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Functionality assignment to 
partitioned multi-core 
architectures

Motivation
• Federated to partitioned architectures
• Multi-core ECUs
• Increase complexity of software functionalities.
• Safety according to ISO 26262
• Schedulability of tasks running of different 

cores
• Bus bandwiths utilization

Autosar

• WCET depends on ”distance” of tasks

Problem Formulation
Given an application model and an architecture 
model we want to determine : 
• A mapping of software components to ECUs
• A mapping of runnables to cores
• A mapping of runnables to OS-Tasks
• A mapping of OS-Task to OS-Applications

Such that we want to minimize:
• The overall communication bandwidth
• The variance of core utilization of the system

Taking into consideration that:
• Mapping constraints, if specified, are satisfied
• The runnables are schedulable (U < 0.69)
• The runnables with different safety integrity 

levels are spatially and temporally isolated.

Example
• Input : Application Model
• Input : Architecture Model
• Output : Mapping

Volvo Use Case
• Application Model : 50 Software Components 

with 75 runnables in total.
• Hardware Model : one ECU with 3 cores
• Output within 2 minutes
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Mapping Optimization
NP-Hard problem, so Simulated Annealing based 
optimization strategy is used which searches, 
using transformations, for solutions minimizing a 
given cost function .   

• Cost function:

Where :
• 𝑊1and 𝑊2 denotes weights
• 𝑃1 and 𝑃1 denotes penalties 
• 𝜎 the total variance in core utilization
• 𝑈𝑏 the aggregated bus utilization
• 𝛼 denotes the amount of cores which 

utilization has been exceeded
• 𝛽 denotes the amount of busses which 

utilization has been exceeded

Transformation strategies
• Randomly choose a software component and 

map it to a new, randomly chosen, ECU. Then 
Randomly map the runnables inside the 
software component to the cores of the new 
ECU.

• Randomly choose a runnable and map it to a 
new, randomly selected, core within the same 
ECU.

• Randomly choose two runnables of the same 
ASIL level assigned to the same core and 
group them together into an OS-Task. 

Optimization algorithm

Overview of mapping tool

Example mapping

AUTOSAR Communication model

Mixed-Criticality application implemented using a federated
architecture (left) and a partitioned Architectures (right)

𝑐𝑜𝑠𝑡 = 𝑊1 × 𝜎 +𝑊2 × 𝑈𝑏 + 𝑃1 × 𝛼 + 𝑃2 × 𝛽

[1] Technical University of Denmark, [2] Volvo Group Trucks Technology
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From federated to integrated architectures, using multicores
• Multicores have many advantages: SWaP
• Complexity of functionality is increasing
• Stringent timing and safety requirements (ISO 26262)

Motivation
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Business needs for the the next generation vehicles
• Efficient utilization of multicores 
• Compliance with functional safety standard ISO 26262

Challenges
• Large number of functions
• Distributed multicore architectures, 

resulting in a large total number of processing cores

Problem: how to assign the functions to the cores

Solution: automatic mapping tool
• Reduce the costs (by using multicores, reducing ECUs)
• Maximize performance and resource utilization
• Handle the increased software complexity

Problem and proposed solution

Paper #2016-01-0041 3
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Set of automotive applications
• Each Application is a set of Software Components
• Each Software Component is composed of a set of Runnables

– We know for each runnable
• ASIL (Automotive SIL) according to ISO 26262
• Worst-Case Execution Time (WCET)
• Period and Deadline

– Runnables are communicating via Signals

Application model
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where {WCET j
i } is the set of worst-case execution times of

runnable Runnablei when executing on the cores Core j where
it is considered for mapping, Ti is the period of a the runnable
and Di is the deadline of the runnable. These elements form the
timing model of a runnable. Further, ASILi is the ASIL of the
runnable, inherited from the parent software component. The
data dependencies between runnables are captured by the set
{
⌦
Runnablek,signali,k

↵
}, where each Runnablek receives the

signali,k from Runnablei. We also know the size sizei,k of the
signals exchanged.

