
Functionality assignment to
partitioned multi-core architectures

Florin Maticu
s131084

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract

An embedded system is a microprocessor based system that usually performs a
predefined set of tasks related to monitor or control of an electrical/mechanical
equipment. Given the increased complexity of the embedded systems both in
software and hardware, functionality assignment becomes difficult to deal with
when safety, schedulability, efficient use of hardware resources and communica-
tion networks are required.

The thesis focuses on software functionalities as defined in AUTOSAR1 which
is an automotive standard for Electronic Control Unit (ECU) software develop-
ment. The goal of AUTOSAR (AUTomotive Open System ARchitecture) is to
establish a standardized model of development that makes it possible for soft-
ware developers to create reusable, safety and hardware independent software
components.

The objective of this thesis is to propose an algorithm based on simulated an-
nealing heuristic for the mapping of functions with different safety integrity
levels onto integrated architectures composed of multi-core systems. We will
consider an architecture composed of a multi-core ECUs running AUTOSAR
OS with fixed-priority preemptive scheduling.

A mapping tool has been developed that takes as input an application model of
the AUTOSAR software components and an architecture model of multi-core
ECUs and determines:

• A mapping of software components to ECUs.

• A mapping of functionalities or AUTOSAR runnables to ECU cores.

• A mapping of functionalties/runnables to AUTOSAR Os-Tasks.

• A mapping of Os-Tasks to AUTOSAR Os-Applications.

1http://www.autosar.org/

http://www.autosar.org/

ii

Such that:

• It minimizes the overall communication bandwidths.

• It minimizes the variance of the core utilizations on the system.

• Functions with different safety integrity levels are spatial and temporal
isolated.

• All the constraints regarding schedulability or provided by the software/sys-
tem developer are met.

The proposed approach is evaluated on an automotive case study from Volvo
Advanced Technology & Research in Götheborg, Sweden.

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Engineering.

The thesis deals with mapping of mixed safety integrity functionalities on multi-
core architectures running AUTOSAR OS.

The work has been supervised by Associate Professor Paul Pop.

Lyngby, 26-June-2015

Florin Maticu
s131084

Acknowledgment

I would like to thank my supervisor, Associated Professor Paul Pop, for his
support, availability and advice throughout the thesis. Many thanks to Axbrink
Christian from Volvo for helping me with the automotive use case.

Last but not least, I would like to thank my family and friends for their moral
support and trust in me.

Contents

Abstract i

Preface iii

Acknowledgment iv

Abbreviations vii

1 Introduction 1
1.1 Related Work . 6
1.2 Functional safety in Automotive 6
1.3 AUTOSAR . 8

1.3.1 Software components . 10
1.3.2 Runnables (functional entities) 13
1.3.3 OSEK Os and Schedulability 15
1.3.4 Os-Application . 19
1.3.5 Communication . 20

1.3.5.1 Inter-ECU communication 23
1.3.5.2 Inter-Core communication 24
1.3.5.3 Intra-task and Inter-task communication 26

1.3.6 Functional safety features 26
1.3.6.1 Spatial partitioning 27
1.3.6.2 Temporal partitioning 28
1.3.6.3 End-to-end communication protection 30

2 System model 32
2.1 Application model . 32

2.1.1 The WCET of a runnable entity 34
2.2 Architecture model . 36

2.2.1 Hardware architecture model 36
2.3 AUTOSAR model . 37

2.3.1 Scheduling model . 37
2.3.2 The model of spatial partitioning 39
2.3.3 Communication model . 40

vi CONTENTS

3 Functionality assignment to multi-core and optimization 43
3.1 Problem formulation . 43
3.2 The solution space of the problem 45
3.3 Cost function . 47
3.4 Optimal solution . 48
3.5 Simulated annealing . 48
3.6 Functionality mapping tool . 51

3.6.1 Implementation details . 55
3.7 Test cases . 62

3.7.1 Map tool debugging and testing 62
3.7.2 Test application and architecture model 63
3.7.3 Automotive application and architecture model 65
3.7.4 Volvo application and architecture model 68

3.8 Experimental results . 69
3.8.1 Test application . 70
3.8.2 Automotive application 73
3.8.3 Volvo use case . 81

4 Conclusions and future work 87
4.1 Conclusions . 87
4.2 Future work . 88

A Appendix 89
A.1 Volvo application model file . 89

Bibliography 97

Abbreviations

Abbreviation Meaning
AUTOSAR Automotive Open System Architecture

ASIL Automotive Safety Integrity Level
IOC Inter OS-Application communicator
COM Comunication Stack
ECU Electronic Control Unit
RTE Runtime Environment
OS Operating System
VFB Virtual Function Bus

WCET Worst Case Execution Time

Chapter 1

Introduction

An embedded system is a microprocessor based system that usually performs a
predefined set of tasks related to monitor or control of an electrical or mechanical
equipment.

Often, an embedded system has to operate in an environment where it has
to meet real-time constraints. We refer to such systems as real-time systems.
[But04] defines a real-time system as “computing systems that must react within
precise time constraints to events in the environment”. Having real-time con-
strains means the “correctness of the system behavior depends not only on the
logical results of the computation, but also on the physical instant at which
these results are produced[Kop97]”. Depending on the consequences of missing
a deadline, real-time systems can be classified in soft and hard real-time. Soft
real-time systems can miss the deadlines once in a while, as the system will still
function, but with degraded service, whereas in hard real-time systems, missing
a deadline will lead to the failure of the system. A special class of real-time
systems are safety critical where a failure (hardware or software) may result in
loss of human life or environment hazards.

Most embedded systems are controlled by an Real-time Operating System (RTOS).
The unit of execution in any OS is called process or task. A set of instructions
that are executed sequentially on a processor are encapsulated inside a task or
a process. In this thesis we will refer to the periodic tasks that are cyclically
executed at specific moment in times. The OS allocates each process/task to
the processor based on a scheduling algorithm. [But04] describes a number of
scheduling algorithms for periodic tasks such as Rate Monotonic (RM), Earli-
est Deadline First (EDF) and Deadline Monotonic (DM). Given a set of tasks
and a scheduling algorithm, the schedulability analysis checks if the tasks are
schedulable on a processor such that all are meeting their deadlines.

2 Introduction

The schedulability analysis has been presented by [LL73] and is based on the
concept of processor utilization factor. The fraction of time spend by the proces-
sor in executing a task defines its utilization factor. The eq. (1.1) describes the
processor utilization for “n” tasks where Ci represents execution time without
interruption on a processor and Ti is defined as period of the task.

U =
n∑
i=1

Ci
Ti

(1.1)

The authors have also proved that there is a maximum value for the processor
utilization bellow which a set of tasks are schedulable and a maximum value
above which the tasks are not schedulable.
Regarding multi-core and schedulability, the authors of [PPEP08] have also
shown how complex hierarchical scheduling policies, similar to AUTOSAR’s,
can be analyzed.

Figure 1.1: Execution times of a task [WEE+08]

Typically, a timing analysis for a task tries to determine the following values:

• worst-case execution time (WCET) which is the longest execution time
when the task will run on a target processor.

• best-case execution time (BCET) which is the shortest execution time
when the task will run on a target processor.

• average-case execution time (ACET) which is computed based on the ex-
ecution time distribution of the task and typically the value is between
BCET and WCET.

3

The schedulability analysis needs reliable task execution time in order to verify
if a system works even in the worst cases possible. The execution time of
a task varies with some probability over a range of time values and can not
be determined accurately. Variations in execution times are influenced by the
input data, compiler or the processor architecture. The fig. 1.1 presents different
measured execution times (lower gray curve) along with probability distribution
(dark curve) relatively to BCET and WCET. Due to an increase in size and
complexity of the software for embedded systems, an exhaustive exploration of
all possible executions to determine the worst and best execution times is hard
or even impossible. Furthermore, new processor architectures with multiple
cores, memory caches, pipeline stages, branch prediction, etc, are making the
analysis of the timing even harder. According to [WEE+08] many measurements
of execution times of a task overestimate the BCET and underestimate the
WCET. For hard real-time systems we are concerned most with WCET analysis.
It is required that the WCET estimate should be safe (the value must be close
to the maximal observed execution time) and tight (little or no overestimation
compared to the maximal observed execution time). To determine the execution

Figure 1.2: Timing analysis techniques, source:[Gli13]

times of a task, different timing analysis techniques can be applied and they are
summarized in fig. 1.2:

• Static code analysis technique is based on reading and analyzing the source
or binary code and provides a BCET and WCET value. This is a pure
model approach and is not taking into the consideration the hardware
architecture where the code runs.

• Code simulation analysis technique simulates the execution of a binary
code for a given processor architecture and provides a WCET.

4 Introduction

• Static scheduling analysis technique takes as input an application model
and a scheduling algorithm and checks if any deadlines will be missed.

• Scheduling simulation analysis technique is similar to static scheduling
analysis with the difference that it simulates the running of tasks and
generates traces of their executions that can be analyzed further.

• Measurement analysis technique involves running the tasks on an embed-
ded system within the OS and measuring their execution times using some
hook functions provided by the OS.

• Tracing analysis technique involves capturing related events of the running
system, adding a time stamp and save them into a buffer that can be
analyzed off-line.

The increasing number of functionalities that are being implemented in a ve-
hicle demands high-quality, reusable and safety critical hardware and software
components. Nowadays, a modern vehicle has more than one hundred ECUs
(Electronic Computational Unit) together with software that runs on it that pro-
vides different functionalities. An ECU (fig. 1.3) is an embedded system that
has a microprocessor, memory and a number of I/O that controls one or more
subsystems in a vehicle (engine, seat, door, etc). Inside the vehicle (fig. 1.4),
the ECUs communicate through standardized network buses like CAN, FlexRay,
etc.

Figure 1.3: ECU1

The current trends for safety-critical applications are moving from federated
architectures, where one function is implemented in one ECU, to integrated
architectures, where several functions share resources on a single ECU.

1http://www.cdxetextbook.com/images/efiSys_ECU.jpg
2http://www.embedded.com/print/4011425

http://www.cdxetextbook.com/images/efiSys_ECU.jpg
http://www.embedded.com/print/4011425

5

Figure 1.4: ECUs interconnected inside a vehicle2

In addition, multi-core ECUs are being adopted because of better cost, power
consumption, size, fault-tolerance and performance. Increased complexity in
functionality and hardware systems used in the automotive industry implies
that more effort is added in the designing, developing and testing of the software
functionalities. System developers have to map the functionalities to different
ECUs such that safety according to ISO 262623 standard, schedulability of tasks
running on different cores and bus bandwidth constraints are being met. The
mapping task is not a trivial one and in many cases it can not be constructed
“by hand”. Therefore, tools are required to assist a system developer taking the
decisions necessary for having a running system that meets all the constraints.

A method and a tool for assigning AUTOSAR functionalities called runnables to
a distributed network of multi-core ECUs is proposed in the thesis. The goals
are to minimize the overall bus bandwidth and the core utilization variance
while all the constraints related to safety and schedulability are met.

Chapter 1 introduces the reader to the AUTOSAR framework and functional
safety concepts related to automotive area. In Chapter 2 the application and
the architecture model for the mapping problem is defined. Chapter 3 describes
the mapping algorithm proposed and the use cases for testing. In chapter 4 the
conclusions and possible future work are presented.

3http://www.iso.org/iso/catalogue_detail?csnumber=43464

http://www.iso.org/iso/catalogue_detail?csnumber=43464

6 Introduction

1.1 Related Work

The authors of [SCCM15] propose an ILP (integer linear programming) ap-
proach for mapping AUTOSAR functions on a multi-core ECU to minimize
the inter-core communication and balance the core load. They only consider
one multi-core ECU and the applications have quite small number of functions
which allows the ILP algorithm to find the optimal solution.

An approach for mapping AUTOSAR functionalities on multi-core ECU that
takes into consideration timing and precedence constraints is proposed by the
authors of [FLSN14]. Like in the previous article, they only consider one multi-
core ECU. The authors are using an interesting heuristic method called sys-
tematic memory based simulated annealing (SMSA) and argue that it provides
better results than the classic simulated annealing.

Another approach for mapping AUTOSAR functions into one multi-core ECU
is presented in [NMBSL10]. Their goal was to balance the core utilization and
the strategy used was to cluster functions that are exchanging data signals and
iteratively assign them to the least loaded core. For the automotive applications
(like the use case provided by Volvo) where most of the functions are exchanging
signals, applying this strategy might result in most of them being clustered
together and assigned to one core.

In [WMM+13], the authors proposed a mixed integer linear programming and
a genetic algorithm for mapping AUTOSAR functionalities on a architecture
composed of several single core ECUs. The goal is to optimize end-to-end tim-
ing response and the memory consumption. This paper is close to the mapping
approach developed in this thesis with the difference that we are taking into
consideration the safety level of AUTOSAR functions and our proposed archi-
tecture consists of multi-core ECUs. However, we ignore the end-to-end timing
responses and the memory consumption.

1.2 Functional safety in Automotive

The growing complexity in the automotive industry makes the process of testing
and validating safety related systems difficult. ISO 262624 has been adopted to
provide an unifying standard regarding safety for all automotive electrical and
electronic (E/E) systems.

4http://www.iso.org/iso/catalogue_detail?csnumber=43464

http://www.iso.org/iso/catalogue_detail?csnumber=43464

1.2 Functional safety in Automotive 7

The standard provides a set of rules for safe product creation starting from the
concept definition, development, production, operation and service. This paper
focuses on functional safety and the risk classes (ASILs) associated with each
software component. The Automotive Safety Integrity Level (ASIL) quantifies

Figure 1.5: ASIL level estimation5

the risk of possible hazards when a failure happens at hardware and software
level. In the case of road vehicles, the ASIL level for each software functionality
is assigned based on the probability of exposure, how easily the failure can be
handled by the driver and how severe the impact towards the road users will be
if it happens (fig. 1.5). According to ISO 26262 there are five levels of ASIL:

• QM (Quality Managed). In the case of a failure, safety is not an issue but
customer satisfaction is.

• ASIL A. In case of a failure, operational limitations are expected with no
severe outcome.

• ASIL B. Ordinary driver can recover most of the time, usually no severe
outcome.

• ASIL C. A good driver can recover (e.g. one brake works). In this case
severe outcomes might be expected such as fatal crash.

• ASIL D. No driver is expected to recover (e.g. both brakes fail). Extremely
severe outcomes expected such as multiple crash.

The ASIL level is determined for each functionality at the beginning of develop-
ment process and depending on the assigned level, ISO 26262 provides different
requirements for implementation and testing. In this thesis we do not address
the issue of fault-tolerance. We assume that the required redundancy has been
added to the system, for example, using a method proposed in [IPEP06].

5http://www.ni.com/white-paper/13647/en/

http://www.ni.com/white-paper/13647/en/

8 Introduction

1.3 AUTOSAR

Figure 1.6: AUTOSAR layers, source:[AUT14a]

The AUTOSAR (AUTomotive Open System ARchitecture) is a partnership
between vehicle manufactures, suppliers, hardware and software providers to
develop a common standard that makes possible the development of reusable
software functions for vehicles. AUTOSAR also focuses on performance, safety
and provides a framework that can manage the growing complexity of electri-
cal/electronic components used in a vehicle. The AUTOSAR framework has a
standardized layered software architecture made of three parts fig. 1.6:

• An application software layer.

• A middle layer called Runtime Environment (RTE).

• The Basic Software layer (BSW).

The application layer is composed of the software components that provide the
functionality required on the ECU.
The RTE layer defines a standardized application program interface (API) that
allows an application to call a service from the Basic Software Layer. Further-
more, the communication between software components is also performed via
the RTE layer.

1.3 AUTOSAR 9

Figure 1.7: “Configure System” activity in AUTOSAR, source:[AUT14a]

The Basic Software Layer consists of the Operating System and modules that
provide services like communication over a network, I/O, memory access. It
provides an abstract layer to the software components that hides the ECU-
hardware details.

The AUTOSAR methodology defines the development steps that allow the full
configuration of an ECU starting from an application model and a system topol-
ogy specification fig. 1.7. In AUTOSAR, an application model is composed of
several software components that logically interact through a Virtual Function
Bus (VFB). The Runtime Environment (RTE) can be seen as the implemen-
tation of the (VFB) providing the API necessary for the “logically” connected
software components to exchange data signals and access OS services.

A system topology consists of a number of interconnected ECUs. In “Configure
System” activity, first the software components are mapped to different ECUs.
Once they are assigned to an ECU, the virtual connections between them are
mapped to intra-ECU or inter-ECU network communications. Next, primitive
data elements are mapped to signals. In the case of complex data types such as
arrays and records, they are mapped into signal groups.

10 Introduction

At the end, ECU configuration is performed by generating the Run-time En-
vironment (RTE) and setting the Operating System and Basic Software mod-
ules used. One important Basic Software module is the Communication Stack
(COM) that needs to be configured for inter-ECU communication. The fig. 1.7
presents an example of the outcome of the “Configure system” activity where
a number of “n” software components logically connected through a VFB are
mapped into “n” ECUs. After mapping and configuration, each ECU has it’s
own RTE layer and Basic Software generated.

1.3.1 Software components

Figure 1.8: Seat heating application, source:[AUT14a]

An AUTOSAR application is composed of a several software components that
interact with each other through well defined ports. The implementation of
a software component does not depend on a particular hardware or type of
communication needed for sending signals, therefore it can be relocated and run
on different ECUs. An example of an application that controls the seat heating
in the vehicle, composed of seven software components is presented in fig. 1.8.

Each software component requires the specification of the ports for communica-
tion with other components and the implementation of their internal behavior.

1.3 AUTOSAR 11

A port has a associated port-interface that is the “contract” between one soft-
ware component that provides the interface (P-ports) and the one that requires
an interface (R-Ports), fig. 1.9. There are different types of port interfaces

Figure 1.9: Software component ports, source:[GUL]

defined in AUTOSAR [AUT14a]:

• Client-server interface. The server provides operations that might be
called by different clients.

• Sender-receiver interface. The sender sends data information to one or
more clients that are consuming it.

• Parameter interface. One component can access constant or calibration
data from other components.

• Non-volatile interface. One component has read/write access to non-
volatile data.

• Trigger interface. Allows one component to trigger the execution of an-
other software component.

• Mode switch interface. Used for notification of a software component of
different states that the system can enter.

12 Introduction

Figure 1.10: Software component port-inteface example, source:[AUT14a]

We will focus on sender-receiver interface in the thesis. The fig. 1.10 presents
two components that communicate using sender-receiver interface. One com-
ponent is producing a value for variable “PassengerDetected” and is sending
the value using its P-port to the other component that is reading it through
it’s R-port. The listing 1.1 shows an implementation of a software component
for a seat heating controller. Each software component is defined by its com-
munication ports (lines 9-16) and its internal behavior (lines 20-35). The code
has been written using Arctic Studio from ArcCore6. It is worth noting that
an AUTOSAR software component can also be implemented in Matlab using
Embedded Coder7. One can see that the main advantage of an AUTOSAR
application is that the implementation does not dependent on any hardware or
OS, therefore it can be reused on different ECU configurations.

