
16AE-0046

Automatic functionality assignment to
AUTOSAR multicore distributed architectures

Florin Maticu, Paul Pop
Technical University of Denmark, Denmark

Axbrink Christian, Islam Mafijul
Volvo Group Trucks Technology, Sweden

Abstract

The automotive electronic architectures have moved from fed-
erated architectures, where one function is implemented in one
ECU (Electronic Control Unit), to distributed architectures,
where several functions may share resources on an ECU. In
addition, multicore ECUs are being adopted because of better
performance, cost, size, fault-tolerance and power consump-
tion. In this paper we present an approach for the automatic
software functionality assignment to multicore distributed ar-
chitectures. We consider that the systems use the AUTomo-
tive Open System ARchitecture (AUTOSAR). The function-
ality is modeled as a set of software components composed
of subtasks, called runnables, in AUTOSAR terminology. We
have proposed a Simulated Annealing metaheuristic optimiza-
tion that decides: the (i) mapping of software components to
multicore ECUs, (ii) the assignment of runnables to the ECU
cores, (iii) the clustering of runnables into tasks and (iv) the
mapping of tasks to “OS-Applications” (used to isolate mixed
safety-criticality functions). We are interested to determine an
implementation such that (1) the mapping constraints are satis-
fied, (2) the runnables are schedulable and (3) they are spatially
and temporally isolated if they have different safety-criticality
levels, (4) the overall communication bandwidth is minimized
and (5) the utilization of the cores and ECUs is balanced. The
proposed approach was evaluated on three realistic case studies.

Introduction

Many embedded applications, following physical, modularity
or safety constraints, are implemented using distributed archi-
tectures, composed of several different types of hardware com-
ponents (called Electronic Control Units, or ECUs), intercon-
nected in a network. The application software running on such
distributed architectures is composed of several functions. The
way the functions have been distributed on the architecture has
evolved over time. Initially, in automotive and aerospace appli-

cations, for example, each function was running on a dedicated
hardware node, allowing the system integrators to purchase
nodes implementing required functions from different vendors,
and to integrate them together into their system (this approach is
also called a “federated architecture”). However, the number of
such nodes in the architecture has exploded, reaching over one
hundred in an airplane or a high-end car, leading to increased
wiring, in-creased costs, size, weight and power consumption.

These trends have created a huge pressure to reduce the number
of nodes, use the resources available more efficiently, and thus
reduce costs. This is achieved through the integration of several
functions in one node (also called an “integrated architecture”),
where the nodes are part of a distributed architecture. The ve-
hicle industry has addressed the challenge of integrating more
functions by introducing AUTOSAR (AUTomotive Open Sys-
tem ARchitecture) [4], a standardized model of development
that makes it possible for software developers to create reusable
software components that are hardware independent. In addi-
tion, the nodes themselves can be integrated into a single chip,
as is the case with the trend towards using multicore architec-
tures, where several processing cores can be integrated onto a
single chip, decreasing the costs, power consumption, size, and
increasing the performance through parallelization [15]. The
AUTOSAR framework has a standardized layered software ar-
chitecture made of three parts fig. 1:

• An application software layer.
• A middle layer called Runtime Environment (RTE).
• The Basic Software layer (BSW).

The application layer is composed of the software components
that provide the functionality required on the ECU. The RTE
layer defines a standardized application program interface (API)
that allows an application to call a service from the Basic Soft-
ware Layer. Furthermore, the communication between software
components is also performed via the RTE layer. The Basic
Software Layer consists of the Operating System and modules



Figure 1: AUTOSAR layers, source:[3]

that provide services like communication over a network, I/O,
memory access. It provides an abstract layer to the software
components that hides the ECU-hardware details. The software
components logically interact through a Virtual Function Bus
(VFB). The Runtime Environment (RTE) can be seen as the
implementation of the (VFB) providing the API necessary for
them to exchange data signals and access OS services.

Safety is a property of a system that will not endanger human
life or the environment. ISO 26262 [13] defines Automotive
Safety-Integrity Levels (ASILs), which are assigned to safety-
related functions to capture the required level of risk reduction,
and may dictate the development processes that have to be fol-
lowed. There are four ASIL levels, ranging from ASIL D (most
critical) to ASIL A (least critical); a QM (Quality Management)
level means that the function is non-critical. The same trends
are driving the integration of several levels of safety-criticality,
together with non safety-critical functions. The “Research
Agenda for Mixed-Criticality Systems” [5] defines a mixed-
criticality system as “an integrated suite of hardware, operating
system and middleware services and application software that
supports the execution of safety-critical, mission-critical, and
non-critical software within a single, secure computing plat-
form”. In a mixed-criticality system, the safety functions of
different criticality levels are typically separated (or, isolated);
without separation, for example, a lower-criticality task could
corrupt the memory of a higher-criticality task.

In this paper, we are interested in the mapping of mixed-
criticality applications to distributed heterogeneous multicore
architectures. The architectures are composed of ECUs in-
terconnected using the Controller Area Network (CAN) [12].
We have shown in earlier work how other protocols, such as
FlexRay [20] or TTEthernet [25], can be taken into account. An
AUTOSAR application is composed of a several software com-
ponents interacting via ports and consisting of runnables. Soft-
ware components have to be mapped to ECUs and runnables
are mapped to cores. Runnables have to be grouped into Tasks
which then are grouped into OS-Applications.