Figure 3: Example application model: cruise control

Table 1: Example application model: runnables

Runnablei WCETi (ms) Ti (ms) Di (ms) ASILi
Input acquisition 0.5 10 10 A

Input interpretation 1 10 10 A
Diagnostic 1.5 10 10 A

Speed Setpoint 1 10 10 QM
Limp home 1.5 10 10 QM

Basic function 2.5 10 10 QM
Controller 3 10 10 QM

Table 2: Example application model: signals
Sender runnable Receiver runnable Size (bytes)
Input acquisition Input interpretation 2

Input interpretation Speed setpoint 4
Diagnostic Limp home 8

Application condition Basic function 4
Speed setpoint Application condition 2
Basic function Controller 8

An example of an application model is presented in fig. 3 and
tables 1 and 2. It has been adapted from the automotive use
case described in [2]. The application implements the logic
for a cruise control system in the vehicle and is composed of
two software components. The first software component, “Data
handling”, contains three runnables responsible for the acquisi-
tion of data and diagnostics. The second software component,
“Cruise handling”, has five runnables controlling the vehicle
speed in cruise mode. The arrows between runnables represent
the exchanged data signals.

Software Architecture Model

We assume that an AUTOSAR software framework is running
on each ECU. The schedulable entity in the AUTOSAR OS is a
Task. A Task is composed of several runnables, and it is mod-
eled by the following n-tuple:

Taski =
⌦
WCETi,Ti,Di,{Runnable j},ASILi

↵
, (6)

where {Runnable j} is the set of runnables assigned to the Taski,
WCETi is the worst case execution time of the task, Ti is the
period of the task, Di is its deadline, and ASILi captures the
ASIL.

With mixed-criticality functions, the safety functions of differ-
ent ASILs should be separated from each other. Spatial and
temporal partitioning must be assured such that a lower crit-
icality task, for example, should not disturb a higher critical-
ity task. Spatial partitioning in the AUTOSAR framework is
achieved through the concept of an OS-Application. Each OS-
Application will use, for example, a different memory area and
the AUTOSAR OS will assure that a runnable executing in one
OS-Application cannot modify a memory region from another
OS-Application. An OS-Application consists of Tasks and has
an ASIL:

OS-Applicationi =
⌦
{Task j},ASILi

↵

In order to isolate runnables with different ASIL levels, in our
mapping solution, we only allow runnables with the same ASIL
level to be assigned to the same Task. Furthermore, the tasks in
an OS-Application will contain only tasks with the same ASIL
level.

The Tasks are scheduled using a fixed-priority preemptive
scheduling scheme, according to AUTOSAR OS specification
for multicore ECUs [4]. The communication between runnables
that exchange data signals is done through the AUTOSAR RTE
(Runtime Environment), see fig. 4 for an example. Runnables
are communicating through sender-receiver ports and, at the
AUTOSAR Infrastructure layer, it can be observed that the RTE
is relying on the Basic Software (BSW) to send data between
ECUs.

Figure 4: Runnable communication over AUTOSAR Runtime
Environment (RTE)

Considering the RTE, we distinguish the following types
of communication: (1) Intra-ECU communication, between
runnables exchanging data signals mapped on the same ECU,
which can be of two types, (1.1) Intra-Core communication, be-
tween runnables exchanging data signals mapped on the same
core and (1.2) Inter-Core communication, between runnables
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AUTOSAR (AUTomotive Open System ARchitecture)
• Standardized model of development 
• Possible for software developers to create reusable software 

components that are hardware independent

AUTOSAR
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Figure 1: AUTOSAR layers, source:[3]

that provide services like communication over a network, I/O,
memory access. It provides an abstract layer to the software
components that hides the ECU-hardware details. The software
components logically interact through a Virtual Function Bus
(VFB). The Runtime Environment (RTE) can be seen as the
implementation of the (VFB) providing the API necessary for
them to exchange data signals and access OS services.

