e.g. selection of
the number of ASIPs, their interconnections and of their micro-
architectures. The main issue to face in the multi-ASIP
platform design is the existence of a circular dependency
between the platform design and the processor design. It is
impossible to define the optimized ASIP micro-architectures
without knowing which tasks they execute. Conversely, it is
not feasible to choose a meaningful task partitioning and
mapping onto ASIPs without knowing the ASIP micro-
architectures and their performances. We propose to break this
circular dependency through a hierarchical design flow based
on an iterative two-level DSE, i.e. a platform level DSE and a
micro-architecture level DSE. In Fig. 1 a schematic of the flow
is presented. The inputs are the application code, its task graph
representation and the design constraints, as the maximum
execution latency (also called application deadline) and the
maximum system area. The output of the framework is the
description of a multi-ASIP platform customized for the input

application under the design constraints. Numerous platform
synthesis approaches [1—4] exist, which bypass the circular
dependency problem assuming that the details of processor
micro-architectures and performances are known. These
methods are not appropriated for system design with
customizable ASIPs. Indeed, if they consider ASIPs [3, 4],
they assume that the ASIPs are already synthesized, and their
performances are known. Instead in [5], a small set of
microarchitectural configurations is considered. These
approaches severely limit the design space, discarding very
good platform design solutions, because they would require a
different set of ASIP microarchitectures. To the best of our
knowledge, this is the first work on platform synthesis coupling
the platform and ASIPs DSE for solving this circular
dependency problem.

II. METHOD DESCRIPTION

A. Multi-ASIP platform

Heterogeneous bus-based multi-processor platforms may
contain multiple processors (P) as general-purpose processors
(GPPs), application specific integrated circuits (ASICs), digital
signal processors (DSPs) or ASIPs. In this work, we focus on
the case of platforms containing multiple ASIPs, which number
and micro-architecture are unknown and will be defined by our
exploration method. 4 platform instance contains a number of
processors and a bus system. The k-4 processor is denoted Py,
and has a frequency fp, . A bus is characterized by a frequency

and a bandwidth. We denote b‘f,b , a bus with a bandwidth w
and a frequency f},. During the platform synthesis, our method
explores different clustering solutions. A solution is composed
of a set of clusters, i.e. group of tasks executed on the same
processor. For each clustering solution evaluated, it allocates
an appropriate number of ASIPs. At platform level, our
exploration also accounts for different types of buses. An ASIP
is a very long instruction set processor (VLIW), which micro-
architecture depends on the clustered tasks. It can contain
scalar or vector instructions and one or more issue slots (IS).
Each IS is a predefined set of functional units (FU) available in
a library. The ISs are connected with local memories (LM),
register file(s) (RFs) and input/output FIFO ports (examples of
library components are described in [6]). Depending on the
functionalities required by a given ASIP, the micro-architecture
DSE evaluates how the ISs, LMs and RFs should be selected
and combined inside each processor. We use a non-preemptive
static scheduling policy for both the execution of tasks on the
platform and the execution of the tasks on a single ASIP.

The work on this paper has been performed in the scope of the ASAM project of

the European ARTEMIS Research Program and has been partly supported by the

ARTEMIS Joint Undertaking under grant no. 100265.

2" Mediterranean Conference on Embedded Computing ,I,-'I" MECO - 2013

B. Application model

Similarly to our DSE method, also our application model is
hierarchical and it describes the application at two different
granularity levels: a higher level that specifies inter-tasks
dependencies and a lower level that specifies intra-task (data-)
dependencies. We assume one or more data-intensive
applications A; as input. At the higher level, each application is
modeled as a task graph A;(V;, E;), where each vertex in V;
represents a task 7; (i.e. a part of the application code) and each
edge in E; represents a data dependency. The data
dependencies are modeled by messages m, € E;. With the
static scheduling, a task can start only after all its input
messages have arrived. The task graph captures the task-level
parallelism in the application. Each application has a deadline
d; and a period T;. At the lower level, each data-intensive task
is represented as a repetition of an elementary task, which
consumes and produces multidimensional arrays piecewise.
For each task, a polyhedral model is given, which describes the
task iteration domain and the array access functions as
presented in [7]. The higher level of the application model is
used to explore the application partitioning possibilities and to
address the platform design issues. The lower level is used to
analyze and parallelize the parts of the application code
mapped on a given processor and to address the processor
design issues. The code parallelization exploits techniques of
loop transformations, which are based on the polyhedral model.
In our design flow, all the information needed to generate the
hierarchical application model is inferred from an input C code
of the application analyzed through Compaan'. Compaan
generates a Kahn Process Network (KPN) model of the
application, which includes the information needed to construct
our input application task graph and the polyhedral model of
each task.