Listing 1.1: Software component implementation in Arctic Studio

1 package Tutorial . HeatingController
2
3 import Tutorial . Interfaces .*
4 import HeatingControllerType . SetHeatingControllerBehaviour
5
6 component application HeatingControllerType {
7
8 ports {
9 receiver SeatSwitchLeft requires SeatSwitchStatusIf

10 receiver SeatSwitchRight requires SeatSwitchStatusIf
11

6http://www.arccore.com/
7http://se.mathworks.com/hardware-support/autosar.html

http://www.arccore.com/
http://se.mathworks.com/hardware-support/autosar.html

1.3 AUTOSAR 13

12 sender DialLedLeft provides DialLedIf
13 sender DialLedRight provides DialLedIf
14
15 client HeatingElementLeft requires HeatingElementIf
16 client HeatingElementRight requires HeatingElementIf
17 }
18 }
19
20 internalBehavior SetHeatingControllerBehaviour for

HeatingControllerType {
21 runnable mainRunnable [1.0] {
22 serverCallPoint synchronous HeatingElementLeft . SetHeating
23 serverCallPoint synchronous HeatingElementRight . SetHeating
24 dataWriteAccess DialLedLeft . LEDStatus
25 dataWriteAccess DialLedRight . LEDStatus
26 timingEvent 2.0
27 }
28
29 runnable readDataRunnable [1.0] {
30 dataReceivedEvent SeatSwitchLeft . SwitchStatus as

DataLeftAvailableEvent
31 dataReceivedEvent SeatSwitchRight . SwitchStatus as

DataRightAvailableEvent
32 dataReadAccess SeatSwitchLeft . SwitchStatus
33 dataReadAccess SeatSwitchRight . SwitchStatus
34 timingEvent 4.0
35 }
36
37 }
38
39
40 implementation SetHeatingControllerApplication for

SetHeatingControllerBehaviour {
41 language c
42 codeDescriptor "src"
43 }

1.3.2 Runnables (functional entities)

The behavior of a software component is constructed using the entities called
runnables. They are software functions that implement the algorithms (behav-
ior) of a software component. Each runnable has access to the port interfaces
and can read/write data signals from/to other software components.

In AUTOSAR, each runnable execution must be triggered by an event. A
runnable can start its execution when new data is available on its sender-receiver
port (data receive event) or it can be triggered by a timer (timing event).

14 Introduction

In listing 1.1 the behavior of the software component is implemented by two
runnables called mainRunnable (line 21) and readDataRunnable (line 29). The
mainRunnable has a write access to two sender-receiver ports calledDialLedRight
(line 24) and DialLedLeft (line 25) and its execution is triggered by a timing
event (line 26). The readDataRunnable can be triggered by a timing event or by
a data receive event when new data is available at one of its ports : SeatSwitch-
Left (line 30) and SeatSwitchRight (line 31).

Once a software component is mapped to an ECU, the configuration and gen-
eration of the Runtime Environment (RTE) is applied. This implies that the
necessary “glue code” will be created in order for the RTE layer to be able to
trigger each runnable when an event such as new data is received or a timer ex-
piration happens. An example of such RTE “glue code” generated for the heat
controller software component is shown in listing 1.2. It can be seen that for both
runnables: mainRunnable and readDataRunnable, a new wrapper function is
generated and it has the format Rte_<software component name>_<runnable
name>. It is important to emphasize that these two wrapper functions represent
the “real runnables” that will be triggered by the RTE layer.

In the case of the readDataRunable, the RTE layer first gets the data from the
sender-receiver port Switch Status (lines 26-37) and only after that it calls the
readDataRunable of the software component (line 38).

Each runnable can only run in the context of an Operating System task. The
task can also be seen as a container that provides the stack-space for a runnable
to execute. More about tasks in the context of the AUTOSAR will be explained
in the section 1.3.3.

Listing 1.2: Example of generated RTE “glue code”

1 /** === Runnables
==

2 */
3 # define HeatingControllerType_START_SEC_CODE
4 # include <HeatingControllerType_MemMap .h>
5
6 /** ------ heatingController

7 */
8 void Rte_heatingController_mainRunnable (void) {
9 /* PRE */

10
11 /* MAIN */
12
13 mainRunnable ();
14
15 /* POST */
16 Rte_Write_HeatingControllerType_heatingController_

1.3 AUTOSAR 15

17 DialLedLeft_LEDStatus
18 (ImplDE_heatingController . mainRunnable . DialLedLeft . LEDStatus . value)

;
19
20 Rte_Write_HeatingControllerType_heatingController_
21 DialLedRight_LEDStatus
22 (ImplDE_heatingController . mainRunnable . DialLedRight . LEDStatus . value

);
23 }
24
25 void Rte_heatingController_readDataRunnable (void) {
26 /* PRE */
27 Rte_Read_HeatingControllerType_heatingController_
28 SeatSwitchLeft_SwitchStatus (
29 & ImplDE_heatingController . readDataRunnable .
30 SeatSwitchLeft . SwitchStatus . value);
31
32 Rte_Read_HeatingControllerType_heatingController_
33 SeatSwitchRight_SwitchStatus (
34 & ImplDE_heatingController . readDataRunnable .
35 SeatSwitchRight . SwitchStatus . value);
36
37 /* MAIN */
38 readDataRunnable ();
39 /* POST */
40
41 }
42 # define HeatingControllerType_STOP_SEC_CODE
43 # include <HeatingControllerType_MemMap .h>

1.3.3 OSEK Os and Schedulability

The AUTOSAR Operating System is based on the industry standard OSEK
OS8. AUTOSAR has adopted a fixed priority fully preemptive scheduling pol-
icy. The unit of execution inside AUTOSAR OS is called an Os-Task. Each
Os-Task has assigned a priority and it can always be preempted by another
Os-Task with a higher priority value.

Two types of Os-Task are defined:

• Basic task fig. 1.11 that can be in one of the states: ready (the task waits
for the allocation of the processor), running (the task has the processor
and it executing its instructions), suspended (the task has released the
processor to another task and can be re-activated).

8http://www.osek-vdx.org/

http://www.osek-vdx.org/

16 Introduction

Figure 1.11: Basic Os-Task, source:[VDX05]

• Extended task fig. 1.12 that has one additional state to the ones of the
basic task. In the waiting state, the task can blocked after calling a system
service and can only be activated and put into ready state by an event such
as timer expired or new data received.

Figure 1.12: Extended Os-Task, source:[VDX05]

Each runnable from any software component needs to be mapped to an Os-Task.
Multiple runnables can be assigned to the same Os-Task. According to [SR08],
the simplest solution is to map each runnable into its own Os-Task but this is
not feasible because the number of tasks can be limited in many systems and is
not efficient (the core utilization overhead needs to be taken into account when
the Operating System switches between tasks).

The fig. 1.13 and fig. 1.14 shows examples of runnables that use implicit or
explicit communication mapped into a simple simple and extended task. If mul-
tiple runnables are mapped to a basic task, the condition is that they do not
use API calls that might block the execution of the task. In this case, the RTE
layer can trigger both runnables execution one after the other: fig. 1.13 a) and
fig. 1.14 a).

1.3 AUTOSAR 17

Figure 1.13: Runnables with implicit sender/receiver communication mode,
source:[AUT14c]

Figure 1.14: Runnables with explicit sender/receiver communication mode,
source:[AUT14c]

If runnables that are mapped into the same task are triggered by different events
such that one is time triggered every 10 ms and one every 20 ms, an extended
task is used that waits in an endless loop for an event and then triggers the
corresponding runnable: fig. 1.13 b) and fig. 1.14 b). An implementation ex-
ample of an extended task that has three runnables mapped inside is presented
in listing 1.3. The execution of the task is blocked at line 6, where it waits for
an event to be triggered by the RTE layer. Based on the type of the triggering
event, it calls the associated runnables (lines: 11,15,19,23,28).

Besides the rules defined by the AUTOSAR framework, other rules can be added
depending on the system developer/integrator use cases.

18 Introduction

For example one such rule could be that only runnables from the same software
component may be allocated into the same Os-Tasks. An interesting study
is presented in [LLP+09] where the authors had define new rules of mapping
runnables to Os-Tasks such that they do not conflict with the AUTOSAR rules
and the intra-ECU communication is minimized.

Regarding schedulability, in the case of multi-core ECUs, AUTOSAR specifies
that each core is scheduled independently and a task from one core cannot
preempt another task in the other cores.

Listing 1.3: Runnables mapped into an extended task

1 /** === Tasks
===

2 */
3 void HeatingControllerTask (void) { /** @req SWS_Rte_02251 */
4 EventMaskType Event ;
5 do {
6 SYS_CALL_WaitEvent (

EVENT_MASK_DataLeftAvailableEvent |
EVENT_MASK_DataRightAvailableEvent |
EVENT_MASK_TimmingEvent | EVENT_MASK_OsEvent);

7 SYS_CALL_GetEvent (TASK_ID_HeatingControllerTask , &
Event);

8
9 if (Event & EVENT_MASK_TimmingEvent) {

10 SYS_CALL_ClearEvent (
EVENT_MASK_TimmingEvent);

11 Rte_heatingController_readDataRunnable ();
12 }
13 if (Event & EVENT_MASK_DataLeftAvailableEvent) {
14 SYS_CALL_ClearEvent (

EVENT_MASK_DataLeftAvailableEvent);
15 Rte_heatingController_readDataRunnable ();
16 }
17 if (Event & EVENT_MASK_DataRightAvailableEvent) {
18 SYS_CALL_ClearEvent (

EVENT_MASK_DataRightAvailableEvent);
19 Rte_heatingController_readDataRunnable ();
20 }
21 if (Event & EVENT_MASK_TimmingEvent) {
22 SYS_CALL_ClearEvent (

EVENT_MASK_TimmingEvent);
23 Rte_heatingController_mainRunnable ();
24 }
25 if (Event & EVENT_MASK_OsEvent) {
26 SYS_CALL_ClearEvent (EVENT_MASK_OsEvent);
27 Rte_ledLeft_DialMain ();
28 }
29
30 } while (RTE_EXTENDED_TASK_LOOP_CONDITION);
31 }

1.3 AUTOSAR 19

1.3.4 Os-Application

An Os-Application is an AUTOSAR entity that groups together a collection
of Os-objects defined as Os-Tasks, Interrupt Service Routines, alarms, events,
counters, etc. An Os-Application can be trusted, which means that each object
that is part of it has unrestricted access to the API and hardware resources.
Alternatively, each object of an untrusted Os-Application has limited access to
the API and hardware resources and it runs in non-privileged mode. An example
of an Os-Application declaration in ERIKA AUTOSAR9 is given in listing 1.4.

Listing 1.4: ERIKA AUTOSAR Os-Application example, source: [AUTa]

1 APPLICATION App1 {
2 TRUSTED = FALSE ;
3 TASK = App1Task1 ;
4 TASK = App1Task2 ;
5 TASK = App1Task3 ;
6 COUNTER = App1Counter1 ;
7 COUNTER = App1Counter2 ;
8 ALARM = App1Alarm1 ;
9 ALARM = App1Alarm2 ;

10 SCHEDULETABLE = App1ScheduleTable ;
11 SCHEDULETABLE = App1ScheduleTable ;
12 // MEMORY_SIZE = 0 x1000 ;
13 SHARED_STACK_SIZE = 256;
14 IRQ_STACK_SIZE = 256;
15 RESTARTTASK = App1Task3 ;
16 };

Each Os-Application has its own memory partition, separate stack, data and
code. AUTOSAR assures that a code executed in the context of anOs-Application
can not corrupt the memory area of another Os-Application.

9http://erika.tuxfamily.org/wiki/index.php?title=ERIKA_%26_Autosar_OS_
Requirements

http://erika.tuxfamily.org/wiki/index.php?title=ERIKA_%26_Autosar_OS_Requirements
http://erika.tuxfamily.org/wiki/index.php?title=ERIKA_%26_Autosar_OS_Requirements

20 Introduction

1.3.5 Communication

The main communication paradigms defined in AUTOSAR are the sender-
receiver, client-server and inter-runnable paradigm.

Figure 1.15: AUTOSAR communication paradigms

The sender-receiver paradigm fig. 1.15 a) defines an asynchronously commu-
nication mode where one sender runnable transmits data elements through its
component P-Port and one or more receiver runnables are consuming the data
through their component R-Port. The data can be of primitive type like “in-
teger” or of complex type such arrays or structures. AUTOSAR defines two
types of sender-receiver communication: explicit sender-receiver and implicit
sender-receiver. Depending of the type of the sender-receiver chosen, the glue
code generated in the RTE layer calls a different API.

1.3 AUTOSAR 21

The table 1.1 presents the signatures of the RTE API functions generated based
on the type of the sender/receiver where the notation <re> means the runnable
name, <p> means the software component port name used for sending the data
and <d> means the name of the data that is send. Std_ReturnType is the
return error code from the RTE API call.

Table 1.1: RTE API for sender/receiver mode, source:[Fre11]
RTE API function Description
void Rte_IWrite_<re>_<p>_<d> ([IN
RTE_Instance], IN <type>)

Implicit write with last is
best semantic

<return> Rte_IRead_<re>_<p>_<d>
([IN Rte_Instance <instance>])

Implicit read with last is
best semantic

Std_ReturnType Rte_Write_<p>_<d>
([IN Rte_Instance <instance>], IN <data>)

Explicit write with last is
best semantic

Std_ReturnType Rte_Read_<p>_<d>
([IN Rte_Instance <instance>], OUT
<data>)

Explicit read with last is
best semantic

Std_ReturnType Rte_Send_<p>_<d>
([IN Rte_Instance <instance>], IN <data>)

Explicit write with queued
semantic

Std_ReturnType Rte_Receive_<p>_<d>
([IN Rte_Instance <instance>], OUT
<data>)

Explicit read with queued
semantic

In the case of implicit sender-receiver interface, AUTOSAR defines the following
types of behavior:
• The sender runnable can modify the data signal while is running but the
RTE layer will only send the latest data of the signal after the runnable
has finished the execution.

• The RTE layer generates a copy of the data signal before it triggers the
receiver runnable. Before the execution of the receiver runnable starts, it
reads the copy of the data signal and uses it during its entire execution
time.

In the case of the explicit sender-receiver interface, AUTOSAR defines the fol-
lowing behaviors:
• The sender runnable can call the RTE API when it wants to send the
data signal. Several calls to the API cause several transmissions of the
data signal.

• The receiver runnable can call the RTE API when it wants to read the
data. Several API calls to read the data signal results in different values
retrieved.

22 Introduction

Figure 1.16: Types of communication at the system level

The explicit sender-receiver can be split further into queued communication and
unqueued communication with last-is-best semantic. A buffer of fixed length
is provided for the queued communication and the data signal is retrieved in
FIFO (first-in first-out) order. In the case of unqueued communication with
last-is-best semantic, the RTE layer assures that the runnables read the latest
value of the data signal. An use case for using sender-receiver with last-is-best
semantic is for example of a runnable which reads the value of a temperature
sensor. In this case, it will need to get the latest value and using a queue is not
recommended.

The client-server paradigm fig. 1.15 b) defines a bidirectional communication
mode where one client runnable invokes the service of a server runnable that
does some computation and return the result to the invoking client. The
runnable might be blocking while waiting for the response (synchronous com-
munication) or non-blocking (asynchronous communication). Many runnable
clients can make an arbitrary number of requests to the server runnable who
executes them in FIFO order.

The inter-runnable paradigm in fig. 1.15 c) can be threated as a special case of
sender-receiver. Runnables within the same software component communicate
asynchronously and they access the same inter-runnable variable for writing
and reading a data value.

1.3 AUTOSAR 23

Based on the mapping of the software components to the ECUs and the
runnable’s mapping to cores and their grouping into Os-Tasks, we have clas-
sified in fig. 1.16 the types of communication that can occur at the system level.

1.3.5.1 Inter-ECU communication

Figure 1.17: Inter-ECU communication over network bus [HC08]

The inter-ECU communication happens for runnables which are part of
software component that are mapped to different ECUs when data signals are
being send between these runnables. The sequence diagram in fig. 1.17 shows
an application which is sending a signal over a CAN network. In this case, the
RTE layer has to rely on modules such as Communication Stack (COM) that
gets the data signals from the RTE and sends them over the physical network
bus.

Listing 1.5 presents an example of the code generated for two runnables that use
inter-ECU communication. Based on the RTE function calls (lines 2 and 13) it
can be observed that the type of communication between runnables is explicit
sender-receiver with last-is-best semantic. In this example, both RTE functions
are using the Communication Stack (COM) API to send and receive a signal
that is send between ECUs (lines 6 and 17).

24 Introduction

Listing 1.5: Com functions called inside a RTE function

1 /** ------ FreqReq */
2 Std_ReturnType Rte_Read_Tester_TesterProto_FreqReq_freq (/*

OUT */ UInt32 * value) {
3 Std_ReturnType status = RTE_E_OK ;
4
5 /* --- Receiver (FreqReqfreqISig) @req SWS_Rte_04505 , @req

SWS_Rte_06023 */
6 status |= Com_ReceiveSignal (ComConf_ComSignal_FreqReqSig ,

value);
7
8 return status ;
9 }

10
11 /** ------ FreqReqInd */
12
13 Std_ReturnType Rte_Write_Tester_TesterProto_FreqReqInd_freq

(/* IN */ UInt32 value) {
14 Std_ReturnType retVal = RTE_E_OK ;
15
16 /* --- Sender (FreqReqIndfreqISig) @req SWS_Rte_04505 , @req

SWS_Rte_06023 */
17 retVal |= Com_SendSignal (ComConf_ComSignal_FreqIndSig , &

value);
18
19 return retVal ;
20 }

1.3.5.2 Inter-Core communication

The inter-core communication happens when the runnables who are exchanging
data signals are mapped to the same ECU but on different cores. The inter-
core communicator (IOC) layer is responsible for getting the data signals from
the RTE layer and passing them between cores. Depending on the sender-
receiver mode using queued or unqueued semantic, the AUTOSAR framework
will generate the functions for the sender side as in listing 1.6.

Listing 1.6: Generated IOC functions for the sending a signal

1 Std_ReturnType IocSend_ <IocId >[_<SenderId >](
2 <Data > IN // for the explicit sender - receiver with queued semantics
3
4 Std_ReturnType IocWrite_ <IocId >[_<SenderId >](
5 <Data > // for the explicit sender - receiver with last is best

sematics
6)

On the receiver side, the AUTOSAR framework will generate the functions as
in listing 1.7.

1.3 AUTOSAR 25

Listing 1.7: Generated IOC functions for the reading a signal

1 Std_ReturnType IocReceive_ <IocId >(
2 <Data > OUT // for the explicit sender - receiver with queued

semantics
3
4 Std_ReturnType IocRead_ <IocId >(
5 <Data > OUT // for the explicit sender - receiver last is best

sematics
6)
7)

In fig. 1.18 runnables mapped to different ECU cores communicate between each
other with the help of the RTE layer and IOC layer. It is important to notice
that the IOC layer is also responsible for communication between runnables
that belong to Os-Tasks assigned to different Os-Applications. In this case, the
generated code for the IOC layer will have to handle the crossing of the memory
protection boundaries of the Os-Applications.

Figure 1.18: Runnable communication over IOC [AUT14b]

26 Introduction

1.3.5.3 Intra-task and Inter-task communication

Intra-task communication happens when the runnables that are exchanging sig-
nals are mapped to the same Os-Task. The RTE layer is responsible for the
transport of the data signals. In this case it is worth to mention that the or-
der of mapping the runnables into the Os-Task is important. For example, the
runnable that is sending the data should be executed inside the Os-Task before
the runnable that reads the data.
Inter-task communication involves runnables that are mapped to different Os-
Tasks on the same core. Again, the RTE layer is responsible for managing the
exchange of data between the runnables.

1.3.6 Functional safety features
According to ISO 26262, if an automotive application contains software
components with different ASIL levels, they have to be isolated such that a
fault in the execution of one component does not affect the other ones. One
approach is to implement all the software components according to the highest
level of safety. This solution has an impact on the cost of the development and
testing since more effort is needed such that all the software components are
compliant (and probably needed to be certified) to the highest ASIL level.
Another approach is to use strategies than can assure freedom of inter-
ference for software components with higher ASIL from the ones with
lower level. Techniques such temporal and spatial partitioning of software
components/runnables/Os-Tasks can be used and are further explained in
section 1.3.6.1 and section 1.3.6.2. It is worth to mention that in some cases the
AUTOSAR Base Software modules, OS and RTE layer have to be implemented
to support the highest level of ASIL as well. TTTech10 already provides an
AUTOSAR solution called MicrosarSafe11 which is compliant with ASIL level D.

Possible faults might happen in AUTOSAR when:
• A runnable execution code can corrupt another runnable/Os-Task’s mem-

ory area.

• A runnable/Os-Task exceedes its execution time.

• Communication corruption during a runnable exchanging data signals
with other runnables.