Safety is a property of a system that will not endanger human
life or the environment. ISO 26262 [13] defines Automotive
Safety-Integrity Levels (ASILs), which are assigned to safety-
related functions to capture the required level of risk reduction,
and may dictate the development processes that have to be fol-
lowed. There are four ASIL levels, ranging from ASIL D (most
critical) to ASIL A (least critical); a QM (Quality Management)
level means that the function is non-critical. The same trends
are driving the integration of several levels of safety-criticality,
together with non safety-critical functions. The “Research
Agenda for Mixed-Criticality Systems” [5] defines a mixed-
criticality system as “an integrated suite of hardware, operating
system and middleware services and application software that
supports the execution of safety-critical, mission-critical, and
non-critical software within a single, secure computing plat-
form”. In a mixed-criticality system, the safety functions of
different criticality levels are typically separated (or, isolated);
without separation, for example, a lower-criticality task could
corrupt the memory of a higher-criticality task.

In this paper, we are interested in the mapping of mixed-
criticality applications to distributed heterogeneous multicore
architectures. The architectures are composed of ECUs in-
terconnected using the Controller Area Network (CAN) [12].
We have shown in earlier work how other protocols, such as
FlexRay [20] or TTEthernet [25], can be taken into account. An
AUTOSAR application is composed of a several software com-
ponents interacting via ports and consisting of runnables. Soft-
ware components have to be mapped to ECUs and runnables
are mapped to cores. Runnables have to be grouped into Tasks
which then are grouped into OS-Applications.

The software components provide the functionality required on
the ECU. A port has a associated port-interface that is the
“contract” between one software component that provides the
interface (P-ports) and the one that requires an interface (R-
Ports). The behavior of a software component is constructed

using the entities called runnables. They are software functions
that implement the algorithms (behavior) of a software compo-
nent. Each runnable has access to the port interfaces and can
read/write data signals from/to other software components.In
AUTOSAR, each runnable execution must be triggered by an
event. A runnable can start its execution when new data is
available to it’s associated software component port (data re-
ceive event) or it can be triggered by a timer (timing event).

The unit of execution inside AUTOSAR Operation System is
called an Task. Each Task has assigned a priority and it can
always be preempted by another Task with a higher priority
value. Each runnable from any software component needs to
be mapped to an Task. Multiple runnables can be assigned to
the same Task. According to [22], the simplest solution is to
map each runnable into its own Task but this is not feasible be-
cause the number of tasks can be limited in many systems and is
not efficient (the core utilization overhead needs to be taken into
account when the Operating System switches between tasks).

An Os-Application is an AUTOSAR entity that groups together
a collection of Os-objects defined as Tasks, Interrupt Service
Routines, alarms, events, counters, etc. An Os-Application can
be trusted, which means that each object that is part of it has
unrestricted access to the RTE API and hardware resources. Al-
ternatively, each object of an untrusted Os-Application has lim-
ited access to the RTE API and hardware resources and it runs
in non-privileged mode. Each Os-Application has its own mem-
ory partition, separate stack, data and code. AUTOSAR assures
that a code executed in the context of an Os-Application can not
corrupt the memory area of another Os-Application.

Given an application model and an architecture model, in this
paper we are interested to solve the mapping problem, which
determines: (i) the mapping of software components to multi-
core ECUs, (ii) the assignment of runnables to the ECU cores,
(iii) the clustering of runnables into Tasks and (iv) the mapping
of Tasks to OS-Applications. We are interested to determine
a mapping such that (1) the mapping constraints are satisfied,
(2) the runnables are schedulable and (3) they are spatially and
temporally isolated if they have different safety-criticality lev-
els, (4) the overall communication bandwidth is minimized and
(5) the utilization of the cores and ECUs is balanced.

To solve this problem, we have proposed a Simulated
Annealing-based metaheuristic optimization. The proposed ap-
proach has been evaluated on three vehicle case studies, one of
them composed of a large set of runnables from a set of appli-
cations from Volvo Trucks.

Related work

There is a large amount of research on hard real-time sys-
tems [14], including task mapping to heterogeneous architec-
tures [6]. Researchers also addressed the problem of mixed-
criticality systems. A recent review of the research in the area of
mixed-criticality systems was written by Burns and Davis [7].

The assignment of functions to the distributed vehicle architec-
ture (mapping) is typically done manually, based on the expe-

Figure source: AUTOSAR SW OS. Specification of Operating System. Tech. rep. AUTOSAR 4.2.1, 2014.
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Distributed architecture, using AUTOSAR
• Multicore ECUs interconnected using CAN (more protocols can be modeled)
• AUTOSAR software architecture

– Detailed communication model, takes into account the type of comm.