The software components provide the functionality required on
the ECU. A port has a associated port-interface that is the
“contract” between one software component that provides the
interface (P-ports) and the one that requires an interface (R-
Ports). The behavior of a software component is constructed

using the entities called runnables. They are software functions
that implement the algorithms (behavior) of a software compo-
nent. Each runnable has access to the port interfaces and can
read/write data signals from/to other software components.In
AUTOSAR, each runnable execution must be triggered by an
event. A runnable can start its execution when new data is
available to it’s associated software component port (data re-
ceive event) or it can be triggered by a timer (timing event).

The unit of execution inside AUTOSAR Operation System is
called an Task. Each Task has assigned a priority and it can
always be preempted by another Task with a higher priority
value. Each runnable from any software component needs to
be mapped to an Task. Multiple runnables can be assigned to
the same Task. According to [22], the simplest solution is to
map each runnable into its own Task but this is not feasible be-
cause the number of tasks can be limited in many systems and is
not efficient (the core utilization overhead needs to be taken into
account when the Operating System switches between tasks).

An Os-Application is an AUTOSAR entity that groups together
a collection of Os-objects defined as Tasks, Interrupt Service
Routines, alarms, events, counters, etc. An Os-Application can
be trusted, which means that each object that is part of it has
unrestricted access to the RTE API and hardware resources. Al-
ternatively, each object of an untrusted Os-Application has lim-
ited access to the RTE API and hardware resources and it runs
in non-privileged mode. Each Os-Application has its own mem-
ory partition, separate stack, data and code. AUTOSAR assures
that a code executed in the context of an Os-Application can not
corrupt the memory area of another Os-Application.

Given an application model and an architecture model, in this
paper we are interested to solve the mapping problem, which
determines: (i) the mapping of software components to multi-
core ECUs, (ii) the assignment of runnables to the ECU cores,
(iii) the clustering of runnables into Tasks and (iv) the mapping
of Tasks to OS-Applications. We are interested to determine
a mapping such that (1) the mapping constraints are satisfied,
(2) the runnables are schedulable and (3) they are spatially and
temporally isolated if they have different safety-criticality lev-
els, (4) the overall communication bandwidth is minimized and
(5) the utilization of the cores and ECUs is balanced.

To solve this problem, we have proposed a Simulated
Annealing-based metaheuristic optimization. The proposed ap-
proach has been evaluated on three vehicle case studies, one of
them composed of a large set of runnables from a set of appli-
cations from Volvo Trucks.

Related work

There is a large amount of research on hard real-time sys-
tems [14], including task mapping to heterogeneous architec-
tures [6]. Researchers also addressed the problem of mixed-
criticality systems. A recent review of the research in the area of
mixed-criticality systems was written by Burns and Davis [7].

The assignment of functions to the distributed vehicle architec-
ture (mapping) is typically done manually, based on the expe-



rience of the systems integrator. However, such a manual map-
ping is no longer feasible due to the introduction of multicores,
which increases the complexity of the decisions and their im-
pact, the use of AUTOSAR and the required compliance to ISO
26262. Without an automatic mapping approach, it is very chal-
lenging to utilize multicore-based ECUs in automotive systems,
as experienced by Volvo Group, one of the leading manufactur-
ers of commercial vehicles.

The authors of [21] propose an ILP (Integer Linear Program-
ming) approach for mapping AUTOSAR functions on a multi-
core ECU to minimize the inter-core communication and bal-
ance the core load. They consider a single ECU, and the ILP
formulation is used only on small examples, since it is unfeasi-
ble for larger systems.

An approach for mapping AUTOSAR functionalities on multi-
core ECU that takes into consideration timing and precedence
constraints is proposed in [9]. This work considers also a single
ECU. The authors are using a heuristic method called “System-
atic Memory based Simulated Annealing” (SMSA) and argue
that it provides better results than the classic Simulated Anneal-
ing.

Another approach for mapping AUTOSAR functions into a sin-
gle multicore ECU is presented in [18]. The goal of that work
was to balance the core utilization and the strategy used was
to cluster functions that are exchanging data signals and itera-
tively assign them to the least loaded core. For the automotive
applications, where most of the functions are exchanging sig-
nals, applying this strategy will result in most of them being
clustered together and assigned to one core.

In [26], the authors proposed a Mixed Integer Linear Program-
ming and a Genetic Algorithm for mapping AUTOSAR func-
tionalities on a architecture composed of several single core
ECUs. The goal is to optimize end-to-end worst-case response
times and the memory consumption.

Compared to related work, our approach carefully takes into
consideration the details of the scheduling, partitioning and
communication models of AUTOSAR. In our case, the schedu-
lability test for tasks takes into account the details of the con-
figuration, which, for example, introduces different commu-
nication overheads depending on how runnables are mapped,
i.e., same or different task, same or different core or ECU. Al-
though the impact of AUTOSAR on timing has been investi-
gated before [19], the authors do not address the mapping prob-
lem. Also, none of the previous work has addressed the issue of
mixed-criticality functions.

Architecture Model

This section presents the system architecture model. The next
two sections introduce the application model and the AU-
TOSAR software architecture model.

The hardware architecture consists of heterogeneous multicore
and single-core ECUs ECUi that are connected through a shared
network bus (CAN in our case), which has a given bandwidth.

We denote with N the total number of cores in the system.

Architecture = 〈{ECUi},Bus〉 (1)

Each ECU ECUi has a set of interconnected cores {Core j} and
an associated ASIL level ASILi.