When dealing with these types of faults, we apply as a solution spatial/temporal
partitioning and end-to-end communication protection as they are proposed in
the AUTOSAR.

10https://www.tttech.com/
11https://www.tttech.com/products/automotive/autosar-safety-software/

microsar-safe/

https://www.tttech.com/
https://www.tttech.com/products/automotive/autosar-safety-software/microsar-safe/
https://www.tttech.com/products/automotive/autosar-safety-software/microsar-safe/

1.3 AUTOSAR 27

1.3.6.1 Spatial partitioning

Figure 1.19: Memory partitioning example in AUTOSAR, source:[BFWS10]

Spatial or memory partitioning in AUTOSAR separates the software compo-
nents such that neither of them can change/corrupt the memory associated
with the other software components. Concretely, this is achieved with the
help of Os-Applications (see section 1.3.4). For multi-core ECUs, AUTOSAR
supports for each core the declaration of any number of Os-Applications that
can be associated with one ASIL level.

An example of memory partitioning is presented in fig. 1.19. The modules
from the Basic Software layer that is bellow the RTE layer usually have to
run in their own partition. Furthermore, depending on the ASIL levels of
each software component, they have to be grouped into different Os-Applications.

During run-time, if a fault or error appears in an Os-Application, the AUTOSAR
OS can restart or stop it along with all the Os-Tasks associated. Therefore it
might be necessary that an Os-Application to group Os-Tasks of the same ASIL,
although it is not enforced. An AUTOSAR OS requires that the cores on the
ECU contain MPU (memory protection unit) hardware to effectively support
the separation of Os-Application’s memory regions.

28 Introduction

1.3.6.2 Temporal partitioning

Temporal partitioning is not enforced in AUTOSAR due to the fix priority
preemptive scheduler. Based on how the priorities are assigned to the Os-Tasks,
it is possible that an Os-Task that groups runnables of ASIL-D to be preempted
by one with higher priority that has ASIL-C, therefore independence from the
interference is not achieved.

The Operating System provides mechanisms against timing faults at the Os-
Task level, not at a runnable level. A timing fault occurs when an Os-Task is
missing its deadline at run-time. A runnable has to be mapped into its own
Os-Task if the timing protection needs to be enabled only for it. The timing
protection budget (TPB) for an Os-Task is enabled by configuring the following
budget values:
• Execution time budget. The maximum amount of time an Os-Task is

allowed to execute.

• Resource lock time budget. The maximum amount of time an Os-Task can
hold a resource.

• Inter-arrival time budget (Time Frame). The minimum amount of time
between successive activations of a basic Os-Task. In case of an extended
Os-Task is the minimum amount of time between successive activations
and releases.

The above budgets are configured statically (listing 1.8) and are used by the OS
to check if an Os-Task has exceeded them at run-time. With this mechanism,
the interference between Os-Tasks is bounded, therefore the ISO 26262 absence
of error propagation requirement is met.

Listing 1.8: Timing budgets for an Os-Task, source: [AUTb]

1 TASK TaskPrio2 {
2 TIMING_PROTECTION = TRUE {
3 TIMEFRAME = 0.0025; /* Two Activations of this TASK have to be

separated by 250 us to be accepted . (Provided that TASK
activation number is respected) */

4 EXECUTIONBUDGET = 0.0005;
5 RESOURCE = RESOURCELOCK {
6 RESOURCELOCKTIME = 0.0002;
7 RESOURCE = RES_SCHEDULER ;
8 };
9 };

10 };

1.3 AUTOSAR 29

Figure 1.20 shows how OS starts the monitoring of the timing budgets when
an Os-Task makes a transition from one state to another. In the case that one
of the Os-Tasks exceeds its budget values, it can be killed or restarted by the
OS along with all the runnables inside. The authors in [FFR12] proposed a

Figure 1.20: AUTOSAR OS timing monitoring, source:[AUT14b]

model for determining the timing protection budget of AUTOSAR Os-Tasks
with different ASIL levels such that all of them meet their deadlines. They
suggest that depending of the ASIL level of an Os-Task, the execution time
budget should be computed as follows:
• ASIL-D: execution budget = WCET + 5%

• ASIL-C: execution budget = WCET + 10%

• ASIL-B: execution budget = WCET + 15%

• ASIL-A: execution budget = WCET + 20%

• ASIL-0: execution budget = WCET + 25%
The authors assume that for high critical Os-Tasks, the developers will spend
more effort to get a good WCET compared to ones with a lower ASIL level,
therefore the execution budget will be more pessimistic for Os-Tasks with lower
ASIL.

30 Introduction

It is also proposed that for an Os-Task, the WCET for runnables inside have to
be determined and then the sum of all values obtained defines the WCET of the
Os-Task. The authors further suggest that critical runnables should be placed
in their own Os-Tasks to reduce the risk of being disturbed by others or if it’s
not possible, they should be executed first inside an Os-Task.

1.3.6.3 End-to-end communication protection

Figure 1.21: End-to-end protection example in AUTOSAR EB tresos product,
source: [Mat14]

The end-to-end communication protection between runnables exchanging data
signals is provided by the AUTOSAR E2E library. The library allows the
sender runnable to transmit safety-related data and the receiver runnable to be
able to handle and detect errors from the communication link. For example, a
checksum number and a message counter can be assigned to each signal such
that corrupted signals can be detected with cyclical redundancy check (CRC)
while the missing signals can be identified based on their message counter
fig. 1.21.

The fig. 1.22 presents possible sources of errors that can appear inside the
AUTOSAR framework or at the hardware layer. E2E library has being designed
such that it can handle faults generated by hardware failure or those produced
at the RTE, IOC and COM layers.

In fig. 1.23 it can be observed that the E2E library is positioned between
runnables exchanging data signals and the RTE layer. The main responsibility
of the library is to wrap the safety-related information together with the real
data from the sender and forward it to the RTE layer.

1.3 AUTOSAR 31

Next, the RTE layer will send the data via IOC layer since the runnables are
part of different Os-Applications. On the receiver side, the runnable will make a
request to E2E library to read the data. The E2E library will request the data
from the RTE layer, unwrap the safety related information, check and detected
any errors and then forward the actual data to the runnable to be consumed.

Figure 1.22: End-to-end possible faults, source:[AUT14d]

Figure 1.23: End-to-end communication protection, source:[AUT14d]

Chapter 2

System model

In this chapter, we present the application, architecture and AUTOSAR models
for our mapping problem.

2.1 Application model
We have defined an AUTOSAR application as a set of software components:

Application = {Software Component} (2.1)

Each software component contains a number of runnables (functions):

Software Componenti =
(
{Runnable}, ASIL leveli

)
(2.2)

Every software component is assigned an ASIL level according to ISO 26262
functional safety standard. We define a runnable as:

Runnablei =
(
WCETi, Ti, Di, Oi, ASIL leveli, {

(
Rj , signal

)
}
)

(2.3)

Figure 2.1: Runnable model

2.1 Application model 33

A runnable fig. 2.1 is characterized by the following attributes:
• WCETi - the worst-case time necessary for a runnable to execute its

instructions without being interrupted.

• Ti - period of a runnable.

• Di = Ti - deadline of a runnable.

• Oi - offset of runnable.

• ASIL leveli - ASIL A, ASIL B, ASIL C, ASIL D.

• {
(
Rj , signal

)
} - a list of runnables that communicate and the amount of

data in bytes send between them.

Figure 2.2: Control cruise application

Our model works with periodic runnables that are activated by an event timer
and execute every T periods of time. Other assumptions for a runnnable
are that the period is equal to its deadline and it starts executing its
instructions right after being activated (offset = 0). Regarding ASIL level,
each runnable will inherit the ASIL level of the software component it belongs to.

An example of an application model is presented in fig. 2.2. It has been adapted
from the automotive use case described in the paper [ATPK+11].

34 System model

The application implements the logic for a cruise control system in the vehicle
and is composed of two software components. The first software component:
Data handling contains three runnables responsible for the acquisition of data
and diagnostics. The second software component: Cruise handling has five
runnables controlling the vehicle speed in cruise mode. The arrows between
runnables represent the exchanged data signals.

2.1.1 The WCET of a runnable entity
In this thesis, we define the WCET of a runnable as composed of the
WCETcomputational which is the amount of time needed by a runnable to
execute its instructions without interacting with the AUTOSAR RTE layer
and WCETcommunication which is the amount of the time spent by a runnable
when it is using the RTE layer’s API for communication.

All the studied literature ignores the time it takes for a runnable to com-
municate over RTE and we consider that due to the complexity of the
AUTOSAR framework and because of the safety related features introduced
for communication, the values should not be ignored. Depending of how
runnables communicate with each other, the RTE layer will use IOC layer (for
inter-core communication), COM (communication stack) layer for inter-ECU
communication or E2E library for reliable communication. Without splitting
the WCET of a runnable, a system/software developer for AUTOSAR might
have to measure the time spent for each runnable that is sending/receiving a
data signal for inter-ECU, inter-core and inter-task communication and select
the highest value as the WCET. Such strategy will result in a pessimistic
WCET that will guarantee the safety and correct functionality of the system
but it might allow a mapping tool to generate a solution that has high
utilization of communication bandwidth between ECU cores or between ECUs.
For example, due to high WCET, some runnables will have to be mapped into
different cores even thought it would have been better to stay on the same core.

Because the development of a software component together with all its runnables
is hardware independent, a system/software developer can take advantage of
different timing analysis techniques such static code analysis and code simulation
analysis to determine the WCET of all the runnables. On the other hand, one
can also determine the WCET communication for inter-task, inter-core and
inter-ECU communication by simulation or tracing techniques.

2.1 Application model 35

An interesting study is given in [GHAG11] by engineers from Gliwa GmbH,
Infineon Technologies AG and SYMTAVISION GmbH where they proposed a
strategy for migrating AUTOSAR application from single-core ECUs to multi-
core. Using SymTA/S1 timing analysis, they were able to measure the commu-
nication overhead for runnables exchanging signals. The values obtained were
taken into account when computing the core utilization. The results in fig. 2.3
show that depending of how runnables exchanging signals are being mapped,
the total communication overhead per core can be quite high: 20% for Core2 in
Core Load chart.

Figure 2.3: Communication overhead values, source:[GHAG11]

1http://www.symtavision.com/products/symtas-traceanalyzer/

http://www.symtavision.com/products/symtas-traceanalyzer/

36 System model

2.2 Architecture model
The architecture consists of a hardware model running on top of an AUTOSAR
solution.

2.2.1 Hardware architecture model
The hardware architecture consists of a number of heterogeneous multi-core and
single-core ECUs that are connected through a shared network bus (e.g. CAN,
FlexRay).

Architecture = {ECU}

Each ECU has a number of interconnected cores, an associated ASIL level and a
communication bandwidth (bytes/s) defined for each pair of ECUs that exchange
data over the network bus (2.4).

ECUi =
(
{comm}, {Core}, ASIL leveli

)
comm =

(
bandwidth,ECUj

)
i, j ∈ [0, number of ECUs) , i 6= j

(2.4)

Figure 2.4: Hardware architecture model

2.3 AUTOSAR model 37

Every core in the ECU has defined a speed factor and a communication band-
width for each pair of cores that exchange data inside the ECU (2.5).

Corei =
(
{comm}, speed factor

)
comm =

(
bandwidth, Corej

)
i, j ∈ [0, number of cores per ECU) , i 6= j

(2.5)

Since we are dealing with heterogeneous processing cores, a speed factor is
defined as a value in (0, 1] that represents how fast a runnable’s instruction
is executed on the current processing core compared to a reference one. For
example, a speed factor of 0.5 suggests that an instruction will execute twice as
fast compared to the reference core, therefore the WCET of a runnable will be
reduced by half.

A possible use case is of an automotive application that has to be ported from
a single-core ECU to a multi-core ECU. Since the WCET of all the runnables
have already been determined for the single-core ECU, different speed factors
can be used to see how the schedulability of the runnables mapped into
multi-core ECU is affected.

An example of an hardware architecture is presented in fig. 2.4. There are two
ECUs, one with a single core processor and one with a multi-core processor
connected through a network bus. ECU1 models one single core architecture
that has a CPU, memory, storage and peripherals. ECU2 is based on Freescale’s
Qorivva MPC5777M MCU2. It has two computational cores (Core2 and Core3)
and one input/output core (I/O core) used for handling different hardware pe-
ripherals. It’s worth noting that the ECU from Freescale is also ISO 26262
compliant up to ASIL level D.

2.3 AUTOSAR model
AUTOSAR software framework is running on each ECU in the hardware ar-
chitecture model. A number of assumptions have been made regarding the
scheduling, communication and safety in AUTOSAR.

2.3.1 Scheduling model
The schedulable entity in the AUTOSAR OSEK OS is an Os-Task. Every
runnable from all the software components has to be mapped to an Os-Task.

Os− Taski = (Ti, Di, Oi, {R}, ASIL leveli)

2http://cache.freescale.com/files/32bit/doc/fact_sheet/MPC5777MFS.pdf

http://cache.freescale.com/files/32bit/doc/fact_sheet/MPC5777MFS.pdf

38 System model

An Os− taski is characterized by the following attributes:
• {R} - set of runnables mapped into task.

• WCETi - worst case execution time of a task. WCET =
∑
{R.WCET}.

• Ti - period of a task. T = gcd({R.T}).

• Di = Ti - deadline of a of a task.

• ASIL leveli - ASIL A, ASIL B, ASIL C, ASIL D.
We have defined a single rule for mapping runnables into Os-Tasks: the
runnables from the same Os-Task must have the same ASIL level.
Since we are working with periodic runnables and the periods of the runnables
mapped inside a task might be different, we define the period of an Os-Task as
equal to the greatest common divisor of all runnables inside. We assume that
the WCET of an Os-Task is equal to the sum of all WCET of all runnables
inside and that it’s smaller than the period of an Os-Task.

According to AUTOSAR OS specification for multi-core ECUs [AUT14b],
Os-Tasks are scheduled independently on each core. This means that the
runnables inside each tasks are independent. Note that in our application
model, there is a data dependency between runnables that communicate with
each other, therefore our assumption is that the runnable that produces the
data (sender) does not block waiting for an answer that the data signal has been
received by the consumer runnables. On the other hand, for a runnable that
consumes the data (receiver) we assume that by the time it starts executing, it
already received all the data and is not waiting in a locked state.

Given this, we are using the schedulability test for independent tasks proposed
by Liu & Wayland [LL73] with the difference that instead of computing the pro-
cessing core utilization per task, we are computing the utilization per runnable
mapped to the core. The core utilization per runnable is defined as the fraction
of time spend on executing its instructions over its period. The utilization for
each core is computed as the sum of all runnable utilization that are mapped to
the core where m represents the number of runnables assigned to the processing
core eq. (2.6).

Ucore =
m∑
i=1

Ri.WCET

Ri.T

Ri.WCET − WCET of the runnable entity Ri

Ri.T − Period of the runnable entity Ri

(2.6)

2.3 AUTOSAR model 39

According to [LL73] a sufficient condition for the tasks to be schedulable
on a given core is that the utilization is below a specific bound given by
Ucore ≤ n × (2 1

n − 1) where n represents the number of tasks (in our case
runnables). A value given by the limn→∞(n × (2 1

n − 1)) = ln 2 ≈ 0.69 is
usually used as the maximum core utilization value below which the tasks are
schedulable.

The motivation for using the “runnable view” for computing the core utiliza-
tion is that since not all runnables are activated when the task is running,
the utilization might be over estimated in case we are using the “task view”.
As an example, if we have three runnables that are grouped into the same
task and the runnables have the following properties: R1 (WCET = 5ms,
T = 25ms) , R2 (WCET = 1ms, T = 50ms) , R3 (WCET = 10ms, T =
100ms), then the core utilization of the task is WCET/T where WCET =
WCETR1 +WCETR2 +WCETR3 and T = gcd(TR1, TR2, TR3). Therefore the
utilization is : Utask view = 5+1+10

gcd(25,50,100) = 16
25 . If we use the “runnable view”,

the utilization is only: Urunnable view = 5
25 + 1

50 + 10
100 = 8

25 .

2.3.2 The model of spatial partitioning
The main requirement of ISO 26262 for the integration of mixed critical systems
is that safety relevant software must not be affected or disturbed. Spatial and
temporal partitioning must be assured such that an error in a runnable with
ASIL A level should not interference with a runnable of ASIL B level.

Spatial partitioning in the AUTOSAR framework is achieved through Os-
Application. In order to isolate runnables with different ASIL levels, we only
allow runnables from the same ASIL level to be mapped together into an Os-
Task. Furthermore, for each core we have defined an Os-Application that will
contain only tasks with the same ASIL level.

Os−Applicationi =
(
ASIL leveli, {OS task}

)
Each Os-Application will reside/use a different memory area (partitions) and
AUTOSAR OS will assure that a runnable executing in one Os-Application can
not modify a memory region from another Os-Application.

40 System model

2.3.3 Communication model
Once the software components are mapped to each ECU and all the runnables
are mapped to each core, the communication between runnables that exchange
data signals is done through the AUTOSAR RTE layer. An example of
runnables communicating between ECUs and inside ECU is presented in fig. 2.5.
Runnables from all the software components are communicating through sender-
receiver ports and at the AUTOSAR Infrastructure layer it can be observed that
the RTE is relying on the Basic Software (BSW) to send data between ECUs.

Figure 2.5: Runnable communication over AUTOSAR Runtime Environment
(RTE)

In general, we can distinguish the following types of communication:
• Intra-ECU communication - between runnables exchanging data signals
mapped on the same ECU.

– Intra-Core communication - between runnables exchanging data sig-
nals mapped on the same core.

– Inter-Core communication - between runnables exchanging data sig-
nals mapped on different cores.

• Inter-ECU communication - between runnables exchanging data signals
mapped on different ECUs.

2.3 AUTOSAR model 41

We define the runnables bandwidth for each core as the sum of the data signals
exchanged by the runnables divided over their period eq. (2.7).

runnables bandwidth on ECU/core =∑
Runnable mapped into ECU/core

Runnable.signal

Runnable.T
(2.7)

The bandwidth utilization between ECUs/cores is the sum of all runnable
bandwidth on ECU/core divided per maximum bandwidth of the ECU/core
communication bus eq. (2.8). The values are between [0, 1] with 1 meaning that
the utilization of the communication bus is 100%.

bandwidth utilization = runnables bandwith on ECU/core
maximum bandwidth of the ECU/core (2.8)

Figure 2.6: Sender-receiver with last-is-best model [AUT14b]

Our assumption for runnables exchanging data signals is that they are using
asynchronous communication with non-blocking read/write operations. There-
fore, the AUTOSAR sender-receiver with last-is-best mode of communication
can be used for sending signals between runnables.

The sequence diagram in fig. 2.6 shows how sender-receiver mode works in the
case of two runnables that are exchanging signals over RTE and IOC. It can
be observed that the sender runnable does not wait until the signal is delivered
and the receiver does not block until the signal becomes available which is in
accordance with our assumption about asynchronous non-blocking read/write.

42 System model

Based on the type of communication that we have defined and based
on the AUTOSAR sender-receiver mode being used, we can define the
WCETcommunication overhead for runnables exchanging data signals as:
• α = if runnables are mapped into the same Os-Task.

• β0 = if runnables have the same ASIL levels and are mapped into different
Os-Tasks.

• β1 = if runnables have different ASIL levels and are mapped into different
Os-Tasks.

• γ = if the runnables are mapped into Os-Tasks on different cores on the
same ECU.

• θ = if the runnables are mapped into Os-Tasks on different ECUs.
We assume that θ > γ > β1 > β0 > α since there is more work to be done by the
AUTOSAR framework when runnables are mapped into different ECUs and/or
cores. It is worth noting that the use of E2E library for reliable end-to-end
communication will have also an impact on the WCETcommunication for each
runnables exchanging data signals (see section 1.3.6.3).

Chapter 3
Functionality assignment to
multi-core and optimization

This chapter presents the mapping algorithm proposed and the use cases for
testing.