Platform model
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Architecture model
AUTOSAR Communication

• sender-receiver mode with last is best semantics.

Figure 6: Runnable
communication over AUTOSAR
RTE Figure 7: Types of

communication

7 DTU Compute Functionality assignment to partitioned multi-core architectures 2.7.2015

Architecture model
AUTOSAR Communication

• sender-receiver mode with last is best semantics.

Figure 6: Runnable
communication over AUTOSAR
RTE Figure 7: Types of

communication

7 DTU Compute Functionality assignment to partitioned multi-core architectures 2.7.2015
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Scheduling policy
• Fixed-priority preemptive scheduling, e.g., Rate Monotonic

A software implementation consists of
• A set of OS-Applications

– The separation required for safety is ensured through OS-Applications

• Each OS-Applications consists of a set of OS-Tasks

• Each OS-Task is composed of a set of Runnables
– An OS-Task is characterized by

• WCET
• Period and Deadline
• ASIL

Software architecture model

Paper #2016-01-0041 7



SAE INTERNATIONAL

Given
• Application model and architecture model
Determine the following mappings:
• Software components to ECUs
• Runnables to cores
• Runnables to OS-Tasks
• OS-Task to OS-Applications

Such that we minimize
• The overall communication bandwidth
• The variance of core utilization of the system (balanced utilization)
• Under the following constraints:

– Mapping constraints
– Runnables are schedulable
– Runnables with different safety integrity levels are spatially and temporally isolated

Problem formulation

Paper #2016-01-0041 8
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Problem: NP-Hard
Optimization strategy: Simulated Annealing
• Meta-heuristic search method for combinatorial problems
• Uses design transformations to randomly explore the search space
• Minimizes an Cost Function
• Occasionally allows jumps from a current solution to an inferior one

to avoid getting stuck in a local minimum

Cost Function
𝜎 the total variance in core utilization 
𝑈b the aggregated bus utilization
𝛼 the amount of cores which utilization has been exceeded
𝛽 the amount of busses which utilization has been exceeded

W and P are weights and penalty values

Optimization strategy:
Simulated Annealing meta-heuristic

Paper #2016-01-0041 9

Functionality assignment to 
partitioned multi-core 
architectures

Motivation
• Federated to partitioned architectures
• Multi-core ECUs
• Increase complexity of software functionalities.
• Safety according to ISO 26262
• Schedulability of tasks running of different 

cores
• Bus bandwiths utilization

Autosar

• WCET depends on ”distance” of tasks

Problem Formulation
Given an application model and an architecture 
model we want to determine : 
• A mapping of software components to ECUs
• A mapping of runnables to cores
• A mapping of runnables to OS-Tasks
• A mapping of OS-Task to OS-Applications

Such that we want to minimize:
• The overall communication bandwidth
• The variance of core utilization of the system

Taking into consideration that:
• Mapping constraints, if specified, are satisfied
• The runnables are schedulable (U < 0.69)
• The runnables with different safety integrity 

levels are spatially and temporally isolated.

Example
• Input : Application Model
• Input : Architecture Model
• Output : Mapping

Volvo Use Case
• Application Model : 50 Software Components 

with 75 runnables in total.
• Hardware Model : one ECU with 3 cores
• Output within 2 minutes
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Mapping Optimization
NP-Hard problem, so Simulated Annealing based 
optimization strategy is used which searches, 
using transformations, for solutions minimizing a 
given cost function .   

• Cost function:

Where :
• 𝑊1and 𝑊2 denotes weights
• 𝑃1 and 𝑃1 denotes penalties 
• 𝜎 the total variance in core utilization
• 𝑈𝑏 the aggregated bus utilization
• 𝛼 denotes the amount of cores which 

utilization has been exceeded
• 𝛽 denotes the amount of busses which 

utilization has been exceeded

Transformation strategies
• Randomly choose a software component and 

map it to a new, randomly chosen, ECU. Then 
Randomly map the runnables inside the 
software component to the cores of the new 
ECU.