ECUi =
〈
{Core j},ASILi,NoCi

〉
(2)

If an ECUi has multiple cores, we assume that they are con-
nected by a network-on-chip, NoCi. NoCi(Coresi,Linksi) is
a graph, where the vertices Coresi are the cores on the ECU,
and the edges Linksi are the communication links. For each
link Linka.b ∈ Linksi connecting Corea to Coreb, we know the
bandwidtha,b.

An example of an hardware architecture is presented in fig. 2.
There are two ECUs, one with a single core processor and
one with a multicore processor connected through a network
bus. ECU1 models a single-core architecture that has a CPU,
memory, storage and peripherals. ECU2 models Freescale’s
MPC5777M MCU1, which has two computational cores (Core2
and Core3) and one input/output core (I/O core, Core4) used for
handling hardware peripherals. This ECU is ISO 26262 com-
pliant up to ASIL level D.

Figure 2: Hardware architecture model

Application Model

We model an application using the modeling concepts of AU-
TOSAR. Thus, an application is composed of a set of software
components, i.e.,:

Application = {Software Componenti}. (3)

Each software component contains a set of runnables, and each
software component is assigned an ASIL level according to ISO
26262.

Software Componenti =
〈
{Runnable j},ASIL leveli

〉
, (4)

A runnable Runnablei is captured by the n-tuple:

Runnablei =

〈
{WCET j

i },Ti,Di,ASILi,

{
〈
Runnablek,signali,k

〉
}
〉
,

(5)

1http://cache.freescale.com/files/32bit/doc/fact_sheet/

MPC5777MFS.pdf



where {WCET j
i } is the set of worst-case execution times of

runnable Runnablei when executing on the cores Core j where
it is considered for mapping, Ti is the period of a the runnable
and Di is the deadline of the runnable. These elements form the
timing model of a runnable. Further, ASILi is the ASIL of the
runnable, inherited from the parent software component. The
data dependencies between runnables are captured by the set
{
〈
Runnablek,signali,k

〉
}, where each Runnablek receives the

signali,k from Runnablei. We also know the size sizei,k of the
signals exchanged.

Figure 3: Example application model: cruise control

Table 1: Example application model: runnables

Runnablei WCETi (ms) Ti (ms) Di (ms) ASILi
Input acquisition 0.5 10 10 A

Input interpretation 1 10 10 A
Diagnostic 1.5 10 10 A

Speed Setpoint 1 10 10 QM
Limp home 1.5 10 10 QM

Basic function 2.5 10 10 QM
Controller 3 10 10 QM

Table 2: Example application model: signals
Sender runnable Receiver runnable Size (bytes)
Input acquisition Input interpretation 2

Input interpretation Speed setpoint 4
Diagnostic Limp home 8

Application condition Basic function 4
Speed setpoint Application condition 2
Basic function Controller 8

An example of an application model is presented in fig. 3 and
tables 1 and 2. It has been adapted from the automotive use
case described in [2]. The application implements the logic
for a cruise control system in the vehicle and is composed of
two software components. The first software component, “Data
handling”, contains three runnables responsible for the acquisi-
tion of data and diagnostics. The second software component,
“Cruise handling”, has five runnables controlling the vehicle
speed in cruise mode. The arrows between runnables represent
the exchanged data signals.

Software Architecture Model

We assume that an AUTOSAR software framework is running
on each ECU. The schedulable entity in the AUTOSAR OS is a
Task. A Task is composed of several runnables, and it is mod-
eled by the following n-tuple:

Taski =
〈
WCETi,Ti,Di,{Runnable j},ASILi

〉
, (6)

where {Runnable j} is the set of runnables assigned to the Taski,
WCETi is the worst case execution time of the task, Ti is the
period of the task, Di is its deadline, and ASILi captures the
ASIL.

With mixed-criticality functions, the safety functions of differ-
ent ASILs should be separated from each other. Spatial and
temporal partitioning must be assured such that a lower crit-
icality task, for example, should not disturb a higher critical-
ity task. Spatial partitioning in the AUTOSAR framework is
achieved through the concept of an OS-Application. Each OS-
Application will use, for example, a different memory area and
the AUTOSAR OS will assure that a runnable executing in one
OS-Application cannot modify a memory region from another
OS-Application. An OS-Application consists of Tasks and has
an ASIL:

OS-Applicationi =
〈
{Task j},ASILi

〉
In order to isolate runnables with different ASIL levels, in our
mapping solution, we only allow runnables with the same ASIL
level to be assigned to the same Task. Furthermore, the tasks in
an OS-Application will contain only tasks with the same ASIL
level.

The Tasks are scheduled using a fixed-priority preemptive
scheduling scheme, according to AUTOSAR OS specification
for multicore ECUs [4]. The communication between runnables
that exchange data signals is done through the AUTOSAR RTE
(Runtime Environment), see fig. 4 for an example. Runnables
are communicating through sender-receiver ports and, at the
AUTOSAR Infrastructure layer, it can be observed that the RTE
is relying on the Basic Software (BSW) to send data between
ECUs.

Figure 4: Runnable communication over AUTOSAR Runtime
Environment (RTE)

Considering the RTE, we distinguish the following types
of communication: (1) Intra-ECU communication, between
runnables exchanging data signals mapped on the same ECU,
which can be of two types, (1.1) Intra-Core communication, be-
tween runnables exchanging data signals mapped on the same
core and (1.2) Inter-Core communication, between runnables



mapped on different cores of the same ECU. (2) Inter-ECU
communication, between runnables exchanging data signals
mapped on different ECUs.