3.1 Problem formulation
Given an application model in section 2.1 and an architecture model as defined
in section 2.2 we want to determine:
• A mapping of software components to ECUs.

• A mapping of runnables to cores.

• A mapping of runnables to Os-Tasks.

• A mapping of Os-Tasks to Os-Applications.
Such that we want to minimize:
O.1 The overall communication bandwidth. Runnables exchanging data sig-

nals should be mapped as closed as possible to each other (e.g into same
Os-Task or into same processing core or into the same ECU).

O.2 The variance of the core utilization of the system. If we have an ECU with
three computational cores, we want that the runnables are mapped such
that one core does not have an utilization of 80% and the rest of the cores
have 10%. We compute the variance of the core utilization to measure
how far the values are from the overall mean.

44 Functionality assignment to multi-core and optimization

Taking into consideration that:
C.1 The mapping constraints from AUTOSAR and the software developer/in-

tegrator are satisfied. For exemple, an AUTOSAR constrain specifies that
runnables from the same software component have to be mapped on the
same ECU.

C.2 The runnables are schedulable. Runnables have to be mapped such that
for each procesing core the utilization is not greater than 69% so the
schedulability test is met, see section 2.3.1 .

C.3 The runnables with different safety integrity levels are spatially and tem-
porally isolated.

Figure 3.1: Mapping solution to ECUs

An example of mapping solution is given in fig. 3.1 where as an application
model we have the one defined in fig. 2.2 and as an architecture model, we have
the one defined in section 2.2.

3.2 The solution space of the problem 45

One possible solution is to map the software component 1 to ECU1 and the soft-
ware component 2 to ECU2. Next, all runnables from the software component
1 will be mapped to Core1 and a possible mapping for runnables from software
component 2 to cores is:
• Speed Setpoint, Application condition and Limp home mapped to Core2.

• Basic function, Controller mapped to Core3.
After all the runnables are mapped to the cores, they must be grouped into
Os-Tasks. As mentioned in section 2.3.1, runnables with the same ASIL level
will be grouped into the same task on each processing core.
A possible grouping of runnables to Os-Task is:
• Core1 - one Os-Task with Input aquisiton, Input interpretation and Diag-

nostic

• Core2 - one Os-Task with Speed setpoint, Application condition and Limp
home.

• Core3 - one Os-Task with Basic function and Controller.
The last step is to group the Os-Tasks into Os-Applications for each core. As
explained in section 2.3.2, Os-Tasks with the same ASIL level will be grouped
into the same Os-Application to isolate runnables with different ASIL levels
from each other.

3.2 The solution space of the problem
Any of the mapping that we want to construct (software components to ECUs,
runnables to processing cores, runnables to Os-Tasks) can be reduced to a bin-
packing problem. If we have n elements such as software components,runnables
and k bins as ECUs, processing cores, Os-Tasks we want to determine a solution
composed of k disjoint subsets of elements (software components, runnables)
that has the minimum variance in core utilization O.2 and the minimum over-
all communication bandwidth utilization O.1, such that the constraints in C.1,
C.2, C.3 are met. The number of possibilities to generate k non-empty, dis-
joint subsets of n elements is given by the Stirling number of the second kind:
eq. (3.1).

S(n, k) = 1
k!

k∑
i=0

(−1)(k−i)
(
k

i

)
in (3.1)

46 Functionality assignment to multi-core and optimization

The eq. (3.1) does not make any distinctions between the k bins, which is not
the case in our problem, therefore we also have to add the cases when the set
of all elements is assigned to one of the k bins.

Let’s assume that we have m number of software components with n runnables
each and k ECUs with l processing cores each. The number of ways we can map
m software components to k ECUs is:

k!× S(m, k) + k (3.2)

where S(m,k) is obtained from 3.1

For each software component to ECU mapping, the number of ways to map n
runnables to l processing cores is

l!× S(n, l) + l (3.3)

where S(n,l) is obtained from 3.1

Once we have all the software components mapped to the ECUs and all the
runnables mapped to the processing cores, a grouping of runnables into Os-
Tasks must be done for each processing core. Let’s assume that the runnables
are evenly distributed among all the cores with r such that

r = m× n
k × l

On each core, we can have all the runnables mapped into one Os-Task, or two
Os-Tasks and so forth up to the case when each runnable is mapped to its own
Os-Task eq. (3.4).

i=r∑
i=1

S(r, i) (3.4)

where S(r,i) is obtained from 3.1

To conclude, the number of possible solutions for our problem can be obtained
by multiplying all the formulas from 3.2, 3.3, 3.4.

(k!× S(m, k) + k)× (l!× S(n, l) + l)× (
i=r∑
i=1

S(r, i)) (3.5)

Given the case where we have one software component with thirty runnables
and one ECU with two processing cores, the number of possible solutions are
over one billion.

3.3 Cost function 47

3.3 Cost function
A cost function has been defined eq. (3.6) to compute the variance of the core
utilization O.2 and the overall communication bandwidth O.1 for a possible
candidate from the solution space.

cost function = W1 × (σ)

+W2 ×

 ∑
comm∈{∪{ECU.comm}∪{∪{ECU.{Core.comm}}}

comm

+ penalty factor ×

 ∑
core∈{∪{ECU.{core}}}

max (0, Ucore − Ucore max)

+ penalty factor ×

 ∑
comm∈{∪{ECU.comm}∪{∪{ECU.{Core.comm}}}

max (0, Ucomm − 1) .

σ = 1
N − 1 ×

 ∑
core∈{∪{ECU.{core}}}

(Ucore − µ)2

µ = 1

N
×

 ∑
core∈{∪{ECU.{core}}}

Ucore

Where N represents the number of cores in the architecture model.

(3.6)
The eq. (3.6) can be divided in three parts. The first part computes the
variance of the core utilization weighted by W1. We want that the mapping of
runnables should be done in such a way that each core utilization is closer to
the mean utilization.

The second part of the formula computes the sum of bandwidth utilization for
each inter-ecu and inter-core communication link (see 2.8), weighted by W2.
We want that the runnables that are exchanging data signals to be mapped as
close as possible to each other such that the overall inter-ECU and inter-core
communication is minimized. For example, in the case of two runnables
exchanging data signals, if they are mapped into the same core, no inter-ECU
or inter-core bandwidth will be used.

The third part of the formula adds a penalty factor when either one of the core
utilization is higher than a threshold given by a system/software developer or
one of the communication bandwidth utilization is higher than 100%. For the
experiments the threshold for core utilization factor was set to 0.69 (see 2.3.1).

48 Functionality assignment to multi-core and optimization

3.4 Optimal solution
A backtracking algorithm has been implemented in order to explore all the
solution space and select the optimal one. By optimal solution, we mean the
one with the smallest cost (see eq. (3.6)). As explained in [Ski08], for the entire
solution space of the problem, backtracking works by constructing a tree of
partial solutions where each vertex represents a part of the final solution. In
our case, a final solution means a mapping of software components to ECUs,
runnables to cores, runnables to Os-Tasks and Os-Tasks to Os-Applications.

A backtracking algorithm works if the problem space is relative small. For
our case the problem space is quite big as explained in the section 3.2. For
an automotive application where we can have hundreds of software components
with hundreds of runnables each, running on an hardware architecture with
tens or even hundreds of ECUs, finding the optimal solution by exploring all
the problem space can take an unfeasible amount of time and program memory
space. Since the backtracking algorithm will always find the optimal solution
given enough time and memory, for small application models it can be used
to check how close to the optimal solution we can get with the metaheuristic
algorithm introduced in section 3.5.

3.5 Simulated annealing
Simulated annealing is a heuristic search method for combinatorial problems.
The method has been inspired from the process of heating and cooling metal
materials to alter their physical properties. The process of physical annealing
starts by heating the metal material over the melting point. While the material
is cooling, the energy state of the system is changing. The transition probability
from one energy level to another, at a given temperature, is given by eq. (3.7) :

P (δE, T) = eδE/kB×T , δE = Eold − Enew (3.7)

where kB is known as Boltzmann constant

According to the eq. (3.7), the probability of moving from a higher energy state
to a lower energy state is high. Furthermore, there is still a non-zero probability
to move to a higher energy state than the current energy state. The higher the
temperature is, the higher is the probability of energy jumps. As it cools down,
a physical system reaches a minimum energy state and the energy jumps are
less likely to appear.

3.5 Simulated annealing 49

Table 3.1: Physical annealing and Simulated annealing, source:[Ree93]
Thermodynamic Simulation Combinatorial Optimization

System States Feasible Solutions
Energy Cost

Change of State Neighboring Solutions
Temperature Control Parameter
Frozen state Heuristic Solution

Given this, we can relate the process of physical annealing to finding the
optimal solution is a combinatorial optimization problem. The table 3.1 makes
the connection between the simulation of the physical annealing and exploring
the solution space in a combinatorial optimization problem.

The solution space of the problem is equivalent to the thermodynamic states
and the cost value of eq. (3.6) is the same as the energy of the system at a
given temperature. When the system is changing the energy, this is identical
for combinatorial optimization problem to a move from the current solution to
a neighboring one. Simulated annealing is not more than an algorithm that
mimics the physical annealing process. While exploring the solution space,
it occasionally allows for jumps from a current solution to an inferior one to
avoid getting stuck in a local minimum. A solution that has a minimum cost
compared to the neighboring ones (local minimum) is not necessary the best
(optimal).

The algorithm 3.1, takes as input an initial temperature (from where it starts to
“cool down”), a minimum temperature where it stops to cool and the amount of
steps done before lowering the temperature. The algorithm starts by computing
an initial solution and the associated cost, lines 1, 2. For each temperature, a
new solution is generated by applying a random transformation and computing
a cost, lines 5, 6, 7. If the new cost is better than the old one, the new solution
is accepted, otherwise the new solution is accepted with the probability given
by a formula similar to 3.7, lines 9, 10, 11. After the amount of steps per
temperature has been exceeded, the current temperature is “cooled down” by a
cooling factor.

50 Functionality assignment to multi-core and optimization

Input:
initial temperature
minimum temperature
max steps per temperature
cooling factor
Output:
Heuristic solution

1 Make an initial solution S;
2 Compute current cost;
3 while current temperature > minimum temperature do
4 for step := 1..max steps per temperature do
5 Randomly choose a move strategy;
6 Generate new solution S’ by applying the move to the current

solution S;
7 Compute new cost of S’;
8 if new cost > curent cost then
9 current solution = new solution

10 else

11
current solution = new solution with probability

α = e(new cost−old cost)/current temperature

12 end
13 end
14 current temperature = current temperature ∗ cooling factor
15 end

Algorithm 3.1: Simulated Annealing

3.6 Functionality mapping tool 51

3.6 Functionality mapping tool
A functionality mapping tool has been implemented. At the core of the
tool stands a modified simulated annealing algorithm that takes as input an
application model, an architecture model, any system mapping constraints and
outputs a mapping of software components to ECUs, a mapping of runnables
to cores, a mapping of runnables to Os-Tasks and a mapping of Os-Tasks to
Os-Applications fig. 3.2. For our implementation of simulated annealing, an

Figure 3.2: Mapping tool

exponential decay has been chosen for the temperature: Tnew = α×Told, where
α is the cooling factor.

A solution represents a mapping of software components to ECUs, runnables to
cores, runnables to Os-Tasks and Os-Tasks to Os-Applications. Consider the
pseudo-code presented in algorithm 3.2. First, an initial solution is constructed
(lines 1 - 7) by mapping each software component to a random ECU. Then
each runnable is mapped to a random core of the ECU where the software
component to which it belongs has already being mapped. After this, the cost
of the mapping is computed based on the eq. (3.6).

52 Functionality assignment to multi-core and optimization

For each temperature, we repeat the steps 8 - 21, before the lowering of the
temperature starts.

We have defined three generation strategies that we want to apply to a given
solution. At each step, one of the strategies is chosen randomly and applied to
the current solution. For our problem, the strategies involve the following:
S.1 (fig. 3.3) Randomly choose a software component and map it to a new ECU

which is different from the one where it is currently assigned. First, the
ECU is selected at random. Second, all the runnables inside the software
component are randomly mapped to the cores of the new ECU.

S.2 (fig. 3.4) Randomly choose a runnable and map it to a new core. The
core is selected at random from the ones of the ECU where the software
component that contains the runnable is mapped.

S.3 (fig. 3.5) Randomly choose two runnables that reside on the same core
and group them together into an Os-Task. The only rule for grouping two
runnables is that they must have the same ASIL level. It is possible to
add new rules such that only runnables with the same period might be
grouped together. At the beginning of the algorithm, all the runnables
are mapped into their own Os-Task.

After a strategy has been chosen, it is applied to the current solution. Based
on the type of the strategy selected, a new mapping of software components
to ECUs, runnables to cores, runnables to Os-Tasks and Os-Tasks to Os-
Applications is generated.

Given the new solution, the cost is computed based on the formula 3.6. It is wort
to notice that based on how the runnables are being mapped, this will affect their
WCETcommunication as explained in section 2.3.3 and the overhead is added to
the utilization of the core where they are placed. Furthermore, the mapping
of the runnables affects the inter-ecu and inter-core bandwidth utilization (see
section 2.3.3) and the values are added to the cost for the current solution.
If the new cost is smaller than the cost before the transformation, the new
solution is selected, lines 13, 14, otherwise we keep the current solution. If the
probability of accepting the new solution is greater than a random generated
number between [0, 1), then the new solution is also selected, lines 16 - 20.

3.6 Functionality mapping tool 53

Figure 3.3: Move software component transformation

Figure 3.4: Move runnables between cores

Figure 3.5: Move Runnables into same Os-Task

54 Functionality assignment to multi-core and optimization

Input:
application model
architecture model
system mapping constraints
current temperature,minimum temperature,max steps per temperature
Output:
A mapping of software components to ECUs.
A mapping of runnables to Os-Tasks.
A mapping of Os-Tasks to cores.
A mapping of Os-Tasks to Os-Applications.

1 foreach software component in the application model do
2 randomly assign it to an ECU
3 foreach runnable in the sofware component do
4 randomly assign it to an Core on the ECU
5 end
6 end
7 Compute current cost;
8 while current temperature > minimum temperature do
9 for step := 1..max steps per temperature do

10 Randomly choose a strategy;
11 Generate new solution from the current solution;
12 Compute new cost;
13 if new cost < curent cost then
14 current solution = new solution
15 else
16 Choose a random number r ∈ [0, 1);
17 if e(old cost−new cost)/current temperature > r then
18 current solution = new solution;
19 else
20 end
21 end
22 end
23 current temperature = current temperature ∗ cooling factor
24 end

Algorithm 3.2: Simulated Annealing for mapping problem

3.6 Functionality mapping tool 55

3.6.1 Implementation details
The implementation of the tool has been done in C# programming language1

and runs on top of Microsoft’s .NET Framework2. Since C# is an object-
oriented programming language, it is based on the concept of classes that groups
together data known as attributes and code known as methods that are relying
on the attributes to implement their functionality. Classes that are semantically
related can be grouped together into software packages. From implementation
point of view, the mapping tool can be split into four major software packages
(fig. 3.6). The HardwareModel package contains all the classes responsible for

Figure 3.6: Main software packages

handling the hardware model. Similarly, the ApplicationModel package groups
the classes for handling the application model. SimulatedAnnealing package
contains the classes and data structures needed for the simulated algorithm 3.2.
The Utilities package contains support classes such as the ones that are reading
the application and hardware model files.

1https://msdn.microsoft.com/en-us/library/618ayhy6(v=vs.71).aspx
2https://www.microsoft.com/net

https://msdn.microsoft.com/en-us/library/618ayhy6(v=vs.71).aspx
https://www.microsoft.com/net

56 Functionality assignment to multi-core and optimization

The main classes that are associated with the application model are presented
in fig. 3.11. There is an equivalent class for each of the concepts introduced
in section 2.1: software component, runnable, Os-Task, Os-Application. An
instance of one of this classes is equivalent to a "real" software component,
runnable, etc. When each instance of the software component and runnable is
created from the application model, an unique ID is associated with it. The ID
is just an integer that is used by all the generation strategies for constructing
the mapping solution.

The main classes that are associated with the hardware model are presented
in fig. 3.12. As in the case of the application model, there is an equivalent
class for each of the concepts that where introduced in section 2.2: ECU, core,
inter-core and inter-ECU communication. Again, each instance of ECU and
core classes has an unique ID that is being used by the generation strategies to
construct a mapping solution.

The fig. 3.10 shows the main classes that were created for the implemen-
tation of the simulated annealing algorithm. The strategy design pattern
[GHJV95] has been used for defining the transformation classes. We have one
class for each generation strategy introduced in 3.6: MoveSoftwareCom-
ponentStrategy S.1, MoveRunnableBetweenCoresStrategy S.2 and
MoveRunnableIntoTaskStrategy S.3. In the case when we have only one
ECU with multiple-cores moving software components does not make sense and
only the transformations S.2 and S.3 are used.

At each iteration of the simulated annealing algorithm one of the gener-
ation strategy is chosen with a given probability. We have decided that
the probability of choosing a mapping of runnables to cores or mapping of
runnables to Os-Tasks should be twice as high compared to the mapping of
software components to the ECUs. The motivation is that we do not want to
move too often the software components since the move will also imply that all
the runnables inside them will have to be remapped to the new cores of the ECU.

The SolutionModel class contains the mapping of software components
to ECUs, runnables to cores, runnables to Os-Tasks and Os-Tasks to Os-
Applications. Except for the Os-Task to Os-Application grouping, each of the
above mentioned mappings is defined using a data structure named dictionary
(see [Ski08]). Each member of the dictionary has an unique key id (used for
referencing) and an associated value.

3.6 Functionality mapping tool 57

For our problem we have defined the following dictionaries:
• softwareComponentToECUMap. Maps a software component in-
stance ID (plays the role of the key) to a ECU instance ID (plays the
role of the value).

• runnableToCoreMap. Maps a runnable instance ID (plays the role of
the key) to a core instance ID (plays the role of the value).

• runnableToTaskMapping. Groups together two runnable instance IDs
into the same Os-Task. In this case, the key represents the runnable that
needs to be grouped and the value represents the runnable with which it
will be grouped. We consider that each runnable instance is mapped into
its own Os-Task, therefore the value of each key in the dictionary can be
treated as a task ID.

The motivation of choosing this particular data structure is that the implemen-
tation of it is based on a hash table, data structure that allows accessing a key
close to O(1) time 3. This is useful in our case since each generation strategy
will access/modify each dictionary many times at each temperature level.
In the following, a couple of examples will be given to show how runnableTo-
TaskMapping dictionary is used for grouping the runnables together. First, if
we have two runnable instances, one with ID = 1 and the other with the ID 2
and we group them together into an Os-Task with the ID equal to the runnable
with ID = 2, then we will have that runnableToTaskMapping[2]=1. This
can be seen as a graph where the task ID is the parent node and all the runnables
grouped inside are the children having an arrow pointing to it fig. 3.7.

Figure 3.7: Grouping of two runnables

3https://msdn.microsoft.com/en-us/library/xfhwa508%28v=vs.110%29.aspx

https://msdn.microsoft.com/en-us/library/xfhwa508%28v=vs.110%29.aspx

58 Functionality assignment to multi-core and optimization

Let’s consider a more complex case where we have 4 runnables instances with
the IDs: 1,2,3,4. They are all grouped into the same Os-Task and its ID is
the same as for the runnable instance with ID 1 (fig. 3.8). The dictionary
runnableToTaskMapping will have the following configuration:

runnableToTaskMapping[1]=1,runnableToTaskMapping[2]=1,
runnableToTaskMapping[3]=1,runnableToTaskMapping[4]=1.

Figure 3.8: Grouping of four runnables

Now, assume that a runnable instance with the ID = 1 is mapped to another
core. We have decided that in this case, we should not "break" the group, but
use one of the remaining runnable IDs as the new Os-Task ID. Therefore, the
runnable instances with ID 2,3,4 are grouped together and the Os-Task ID is
equal to the runnable with the ID 4. The runnable with ID 1 is grouped in its
own Os-Task (fig. 3.9). After this transformation, the dictionary runnableTo-
TaskMapping will have the following configuration:

runnableToTaskMapping[1]=1,runnableToTaskMapping[2]=4,
runnableToTaskMapping[3]=4,runnableToTaskMapping[4]=4.