C. Hierarchical design flow

The proposed flow for multi-ASIP platform design and
synthesis involves two phases (cf. Fig. 1): a platform DSE and
a micro-architecture DSE.

The platform DSE explores different task clustering
solutions resulting in alternative platform implementations with
different sets of ASIPs and different bus system instances. This
phase is in charge of taking system level design decisions. It is
divided in two sub-phases, a probabilistic and a deterministic
DSE, which work with different levels of information. Given
the initial task graph, the probabilistic DSE makes a first
educated guess on the task clustering, which only considers the
execution time of different tasks as provided by an application
analysis. The probabilistic DSE provides the micro-architecture
DSE with a first set of clustering solutions. The micro-
architecture DSE analyzes a cluster of tasks at a time. For each
cluster of tasks, it explores different application optimizations,
as node (or loop) fusion and vectorization. For each optimized
version of the application, the micro-architecture DSE allocates
a corresponding ASIP micro-architecture, including issue slots,
local memories and register files, and it estimates its
performance and cost. A Pareto front is selected and the
performance and cost indicators of these Pareto solutions are
given to the deterministic DSE for a further analysis. The

1 . .
“Compaan compiler, http://www.compaandesign.com/.”

Budva, Montenegro

<constraints>
@ @ <Area=100/>
<deadline=50/>
Application </constraints>
Analysis @ @
[@
’ v
Ew
% a Probabilistic Deterministic
T DSE DSE
L A
w —
72} v v ASIP, [[ASIP,|
a
60 _I_I_I_
=] . f
=0 Micro-architecture DSE
=2
z ASIP,
[
© —

Figure 1. Schematic of the hierarchical design flow

deterministic DSE collects the Pareto solutions for all the
clusters. It evaluates and selects the best combination of the
Pareto fronts, selecting a single (final) Pareto solution for each
cluster. Finally, the micro-architecture DSE generates the ASIP
architecture descriptions and the optimized C codes for these
(final) Pareto solutions.

In the rest of this section we describe the different phases of
our flow.

Application Analysis. The application analysis calculates
the lower and upper bounds of the WCET of all the
application tasks. The lower WCET bound is the expected
execution time when the application task is executed on a
virtual processor according to an as soon as possible (ASAP)
scheduling without architectural constraints. The upper WCET
bound is the expected execution time when the application
task is executed on a scalar processor. The application analysis
is realized as a pass of the LLVM compiler and it computes
the WCET compiling and running a binary code with real
profile data or estimated profile data.

Probabilistic DSE. The probabilistic DSE is executed in
the early stages of the flow when there is no information about
the platform and its composition. The only inputs available are
the task graphs of one or more applications and their design
constraints (both in a XML format). The purpose of this DSE
stage is to identify which tasks should be clustered on the
same ASIP without a precise knowledge of the underlying
HW (ASIPs and their interconnections). Therefore, the outputs
obtained from this DSE stage represents a set of clustering
solutions that have a high chance to meet the design
constraints when continuing through the different successive
phases of the ASAM flow (micro-DSE, communication-DSE).

As the platform composition and the detailed micro-
architecture of the ASIPs is not known, we do not have
accurate information about the worst-case execution time
(WCET) of each task. Therefore, it is not possible to perform a
precise static schedulability analysis of each application to
verify if the deadline is met. In order to override this problem,
we model the WCET of each task as a stochastic variable that
captures a range of performances corresponding to a number
of micro-architectural configurations. More precisely, the

2" Mediterranean Conference on Embedded Computing ,I,-'I" MECO - 2013

WCET bounds provided by the Application Analysis stage for
each task are used to construct a Cumulative Distribution
Function (CDF) for WCET as described in [8]. As the WCET
of each task could assume any value in the performance range
modeled using the CDF, the performance of any clustering
solution is quantified as the probability of the application
meeting the deadline. In order to obtain the clustering
solutions that give the best chance of meeting application
deadlines, we use an Evolutionary Algorithm (EA) along with
Monte Carlo Simulation (MCS). The EA searches for the
various clusters. For each of these clusters, MCS is used to
find its performance for a range of micro-architectural
configurations modeled using the WCET CDF for each task.
The outputs of the probabilistic DSE are: set of clustering
solutions (one or more) with a high probability of meeting the
deadline. A certain number of clustering solutions with a high
chance of meeting the deadline are then provided to the micro-
architecture DSE stage for ASIP optimization. The initial
platform is a multi-ASIP bus-based system (the
communication optimization is part of the future work and
will consider also NoC).