We assume that the runnables use the AUTOSAR sender-
receiver with last-is-best mode of communication, i.e.,
runnables exchanging data signals are using asynchronous com-
munication with non-blocking read/write operations. However,
we can model all the AUTOSAR communication scenarios.

Problem Formulation

Given an application model Application and an architecture
model Architecture, as presented in the previous sections, we
are interested to determine:

• A mapping MECU of software components to ECUs,
• A mapping Mcore of runnables to cores,
• A mapping Mtasks of runnables to Tasks,
• A mapping Mapps of Tasks to OS-Applications,

such that the following objectives are minimized:

O1 The overall communication bandwidth. We prefer solu-
tions where the runnables that communicate are mapped
“near” each other, reducing the need for communicating
signals over the on-chip and off-chip buses.

O2 The variance of the core utilization of the system. If we
have an ECU with three computational cores, we want that
the runnables are mapped such that the utilization is bal-
anced, e.g., one core does not have an utilization of 80%
and the rest of the cores have 10%. We compute the vari-
ance of the core utilization to measure how far the values
are from the overall mean.

Further, the following constraints should be satisfied:

C1 The mapping constraints are satisfied. The constraints may
be imposed by the system integrator or by the AUTOSAR
model. For exemple, an AUTOSAR constraint specifies
that runnables from the same software component have to
be mapped on the same ECU.

C2 The OS-Applications are schedulable. The mapping has to
be done such that the Tasks and messages are schedulable.

C3 The runnables with different ASILs are separated, as dis-
cussed earlier, i.e., Tasks contain runnables with the same
ASIL and OS-Applications may contain only Tasks with
the same ASIL.

Considering the application from fig. 3 and tables 1 and 2,
to be mapped in the architecture from fig. 2, in fig. 5 we
have a possible mapping solution. Thus, Software Component1
is mapped to ECU1 and Software Component2 to ECU2.
Next, all runnables from the Software Component1 will be
mapped to Core1 and a possible mapping for runnables from
Software Component2 to the cores of the ECU2 is as follows:
Speed Setpoint, Application condition and Limp home mapped
to Core2 and Basic function and Controller mapped to Core3.

After all the runnables are mapped to the cores, they must be

Figure 5: Example mapping solution

grouped into Tasks. Runnables with the same ASIL level, will
be grouped into the same task on each processing core, as de-
picted in the figure. Thus, we have Task1 with the runnables
Input aquisiton, Input interpretation and Diagnostic on Core1,
Task2 composed of Speed setpoint, Application condition and
Limp home on Core2 and Task3 with Basic function and Con-
troller mapped on Core3. The last step is to group the Tasks
into OS-Applications for each core. The Tasks with the same
ASIL level will be grouped into the same OS-Application to
isolate runnables with different ASIL levels from each other, as
depicted in the figure.

Schedulability Analysis

To determine the schedulability of a mapping solution, several
approaches are possible. Practitioners are using simulation to
evaluate the end-to-end delays in a system, but without provid-
ing guarantees. Researchers have proposed end-to-end worst
case analysis solutions for AUTOSAR applications [23]. How-
ever, in this paper for simplicity, we use the utilization-based
schedulability test for independent tasks proposed by Liu &
Layland [16]. Thus, a sufficient condition for the tasks to be
schedulable on a given core is Ucore ≤ n×(2

1
n −1), where Ucore

is the core utilization and n is the number of tasks mapped to the
core. Note that in our application model, there are data depen-
dencies between runnables. Our assumption is that the runnable
that produces the data (sender) does not block waiting for an
answer that the data signal has been received by the consumer
runnables. Also, a runnable that consumes the data (receiver)
is not waiting in a blocked state for the data to arrive, but uses
the latest value of the signal. This is the most common type of
communication in automotive applications.

The utilization Ui of a Taski is defined as its WCET over its
period, i.e., Ui = WCETi/Ti. Since in the worst-case all the
runnables inside a Task will be executed, we have to assume that
the WCET of a task is the sum of the WCETs of its runnables.
Further, we consider that the period Ti of a Taski is the greatest
common divisor of the runnable periods.

However, instead of computing the processing core utilization



using the task utilizations, we are computing it using the uti-
lizations of the corresponding runnables. The motivation for
using the “runnable view” for computing the core utilization is
that since not all runnables are activated when the task is exe-
cuted, the utilization might be over-estimated in case we are us-
ing the “task view”. As an example, if we have three runnables
that are grouped into a task and the runnables have the follow-
ing properties: Runnable1 has WCET1 = 5 ms and T1 = 25 ms,
Runnable2 has WCET2 = 1 ms and T2 = 50 ms and Runnable3
has WCET3 = 10 ms and T3 = 100 ms, then the utilization
of the task is WCET/T where WCET = WCET1 +WCET2 +
WCET3 and T = gcd(T1,T2,T3). Therefore, the utilization is:
Utask view = 5+1+10

gcd(25,50,100) =
16
25 , which is pessimistic, since the

runnables will not require such a high computation from the
processing core. With the proposed “runnable view” the uti-
lization is instead Urunnable view = WCET1

T1
+ WCET2

T2
+ WCET3

T3
=

5
25 +

1
50 +

10
100 = 8

25 .