Figure 3.9: Grouping of four runnables after one runnable is remapped

3.6 Functionality mapping tool 59

Figure 3.10: Classes from Simulated Annealing package

60 Functionality assignment to multi-core and optimization

Figure 3.11: Classes from Application Model package

3.6 Functionality mapping tool 61

Figure 3.12: Classes from Hardware model

62 Functionality assignment to multi-core and optimization

3.7 Test cases
Three application models were used to test the mapping tool. The first appli-
cation was inspired from [ATPK+11]. The second one was adapted from an
automotive use case presented in [CDKM02]. The last use case was provided
by Volvo Advanced Technology & Research in Götheborg, Sweden.

3.7.1 Map tool debugging and testing
The unit test framework provided by Microsoft’s Visual Studio 2012 IDE 4 has
been used to test and validate the implementation. The tests were designed
in such a way that they will automatically run after each source code change
(revision) of the project. Using this strategy, we could spot new bugs earlier
and fix them. The unit tests were developed mainly to check the generation
strategies applied for the solution (section 3.6.1). In combination with the unit
tests, assert statements were introduced in the code to test different conditions
like the core utilization should be a valid double number, the runnables that are
mapped into the same Os-Task have to be on the same core (see listing 3.1),
etc.

Listing 3.1: Example of assert statement

1 System . Diagnostics . Debug . Assert (runnableToCoreMap [value .Key] ==
runnableToCoreMap [group .Key], "The runnables are not on the
same core");

An example of unit test execution is shown in fig. 3.13.

Figure 3.13: Unit Tests execution

4https://msdn.microsoft.com/en-us/library/hh694602.aspx

https://msdn.microsoft.com/en-us/library/hh694602.aspx

3.7 Test cases 63

3.7.2 Test application and architecture model
The application model in fig. 3.14 represents a vehicle cruise control system and
it is composed of two software components. The first software component named

Figure 3.14: Cruise control application

Data handling has three runnables:
• Input acquisition - responsible for acquiring sensor data.

• Input interpretation - interprets the sensor data to determine the driver’s
desire wish.

• Diagnostics - responsible for detecting errors and inconsistency in the sen-
sor data.

The second software component named Cruise handling controller contains six
runnables:
• Speed set-point - responsible for computing the speed desired by the driver.

• Application condition, Basic function - responsible for computing cruise
control states and transitions.

• Limp home - decides which action to take when an error has been detected.

• Controller - proportional-integral controller that maintains the vehicle
speed.

The table 3.2 contains the period, WCET and ASIL level of all the runnables in
the software components. In the table 3.3 it is shown the number of bytes that
are being send between the runnables.

64 Functionality assignment to multi-core and optimization

Table 3.2: Runnable information

Runnable WCET(ms) Period(ms) Deadline(ms) ASIL
Input aquisition 0.5 10 10 A

Input interpretation 1 10 10 A
Diagnostic 1.5 10 10 A

Speed Setpoint 1 10 10 No ASIL
Limp home 1.5 10 10 No ASIL

Basic function 2.5 10 10 No ASIL
Controller 3 10 10 No ASIL

Table 3.3: Runnable signal information
Sender runnable Receiver runnable Data bytes
Input aquisition Input interpretation 2

Input interpretation Speed setpoint 4
Diagnostic Limp home 8

Application condition Basic function 4
Speed setpoint Application condition 2
Basic function Controller 8

The architecture model consists of two ECUs. One ECU has a single core and
the second-one is composed of three cores (fig. 3.15). The inter-ECU and inter-
core bandwidth are presented in table 3.5 and table 3.4.

Figure 3.15: Hardware architecture model

3.7 Test cases 65

Table 3.4: Inter core bandwidth
Core Name Core name Bandwidth (bytes/second)

Core1 Core2 10000
Core1 I/O core 10000
Core2 I/O core 10000

Table 3.5: Inter ECU bandwidth
ECU name ECU name Bandwidth(bytes/second)

ECU1 ECU2 50000

3.7.3 Automotive application and architecture model

Figure 3.16: Automotive application

The application model has been inspired from [CDKM02]. In this case we
have six software components with a total of thirty one runnables with arrows
between them representing the data signals that are send (fig. 3.16).

66 Functionality assignment to multi-core and optimization

The runnable’s configuration is presented in table 3.6. The table 3.8 shows the
runnables that are exchanging data signals together with the amount of bytes
that are being send.
• Engine Controller. Composed of seven runnables: F0− F7

• Automatic Gear Box. Composed of four runnables: F8− F11

• Anti-locking brake. Composed of six runnables: F12− F17

• Wheel angle sensor. Composed of two runnables: F18− F19

• Suspension controller. Composed of five runnables: F20− F24

• Body work. Composed of seven runnables: F25− F31

Table 3.6: Runnable information for automotive application

Runnable WCET(ms) Period(ms) Deadline(ms) ASIL
F1 2 10 10 C
F2 2 20 20 C
F3 2 100 100 C
F4 2 15 15 C
F5 2 14 14 C
F6 2 50 50 C
F7 2 40 40 C
F8 2 15 15 D
F9 2 15 15 D
F10 2 50 50 D
F11 2 14 14 D
F12 1 20 20 D
F13 2 20 20 D
F14 1 15 15 D
F15 2 100 100 D
F16 1 20 20 D
F17 2 14 14 D
F18 4 14 14 B
F19 4 20 20 B
F20 1 20 20 C
F21 1 20 20 C
F22 1 10 10 C
F23 2 14 14 C
F24 2 15 15 C
F25 2 50 50 A

3.7 Test cases 67

F26 2 50 50 A
F27 2 10 10 A
F28 2 100 100 A
F29 2 40 40 A
F30 2 20 20 A
F31 2 100 100 A

Table 3.8: Runnable signal information for automotive application

Runnable sender Runnable receiver Data bytes
F8 F4 2
F13 F7 5
F2 F16 3
F18 F5 3
F18 F11 3
F18 F23 3
F20 F19 4
F12 F21 5
F1 F22 8
F14 F24 4
F25 F10 5
F25 F6 5
F9 F26 5
F1 F27 8
F3 F28 7
F20 F30 4
F15 F31 1

The architecture model chosen consists of two ECUs with three cores each
(fig. 3.17). The values for the inter-core and inter-ECU communication band-
width are presented in table 3.9 and table 3.10.

Table 3.9: Inter core bandwidth
Core Name Core name Bandwidth (bytes/second)

Core1 Core2 100000
Core1 I/O core 1 100000
Core2 I/O core 1 100000
Core3 Core4 100000
Core3 I/O core 2 100000
Core4 I/O core 2 100000

68 Functionality assignment to multi-core and optimization

Figure 3.17: Automotive hardware architecture

Table 3.10: Inter ECU bandwidth
ECU name ECU name Bandwidth(bytes/second)

ECU1 ECU2 500000

3.7.4 Volvo application and architecture model

The use case from Volvo consists of 50 software components with 75 runnables
in total. It has been provided by Power-train division where the development is
focused on controlling the automobile’s engine transmission , suspension, wheels,
etc. Due to high number of software components and runnables, the application
model is described in JSON5 format in appendix A.1. The hardware model
consists of one ECU with 3 cores as requested by Volvo (fig. 3.18). The inter-
core communication bandwidth are presented in table 3.11.

Table 3.11: Inter core bandwidth
Core Name Core name Bandwidth (bytes/second)

Core1 Core2 500000
Core1 I/O core 500000
Core2 I/O core 500000

5http://www.w3schools.com/json/

http://www.w3schools.com/json/

3.8 Experimental results 69

Figure 3.18: Architecture model for Volvo use case

3.8 Experimental results
The test application and the architecture model presented in section 3.7.2 has
been used for the entire development process for debugging and proof of con-
cept. The outcome of the simulated annealing heuristic depends on the following
parameters: initial and final temperature, the number of iterations per temper-
ature and the cooling factor. For the parameters in table 3.12 we have chosen
the values as recommended in [Ski08].

Table 3.12: Simulated Annealing Parameters

Parameter Value
Initial Temperature 1
Final Temperature 0.00001
Cooling Factor 0.95

Figure 3.19: Cost function values

Given the test application as input for the tool, the chart in fig. 3.19 plots the
cost function values against each iteration per temperature.

70 Functionality assignment to multi-core and optimization

At the beginning, when the temperature is high, the cost values varies widely
as the algorithm allows more "jumps". As the temperature is cooling down, the
cost value jumps decrease when the algorithm is reaching a solution with the
minimum value.
The cost function values in fig. 3.19 where obtained having the number of steps
per temperature set to 100. According to [Ski08], the typical values for the
number of iterations accepted before the temperature is cooled down is in the
range between 100 and 1000. As for the WCETcommunication overhead values
(see section 2.3.3), we have used the values in the table 3.13. Also, for the cost
function 3.6, we have set the weights W1 and W2 to 0.5, the maximum core
utilization to 0.69 and the penalty factor equal to 1000.

Table 3.13: WCETcommunication overhead for test application
.

Overhead Value(ms)
α 0.01
β0 0.02
β1 0.03
γ 0.04
θ 0.06

3.8.1 Test application
Given the test application and the hardware architecture from section 3.7.2, a
possible solution with associated cost of 0.045 is presented in fig. 3.20. Both
software components are mapped into different ECUs with all constraints re-
garding core, inter-core and inter-ECU bandwith utilization met. Since our
application test is quite small in the number of runnables and software com-
ponents, we have used the backtracking solution (see section 3.4) to find the
optimal partitioning. The algorithm outputs that the optimal solution has the
cost 0.045, the same as the one obtained by the simulated annealing approach.

ECU2 ID: 0
SofwareComponent1 ID :0
ECU1 ID: 1
SofwareComponent2 ID :1
Core3 ID: 0
Input aquisition ID: 0
Input interpretation ID: 1
Diagnostic ID: 2
Core2 ID: 2
Speed setpoint ID: 3
Application condition ID: 5
Core1 ID: 1
Limp home ID: 4
I/O Core ID: 3
Basic function ID: 6
Controller ID: 7
Number of tasks :7
Group = 0:

3.8 Experimental results 71

0
Group = 1:
1
Group = 2:
2
Group = 3:
3
Group = 4:
4
Group = 5:
5
Group = 6:
6 7
Core3 ID: 0
Os application : ASIL_A
Os task: ASIL_A
runnable id: 0 runnable name : Input aquisition runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 1 runnable name : Input interpretation runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 2 runnable name : Diagnostic runnable asil level : ASIL_A
Core1 ID: 1
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 4 runnable name : Limp home runnable asil level : NO_ASIL
Core2 ID: 2
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 3 runnable name : Speed setpoint runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 5 runnable name : Application condition runnable asil level : NO_ASIL
I/O Core ID: 3
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 6 runnable name : Basic function runnable asil level : NO_ASIL
runnable id: 7 runnable name : Controller runnable asil level : NO_ASIL

Figure 3.20: Solution for the test application and architecture model
Furthermore, we wanted to test the impact of parameters W1 and W2 on
solutions obtained. Three cases are taken into consideration: (W1 = 1 and
W2 = 0), (W1 = 0 and W2 = 1) and (W1 = 0.5 and W2 = 0.5).

In the case when we haveW1 = 1 and we ignore the bandwidth utilization mini-
mization, one possible solution with an associated cost of 0.001072 is presented
in fig. 3.21. All the constraints regarding core, inter-ECU/inter-core bandwidth
utilization are met. The first observation to note is an increase in inter-core
communication. Compared with the solution in fig. 3.20 we have three pairs of
runnables that communicate with each other instead of one. One explanation
is that the simulated annealing has searched for a solution where all runnables
were distributed among all cores such that the utilization per each core is closer
to the mean value.

inter ecu communication is :2
inter core communication is :3
ECU2 ID: 0
SofwareComponent1 ID :0
ECU1 ID: 1
SofwareComponent2 ID :1
Core3 ID: 0
Input aquisition ID: 0
Input interpretation ID: 1
Diagnostic ID: 2
Core1 ID: 1
Speed setpoint ID: 3

72 Functionality assignment to multi-core and optimization

Basic function ID: 6
Core2 ID: 2
Limp home ID: 4
Application condition ID: 5
I/O Core ID: 3
Controller ID: 7
Number of tasks :7
Group = 0:
0
Group = 1:
1
Group = 2:
2
Group = 3:
3
Group = 4:
4 5
Group = 6:
6
Group = 7:
7
Core3 ID: 0
Os application : ASIL_A
Os task: ASIL_A
runnable id: 0 runnable name : Input aquisition runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 1 runnable name : Input interpretation runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 2 runnable name : Diagnostic runnable asil level : ASIL_A
Core1 ID: 1
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 3 runnable name : Speed setpoint runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 6 runnable name : Basic function runnable asil level : NO_ASIL
Core2 ID: 2
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 4 runnable name : Limp home runnable asil level : NO_ASIL
runnable id: 5 runnable name : Application condition runnable asil level : NO_ASIL
I/O Core ID: 3
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 7 runnable name : Controller runnable asil level : NO_ASIL

Figure 3.21: Solution for the test application and architecture model in the
case of ignoring utilization bandwidth

In the case when we have W2 = 1 and we ignore the variance of core uti-
lization, one possible solution with an associated cost of 0.06 is presented in
fig. 3.22. Compared to the previous ones, now the simulated annealing ap-
proach has mapped all the software components into one ECU such that the
inter-ECU bandwidth utilization is 0. Furthermore, the runnables on the cores
were mapped in such way that only one pair of runnables is sending data over
inter-core network. Again, the solution meets all the constraints regarding max-
imum core and bandwidth utilization.

total cpu is :0.060156
total bandwidth is :0.04
inter ecu communication is :0
inter core communication is :1
ECU1 ID: 1
SofwareComponent1 ID :0
SofwareComponent2 ID :1
I/O Core ID: 3
Input aquisition ID: 0
Input interpretation ID: 1
Speed setpoint ID: 3
Application condition ID: 5

3.8 Experimental results 73

Core1 ID: 1
Diagnostic ID: 2
Limp home ID: 4
Core2 ID: 2
Basic function ID: 6
Controller ID: 7
Number of tasks :8
Group = 0:
0
Group = 1:
1
Group = 2:
2
Group = 3:
3
Group = 4:
4
Group = 5:
5
Group = 6:
6
Group = 7:
7
Core3 ID: 0
Core1 ID: 1
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 4 runnable name : Limp home runnable asil level : NO_ASIL
Os application : ASIL_A
Os task: ASIL_A
runnable id: 2 runnable name : Diagnostic runnable asil level : ASIL_A
Core2 ID: 2
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 6 runnable name : Basic function runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 7 runnable name : Controller runnable asil level : NO_ASIL
I/O Core ID: 3
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 3 runnable name : Speed setpoint runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 5 runnable name : Application condition runnable asil level : NO_ASIL
Os application : ASIL_A
Os task: ASIL_A
runnable id: 0 runnable name : Input aquisition runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 1 runnable name : Input interpretation runnable asil level : ASIL_A

Figure 3.22: Solution for the test application and architecture model in the
case of ignoring core utilization

3.8.2 Automotive application
We constructed the application model in fig. 3.16 that consists of six software
components of different ASIL levels with a total number of 31 runnables. For the
architecture model, we have chosen two ECUs with 3 cores each fig. 3.17 . Due
to high number of runnables, the straight forward backtracking algorithm fails
to find the optimal cost reporting an "out of memory exception" while trying to
construct a solution. For this application model, we have increased to 500 the
number of iterations before the temperature is lowered down. For the weights
of the cost function three cases where chosen: one where we have equal weights
and two cases when one weight is ignored (has value 0). A number of 5 tests
have been performed for each case.

74 Functionality assignment to multi-core and optimization

We were interested to see how the parameter weights affect the solutions ob-
tained in terms of the number of runnable pairs that communicate inter-core
and inter-ECU and number of Os-Tasks obtained.

Table 3.14: Cost values when the overall communication bandwidth is ignored
Cost Runnable group

count communicat-
ing inter-ECU

Runnable group
count communicat-
ing inter-Core

Os-
Tasks
Count

0.00119 8 8 26
0.00101 11 5 23
0.00119 11 5 24
0.00067 11 4 22
0.00094 11 6 26

When the overall communication bandwidth is ignored (W2 = 0), the simulated
annealing will search for a solution where the variance of the core utilization is
small. Given the results in table 3.14 it can be seen that from a total of 17 pairs
of runnables that are exchanging signals (table 3.8), almost all of them are
mapped such that they are sending data using either inter-core or inter-ECU
communication.

A solution associated with the cost of 0.00067 is presented in fig. 3.23. We can
observe that the simulated annealing approach has evenly mapped the software
components on the ECU1 and ECU2 and the number of runnables per core is
no more than 4-6. The constraints regarding the core and bus bandwidth uti-
lization are also met. This is normal since we ignore the bandwidth utilization,
and solutions with high number of runnables exchanging data between cores
and ECUs are accepted as long as the maximum bandwidth utilization are not
exceeded.

inter ecu communication is :11
inter core communication is :4
ECU1 ID: 1
Engine Controller ID :0
Automatic Gear Box ID :1
Anti-locking brake ID :2
ECU2 ID: 0
Wheel angle sensor ID :3
Suspension controller ID :4
Body work ID :5
Core1 ID: 3
F1 ID: 0
F2 ID: 1
F6 ID: 5
F10 ID: 9
F17 ID: 16
I/O Core1 ID: 5
F3 ID: 2
F5 ID: 4
F8 ID: 7
F11 ID: 10
F12 ID: 11
F15 ID: 14
Core2 ID: 4
F4 ID: 3

3.8 Experimental results 75

F7 ID: 6
F9 ID: 8
F13 ID: 12
F14 ID: 13
F16 ID: 15
Core4 ID: 1
F18 ID: 17
F20 ID: 19
F25 ID: 24
F30 ID: 29
Core3 ID: 0
F19 ID: 18
F22 ID: 21
F24 ID: 23
F28 ID: 27
F31 ID: 30
I/O Core2 ID: 2
F21 ID: 20
F23 ID: 22
F26 ID: 25
F27 ID: 26
F29 ID: 28
Number of tasks :22
Group = 0:
0
Group = 1:
1 5
Group = 4:
2 4
Group = 3:
3
Group = 6:
6
Group = 7:
7
Group = 15:
8 12 15
Group = 9:
9
Group = 10:
10 11
Group = 13:
13
Group = 14:
14
Group = 16:
16
Group = 17:
17
Group = 18:
18
Group = 19:
19
Group = 22:
20 22
Group = 21:
21
Group = 23:
23
Group = 24:
24 29
Group = 25:
25 26 28
Group = 27:
27
Group = 30:
30
Core3 ID: 0
Os application : ASIL_A
Os task: ASIL_A
runnable id: 27 runnable name : F28 runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 30 runnable name : F31 runnable asil level : ASIL_A
Os application : ASIL_B
Os task: ASIL_B
runnable id: 18 runnable name : F19 runnable asil level : ASIL_B
Os application : ASIL_C
Os task: ASIL_C
runnable id: 21 runnable name : F22 runnable asil level : ASIL_C
Os task: ASIL_C
runnable id: 23 runnable name : F24 runnable asil level : ASIL_C
Core4 ID: 1
Os application : ASIL_A
Os task: ASIL_A

76 Functionality assignment to multi-core and optimization

runnable id: 24 runnable name : F25 runnable asil level : ASIL_A
runnable id: 29 runnable name : F30 runnable asil level : ASIL_A
Os application : ASIL_B
Os task: ASIL_B
runnable id: 17 runnable name : F18 runnable asil level : ASIL_B
Os application : ASIL_C
Os task: ASIL_C
runnable id: 19 runnable name : F20 runnable asil level : ASIL_C
I/O Core2 ID: 2
Os application : ASIL_A
Os task: ASIL_A
runnable id: 25 runnable name : F26 runnable asil level : ASIL_A
runnable id: 26 runnable name : F27 runnable asil level : ASIL_A
runnable id: 28 runnable name : F29 runnable asil level : ASIL_A
Os application : ASIL_C
Os task: ASIL_C
runnable id: 20 runnable name : F21 runnable asil level : ASIL_C
runnable id: 22 runnable name : F23 runnable asil level : ASIL_C
Core1 ID: 3
Os application : ASIL_C
Os task: ASIL_C
runnable id: 0 runnable name : F1 runnable asil level : ASIL_C
Os task: ASIL_C
runnable id: 1 runnable name : F2 runnable asil level : ASIL_C
runnable id: 5 runnable name : F6 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 9 runnable name : F10 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 16 runnable name : F17 runnable asil level : ASIL_D
Core2 ID: 4
Os application : ASIL_C
Os task: ASIL_C
runnable id: 3 runnable name : F4 runnable asil level : ASIL_C
Os task: ASIL_C
runnable id: 6 runnable name : F7 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 8 runnable name : F9 runnable asil level : ASIL_D
runnable id: 12 runnable name : F13 runnable asil level : ASIL_D
runnable id: 15 runnable name : F16 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 13 runnable name : F14 runnable asil level : ASIL_D
I/O Core1 ID: 5
Os application : ASIL_C
Os task: ASIL_C
runnable id: 2 runnable name : F3 runnable asil level : ASIL_C
runnable id: 4 runnable name : F5 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 7 runnable name : F8 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 10 runnable name : F11 runnable asil level : ASIL_D
runnable id: 11 runnable name : F12 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 14 runnable name : F15 runnable asil level : ASIL_D

Figure 3.23: Solution for the automotive application and architecture model
in the case of ignoring bandwidth utilization

If we ignore the core utilization variance (W1 = 0), the results in table 3.15
show that in all of the five cases, the simulated annealing finds solutions where
the runnables communicate only using inter-ECU network. Because of the high
number of runnables exchanging data signals (see fig. 3.16), they could not be
mapped onto one ECU due to the high core utilization resulted, therefore some
of them ended being mapped to the cores of the other ECU, resulting in an
increase in the inter-ECU communication. A solution with the associated cost
of 0.0042 is presented in fig. 3.24 where even though it meets all the bandwidth
and core utilization constraints, the number of runnables assigned to the I/O
Core1 is almost double compared to the other cores. This result is normal in
this case since the core utilization variance does not have a impact in the cost.