• Randomly choose a runnable and map it to a 
new, randomly selected, core within the same 
ECU.

• Randomly choose two runnables of the same 
ASIL level assigned to the same core and 
group them together into an OS-Task. 

Optimization algorithm

Overview of mapping tool

Example mapping

AUTOSAR Communication model

Mixed-Criticality application implemented using a federated
architecture (left) and a partitioned Architectures (right)

𝑐𝑜𝑠𝑡 = 𝑊1 × 𝜎 +𝑊2 × 𝑈𝑏 + 𝑃1 × 𝛼 + 𝑃2 × 𝛽

[1] Technical University of Denmark, [2] Volvo Group Trucks Technology
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(a) Randomly choose a software component 
and map it to a new, randomly chosen, ECU. 
Then Randomly map the runnables inside 
the software component to the cores of the 
new ECU.

(b) Randomly choose a runnable and map it 
to a new, randomly selected, core within the 
same ECU.

(c) Randomly choose two runnables of the 
same ASIL level assigned to the same core 
and group them together into an OS-Task.

Simulated Annealing:
Design Transformations
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by the fourth term. If the application is schedulable, these terms
will be zero, and hence ignored by the cost function. However,
if the application is not schedulable, these terms are multiplied
by large penalty weights, P1 and P2, which forces the search to
move away from unschedulable solutions.

cost f unction =W1 ⇥s+

W2 ⇥
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N �1
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(Ucore �µ)2

!

µ =
1
N
⇥
 

Â
core2Architecture

Ucore

! (10)

In the cost function, N stands for the total number of cores in
the system. The first term computes the variance of the core uti-
lization. The variance s measures how far are the core utiliza-
tions from each other. If the variance is zero, it means that all
the cores have the same utilization, so the utilization is evenly
balanced. A small variance indicates a good load balancing,
whereas a large variation indicates that the ultilizations are not
well balanced. We want that the mapping of runnables should
be done in such a way that each core utilization is closer to the
mean utilization µ.

The second term of the equation computes the sum of band-
width utilization for each inter-ECU and inter-core communi-
cation link. We want that the runnables that are exchanging
data signals to be mapped as close as possible to each other
such that the overall inter-ECU and inter-core communication
is minimized. For example, in the case of two runnables ex-
changing data signals, if they are mapped into the same core,
no inter-ECU or inter-core bandwidth will be used.

The third term of the equation adds a penalty factor when one
of the core utilizations is higher than a threshold Ucore max given
by a system integrator. For the experiments, Ucore max was
set to 0.69, which guarantees schedulability according to Liu
& Layland bound [16]. Finally, the last term of the equation
checks that no communication link has a bandwidth utilization
higher than 100%, which would mean that the messages are not
schedulable.

An essential component of SA is the generation of a new so-
lution starting from the current one. The neighbor solutions
are generated through performing design transformations on the
current solution. We have defined three design transformations
in fig. 7 that we want to apply to a given solution. At each
step, one of the strategies is chosen randomly and applied to

(a) Move a software component

(b) Move runnables between cores

(c) Move runnables into the same Task

Figure 7: Design transformations

the current solution. For our problem, the strategies involve the
following, see (a)-(c) in fig. 7 for an illustration:

(a) Randomly choose a software component and map it to a
new ECU which is different from the one where it is cur-
rently assigned. First, the ECU is selected at random. Sec-
ond, all the runnables inside the software component are
randomly mapped to the cores of the new ECU.

(b) Randomly choose a runnable and map it to a new core.
The core is selected at random from the ones of the ECU
where the software component that contains the runnable
is mapped.

(c) Randomly choose two runnables that reside on the same
core and group them together into a Task. At the beginning
of the algorithm, all the runnables are mapped into their
own Task.