Thus, the utilization for each core is computed as the sum of
all runnable utilizations that are mapped to that core, where m
represents the number of runnables assigned to that processing
core:

Ucore =
m

∑
i=1

Runnablei.WCET
Runnablei.T

(7)

The related work ignores the time it takes for a runnable to
communicate over RTE. However, due to the complexity of the
AUTOSAR framework and because of the safety related fea-
tures introduced for communication, these overheads should
not be ignored. A discussion of the overheads introduced by
the AUTOSAR RTE is available in [11]. Our model takes
into account the particularities of the AUTOSAR RTE, but does
not make a distinguish between between signal storage strate-
gies as software variables. Using the SymTA/S timing analy-
sis tool [11], they determined the communication overhead for
runnables exchanging signals. The values obtained were taken
into account when computing the core utilization. The results
show that depending of how runnables exchanging signals are
being mapped, the total communication overhead per core can
be quite high, e.g., up to 20%.

Depending of how runnables communicate with each other, the
RTE layer will use IOC layer (for inter-core communication),
COM (communication stack) layer for inter-ECU communica-
tion or E2E library for reliable communication. We account
for the impact of AUTOSAR on the timing of runnables in the
WCET of a Runnable. Thus, we define the WCET of a runnable
as composed of WCETcomputational , which is the amount of time
needed by a runnable to execute its instructions without inter-
acting with the AUTOSAR RTE, and WCETcommunication, which
is the amount of the time spent by a runnable when it is using
the RTE layer’s API for communication. Based on the type of
communication and based on the AUTOSAR sender-receiver
mode being used, we capture the WCETcommunication overhead
for runnables exchanging data signals as:

• α, if runnables are mapped into the same Task,
• β0, if runnables have the same ASIL levels and are mapped

into different Tasks,
• β1, if runnables have different ASIL levels and are mapped

into different Tasks,
• γ, if the runnables are mapped into Tasks on different cores

on the same ECU,
• θ, if the runnables are mapped into Tasks on different

ECUs.

The overheads are determined for the largest signal size, i.e.,
considering the worst-case. We assume that these overheads,
which are specific to a given AUTOSAR implementation, have
been determined as in [11] and are part of our model. Re-
garding the schedulaiblity of the communication, we check that
the mapping solution does not lead to a bus utlization which is
greater than 100%. For each ECU, we define the Linka,b band-
width for all the links between two cores Corea and Coreb:

bandwidth Linka,b = ∑
sizei,k

Ti
, (8)

where sizei,k is the size of a message (signal) from Runnablei
mapped on Corea to Runnablek mapped on Coreb, and Ti is the
period of the sender Runnablei. The bandwidth Bus for the
inter-ECU bus is defined similarly, considering all the signals
exchanged over the bus between ECUs, and taking into account
the CAN frame overhead (we assume that each signal is packed
in one frame). We also define the utilization of a communication
link (or bus) ULink (and UBus) as the calculated bandwidth over
the maximum bandwidth specified in the architecture model.

Simulated Annealing-based Optimization

All of the mapping decisions in our problem (software com-
ponents to ECUs, runnables to processing cores, runnables
to Tasks) can be reduced to a bin-packing problem, which is
known to be a combinatorial NP-hard problem [10]. Since our
problem is NP-hard, we have decided to use a metaheuristic,
since they have been used successfully for solving task mapping
problems [6]. Hence, we use a Simulated Annealing-based ap-
proach [1] to solve our optimization problem. In this paper our
focus is on the problem formulation, hence we have not com-
pared several metaheuristics to determine which one is the most
appropriate for the problem; we leave such an investigation for
future work. SA is an optimization heuristic that tries to find
the global optimum, in terms of the cost function, by randomly
selecting a new solution from the neighbors of the current solu-
tion. The SA algorithm is a variant of the neighborhood search
technique, where the local search space is explored by moving
from the current solution to a neighbor solution.

We use the cost function defined in eq. (9) to guide the Sim-
ulated Annealing search. The cost function combines objec-
tive O2, related to the core utilization variance (first term of
the equation), with objective O1, related to the communication
bandwidth, using linear scalarization of the two objectives with
the weights W2 and W1, respectively. The mapping constraints
C1 and separation constraints C3 are enforced during the design
transformations, such that no visited solutions invalidate these
constraints. However, regarding the schedulability constraint
C2, we have decided to allow the exploration of solutions which
are not schedulable, in the hope of improving the design space
exploration. The schedulability of cores is checked by the third
term of eq. (9) and the communication schedulability is checked



by the fourth term. If the application is schedulable, these terms
will be zero, and hence ignored by the cost function. However,
if the application is not schedulable, these terms are multiplied
by large penalty weights, P1 and P2, which forces the search to
move away from unschedulable solutions.

cost f unction =W1×σ+

W2×

(
∑

Link∈NoCi.Linksi∪Bus
bandwidth Link

)
+

P1×

(
∑

core∈Architecture
max(0,Ucore−Ucore max)

)
+

P2×

(
∑

Link∈NoCi.Linksi∪Bus
max(0,ULink−1)

)
(9)

where

σ =
1

N−1
×

(
∑

core∈Architecture
(Ucore−µ)2

)

µ =
1
N
×

(
∑

core∈Architecture
Ucore

) (10)

In the cost function, N stands for the total number of cores in
the system. The first term computes the variance of the core uti-
lization. The variance σ measures how far are the core utiliza-
tions from each other. If the variance is zero, it means that all
the cores have the same utilization, so the utilization is evenly
balanced. A small variance indicates a good load balancing,
whereas a large variation indicates that the ultilizations are not
well balanced. We want that the mapping of runnables should
be done in such a way that each core utilization is closer to the
mean utilization µ.