3.8 Experimental results 77

Table 3.15: Cost values when the core utilization variance is ignored
Cost Runnable group

count communicat-
ing inter-ECU

Runnable group
count communicat-
ing inter-Core

Os-
Tasks
Count

0.00388 9 0 24
0.00424 11 0 16
0.00388 9 0 21
0.00388 9 0 22
0.00424 11 0 17

Cost : 0.00424380952380952
inter ecu communication is :11
inter core communication is :0
ECU1 ID: 1
Engine Controller ID :0
Suspension controller ID :4
Body work ID :5
ECU2 ID: 0
Automatic Gear Box ID :1
Anti-locking brake ID :2
Wheel angle sensor ID :3
Core2 ID: 4
F1 ID: 0
F4 ID: 3
F22 ID: 21
F27 ID: 26
Core1 ID: 3
F2 ID: 1
F5 ID: 4
F23 ID: 22
F26 ID: 25
F31 ID: 30
I/O Core1 ID: 5
F3 ID: 2
F6 ID: 5
F7 ID: 6
F20 ID: 19
F21 ID: 20
F24 ID: 23
F25 ID: 24
F28 ID: 27
F29 ID: 28
F30 ID: 29
Core3 ID: 0
F8 ID: 7
F10 ID: 9
F12 ID: 11
F17 ID: 16
Core4 ID: 1
F9 ID: 8
F13 ID: 12
F14 ID: 13
F15 ID: 14
F19 ID: 18
I/O Core2 ID: 2
F11 ID: 10
F16 ID: 15
F18 ID: 17
Number of tasks :16
Group = 3:
0 3 21
Group = 4:
1 4 22
Group = 2: 2 Group = 20: 5 6 19 20 23 Group = 16:
7 16 Group = 8:
8
Group = 11:
9 11
Group = 10:
10 15
Group = 12:

78 Functionality assignment to multi-core and optimization

12 14
Group = 13:
13
Group = 17:
17
Group = 18:
18
Group = 24:
24
Group = 25:
25 30
Group = 26:
26
Group = 28:
27 28 29
Core3 ID: 0
Os application : ASIL_D
Os task: ASIL_D
runnable id: 7 runnable name : F8 runnable asil level : ASIL_D
runnable id: 16 runnable name : F17 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 9 runnable name : F10 runnable asil level : ASIL_D
runnable id: 11 runnable name : F12 runnable asil level : ASIL_D
Core4 ID: 1
Os application : ASIL_B
Os task: ASIL_B
runnable id: 18 runnable name : F19 runnable asil level : ASIL_B
Os application : ASIL_D
Os task: ASIL_D
runnable id: 8 runnable name : F9 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 12 runnable name : F13 runnable asil level : ASIL_D
runnable id: 14 runnable name : F15 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 13 runnable name : F14 runnable asil level : ASIL_D
I/O Core2 ID: 2
Os application : ASIL_B
Os task: ASIL_B
runnable id: 17 runnable name : F18 runnable asil level : ASIL_B
Os application : ASIL_D
Os task: ASIL_D
runnable id: 10 runnable name : F11 runnable asil level : ASIL_D
runnable id: 15 runnable name : F16 runnable asil level : ASIL_D
Core1 ID: 3
Os application : ASIL_A
Os task: ASIL_A
runnable id: 25 runnable name : F26 runnable asil level : ASIL_A
runnable id: 30 runnable name : F31 runnable asil level : ASIL_A
Os application : ASIL_C
Os task: ASIL_C
runnable id: 1 runnable name : F2 runnable asil level : ASIL_C
runnable id: 4 runnable name : F5 runnable asil level : ASIL_C
runnable id: 22 runnable name : F23 runnable asil level : ASIL_C
Core2 ID: 4
Os application : ASIL_A
Os task: ASIL_A
runnable id: 26 runnable name : F27 runnable asil level : ASIL_A
Os application : ASIL_C
Os task: ASIL_C
runnable id: 0 runnable name : F1 runnable asil level : ASIL_C
runnable id: 3 runnable name : F4 runnable asil level : ASIL_C
runnable id: 21 runnable name : F22 runnable asil level : ASIL_C
I/O Core1 ID: 5
Os application : ASIL_A
Os task: ASIL_A
runnable id: 24 runnable name : F25 runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 27 runnable name : F28 runnable asil level : ASIL_A
runnable id: 28 runnable name : F29 runnable asil level : ASIL_A
runnable id: 29 runnable name : F30 runnable asil level : ASIL_A
Os application : ASIL_C
Os task: ASIL_C
runnable id: 2 runnable name : F3 runnable asil level : ASIL_C
Os task: ASIL_C
runnable id: 5 runnable name : F6 runnable asil level : ASIL_C
runnable id: 6 runnable name : F7 runnable asil level : ASIL_C
runnable id: 19 runnable name : F20 runnable asil level : ASIL_C
runnable id: 20 runnable name : F21 runnable asil level : ASIL_C
runnable id: 23 runnable name : F24 runnable asil level : ASIL_C

Figure 3.24: Solution for the automotive application and architecture model
in the case of ignoring core utilization variance

3.8 Experimental results 79

When we have equal weights for core utilization variance and bus bandwidth,
there is a slight increase in the number of runnables that communicate over
ECU (table 3.16) compared with the results obtained in table 3.15. As in
the case when the core utilization variance was ignored, not all the runnables
could be mapped onto one ECU without having the core utilization constraint
broken, therefore part of runnables were mapped on the other ECU increasing
the inter-ECU communication. It appears that for this application model, the
core utilization constraint has an impact on the communication bandwidth. A
solution with an associated cost of 0.00386 is presented in fig. 3.25 where the
number of runnables per core is between 4-7 which is almost as good as the
solution obtained when the communication bandwidth were ignored (fig. 3.23).

Table 3.16: Cost values when the weights for overall bandwidth utilization and
core utilization variance are the same

Cost Runnable group
count communicat-
ing inter-ECU

Runnable group
count communicat-
ing inter-Core

Os-
Tasks
Count

0.00427 14 0 14
0.00337 11 0 17
0.00428 14 0 17
0.00423 10 1 23
0.00386 11 0 19

inter ecu communication is :11
inter core communication is :0
ECU2 ID: 0
Engine Controller ID :0
Anti-locking brake ID :2
Wheel angle sensor ID :3
ECU1 ID: 1
Automatic Gear Box ID :1
Suspension controller ID :4
Body work ID :5
Core3 ID: 0
F1 ID: 0
F2 ID: 1
F16 ID: 15
F19 ID: 18
Core4 ID: 1
F3 ID: 2
F4 ID: 3
F6 ID: 5
F7 ID: 6
F12 ID: 11
F13 ID: 12
F17 ID: 16
I/O Core2 ID: 2
F5 ID: 4
F14 ID: 13
F15 ID: 14
F18 ID: 17
I/O Core1 ID: 5
F8 ID: 7
F9 ID: 8
F20 ID: 19
F26 ID: 25
F30 ID: 29
Core1 ID: 3
F10 ID: 9
F21 ID: 20
F23 ID: 22

80 Functionality assignment to multi-core and optimization

F24 ID: 23
F25 ID: 24
F28 ID: 27
F29 ID: 28
Core2 ID: 4
F11 ID: 10
F22 ID: 21
F27 ID: 26
F31 ID: 30
Number of tasks :19
Group = 0:
0 1
Group = 3:
2 3 5 6
Group = 4:
4
Group = 7:
7 8
Group = 9:
9
Group = 10:
10
Group = 16:
11 12 16
Group = 13:
13
Group = 14:
14
Group = 15:
15
Group = 17:
17
Group = 18:
18
Group = 19:
19
Group = 23:
20 22 23
Group = 21:
21
Group = 24:
24 27
Group = 25:
25 29
Group = 30:
26 30
Group = 28:
28
Core3 ID: 0
Os application : ASIL_B
Os task: ASIL_B
runnable id: 18 runnable name : F19 runnable asil level : ASIL_B
Os application : ASIL_C
Os task: ASIL_C
runnable id: 0 runnable name : F1 runnable asil level : ASIL_C
runnable id: 1 runnable name : F2 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 15 runnable name : F16 runnable asil level : ASIL_D
Core4 ID: 1
Os application : ASIL_C
Os task: ASIL_C
runnable id: 2 runnable name : F3 runnable asil level : ASIL_C
runnable id: 3 runnable name : F4 runnable asil level : ASIL_C
runnable id: 5 runnable name : F6 runnable asil level : ASIL_C
runnable id: 6 runnable name : F7 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 11 runnable name : F12 runnable asil level : ASIL_D
runnable id: 12 runnable name : F13 runnable asil level : ASIL_D
runnable id: 16 runnable name : F17 runnable asil level : ASIL_D
I/O Core2 ID: 2
Os application : ASIL_B
Os task: ASIL_B
runnable id: 17 runnable name : F18 runnable asil level : ASIL_B
Os application : ASIL_C
Os task: ASIL_C
runnable id: 4 runnable name : F5 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 13 runnable name : F14 runnable asil level : ASIL_D
Os task: ASIL_D
runnable id: 14 runnable name : F15 runnable asil level : ASIL_D
Core1 ID: 3

3.8 Experimental results 81

Os application : ASIL_A
Os task: ASIL_A
runnable id: 24 runnable name : F25 runnable asil level : ASIL_A
runnable id: 27 runnable name : F28 runnable asil level : ASIL_A
Os task: ASIL_A
runnable id: 28 runnable name : F29 runnable asil level : ASIL_A Os application : ASIL_C
Os task: ASIL_C
runnable id: 20 runnable name : F21 runnable asil level : ASIL_C
runnable id: 22 runnable name : F23 runnable asil level : ASIL_C
runnable id: 23 runnable name : F24 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 9 runnable name : F10 runnable asil level : ASIL_D
Core2 ID: 4
Os application : ASIL_A
Os task: ASIL_A
runnable id: 26 runnable name : F27 runnable asil level : ASIL_A
runnable id: 30 runnable name : F31 runnable asil level : ASIL_A
Os application : ASIL_C
Os task: ASIL_C
runnable id: 21 runnable name : F22 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 10 runnable name : F11 runnable asil level : ASIL_D
I/O Core1 ID: 5
Os application : ASIL_A
Os task: ASIL_A
runnable id: 25 runnable name : F26 runnable asil level : ASIL_A
runnable id: 29 runnable name : F30 runnable asil level : ASIL_A
Os application : ASIL_C
Os task: ASIL_C
runnable id: 19 runnable name : F20 runnable asil level : ASIL_C
Os application : ASIL_D
Os task: ASIL_D
runnable id: 7 runnable name : F8 runnable asil level : ASIL_D
runnable id: 8 runnable name : F9 runnable asil level : ASIL_D

Figure 3.25: Solution for the automotive application and architecture model
in the case of equal weights

It is desirable to have a small number of Os-Tasks due to the overhead intro-
duced by OS from context-switching from one task to another. In the cost
function, if we only consider the communication bandwidth, the grouping of
Os-Tasks does not affect the old cost value. After the transformation S.3, the
new solution will have the same cost but the simulated annealing approach will
still accept it. On the other hand, based on how the runnables are mapped
into Os-Tasks, this might affect their WCETcommunication, therefore the core
utilization and the value of the cost function changes. For example, if we have
two runnables exchanging signals that are mapped into the same Os-Task, their
WCETcommunication will be added to the core utilization.

3.8.3 Volvo use case
For this use case, we ignore the overall inter-core bus utilization as Volvo was
most interested in the core utilization. Nevertheless, the constraint that the
inter-core bus utilization is not exceeded still remains. If the estimates for the
WCETcommunication could not be obtained as it was the case with Volvo use
case, the mapping tool can still work by setting WCETcommunication overheads
to 0.

82 Functionality assignment to multi-core and optimization

As requested by Volvo, one additional constraint related to mapping of
runnables to Os-Tasks has been added to allow runnables with the same period
mapped into an Os-Task.

For this application model, we were interested in how the number of iterations
per temperature influences the result of the simulated annealing. In fig. 3.26
different cost function values were obtained with the number of iterations per
temperature being set to 100, respectively to 500. Overall, increasing the
number of iterations per temperature allows simulated annealing approach to
give better solutions (in this case with a smaller cost value).

Figure 3.26: Cost function values for Volvo use case

The fig. 3.27 shows a solution that maps the runnables into the cores such that
the core utilization is close to the overall mean. It is worth to notice that the
solution almost has an evenly distributions of the runnables to cores: 24 (Core1),
25 (I/O core), 26 (Core2) and that all inter-core bus utilization are met.

Cost : 1.43554687500029E-09
total cpu is :1.43554687500029E-09
total bandwidth is :1.1520125
inter ecu communication is :0
inter core communication is :194
ECU1 ID: 0
c37 ID :0
c1455 ID :1
c1444 ID :2
c1447 ID :3
c1456 ID :4
c1425 ID :5
c1443 ID :6
c1453 ID :7

3.8 Experimental results 83

c1237 ID :8
c1440 ID :9
c1139 ID :10
c1477 ID :11
c1356 ID :12
c1171 ID :13
c1552 ID :14
c24 ID :15
c39 ID :16
c1331 ID :17
c1542 ID :18
c1545 ID :19
c1546 ID :20
c1417 ID :21
c1229 ID :22
c1400 ID :23
c1551 ID :24
c1256 ID :25
c57 ID :26
c1553 ID :27
c1454 ID :28
c1225 ID :29
c1358 ID :30
c1236 ID :31
c1374 ID :32
c1539 ID :33
c1233 ID :34
c1420 ID :35
c1458 ID :36
c1494 ID :37
c1462 ID :38
c63 ID :39
c1461 ID :40
c42 ID :41
c43 ID :42
c1479 ID :43
c1366 ID :44
c1550 ID :45
c1230 ID :46
c1534 ID :47
c1531 ID :48
c1452 ID :49
I/O Core1 ID: 2
a1650 ID: 0
a1671 ID: 2
a1661 ID: 4
a1699 ID: 7
a1669 ID: 8
a1654 ID: 11
a1711 ID: 13
a1658 ID: 15
a1655 ID: 16
a1665 ID: 17
a1643 ID: 21
a1646 ID: 24
a1641 ID: 26
a1678 ID: 27
a1708 ID: 28
a1636 ID: 39
a1638 ID: 42
a1712 ID: 43
a1696 ID: 45
a1660 ID: 46
a1703 ID: 47
a1694 ID: 55
a1653 ID: 60
a1637 ID: 61
a1633 ID: 62
Core2 ID: 1
a1630 ID: 1
a1667 ID: 3
a1645 ID: 19
a1635 ID: 20
a1651 ID: 23
a1713 ID: 25
a1685 ID: 29
a1693 ID: 30
a1702 ID: 32
a1704 ID: 33
a1639 ID: 35
a1664 ID: 36
a1706 ID: 40
a1697 ID: 44
a1707 ID: 51

84 Functionality assignment to multi-core and optimization

a1683 ID: 54
a1673 ID: 56
a1701 ID: 57
a1632 ID: 59
a1674 ID: 63
a1688 ID: 64
a1631 ID: 66
a1652 ID: 67
a1700 ID: 68
a1677 ID: 72
a1668 ID: 74
Core1 ID: 0
a1672 ID: 5
a1666 ID: 6
a1691 ID: 9
a1698 ID: 10
a1689 ID: 12
a1676 ID: 14
a1710 ID: 18
a1687 ID: 22
a1657 ID: 31
a1695 ID: 34
a1663 ID: 37
a1692 ID: 38
a1670 ID: 41
a1681 ID: 48
a1682 ID: 49
a1656 ID: 50
a1690 ID: 52
a1640 ID: 53
a1675 ID: 58
a1648 ID: 65
a1659 ID: 69
a1662 ID: 70
a1679 ID: 71
a1705 ID: 73
Number of tasks :33
Group = 0:
0
Group = 1:
1 3 20 29 30 36 44 56 57 59 64 68 72 74
Group = 4:
2 4 11 13 16 17 21 24 26 27 39 46 47 55 60 61 62
Group = 5:
5
Group = 22:
6 9 14 18 22 31 38 41 58 69 73
Group = 7:
7
Group = 8:
8
Group = 10:
10
Group = 12:
12
Group = 15:
15
Group = 19:
19
Group = 23:
23
Group = 25:
25
Group = 28:
28
Group = 35:
32 35
Group = 33:
33
Group = 34:
34
Group = 37:
37
Group = 40:
40
Group = 42:
42
Group = 43:
43
Group = 45:
45
Group = 48:
48
Group = 49:

3.8 Experimental results 85

49
Group = 50:
50 52 65
Group = 51:
51
Group = 53:
53
Group = 54:
54
Group = 63:
63
Group = 66:
66
Group = 67:
67
Group = 70:
70
Group = 71:
71
Core1 ID: 0
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 5 runnable name : a1672 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 6 runnable name : a1666 runnable asil level : NO_ASIL
runnable id: 9 runnable name : a1691 runnable asil level : NO_ASIL
runnable id: 14 runnable name : a1676 runnable asil level : NO_ASIL
runnable id: 18 runnable name : a1710 runnable asil level : NO_ASIL
runnable id: 22 runnable name : a1687 runnable asil level : NO_ASIL
runnable id: 31 runnable name : a1657 runnable asil level : NO_ASIL
runnable id: 38 runnable name : a1692 runnable asil level : NO_ASIL
runnable id: 41 runnable name : a1670 runnable asil level : NO_ASIL
runnable id: 58 runnable name : a1675 runnable asil level : NO_ASIL
runnable id: 69 runnable name : a1659 runnable asil level : NO_ASIL
runnable id: 73 runnable name : a1705 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 10 runnable name : a1698 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 12 runnable name : a1689 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 34 runnable name : a1695 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 37 runnable name : a1663 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 48 runnable name : a1681 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 49 runnable name : a1682 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 50 runnable name : a1656 runnable asil level : NO_ASIL
runnable id: 52 runnable name : a1690 runnable asil level : NO_ASIL
runnable id: 65 runnable name : a1648 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 53 runnable name : a1640 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 70 runnable name : a1662 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 71 runnable name : a1679 runnable asil level : NO_ASIL
Core2 ID: 1
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 1 runnable name : a1630 runnable asil level : NO_ASIL
runnable id: 3 runnable name : a1667 runnable asil level : NO_ASIL
runnable id: 20 runnable name : a1635 runnable asil level : NO_ASIL
runnable id: 29 runnable name : a1685 runnable asil level : NO_ASIL
runnable id: 30 runnable name : a1693 runnable asil level : NO_ASIL
runnable id: 36 runnable name : a1664 runnable asil level : NO_ASIL
runnable id: 44 runnable name : a1697 runnable asil level : NO_ASIL
runnable id: 56 runnable name : a1673 runnable asil level : NO_ASIL
runnable id: 57 runnable name : a1701 runnable asil level : NO_ASIL
runnable id: 59 runnable name : a1632 runnable asil level : NO_ASIL
runnable id: 64 runnable name : a1688 runnable asil level : NO_ASIL
runnable id: 68 runnable name : a1700 runnable asil level : NO_ASIL
runnable id: 72 runnable name : a1677 runnable asil level : NO_ASIL
runnable id: 74 runnable name : a1668 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 19 runnable name : a1645 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 23 runnable name : a1651 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 25 runnable name : a1713 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 32 runnable name : a1702 runnable asil level : NO_ASIL
runnable id: 35 runnable name : a1639 runnable asil level : NO_ASIL
Os task: NO_ASIL

86 Functionality assignment to multi-core and optimization

runnable id: 33 runnable name : a1704 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 40 runnable name : a1706 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 51 runnable name : a1707 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 54 runnable name : a1683 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 63 runnable name : a1674 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 66 runnable name : a1631 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 67 runnable name : a1652 runnable asil level : NO_ASIL
I/O Core1 ID: 2
Os application : NO_ASIL
Os task: NO_ASIL
runnable id: 0 runnable name : a1650 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 2 runnable name : a1671 runnable asil level : NO_ASIL
runnable id: 4 runnable name : a1661 runnable asil level : NO_ASIL
runnable id: 11 runnable name : a1654 runnable asil level : NO_ASIL
runnable id: 13 runnable name : a1711 runnable asil level : NO_ASIL
runnable id: 16 runnable name : a1655 runnable asil level : NO_ASIL
runnable id: 17 runnable name : a1665 runnable asil level : NO_ASIL
runnable id: 21 runnable name : a1643 runnable asil level : NO_ASIL
runnable id: 24 runnable name : a1646 runnable asil level : NO_ASIL
runnable id: 26 runnable name : a1641 runnable asil level : NO_ASIL
runnable id: 27 runnable name : a1678 runnable asil level : NO_ASIL
runnable id: 39 runnable name : a1636 runnable asil level : NO_ASIL
runnable id: 46 runnable name : a1660 runnable asil level : NO_ASIL
runnable id: 47 runnable name : a1703 runnable asil level : NO_ASIL
runnable id: 55 runnable name : a1694 runnable asil level : NO_ASIL
runnable id: 60 runnable name : a1653 runnable asil level : NO_ASIL
runnable id: 61 runnable name : a1637 runnable asil level : NO_ASIL
runnable id: 62 runnable name : a1633 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 7 runnable name : a1699 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 8 runnable name : a1669 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 15 runnable name : a1658 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 28 runnable name : a1708 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 42 runnable name : a1638 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 43 runnable name : a1712 runnable asil level : NO_ASIL
Os task: NO_ASIL
runnable id: 45 runnable name : a1696 runnable asil level : NO_ASIL

Figure 3.27: Solution for Volvo application model

Chapter 4

Conclusions and future work

This chapter presents the conclusions of the thesis and possible future work.

4.1 Conclusions
In this thesis, a method and a tool has been proposed for the problem of
mapping AUTOSAR functionalities (runnables) with different ASIL levels on
a distributed network of multi-core ECUs. An application model based on
the AUTOSAR was defined in section 2.1. In addition, our solution is based
on a scheduling, partitioning and communication model derived from the
AUTOSAR specification (section 2.3).

The goal of the tool is to provide solutions that minimize the overall bus
bandwidth and the variance of the core utilization while the safety constraints
and the schedulability on each core are fulfilled.

Finding the optimal solution such that all the constraints are met is a NP-hard
problem. This types of problems are in general impossible to solved by
exploring the entire solution space, therefore it pays off to use algorithms
that can return a solution close to the optimum. For our mapping problem,
we have chosen the simulated annealing approach (section 3.5) together with
a cost function in eq. (3.6). In addition, a backtracking algorithm has been
implemented to test the quality of the solution obtained via simulated annealing.

Three use cases, each composed of an application and architecture model
were defined to test the implementation (section 3.7). One use case has been
proposed by Volvo Advanced Technology & Research in Götheborg, since they
are interested in solutions for mapping functionalities on a multicore-ECU.

We have tested the implementation for different weights of the cost function’s
parameters and the experimental results were discussed in section 3.8.

88 Conclusions and future work

4.2 Future work
Since in the automotive industry, applications often have to meet end-to-end
timing constraints, defining new rules such that the tool provides a mapping
solution were all the end-to-end timing constraints are met will be an important
addition to the current implementation.

The authors in [LLP+09] have proposed new rules for mapping runnables to
Os-tasks in AUTOSAR such that it minimizes the intra-ECU communication.
The tool can be improved by adding such new rules and checking if we can
obtain better mapping solutions given the new constraints.

Appendix A

Appendix

A.1 Volvo application model file

{ "runnableCommunication": [["a1630", "a1703", 8], ["a1653", "a1694", 1],
["a1658", "a1676", 16], ["a1636", "a1704", 4],["a1712", "a1654", 5],
["a1693", "a1664", 8], ["a1636", "a1663", 4], ["a1655", "a1665", 10],
["a1693", "a1705", 16], ["a1675", "a1666", 4], ["a1673", "a1660", 16],
["a1694", "a1703", 4], ["a1676", "a1692", 16], ["a1653", "a1666", 41],
["a1675", "a1660", 4], ["a1698", "a1632", 2], ["a1694", "a1632", 12],
["a1675", "a1694", 4], ["a1664", "a1662", 4],["a1657", "a1632", 4],
["a1635", "a1660", 9], ["a1677", "a1698", 4], ["a1711", "a1654", 6],
["a1635", "a1655", 8],["a1653", "a1702", 10], ["a1653", "a1704", 18],
["a1677", "a1632", 13], ["a1703", "a1698", 4], ["a1652", "a1632", 32],

["a1704", "a1655", 13], ["a1636", "a1641", 1], ["a1694", "a1695", 1],
["a1653", "a1676", 8], ["a1702", "a1655", 13],["a1664", "a1665", 4],
["a1703", "a1676", 1], ["a1692", "a1695", 184], ["a1675", "a1691", 6],
["a1663", "a1660", 15],["a1653", "a1668", 148], ["a1663", "a1655", 13],
["a1671", "a1660", 4], ["a1711", "a1664", 4], ["a1692", "a1632", 32],
["a1692", "a1703", 128], ["a1697", "a1632", 9], ["a1636", "a1654", 4],
["a1657", "a1711", 4], ["a1653", "a1664", 16],["a1653", "a1662", 10],
["a1653", "a1672", 89], ["a1664", "a1700", 4], ["a1653", "a1697", 40],
["a1676", "a1675", 4], ["a1662", "a1655", 13], ["a1658", "a1672", 2],
["a1675", "a1698", 8], ["a1692", "a1676", 128], ["a1653", "a1639", 4],
["a1657", "a1662", 4], ["a1654", "a1655", 36], ["a1630", "a1669", 8],
["a1657", "a1663", 4], ["a1655", "a1662", 10], ["a1653", "a1632", 67],
["a1630", "a1676", 8], ["a1675", "a1667", 9], ["a1665", "a1655", 13],
["a1691", "a1692", 16],["a1653", "a1659", 25], ["a1657", "a1687", 4],
["a1645", "a1702", 4], ["a1653", "a1700", 51], ["a1658", "a1660", 6],
["a1653", "a1703", 38], ["a1703", "a1675", 3], ["a1653", "a1671", 4],
["a1664", "a1705", 4], ["a1635", "a1706", 8],["a1705", "a1701", 1],

90 Appendix

["a1657", "a1641", 4], ["a1705", "a1694", 5], ["a1657", "a1657", 6],
["a1659", "a1666", 8],["a1674", "a1660", 2], ["a1658", "a1701", 4],
["a1630", "a1670", 8], ["a1655", "a1663", 10], ["a1695", "a1659", 16],
["a1692", "a1661", 1408], ["a1702", "a1675", 5], ["a1645", "a1662", 4],
["a1692", "a1660", 24], ["a1664", "a1704", 4],["a1658", "a1671", 2],
["a1693", "a1697", 16], ["a1675", "a1695", 8], ["a1658", "a1669", 2],
["a1693", "a1695", 44],["a1653", "a1663", 10], ["a1653", "a1692", 1200],
["a1703", "a1691", 34], ["a1656", "a1636", 1], ["a1630", "a1702", 8],
["a1630", "a1658", 8], ["a1677", "a1664", 1], ["a1653", "a1699", 4],
["a1653", "a1706", 198], ["a1693", "a1659", 16],["a1653", "a1698", 21],
["a1675", "a1659", 4], ["a1702", "a1676", 5], ["a1636", "a1705", 4],
["a1694", "a1664", 4],["a1693", "a1691", 8], ["a1692", "a1694", 32],
["a1657", "a1675", 4], ["a1653", "a1667", 56], ["a1693", "a1676", 4],
["a1630", "a1701", 8], ["a1630", "a1659", 8], ["a1697", "a1660", 4],
["a1693", "a1666", 16], ["a1636", "a1702", 4],["a1675", "a1697", 8],
["a1662", "a1660", 5], ["a1700", "a1701", 1], ["a1656", "a1655", 1],
["a1692", "a1693", 668],["a1657", "a1654", 5], ["a1705", "a1675", 5],
["a1630", "a1667", 8], ["a1693", "a1694", 29], ["a1706", "a1706", 14988],
["a1676", "a1702", 1], ["a1630", "a1661", 8], ["a1654", "a1712", 12],
["a1693", "a1661", 4], ["a1655", "a1655", 30],["a1693", "a1632", 44],
["a1655", "a1705", 10], ["a1657", "a1702", 4], ["a1674", "a1664", 1],
["a1658", "a1694", 4],["a1630", "a1672", 8], ["a1670", "a1667", 4],
["a1693", "a1675", 13], ["a1693", "a1699", 12], ["a1695", "a1664", 8],
["a1658", "a1668", 2], ["a1666", "a1675", 5], ["a1653", "a1711", 11],
["a1692", "a1691", 160], ["a1695", "a1632", 24],["a1657", "a1645", 4],
["a1701", "a1706", 60], ["a1666", "a1632", 20], ["a1658", "a1664", 2],
["a1630", "a1699", 8],["a1645", "a1665", 4], ["a1630", "a1705", 8],
["a1711", "a1703", 4], ["a1653", "a1660", 17], ["a1653", "a1654", 10],
["a1666", "a1677", 13], ["a1664", "a1702", 4], ["a1630", "a1700", 8],
["a1672", "a1703", 1], ["a1630", "a1693", 8],["a1630", "a1674", 8],
["a1700", "a1632", 1], ["a1635", "a1673", 16], ["a1660", "a1713", 8],
["a1658", "a1675", 2],["a1675", "a1701", 4], ["a1700", "a1655", 13],
["a1653", "a1658", 1], ["a1635", "a1701", 1], ["a1658", "a1703", 16],
["a1653", "a1705", 30], ["a1664", "a1632", 8], ["a1630", "a1695", 8],
["a1630", "a1694", 8], ["a1630", "a1698", 8], ["a1712", "a1632", 203],
["a1657", "a1665", 4], ["a1677", "a1666", 23], ["a1635", "a1667", 4],
["a1660", "a1655", 13],["a1657", "a1705", 4], ["a1655", "a1702", 10],
["a1711", "a1655", 10], ["a1664", "a1675", 4], ["a1630", "a1668", 8],
["a1630", "a1673", 8], ["a1664", "a1654", 4], ["a1693", "a1677", 4],

["a1694", "a1699", 4], ["a1658", "a1698", 2],["a1660", "a1632", 36],
["a1693", "a1701", 32],["a1645", "a1663", 4], ["a1655", "a1700", 10],
["a1699", "a1632", 14],["a1679", "a1679", 1], ["a1666", "a1697", 5],
["a1658", "a1667", 2], ["a1636", "a1665", 4], ["a1630", "a1697", 8],
["a1660", "a1701", 10], ["a1691", "a1675", 6], ["a1635", "a1636", 1],

A.1 Volvo application model file 91

["a1630", "a1691", 8], ["a1658", "a1670", 2],["a1665", "a1660", 1],
["a1645", "a1705", 4], ["a1675", "a1676", 9], ["a1653", "a1674", 1],
["a1636", "a1700", 4],["a1658", "a1661", 16], ["a1655", "a1636", 1],
["a1691", "a1697", 16], ["a1630", "a1656", 8], ["a1664", "a1679", 4],
["a1674", "a1669", 1], ["a1705", "a1655", 13], ["a1658", "a1666", 2],
["a1659", "a1703", 8], ["a1653", "a1669", 152],["a1630", "a1677", 8],
["a1657", "a1700", 4], ["a1664", "a1663", 4], ["a1679", "a1654", 5],
["a1675", "a1703", 8],["a1659", "a1632", 16], ["a1630", "a1671", 8],
["a1653", "a1665", 10], ["a1657", "a1635", 4], ["a1675", "a1632", 42],
["a1688", "a1654", 5], ["a1653", "a1677", 79], ["a1657", "a1713", 4],
["a1630", "a1666", 8], ["a1674", "a1661", 1],["a1692", "a1698", 32],
["a1630", "a1664", 8], ["a1645", "a1700", 4], ["a1655", "a1654", 4],
["a1653", "a1670", 4],["a1703", "a1632", 21], ["a1658", "a1691", 20],
["a1698", "a1701", 2], ["a1630", "a1663", 8], ["a1674", "a1675", 2],
["a1697", "a1659", 8], ["a1636", "a1662", 4], ["a1675", "a1706", 4],
["a1630", "a1692", 8], ["a1661", "a1664", 2],["a1674", "a1668", 1],
["a1673", "a1655", 8], ["a1668", "a1664", 2], ["a1697", "a1703", 4],
["a1660", "a1679", 1],["a1669", "a1664", 1], ["a1630", "a1660", 8],
["a1630", "a1704", 8], ["a1630", "a1665", 8], ["a1674", "a1701", 1],
["a1700", "a1694", 5], ["a1658", "a1677", 2], ["a1693", "a1700", 8],
["a1630", "a1675", 8], ["a1630", "a1662", 8], ["a1653", "a1661", 1],
["a1653", "a1695", 17], ["a1670", "a1660", 4], ["a1645", "a1635", 4],
["a1691", "a1698", 16],["a1693", "a1703", 17], ["a1664", "a1697", 1],
["a1675", "a1664", 4], ["a1636", "a1656", 1], ["a1695", "a1666", 4],
["a1672", "a1664", 1], ["a1687", "a1673", 1], ["a1711", "a1656", 4],
["a1655", "a1704", 10], ["a1687", "a1654", 5], ["a1653", "a1675", 52],
["a1660", "a1675", 1], ["a1653", "a1655", 340], ["a1696", "a1654", 5],
["a1660", "a1706", 12], ["a1654", "a1711", 4], ["a1658", "a1693", 20],
["a1653", "a1701", 98], ["a1645", "a1704", 4], ["a1703", "a1697", 2],
["a1657", "a1704", 4], ["a1653", "a1652", 12], ["a1658", "a1695", 20],
["a1674", "a1698", 1]],
"softwareComponents": [{ "asil": "NO_ASIL", "name": "c37", "runnables":
[{ "deadline": 10.0, "name": "a1650", "offset": 0.0, "period": 10.0,
"wcet": 0.0015 },
{ "deadline": 1.25, "name": "a1630", "offset": 0.0, "period": 1.25,
"wcet": 0.003 }] },
{ "asil": "NO_ASIL", "name": "c1455", "runnables":
[{ "deadline": 10.0, "name": "a1671", "offset": 0.0, "period": 10.0,
"wcet": 0.0165 }] },
{ "asil": "NO_ASIL", "name": "c1444", "runnables":
[{ "deadline": 10.0, "name": "a1667", "offset": 0.0, "period": 10.0,
"wcet": 0.0285 }] },
{ "asil": "NO_ASIL", "name": "c1447", "runnables":
[{ "deadline": 10.0, "name": "a1661", "offset": 0.0, "period": 10.0,

92 Appendix

"wcet": 0.0 }] },
{ "asil": "NO_ASIL", "name": "c1456", "runnables":
[{ "deadline": 10.0, "name": "a1672", "offset": 0.0, "period": 10.0,
"wcet": 0.010499999999999999 }] },
{ "asil": "NO_ASIL", "name": "c1425", "runnables":
[{ "deadline": 10.0, "name": "a1666", "offset": 0.0, "period": 10.0,
"wcet": 0.1005 }] },
{ "asil": "NO_ASIL", "name": "c1443", "runnables":
[{ "deadline": 20.0, "name": "a1699", "offset": 0.0, "period": 20.0,
"wcet": 0.015000000000000003 }] },
{ "asil": "NO_ASIL", "name": "c1453", "runnables":
[{ "deadline": 10.0, "name": "a1669", "offset": 0.0, "period": 10.0,
"wcet": 0.045000000000000005 }] },
{ "asil": "NO_ASIL", "name": "c1237", "runnables":
[{ "deadline": 20.0, "name": "a1691", "offset": 0.0, "period": 20.0,
"wcet": 0.051 }] },
{ "asil": "NO_ASIL", "name": "c1440", "runnables":
[{ "deadline": 20.0, "name": "a1698", "offset": 0.0, "period": 20.0,
"wcet": 0.0165 }] },
{ "asil": "NO_ASIL", "name": "c1139", "runnables":
[{ "deadline": 10.0, "name": "a1654", "offset": 0.0, "period": 10.0,
"wcet": 0.022500000000000003 },
{ "deadline": 20.0, "name": "a1689", "offset": 0.0, "period": 20.0,
"wcet": 0.0015 },
{ "deadline": 160.0, "name": "a1711", "offset": 0.0, "period": 160.0,
"wcet": 0.312 }] },
{ "asil": "NO_ASIL", "name": "c1477", "runnables":
[{ "deadline": 10.0, "name": "a1676", "offset": 0.0, "period": 10.0,
"wcet": 0.034499999999999996 }] },
{ "asil": "NO_ASIL", "name": "c1356", "runnables":
[{ "deadline": 10.0, "name": "a1658", "offset": 0.0, "period": 10.0,
"wcet": 0.0 }] },
{ "asil": "NO_ASIL", "name": "c1171", "runnables":
[{ "deadline": 10.0, "name": "a1655", "offset": 0.0, "period": 10.0,
"wcet": 0.0015 }] },
{ "asil": "NO_ASIL", "name": "c1552", "runnables":
[{ "deadline": 10.0, "name": "a1665", "offset": 0.0, "period": 10.0,
"wcet": 0.0285 }] },
{ "asil": "NO_ASIL", "name": "c24", "runnables":
[{ "deadline": 160.0, "name": "a1710", "offset": 0.0, "period": 160.0,
"wcet": 0.0015 },
{ "deadline": 5.0, "name": "a1645", "offset": 0.0, "period": 5.0,
"wcet": 0.0135 },
{ "deadline": 80.0, "name": "a1635", "offset": 0.0, "period": 80.0,