During these transformations we check that the mapping con-
straints imposed by the system integrator or by the safety re-
quirements, are satisfied. The resulted design transformation is
applied to the current solution. In general, the new solution is
accepted if it is an improved one. However, in the case of SA,
a worse solution can also be accepted with a certain probabil-
ity that depends on the deterioration of the cost function and
on a control parameter called temperature which is analog to
the temperature concept of the physical annealing process. SA
starts from an Initial Temperature and stops when it reaches
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Example input model (left) and solution (right)
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Table 8: Runnable information for automotive application

Runnable WCET(ms) Period(ms) Deadline(ms) ASIL
F1 2 10 10 C
F2 2 20 20 C
F3 2 100 100 C
F4 2 15 15 C
F5 2 14 14 C
F6 2 50 50 C
F7 2 40 40 C
F8 2 15 15 D
F9 2 15 15 D

F10 2 50 50 D
F11 2 14 14 D
F12 1 20 20 D
F13 2 20 20 D
F14 1 15 15 D
F15 2 100 100 D
F16 1 20 20 D
F17 2 14 14 D
F18 4 14 14 B
F19 4 20 20 B
F20 1 20 20 C
F21 1 20 20 C
F22 1 10 10 C
F23 2 14 14 C
F24 2 15 15 C
F25 2 50 50 A
F26 2 50 50 A
F27 2 10 10 A
F28 2 100 100 A
F29 2 40 40 A
F30 2 20 20 A
F31 2 100 100 A

The architecture model chosen consists of two ECUs with three
cores each (fig. 9). The values for the inter-core and inter-ECU
communication bandwidth are presented in table 9 and table 10.

Table 9: Inter-core bandwidth
Core Name Core Name Bandwidth (bytes/second)

Core1 Core2 100,000
Core1 I/O Core1 100,000
Core2 I/O Core1 100,000
Core3 Core4 100,000
Core3 I/O Core2 100,000
Core4 I/O Core2 100,000

Table 10: Inter-ECU bandwidth
ECU name ECU name Bandwidth (bytes/second)

ECU1 ECU2 500,000

The mapping solution of software components to ECUs pro-
duced by our SAM tool is presented in table 11. The map-
ping of runnables to the ECU’s cores is presented in table 12.
The number of runnables per core is between 4–7 since not all
runnables could be mapped onto one ECU without having the
core utilization constraint broken or the inter-core communica-
tion bandwidth exceeded.

Table 11: Software components to ECU mapping

.

Software component ECU
Automatic Gear Box ID ECU1
Suspension controller ID ECU1

Body work ID ECU1
Engine Controller ECU2
Anti-locking brake ECU2
Wheel angle sensor ECU2

Table 12: Runnables to core mapping

.

Runnables ECU;Core
F10, F21, F23, F24, F25, F28, F29 ECU1;Core1

F11, F22, F27, F31 ECU1;Core2
F8, F9, F20, F26, F30 ECU1;I/O Core1

F10, F21, F23, F24, F25, F28, F29 ECU2;Core3
F3, F4, F6, F7, F12, F13, F17 ECU2;Core4

F5, F14, F15, F18 ECU2;I/O Core2

Figure 8: Automotive application

Figure 9: Automotive hardware architecture

Conclusions

In this paper we have presented a Simulated Annealing-based
Mapping approach (SAM) for the optimization of mixed-
criticality automotive applications on AUTOSAR distributed ar-
chitectures. The architectures consist of a set of heterogeneous
multicore ECUs interconnected by a CAN bus. We consider
that the applications are scheduled using fixed-priority preemp-
tive scheduling, and the messages are transmitted according to
the CAN protocol.

Table 8: Runnable information for automotive application

Runnable WCET(ms) Period(ms) Deadline(ms) ASIL
F1 2 10 10 C
F2 2 20 20 C
F3 2 100 100 C
F4 2 15 15 C
F5 2 14 14 C
F6 2 50 50 C
F7 2 40 40 C
F8 2 15 15 D
F9 2 15 15 D

F10 2 50 50 D
F11 2 14 14 D
F12 1 20 20 D
F13 2 20 20 D
F14 1 15 15 D
F15 2 100 100 D
F16 1 20 20 D
F17 2 14 14 D
F18 4 14 14 B
F19 4 20 20 B
F20 1 20 20 C
F21 1 20 20 C
F22 1 10 10 C
F23 2 14 14 C
F24 2 15 15 C
F25 2 50 50 A
F26 2 50 50 A
F27 2 10 10 A
F28 2 100 100 A
F29 2 40 40 A
F30 2 20 20 A
F31 2 100 100 A

The architecture model chosen consists of two ECUs with three
cores each (fig. 9). The values for the inter-core and inter-ECU
communication bandwidth are presented in table 9 and table 10.