The second term of the equation computes the sum of band-
width utilization for each inter-ECU and inter-core communi-
cation link. We want that the runnables that are exchanging
data signals to be mapped as close as possible to each other
such that the overall inter-ECU and inter-core communication
is minimized. For example, in the case of two runnables ex-
changing data signals, if they are mapped into the same core,
no inter-ECU or inter-core bandwidth will be used.

The third term of the equation adds a penalty factor when one
of the core utilizations is higher than a threshold Ucore max given
by a system integrator. For the experiments, Ucore max was
set to 0.69, which guarantees schedulability according to Liu
& Layland bound [16]. Finally, the last term of the equation
checks that no communication link has a bandwidth utilization
higher than 100%, which would mean that the messages are not
schedulable.

An essential component of SA is the generation of a new so-
lution starting from the current one. The neighbor solutions
are generated through performing design transformations on the
current solution. We have defined three design transformations
in fig. 7 that we want to apply to a given solution. At each
step, one of the strategies is chosen randomly and applied to

(a) Move a software component

(b) Move runnables between cores

(c) Move runnables into the same Task

Figure 7: Design transformations

the current solution. For our problem, the strategies involve the
following, see (a)-(c) in fig. 7 for an illustration:

(a) Randomly choose a software component and map it to a
new ECU which is different from the one where it is cur-
rently assigned. First, the ECU is selected at random. Sec-
ond, all the runnables inside the software component are
randomly mapped to the cores of the new ECU.

(b) Randomly choose a runnable and map it to a new core.
The core is selected at random from the ones of the ECU
where the software component that contains the runnable
is mapped.

(c) Randomly choose two runnables that reside on the same
core and group them together into a Task. At the beginning
of the algorithm, all the runnables are mapped into their
own Task.

During these transformations we check that the mapping con-
straints imposed by the system integrator or by the safety re-
quirements, are satisfied. The resulted design transformation is
applied to the current solution. In general, the new solution is
accepted if it is an improved one. However, in the case of SA,
a worse solution can also be accepted with a certain probabil-
ity that depends on the deterioration of the cost function and
on a control parameter called temperature which is analog to
the temperature concept of the physical annealing process. SA
starts from an Initial Temperature and stops when it reaches



a Final Temperature. The search stays at a temperature for a
given number of Steps per Temperature. After these steps, the
temperature is reduced using a Cooling Factor.

Experimental Results

For the evaluation of our proposed SA approach (called “Simu-
lated Annealing Mapping”, SAM) we have used three realistic
case studies, namely a “Cruise control case study” [2], a “PSA
(Peugeot-Citroen Automobile Corp.) case study” from [8] and
a “Volvo case study” from Volvo Trucks [17]. The details of the
case studies are presented in table 3, where the first two columns
contain the case study ID and name, and the next three columns
list the number of software components, number of runnables
and number of signals in each case study. The ASILs vary from
ASIL D to QM.

Table 3: Use cases
ID Name Software

components
Runnables Signals

CS1 Cruise
control

2 8 6

CS2 PSA
case study

6 31 17

CS3 Volvo
case study

50 75 300

SAM was implemented in C#, running on Windows 8.1 com-
puter with four Intel 64-bit CPUs at 2.4 GHz and 8 GB of RAM.
We have used SAM to map the three case studies on the archi-
tectures in table 4. The table lists the name of the architecture,
the number of ECUs, number of total cores, and the off-chip
and on-chip communication bandwidths.

Table 4: Hardware architectures
ID ECUs Cores ECU bandwidth

(bytes/s)
Core bandwidth
(bytes/s)

Arch1 2 4 50,000 10,000
Arch2 2 6 500,000 100,000
Arch3 1 3 N/A 500,000

For these architectures, we have used the WCETcommunication
overhead values from table 5.

Table 5: WCETcommunication overheads

.

Overhead Value (ms)
α 0.01
β0 0.02
β1 0.03
γ 0.04
θ 0.06

The outcome of the simulated annealing heuristic depends on
the following parameters: initial and final temperature, the num-
ber of iterations per temperature, the cooling factor and the
number of steps per temperature. For these parameters we have
chosen the values as recommended in [24], see table 6. Also,
for the cost function, we have set the weights W1 and W2 to 0.5,
the maximum core utilization (Ucore max) to 0.69 and the penalty
factors (P1 and P2) to 1,000.

Table 6: Simulated Annealing parameters
Parameter Value

Initial Temperature 1
Final Temperature 0.00001

Cooling Factor 0.95
Steps per Temperature 100

In the first set of experiments, we were interested to determine
the quality of our proposed SAM approach. For this purpose,
we have developed an exhaustive search (using backtracking) to
obtain the optimal solution. We were able to obtain the optimal
solution for small problem sizes such as CS1 mapped on Arch1.
Our SAM approach has been able to find this optimal solution
in about 0.5 seconds.