Micro-architecture DSE. The micro-architecture DSE
performs a data-oriented software and hardware co-design to
decide the ASIP parallel processing, communication and
storage architectures. It takes as input the C code of the nodes
clustered by the platform DSE. It explores and selects possible
parallel software structures and allocates the corresponding
hardware architectures. The micro-architecture DSE is built on
an internal data-oriented polyhedral representation of the
application [7], which is used to rapidly evaluate the proposed
software and the corresponding hardware architectures. In
order to select Pareto parallel versions of the loop-based code
and infer from this the corresponding ASIP architectures, the
micro-architecture DSE evaluates the improvements of the
code execution due to selected loop transformations. This
evaluation is a result of a static analysis performed on the
internal data-oriented representation. The evaluation also
accounts for the performances of the allocated ASIP
architecture through an analytical model of its area and
execution time. Subsequently, using several established
allocation and mapping rules, the micro-architecture DSE
infers the ASIP architecture from the internal data-oriented
representation. In particular, it decides for memory hierarchy
and data parallelism through vectorization or usage of multiple
issue slots.

To better understand the allocation and mapping rules, let
us consider some examples. A transformation such as loop
unrolling can be used to identify possibility for vectorization.
Indeed, the unrolling of independent loop iterations identifies
identical kernels (i.e. independent iterations of a same loop
body), which can be vectorized, provided that the necessary
vector instructions are allocated. As a consequence, the
architecture design should allocate standard or custom issue
slots containing vector instructions to realize the foreseen
vectorization. Another example of allocation rules can be
given by loop fusion. Loop fusion merges two or more loops
in a same iteration space, reducing the loop control to a single
thread. As a consequence, it is possible to process the tasks of

Budva, Montenegro

two or more merged loops in parallel on the same ASIP. To
make this possible, the architecture design should allocate
corresponding parallel issue slots, register files and local
memories, to execute in parallel the loop bodies of the merged
loops. In order to rapidly evaluate and select the solutions of
this exploration, the micro-architecture DSE uses an analytical
model. This technique avoids the error-prone and time-
consuming process that actually constructs all the considered
architectures. In particular, the analytical model estimates the
execution time of the proposed software structure onto the
proposed architecture; it estimates the area of the proposed
solution; and, in a future version, it will estimate the power
consumption. An exploration process based on the Opt4]J [9]
genetic algorithm framework creates and evaluates a large
number of possibilities. Few solutions with the best area and
execution time trade-off are selected to be communicated to
the platform DSE for an exploration of the Pareto front
combinations per cluster. For each final Pareto solution
selected by the platform DSE, the micro-architecture DSE
generates two outputs: 1) The optimized C code of the
application part. 2) An XML file used to generate the ASIP
architecture from the library components.

Deterministic DSE. Using the execution trace and area
values for the Pareto solutions identified by the micro-
architecture DSE, the deterministic DSE identifies the best
combination of micro-architecture configurations that allows
the system to meet the design constraints on total area and
performance. If this is not possible, then the Deterministic
DSE has to identify which specific cluster needs to be
changed, i.e. which task should be re-mapped to a different
ASIP. Each change implies a new iteration with the micro
DSE, which could consume a substantial amount of time.
Therefore, Deterministic DSE has to take care that the number
of changes required is minimized. However, the technique
used to minimize the number of iterations of micro-
architecture DSE is out of this paper scope. The deterministic
DSE uses a multi-objective EA in order to obtain a Pareto-
front of ASIP configurations that optimize for multiple
objectives of application deadline and power. Once an
acceptable platform implementation has been defined and the
input constraints are guaranteed, it is possible to synthesize the
entire multi-ASIP platform.

III. EXPERIMENTAL EVALUATION

To demonstrate our hierarchical design method we use a
motion JPEG (MJPEG) encoder application provided with the
Compaan tool. Compaan tool analyses the C code of the
application and generates the corresponding KPN in which the
code is partitioned into multiple tasks (or nodes) as shown in
Fig. 2a. From the KPN we can easily generate a task graph
(Fig. 2b) as the one required in input by our method. The
constraints provided as input are the application deadline,
d =5000ms and the maximum area of the platform,
a, = 2 * 10 um?. Moreover we consider two different types
of buses, b19 and b (32 and 16 bits width with a frequency
of 10 MHz) during the hierarchical DSE. The C code of each

2" Mediterranean Conference on Embedded Computing ,I,-'I" MECO - 2013

single task 7; is elaborated by the application analysis phase
that generates the upper and lower WCETs values,
respectively indicated as WCET}"* and WCEle. TABLE 1.
presents the values obtained for each task and normalized with
respect to the WCE Ttl1 (the smallest value). For the ASIPs, we
assume a working frequency of 100 MHz that is compatible
with the available components of the micro-architecture
library.