Table 9: Inter-core bandwidth
Core Name Core Name Bandwidth (bytes/second)

Core1 Core2 100,000
Core1 I/O Core1 100,000
Core2 I/O Core1 100,000
Core3 Core4 100,000
Core3 I/O Core2 100,000
Core4 I/O Core2 100,000

Table 10: Inter-ECU bandwidth
ECU name ECU name Bandwidth (bytes/second)

ECU1 ECU2 500,000

The mapping solution of software components to ECUs pro-
duced by our SAM tool is presented in table 11. The map-
ping of runnables to the ECU’s cores is presented in table 12.
The number of runnables per core is between 4–7 since not all
runnables could be mapped onto one ECU without having the
core utilization constraint broken or the inter-core communica-
tion bandwidth exceeded.

Table 11: Software components to ECU mapping

.

Software component ECU
Automatic Gear Box ID ECU1
Suspension controller ID ECU1

Body work ID ECU1
Engine Controller ECU2
Anti-locking brake ECU2
Wheel angle sensor ECU2

Table 12: Runnables to core mapping

.

Runnables ECU;Core
F10, F21, F23, F24, F25, F28, F29 ECU1;Core1

F11, F22, F27, F31 ECU1;Core2
F8, F9, F20, F26, F30 ECU1;I/O Core1

F10, F21, F23, F24, F25, F28, F29 ECU2;Core3
F3, F4, F6, F7, F12, F13, F17 ECU2;Core4

F5, F14, F15, F18 ECU2;I/O Core2

Figure 8: Automotive application

Figure 9: Automotive hardware architecture

Conclusions

In this paper we have presented a Simulated Annealing-based
Mapping approach (SAM) for the optimization of mixed-
criticality automotive applications on AUTOSAR distributed ar-
chitectures. The architectures consist of a set of heterogeneous
multicore ECUs interconnected by a CAN bus. We consider
that the applications are scheduled using fixed-priority preemp-
tive scheduling, and the messages are transmitted according to
the CAN protocol.
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a Final Temperature. The search stays at a temperature for a
given number of Steps per Temperature. After these steps, the
temperature is reduced using a Cooling Factor.

Experimental Results

For the evaluation of our proposed SA approach (called “Simu-
lated Annealing Mapping”, SAM) we have used three realistic
case studies, namely a “Cruise control case study” [2], a “PSA
(Peugeot-Citroen Automobile Corp.) case study” from [8] and
a “Volvo case study” from Volvo Trucks [17]. The details of the
case studies are presented in table 3, where the first two columns
contain the case study ID and name, and the next three columns
list the number of software components, number of runnables
and number of signals in each case study. The ASILs vary from
ASIL D to QM.

Table 3: Use cases
ID Name Software

components
Runnables Signals

CS1 Cruise
control

2 8 6

CS2 PSA
case study

6 31 17

CS3 Volvo
case study

50 75 300

SAM was implemented in C#, running on Windows 8.1 com-
puter with four Intel 64-bit CPUs at 2.4 GHz and 8 GB of RAM.
We have used SAM to map the three case studies on the archi-
tectures in table 4. The table lists the name of the architecture,
the number of ECUs, number of total cores, and the off-chip
and on-chip communication bandwidths.

Table 4: Hardware architectures
ID ECUs Cores ECU bandwidth

(bytes/s)
Core bandwidth
(bytes/s)

Arch1 2 4 50,000 10,000
Arch2 2 6 500,000 100,000
Arch3 1 3 N/A 500,000

For these architectures, we have used the WCETcommunication
overhead values from table 5.

Table 5: WCETcommunication overheads

.

Overhead Value (ms)
a 0.01
b0 0.02
b1 0.03
g 0.04
q 0.06

The outcome of the simulated annealing heuristic depends on
the following parameters: initial and final temperature, the num-
ber of iterations per temperature, the cooling factor and the
number of steps per temperature. For these parameters we have
chosen the values as recommended in [24], see table 6. Also,
for the cost function, we have set the weights W1 and W2 to 0.5,
the maximum core utilization (Ucore max) to 0.69 and the penalty
factors (P1 and P2) to 1,000.