In the second set of experiments, we were interested to eval-
uate the ability of SAM to find solutions in a reasonable time
for large case studies. Thus, we have mapped CS1 on Arch1,
CS2 on Arch2, and CS3 on Arch3. For all the experiments we
have used the SA parameters from table 6, except CS2 where
we have increased the steps per temperature to 500. We were
able to obtain schedulable solutions for all these cases. The re-
sults are summarized in table 7, where in the first two columns
we have the application model and the architecture on which
it was mapped, respectively, in the third and fourth columns we
have the number of tasks and OS-Applications resulted after the
mapping, respectively. After the mapping, all the applications
were schedulable (as indicated in the fifth column), and all the
constraints have been satisfied. The last column shows the run-
time of SAM for each of the mapping optimizations. As we can
see from the table, our proposed SAM approach is able to find,
in a short time, schedulable implementations.

Table 7: Simulated Annealing Mapping (SAM) results
Case study Arch. Tasks OS-Apps. Sched. Runtime

CS1 Arch1 7 4 yes 0.5 sec.
CS2 Arch2 19 16 yes 8 sec.
CS3 Arch3 33 3 yes 45 sec.

We have chosen to present an output of the SAM tool for the
“PSA (Peugeot-Citroen Automobile Corp.) case study” [8].
The application model has 6 software components with a total
of 31 runnables, see fig. 8 where arrows represent the signals
exchanged:

• Engine Controller: runnables: F0−F7
• Automatic Gear Box: runnables: F8−F11
• Anti-locking brake: runnables: F12−F17
• Wheel angle sensor: runnables: F18−F19
• Suspension controller: runnables: F20−F24
• Body work: runnables: F25−F31

Detailed informations about runnable’s WCET, period and
ASIL level are presented in table 8.



Table 8: Runnable information for automotive application

Runnable WCET(ms) Period(ms) Deadline(ms) ASIL
F1 2 10 10 C
F2 2 20 20 C
F3 2 100 100 C
F4 2 15 15 C
F5 2 14 14 C
F6 2 50 50 C
F7 2 40 40 C
F8 2 15 15 D
F9 2 15 15 D

F10 2 50 50 D
F11 2 14 14 D
F12 1 20 20 D
F13 2 20 20 D
F14 1 15 15 D
F15 2 100 100 D
F16 1 20 20 D
F17 2 14 14 D
F18 4 14 14 B
F19 4 20 20 B
F20 1 20 20 C
F21 1 20 20 C
F22 1 10 10 C
F23 2 14 14 C
F24 2 15 15 C
F25 2 50 50 A
F26 2 50 50 A
F27 2 10 10 A
F28 2 100 100 A
F29 2 40 40 A
F30 2 20 20 A
F31 2 100 100 A

The architecture model chosen consists of two ECUs with three
cores each (fig. 9). The values for the inter-core and inter-ECU
communication bandwidth are presented in table 9 and table 10.

Table 9: Inter-core bandwidth
Core Name Core Name Bandwidth (bytes/second)

Core1 Core2 100,000
Core1 I/O Core1 100,000
Core2 I/O Core1 100,000
Core3 Core4 100,000
Core3 I/O Core2 100,000
Core4 I/O Core2 100,000

Table 10: Inter-ECU bandwidth
ECU name ECU name Bandwidth (bytes/second)

ECU1 ECU2 500,000

The mapping solution of software components to ECUs pro-
duced by our SAM tool is presented in table 11. The map-
ping of runnables to the ECU’s cores is presented in table 12.
The number of runnables per core is between 4–7 since not all
runnables could be mapped onto one ECU without having the
core utilization constraint broken or the inter-core communica-
tion bandwidth exceeded.

Table 11: Software components to ECU mapping

.

Software component ECU
Automatic Gear Box ID ECU1
Suspension controller ID ECU1

Body work ID ECU1
Engine Controller ECU2
Anti-locking brake ECU2
Wheel angle sensor ECU2

Table 12: Runnables to core mapping

.

Runnables ECU;Core
F10, F21, F23, F24, F25, F28, F29 ECU1;Core1

F11, F22, F27, F31 ECU1;Core2
F8, F9, F20, F26, F30 ECU1;I/O Core1

F10, F21, F23, F24, F25, F28, F29 ECU2;Core3
F3, F4, F6, F7, F12, F13, F17 ECU2;Core4

F5, F14, F15, F18 ECU2;I/O Core2

Figure 8: Automotive application

Figure 9: Automotive hardware architecture

Conclusions

In this paper we have presented a Simulated Annealing-based
Mapping approach (SAM) for the optimization of mixed-
criticality automotive applications on AUTOSAR distributed ar-
chitectures. The architectures consist of a set of heterogeneous
multicore ECUs interconnected by a CAN bus. We consider
that the applications are scheduled using fixed-priority preemp-
tive scheduling, and the messages are transmitted according to
the CAN protocol.



SAM takes into account the overheads of the AUTOSAR RTE
in the WCETs of the runnables, and that the applications of dif-
ferent ASILs have to be separated. SAM determines a map-
ping such that the utilization of the cores is balanced and the
bandwidth requirements are minimized, while at the same time
fulfilling the constraints that the applications should be schedu-
lable and the mapping constraints satisfied. Three real life case
studies have been used to show the effectiveness of the proposed
algorithm.

References

[1] Emile Aarts, Jan Korst, and Wil Michiels. “Simulated
Annealing”. In: Search Methodologies. Ed. by Edmund
Burke and Graham Kendall. Springer, 2005, pp. 187–
210.