A.1 Volvo application model file 93

"wcet": 0.039 },
{ "deadline": 0.15, "name": "a1643", "offset": 0.0, "period": 0.15,
"wcet": 0.0 },
{ "deadline": 20.0, "name": "a1687", "offset": 0.0, "period": 20.0,
"wcet": 0.0075000000000000015 },
{ "deadline": 10.0, "name": "a1651", "offset": 0.0, "period": 10.0,
"wcet": 0.0 }] },
{ "asil": "NO_ASIL", "name": "c39", "runnables":
[{ "deadline": 5.0, "name": "a1646", "offset": 0.0, "period": 5.0,
"wcet": 0.006 },
{ "deadline": 160.0, "name": "a1713", "offset": 0.0, "period": 160.0,
"wcet": 0.003 },
{ "deadline": 80.0, "name": "a1641", "offset": 0.0, "period": 80.0,
"wcet": 0.003 },
{ "deadline": 10.0, "name": "a1678", "offset": 0.0, "period": 10.0,
"wcet": 0.0 },
{ "deadline": 20.0, "name": "a1708", "offset": 0.0, "period": 20.0,
"wcet": 0.0015 },
{ "deadline": 40.0, "name": "a1685", "offset": 0.0, "period": 40.0,
"wcet": 0.0 }] },
{ "asil": "NO_ASIL", "name": "c1331", "runnables":
[{ "deadline": 20.0, "name": "a1693", "offset": 0.0, "period": 20.0,
"wcet": 0.10650000000000001 }] },
{ "asil": "NO_ASIL", "name": "c1542", "runnables":
[{ "deadline": 10.0, "name": "a1657", "offset": 0.0, "period": 10.0,
"wcet": 0.0015 }] },
{ "asil": "NO_ASIL", "name": "c1545", "runnables":
[{ "deadline": 20.0, "name": "a1702", "offset": 0.0, "period": 20.0,
"wcet": 0.034499999999999996 }] },
{ "asil": "NO_ASIL", "name": "c1546", "runnables":
[{ "deadline": 20.0, "name": "a1704", "offset": 0.0, "period": 20.0,
"wcet": 0.033 }] },
{ "asil": "NO_ASIL", "name": "c1417", "runnables":
[{ "deadline": 20.0, "name": "a1695", "offset": 0.0, "period": 20.0,
"wcet": 0.102 }] },
{ "asil": "NO_ASIL", "name": "c1229", "runnables":
[{ "deadline": 80.0, "name": "a1639", "offset": 0.0, "period": 80.0,
"wcet": 0.0015 }] },
{ "asil": "NO_ASIL", "name": "c1400", "runnables":
[{ "deadline": 10.0, "name": "a1664", "offset": 0.0, "period": 10.0,
"wcet": 0.0435 }] },
{ "asil": "NO_ASIL", "name": "c1551", "runnables":
[{ "deadline": 10.0, "name": "a1663", "offset": 0.0, "period": 10.0,
"wcet": 0.041999999999999996 }] },

94 Appendix

{ "asil": "NO_ASIL", "name": "c1256", "runnables":
[{ "deadline": 20.0, "name": "a1692", "offset": 0.0, "period": 20.0,
"wcet": 0.22349999999999998 }] },
{ "asil": "NO_ASIL", "name": "c57", "runnables":
[{ "deadline": 80.0, "name": "a1636", "offset": 0.0, "period": 80.0,
"wcet": 0.0045000000000000005 }] },
{ "asil": "NO_ASIL", "name": "c1553", "runnables":
[{ "deadline": 20.0, "name": "a1706", "offset": 0.0, "period": 20.0,
"wcet": 0.010499999999999999 }] },
{ "asil": "NO_ASIL", "name": "c1454", "runnables":
[{ "deadline": 10.0, "name": "a1670", "offset": 0.0, "period": 10.0,
"wcet": 0.0165 }] },
{ "asil": "NO_ASIL", "name": "c1225", "runnables":
[{ "deadline": 80.0, "name": "a1638", "offset": 0.0, "period": 80.0,
"wcet": 0.0015 },
{ "deadline": 160.0, "name": "a1712", "offset": 0.0, "period": 160.0,
"wcet": 0.003 }] },
{ "asil": "NO_ASIL", "name": "c1358", "runnables":
[{ "deadline": 20.0, "name": "a1697", "offset": 0.0, "period": 20.0,
"wcet": 0.041999999999999996 }] },
{ "asil": "NO_ASIL", "name": "c1236", "runnables":
[{ "deadline": 20.0, "name": "a1696", "offset": 0.0, "period": 20.0,
"wcet": 0.027 }] },
{ "asil": "NO_ASIL", "name": "c1374", "runnables":
[{ "deadline": 10.0, "name": "a1660", "offset": 0.0, "period": 10.0,
"wcet": 0.0 }] },
{ "asil": "NO_ASIL", "name": "c1539", "runnables":
[{ "deadline": 20.0, "name": "a1703", "offset": 0.0, "period": 20.0,
"wcet": 0.063 }] },
{ "asil": "NO_ASIL", "name": "c1233", "runnables":
[{ "deadline": 320.0, "name": "a1681", "offset":
0.0, "period": 320.0, "wcet": 0.003 },
{ "deadline": 320.0, "name": "a1682", "offset":
0.0, "period": 320.0, "wcet": 0.0 },
{ "deadline": 10.0, "name": "a1656", "offset": 0.0, "period": 10.0,
"wcet": 0.009000000000000001 },
{ "deadline": 20.0, "name": "a1707", "offset":
0.0, "period": 20.0, "wcet": 0.0 },
{ "deadline": 20.0, "name": "a1690", "offset": 0.0, "period": 20.0,
"wcet": 0.003 },
{ "deadline": 80.0, "name": "a1640", "offset": 0.0, "period": 80.0,
"wcet": 0.0015 },
{ "deadline": 320.0, "name": "a1683", "offset": 0.0, "period": 320.0,
"wcet": 0.003 }] },

A.1 Volvo application model file 95

{ "asil": "NO_ASIL", "name": "c1420", "runnables":
[{ "deadline": 20.0, "name": "a1694", "offset": 0.0, "period": 20.0,
"wcet": 0.0285 }] },
{ "asil": "NO_ASIL", "name": "c1458", "runnables":
[{ "deadline": 10.0, "name": "a1673", "offset": 0.0, "period": 10.0,
"wcet": 0.022500000000000003 }] },
{ "asil": "NO_ASIL", "name": "c1494", "runnables":
[{ "deadline": 20.0, "name": "a1701", "offset": 0.0, "period": 20.0,
"wcet": 0.099 }] },
{ "asil": "NO_ASIL", "name": "c1462", "runnables":
[{ "deadline": 10.0, "name": "a1675", "offset": 0.0, "period": 10.0,
"wcet": 0.0795 }] },
{ "asil": "NO_ASIL", "name": "c63", "runnables":
[{ "deadline": 1.25, "name": "a1632", "offset": 0.0, "period": 1.25,
"wcet": 0.012 },
{ "deadline": 10.0, "name": "a1653", "offset": 0.0, "period": 10.0,
"wcet": 0.13349999999999998 },
{ "deadline": 80.0, "name": "a1637", "offset": 0.0, "period": 80.0,
"wcet": 0.0165 },
{ "deadline": 1.25, "name": "a1633", "offset": 0.0, "period": 1.25,
"wcet": 0.027 }] },
{ "asil": "NO_ASIL", "name": "c1461", "runnables":
[{ "deadline": 10.0, "name": "a1674", "offset": 0.0, "period": 10.0,
"wcet": 0.006 }] },
{ "asil": "NO_ASIL", "name": "c42", "runnables":
[{ "deadline": 20.0, "name": "a1688", "offset": 0.0, "period": 20.0,
"wcet": 0.0015 }] },
{ "asil": "NO_ASIL", "name": "c43", "runnables":
[{ "deadline": 2.5, "name": "a1648", "offset": 0.0, "period": 2.5,
"wcet": 0.0 },
{ "deadline": 1.25, "name": "a1631", "offset": 0.0, "period": 1.25,
"wcet": 0.003 },
{ "deadline": 10.0, "name": "a1652", "offset": 0.0, "period": 10.0,
"wcet": 0.006 }] },
{ "asil": "NO_ASIL", "name": "c1479", "runnables":
[{ "deadline": 20.0, "name": "a1700", "offset": 0.0, "period": 20.0,
"wcet": 0.058499999999999996 }] },
{ "asil": "NO_ASIL", "name": "c1366", "runnables":
[{ "deadline": 10.0, "name": "a1659", "offset": 0.0, "period": 10.0,
"wcet": 0.0 }] },
{ "asil": "NO_ASIL", "name": "c1550", "runnables":
[{ "deadline": 10.0, "name": "a1662", "offset": 0.0, "period": 10.0,
"wcet": 0.030000000000000006 }] },
{ "asil": "NO_ASIL", "name": "c1230", "runnables":

96 Appendix

[{ "deadline": 10.0, "name": "a1679", "offset": 0.0, "period": 10.0,
"wcet": 0.0165 }] },
{ "asil": "NO_ASIL", "name": "c1534", "runnables":
[{ "deadline": 10.0, "name": "a1677", "offset": 0.0, "period": 10.0,
"wcet": 0.04650000000000001 }] },
{ "asil": "NO_ASIL", "name": "c1531", "runnables":
[{ "deadline": 20.0, "name": "a1705", "offset": 0.0, "period": 20.0,
"wcet": 0.04650000000000001 }] },
{ "asil": "NO_ASIL", "name": "c1452", "runnables":
[{ "deadline": 10.0, "name": "a1668", "offset": 0.0, "period": 10.0,
"wcet": 0.045000000000000005 }] }] }

Bibliography

[ATPK+11] S. Anssi, S. Tucci-Piergiovanni, S. Kuntz, S. Gerard, and F. Ter-
rier. Enabling scheduling analysis for autosar systems. In
Object/Component/Service-Oriented Real-Time Distributed Com-
puting (ISORC), 2011 14th IEEE International Symposium on,
pages 152–159, March 2011.

[AUTa] ERIKA AUTOSAR. ERIKA AUTOSAR OS-Application ex-
ample. http://erika.tuxfamily.org/wiki/index.php?title=
Erika_AUTOSAR_OS.

[AUTb] ERIKA AUTOSAR. ERIKA AUTOSAR Timing Protection ex-
ample. http://erika.tuxfamily.org/wiki/index.php?title=
Erika_AUTOSAR_OS#Timing_Protection.

[AUT14a] AUTOSAR_EXP_VFB. Virtual functional bus. Technical report,
AUTOSAR 4.2.1, 2014.

[AUT14b] AUTOSAR_SW_OS. Specification of operating system. Technical
report, AUTOSAR 4.2.1, 2014.

[AUT14c] AUTOSAR_SWS_RTE. Specification of rte. Technical report,
AUTOSAR 4.2.1, 2014.

[AUT14d] AUTOSAR_TR_SafetyConceptStatusReport. Technical safety
concept status report. Technical report, AUTOSAR 4.2.1, 2014.

[BFWS10] S. Bunzel, S. Furst, J. Wagenhuber, and F. Stappert.
Safety and security related features in autosar, 2010.
http://www.automotive2010.de/programm/contentdata/
Bunzel-AUTOSAR.pdf.

[But04] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Pre-
dictable Scheduling Algorithms And Applications (Real-Time Sys-
tems Series). Springer-Verlag TELOS, Santa Clara, CA, USA,
2004.

[CDKM02] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in
Real-Time Systems. Wiley, 2002.

http://erika.tuxfamily.org/wiki/index.php?title=Erika_AUTOSAR_OS
http://erika.tuxfamily.org/wiki/index.php?title=Erika_AUTOSAR_OS
http://erika.tuxfamily.org/wiki/index.php?title=Erika_AUTOSAR_OS#Timing_Protection
http://erika.tuxfamily.org/wiki/index.php?title=Erika_AUTOSAR_OS#Timing_Protection
http://www.automotive2010.de/programm/content data/Bunzel-AUTOSAR.pdf
http://www.automotive2010.de/programm/content data/Bunzel-AUTOSAR.pdf

98 BIBLIOGRAPHY

[FFR12] Christoph Ficek, Nico Feiertag, and Dr. Kai Richter. Applying
the AUTOSAR timing protection to build safe and efficient ISO
26262 mixed-criticality systems, 2012. http://web1.see.asso.
fr/erts2012/Site/0P2RUC89/4C-4.pdf.

[FLSN14] H.R. Faragardi, B. Lisper, K. Sandstrom, and T. Nolte. An effi-
cient scheduling of autosar runnables to minimize communication
cost in multi-core systems. In Telecommunications (IST), 2014 7th
International Symposium on, pages 41–48, Sept 2014.

[Fre11] Patrick Frey. A timing model for real-time control-systems and
its application on simulation and monitoring of AUTOSAR sys-
tems, 2011. http://vts.uni-ulm.de/query/longview.meta.
asp?document_id=7505.

[GHAG11] Peter Gliwa (Gliwa GmbH), Jens Harnisch, Ursula Kelling (In-
fineon Technologies AG), and Christoph Ficek (SYMTAVISION
GmbH). From Single-Core to Multi-Core Platforms, Systematic
Migration of Hard Real-Time Software in AUTOSAR, 2011.
https://www.symtavision.com/downloads/success-stories/
From_Single-Core_to_Multi-Core_Platforms_Symtavision_
Infineon_Gliwa_Embedded_World_2011_presentation.pdf.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[Gli13] Peter Gliwa. Timing Analysis - Poster, February 2013. "http:
//www.gliwa.com/downloads/Timing%20Poster.pdf".

[GUL] Pascal GULA. Semantic of execution in AUTOSAR. http://www.
telecom-paristech.fr/ETR09/presenta/Gula.pdf.

[HC08] HYUNDAI MOTOR Company HYUNDAI and KPIT Cummins.
Performance of autosar basic software modules in a chassis ecu,
2008.

[IPEP06] V. Izosimov, P. Pop, P. Eles, and Zebo Peng. Synthesis of fault-
tolerant schedules with transparency/performance trade-offs for
distributed embedded systems. In Design, Automation and Test in
Europe, 2006. DATE ’06. Proceedings, volume 1, pages 1–6, March
2006.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers, Nor-
well, MA, USA, 1st edition, 1997.

http://web1.see.asso.fr/erts2012/Site/0P2RUC89/4C-4.pdf
http://web1.see.asso.fr/erts2012/Site/0P2RUC89/4C-4.pdf
http://vts.uni-ulm.de/query/longview.meta.asp?document_id=7505
http://vts.uni-ulm.de/query/longview.meta.asp?document_id=7505
https://www.symtavision.com/downloads/success-stories/From_Single-Core_to_Multi-Core_Platforms_Symtavision_Infineon_Gliwa_Embedded_World_2011_presentation.pdf
https://www.symtavision.com/downloads/success-stories/From_Single-Core_to_Multi-Core_Platforms_Symtavision_Infineon_Gliwa_Embedded_World_2011_presentation.pdf
https://www.symtavision.com/downloads/success-stories/From_Single-Core_to_Multi-Core_Platforms_Symtavision_Infineon_Gliwa_Embedded_World_2011_presentation.pdf
"http://www.gliwa.com/downloads/Timing%20Poster.pdf"
"http://www.gliwa.com/downloads/Timing%20Poster.pdf"
http://www.telecom-paristech.fr/ETR09/presenta/Gula.pdf
http://www.telecom-paristech.fr/ETR09/presenta/Gula.pdf

BIBLIOGRAPHY 99

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–
61, January 1973.

[LLP+09] Rongshen Long, Hong Li, Wei Peng, Yi Zhang, and Minde Zhao.
An approach to optimize intra-ecu communication based on map-
ping of autosar runnable entities. In Embedded Software and Sys-
tems, 2009. ICESS ’09. International Conference on, pages 138–
143, May 2009.

[Mat14] Alexander Mattausch. Do AUTOSAR and functional safety rule
each other out?, 2014. https://d23rjziej2pu9i.cloudfront.
net/wp-content/uploads/2014/11/28025218/AUTOSAR_
Functional_Safety_Do_they_rule_each_other_out.pdf.

[NMBSL10] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion. Multi-
source and multicore automotive ecus - os protection mechanisms
and scheduling. In Industrial Electronics (ISIE), 2010 IEEE Inter-
national Symposium on, pages 3734–3741, July 2010.

[PPEP08] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. Analysis and
optimisation of hierarchically scheduled multiprocessor embedded
systems. Int. J. Parallel Program., 36(1):37–67, February 2008.

[Ree93] Colin R. Reeves, editor. Modern Heuristic Techniques for Combi-
natorial Problems. John Wiley & Sons, Inc., New York, NY, USA,
1993.

[SCCM15] Salah Eddine Saidi, Sylvain Cotard, Khaled Chaaban, and Kevin
Marteil. An ilp approach for mapping autosar runnables on
multi-core architectures. In Proceedings of the 2015 Workshop
on Rapid Simulation and Performance Evaluation: Methods and
Tools, RAPIDO ’15, pages 6:1–6:8, New York, NY, USA, 2015.
ACM.

[Ski08] Steven S. Skiena. The Algorithm Design Manual. Springer Pub-
lishing Company, Incorporated, 2nd edition, 2008.

[SR08] O. Scheickl and M. Rudorfer. Automotive real time development
using a timing-augmented autosar specification. Proc. ERTS, 2008.

[VDX05] OSEK VDX. Specification OSEK OS 2.2.3 - OSEK/VDX, 2005.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,

https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2014/11/28025218/AUTOSAR_Functional_Safety_Do_they_rule_each_other_out.pdf
https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2014/11/28025218/AUTOSAR_Functional_Safety_Do_they_rule_each_other_out.pdf
https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2014/11/28025218/AUTOSAR_Functional_Safety_Do_they_rule_each_other_out.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

100 BIBLIOGRAPHY

Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Sten-
ström. The worst-case execution-time problem—overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst.,
7(3):36:1–36:53, May 2008.

[WMM+13] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and
S. Gerard. An optimization approach for the synthesis of au-
tosar architectures. In Emerging Technologies Factory Automation
(ETFA), 2013 IEEE 18th Conference on, pages 1–10, Sept 2013.

	Abstract
	Preface
	Acknowledgment
	Contents
	Abbreviations
	1 Introduction
	1.1 Related Work
	1.2 Functional safety in Automotive
	1.3 AUTOSAR
	1.3.1 Software components
	1.3.2 Runnables (functional entities)
	1.3.3 OSEK Os and Schedulability
	1.3.4 Os-Application
	1.3.5 Communication
	1.3.5.1 Inter-ECU communication
	1.3.5.2 Inter-Core communication
	1.3.5.3 Intra-task and Inter-task communication

	1.3.6 Functional safety features
	1.3.6.1 Spatial partitioning
	1.3.6.2 Temporal partitioning
	1.3.6.3 End-to-end communication protection

	2 System model
	2.1 Application model
	2.1.1 The WCET of a runnable entity

	2.2 Architecture model
	2.2.1 Hardware architecture model

	2.3 AUTOSAR model
	2.3.1 Scheduling model
	2.3.2 The model of spatial partitioning
	2.3.3 Communication model

	3 Functionality assignment to multi-core and optimization
	3.1 Problem formulation
	3.2 The solution space of the problem
	3.3 Cost function
	3.4 Optimal solution
	3.5 Simulated annealing
	3.6 Functionality mapping tool
	3.6.1 Implementation details

	3.7 Test cases
	3.7.1 Map tool debugging and testing
	3.7.2 Test application and architecture model
	3.7.3 Automotive application and architecture model
	3.7.4 Volvo application and architecture model

	3.8 Experimental results
	3.8.1 Test application
	3.8.2 Automotive application
	3.8.3 Volvo use case

	4 Conclusions and future work
	4.1 Conclusions
	4.2 Future work

	A Appendix
	A.1 Volvo application model file

	Bibliography