The probabilistic DSE is executed and, from the set of
clustering solutions with the highest probability of meeting the
deadline d, we select the clustering solution with the minimum
number of clusters (i.e. two) and the smaller bus (bi2). The
selected clustering solution is described in TABLE II. Given
this clustering solution, the micro-architecture DSE generates
two ASIPs customized to the specific task clusters. For each
ASIP, depending on the available optimizations, multiple
Pareto micro-architecture solutions are generated: in
particular, 1 solution for P, (that allows a limited optimization
as it contains only one task) and 5 solutions for P,. The start
and end points of the tasks execution time for the Pareto
solutions are estimated together with the areas values. The
error of the start and end times estimation is still work in
progress, but in this paper we wanted to give a first proof of

int DCTBound,DCTShift;
DCTBound = ({DataPrecision)?l Hall 0
DCTShift = ((DataPrecision)?2048:128);

IntArithDct({int*)&(input).Yl.pixel, (*output).¥l.pixel};
BoundDctMatrix((*output).Y1l.pixel, DCTBound);

return;

I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
: PreshiftDctMatrix{(int*)&(input).Y¥1.pixel, DCTShift); 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

=X

0 0.2 0.4 0.6 0.8

Figure 3. Normalized output of the deterministic DSE

Budva, Montenegro

concept. Then, the deterministic DSE selects between the
available Pareto solutions evaluating the area and
performances of the entire system. The results obtained are
shown in Fig. 3. For the given input constraints (red lines in
Fig. 3), there are two acceptable solutions. For the final
implementation, we selected the one with the smaller WCET.
With this case study we demonstrate that our design flow can
generate a heterogeneous bus-based multi-ASIP system
targeted to a specific application, which meet the design
constraints.

TABLE L. NORMALIZED OUTPUT OF THE APPLICATION ANALYSIS
71 T2 3 Ty T5 T6
WCETJ-“ 14 83.5 1541 1746 | 790.1 262
WCET} 1 45 | 1151 | 833 | 5405 | 2211
TABLEII. SELECTED CLUSTERING SOLUTION
Py P,
Ty T1, 73, T4, T5, T

IV. CONCLUSION

This paper proposes a hierarchical Design Space
Exploration (DSE) method to address the circular dependency
problem in ASIP-based system design and to produce efficient
designs of heterogeneous multi-ASIP platforms given an
application task graph and design constrains as input
specification. The method is demonstrated with the MJPEG
case study.

REFERENCES

[11 T.Kangas et al., “UML-based multiprocessor SoC design framework,”
ACM Transanctions on Embedded Computing Systems, vol. 5, pp. 281—
320, 2006.

[2] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and automated
multiprocessor system design, programming, and implementation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 3, pp. 542-555, 2008.

[3] O. Muller, A. Baghdadi, and M. Jézéquel, “From parallelism levels to a
multi-ASIP architecture for turbo decoding,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 17, no. 1, pp. 92-102, 2009.

[4] C.Brehm, T.IIlnseher, and N.Wehn, “A scalable multi-ASIP
architecture for standard compliant trellis decoding,” in Proc.
International SoC Design Conference, 2011, pp. 349-352.

[5] S.L. Shee and S. Parameswaran, “Design methodology for pipelined
heterogeneous multiprocessor system,” in Proc. 44th Design Automation
Conference, 2007, pp. 811-816.

[6] Tim 2 language, http://www es.ele.tue.nl/~heco/courses/platformdesign
2008/tim2_guide.pdf.

[7]1 C.Glitia et al., “Repetitive model refactoring strategy for the design
space exploration of intensive signal processing applications,” Journal
of Systems Architecture, vol. 57, pp. 815 — 829, Oct. 2011.

[8] L.Micconi, D.Gangadharan, P.Pop, and J. Madsen, “Multi-ASIP
platform synthesis for real-time applications,” in Proc. Symposium on
Industrial Embedded Systems, June 2013.

[9] M. Lukasiewycz, M. GlaP, F.Reimann, and J. Teich, “Optd] - A
Modular Framework for Meta-heuristic Optimization,” in Proc. of the
Genetic and Evolutionary ~ Computing Conference, 2011