[2] S. Anssi et al. “Enabling Scheduling Analysis for
AUTOSAR Systems”. In: Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC),
2011 14th IEEE International Symposium on. 2011,
pp. 152–159. DOI: 10.1109/ISORC.2011.28.

[3] AUTOSAR EXP VFB. Virtual Functional Bus. Tech.
rep. AUTOSAR 4.2.1, 2014.

[4] AUTOSAR SW OS. Specification of Operating System.
Tech. rep. AUTOSAR 4.2.1, 2014.

[5] James Barhorst et al. “A Research Agenda for Mixed-
Criticality Systems”. In: Cyber-Physical Systems Week.
San Fransisco, CA, 2009.

[6] Tracy D Braun et al. “A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems”.
In: Journal of Parallel and Distributed Computing 61.6
(2001), pp. 810 –837.

[7] Alan Burns and Rob Davis. “Mixed Criticality Systems
– A Review”. In: 2013. URL: http://www-users.cs.
york.ac.uk/~burns/review.pdf.

[8] F. Cottet et al. Scheduling in Real-Time Systems. ISBN:
9780470847664.

[9] H.R. Faragardi et al. “An efficient scheduling of AU-
TOSAR runnables to minimize communication cost in
multi-core systems”. In: Telecommunications (IST), 2014
7th International Symposium on. 2014, pp. 41–48. DOI:
10.1109/ISTEL.2014.7000667.

[10] Michael R Garey and David S Johnson. Computers and
intractability: a guide to the theory of NP-completeness.
W.H. Freeman, San Francisco, CA, USA, 1979.

[11] Peter Gliwa et al. From Single-Core to Multi-Core
Platforms-Systematic Migration of Hard Real-Time Soft-
ware in AUTOSAR. 2011, pp. 979–992.

[12] ISO 11898: Road Vehicles – Controller Area Network
(CAN). International Organization for Standardization
(ISO), Geneva, Switzerland, 2003.

[13] ISO 26262. “ISO 26262 - Road vehicles Functional
safety”. In: International Organization for Standardiza-
tion, 2011.

[14] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Springer, 2011.
ISBN: 9781441982360.

[15] Charles E Leiserson and Ilya B Mirman. “How to survive
the multicore software revolution (or at least survive the
hype)”. In: Cilk Arts, Cambridge (2008).

[16] C. L. Liu and James W. Layland. “Scheduling Algo-
rithms for Multiprogramming in a Hard-Real-Time Envi-
ronment”. In: J. ACM 20.1 (Jan. 1973), pp. 46–61. ISSN:
0004-5411.

[17] Florin Maticu. Functionality assignment to partitioned
multi-core architectures. Tech. rep. Technical University
of Denmark, 2015.

[18] N. Navet et al. “Multi-source and multicore automotive
ECUs - OS protection mechanisms and scheduling”. In:
Industrial Electronics (ISIE), 2010 IEEE International
Symposium on. 2010, pp. 3734–3741. DOI: 10.1109/
ISIE.2010.5637677.

[19] Mircea Negrean, Simon Schliecker, and Rolf Ernst.
“Timing implications of sharing resources in multicore
real-time automotive systems”. In: SAE International
Journal of Passenger Cars-Electronic and Electrical Sys-
tems 3.2010-01-0454 (2010), pp. 27–40.

[20] Traian Pop et al. “Timing analysis of the FlexRay
communication protocol”. In: Real-Time Systems 39.1-3
(2008), pp. 205–235.

[21] Salah Eddine Saidi et al. “An ILP Approach for Mapping
AUTOSAR Runnables on Multi-core Architectures”. In:
Proceedings of the 2015 Workshop on Rapid Simula-
tion and Performance Evaluation: Methods and Tools.
RAPIDO ’15. 2015.

[22] O. Scheickl and M. Rudorfer. “Automotive real time de-
velopment using a timing-augmented AUTOSAR speci-
fication”. In: Proc. ERTS (2008).

[23] Simon Schliecker et al. “Reliable performance analysis
of a multicore multithreaded system-on-chip”. In: Pro-
ceedings of the 6th IEEE/ACM/IFIP international con-
ference on Hardware/Software codesign and system syn-
thesis. ACM. 2008, pp. 161–166.

[24] Steven S. Skiena. The Algorithm Design Manual. 2008.

[25] Domiţian Tămaş-Selicean, Paul Pop, and Wilfried
Steiner. “Design optimization of TTEthernet-based dis-
tributed real-time systems”. In: Real-Time Systems 51.1
(2015), pp. 1–35.

[26] E. Wozniak et al. “An optimization approach for the syn-
thesis of AUTOSAR architectures”. In: Emerging Tech-
nologies Factory Automation (ETFA), 2013 IEEE 18th
Conference on. 2013, pp. 1–10. DOI: 10.1109/ETFA.
2013.6647952.

Contact Information

Paul Pop, DTU Compute Dept., Technical University of Den-
mark, paupo@dtu.dk



Acronyms

AUTOSAR Automotive Open System Architecture
ASIL Automotive Safety Integrity Level

BSW
AUTOSAR base software that
includes the operating system

CAN Controller Area Network
COM Comunication Stack
IOC Inter OS-Application communicator
E2E End-to-End
ECU Electronic Control Unit
QM Quality Managed
RTE Runtime Environment
SA Simulated Annealing

SAM Simulated Annealing Mapping
OS Operating System

WCET Worst Case Execution Time