Table 6: Simulated Annealing parameters
Parameter Value

Initial Temperature 1
Final Temperature 0.00001

Cooling Factor 0.95
Steps per Temperature 100

In the first set of experiments, we were interested to determine
the quality of our proposed SAM approach. For this purpose,
we have developed an exhaustive search (using backtracking) to
obtain the optimal solution. We were able to obtain the optimal
solution for small problem sizes such as CS1 mapped on Arch1.
Our SAM approach has been able to find this optimal solution
in about 0.5 seconds.

In the second set of experiments, we were interested to eval-
uate the ability of SAM to find solutions in a reasonable time
for large case studies. Thus, we have mapped CS1 on Arch1,
CS2 on Arch2, and CS3 on Arch3. For all the experiments we
have used the SA parameters from table 6, except CS2 where
we have increased the steps per temperature to 500. We were
able to obtain schedulable solutions for all these cases. The re-
sults are summarized in table 7, where in the first two columns
we have the application model and the architecture on which
it was mapped, respectively, in the third and fourth columns we
have the number of tasks and OS-Applications resulted after the
mapping, respectively. After the mapping, all the applications
were schedulable (as indicated in the fifth column), and all the
constraints have been satisfied. The last column shows the run-
time of SAM for each of the mapping optimizations. As we can
see from the table, our proposed SAM approach is able to find,
in a short time, schedulable implementations.

Table 7: Simulated Annealing Mapping (SAM) results
Case study Arch. Tasks OS-Apps. Sched. Runtime

CS1 Arch1 7 4 yes 0.5 sec.
CS2 Arch2 19 16 yes 8 sec.
CS3 Arch3 33 3 yes 45 sec.

We have chosen to present an output of the SAM tool for the
“PSA (Peugeot-Citroen Automobile Corp.) case study” [8].
The application model has 6 software components with a total
of 31 runnables, see fig. 8 where arrows represent the signals
exchanged:

• Engine Controller: runnables: F0�F7
• Automatic Gear Box: runnables: F8�F11
• Anti-locking brake: runnables: F12�F17
• Wheel angle sensor: runnables: F18�F19
• Suspension controller: runnables: F20�F24
• Body work: runnables: F25�F31

Detailed informations about runnable’s WCET, period and
ASIL level are presented in table 8.
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SAM was implemented in C#, running on Windows 8.1 com-
puter with four Intel 64-bit CPUs at 2.4 GHz and 8 GB of RAM.
We have used SAM to map the three case studies on the archi-
tectures in table 4. The table lists the name of the architecture,
the number of ECUs, number of total cores, and the off-chip
and on-chip communication bandwidths.
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solution for small problem sizes such as CS1 mapped on Arch1.
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in about 0.5 seconds.
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uate the ability of SAM to find solutions in a reasonable time
for large case studies. Thus, we have mapped CS1 on Arch1,
CS2 on Arch2, and CS3 on Arch3. For all the experiments we
have used the SA parameters from table 6, except CS2 where
we have increased the steps per temperature to 500. We were
able to obtain schedulable solutions for all these cases. The re-
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CS2 Arch2 19 16 yes 8 sec.
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“PSA (Peugeot-Citroen Automobile Corp.) case study” [8].
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• Engine Controller: runnables: F0�F7
• Automatic Gear Box: runnables: F8�F11
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SAM was implemented in C#, running on Windows 8.1 com-
puter with four Intel 64-bit CPUs at 2.4 GHz and 8 GB of RAM.
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the quality of our proposed SAM approach. For this purpose,
we have developed an exhaustive search (using backtracking) to
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solution for small problem sizes such as CS1 mapped on Arch1.
Our SAM approach has been able to find this optimal solution
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CS1 Arch1 7 4 yes 0.5 sec.
CS2 Arch2 19 16 yes 8 sec.
CS3 Arch3 33 3 yes 45 sec.

We have chosen to present an output of the SAM tool for the
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Message: 
• Our proposed SA-based optimization approach is able to find, 

in a short time, schedulable implementations
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