
Analysis methods for
mixed-criticality applications on
TTEthernet-based distributed

architectures

Sorin Ovidiu Marinescu

Kongens Lyngby 2012

IMM-MSc-2012-139

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-MSc-2012-139

Abstract

More and more, we can see how embedded systems are given great responsibil-
ity in applications where their malfunctioning could have catastrophic e�ects.
Often, embedded systems are used in areas where timing constraints need to
be satis�ed. For the hard real-time embedded systems it is important not only
to produce the correct computation result, but also to deliver it at the correct
moment in time. It's common, due to physical, safety or modularity constraints,
to have these embedded systems organized in distributed architectures.

The initial approach used in the automotive and avionics �elds for safety-critical
real-time applications was to have each function running on a dedicated hard-
ware node, with the nodes being interconnected in a network. This was the
so-called �federated architecture�. In time, the number of nodes in this feder-
ated distributed architecture has signi�cantly increased, reaching more than one
hundred in a modern car. This has led to increased power consumption, wiring,
size, weight and costs.

The solution to the problems raised by the federated architectures was the so-
called �integrated architecture�, where multiple functions were allowed to share
one node. Furthermore, the current trends are towards mixed-criticality sys-
tems, where functions with di�erent criticalities can coexist onto the same node.
In avionics, this integration is realized, at CPU-level, on the basis of �Integrated
Modular Avionics� (IMA), also known as the ARINC 653 standard. IMA speci-
�es the rules for allowing the integration of mixed-criticality functions onto the
same node.

The concept of integrated architecture implies that the di�erent criticality func-
tions also share the same communication network, not just the same computing

ii

platform. At network level, one of the communication protocols for applications
of mixed-criticality is TTEthernet. Based on Ethernet, TTEthernet supports
both time-triggered and event-triggered tra�c and provides both spatial and
temporal separation between these two tra�c classes and is, thus, suitable for
mixed-criticality applications.

The objective of the thesis is to propose and develop analysis methods for
mixed-criticality applications on TTEthernet-based distributed architectures.
We have extended the state-of-the-art schedulability analysis for tasks to take
into account partitions at the CPU-level. For TTEthernet, we have designed
and implemented a simulator, whose results were compared to the results pro-
vided by a previously proposed TTEthernet analysis. We have also proposed a
new TTEthernet analysis, which is based on extending the so-called �trajectory
approach� used for the analysis of Avionics Full-Duplex Switched Ethernet, a
precursor of TTEthernet. The proposed methods have been implemented in a
tool, which has been evaluated using several synthetic and realistic benchmarks.
Analysis tools are needed to support the designer in obtaining schedulable and
cost-e�ective implementations of mixed-criticality applications on partitioned
architectures.

Acknowledgments

I wish to express my gratitude towards Paul Pop for being a great supervisor.
He helped me shape this project and he encouraged me when I was stuck. His
feedback was always concise, precise and valuable.

I would also like to say a big thank you to Domiµian T ma³�Selicean for our
fruitful discussions, for his help with the SA analysis for IMA and with the
TTEthernet analysis and for always answering my emails even when he was
very busy on a di�erent continent.

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Thesis Objectives . 4

2 Partitioned Architectures 7

2.1 Integrated Modular Avionics . 7
2.1.1 Partitioning in IMA . 10

2.2 TTEthernet . 13
2.2.1 Avionics Full Duplex Switched Ethernet 16
2.2.2 Tra�c Classes . 18
2.2.3 Data�ow Integration . 19
2.2.4 Basic TTEthernet Modeling Concepts 22
2.2.5 How TTEthernet Works 24

3 IMA Analysis 29

3.1 Application Model . 30
3.2 System Model . 30
3.3 Motivational Example . 31
3.4 Response Time Analysis . 33
3.5 Evaluation . 36

4 TTEthernet Analysis and Simulation 39

4.1 TTEthernet Analysis . 40
4.2 AFDX Analysis . 42

4.2.1 Network Calculus . 43
4.2.2 Trajectory Approach . 45

vi CONTENTS

4.3 A TTEthernet Simulator . 65
4.3.1 Implementation . 68
4.3.2 Testing . 74
4.3.3 Evaluation . 74

5 Conclusions 77

5.1 Future Work . 78

Bibliography 81

Chapter 1

Introduction

The computing systems have had a spectacular evolution. From the big main-
frame computers from the 60s until the driverless cars of today, they have be-
come cheaper, more accessible and took an increasingly important role in our
lives. The embedded systems have a central part in the story of computing
systems. The embedded systems are computers usually with a single purpose,
designed to �t their application's speci�c requirements. We can �nd them ev-
erywhere - in digital watches, as well as in nuclear reactors.

With such a broad utilization, the embedded systems are very varied. From
the perspective of our thesis, we can distinguish the category of hard real-time
embedded systems in which it is not enough for a system to produce a correct
computation result, but it is also needed that the result is obtained at the correct
moment in time [Kop11]. In this context, the issue of safety (understood as a
property of a system that it will provide a hazard-free operation and, as a
consequence, not endanger the human life or the environment) is raised. The
safety-critical embedded systems are another category of interest for us. The
recent years saw the emergence of mixed-criticality systems. A mixed-critical
system is de�ned in the research agenda for mixed-criticality systems [BBB+09]
as �an integrated suite of hardware, operating system and middleware services
and application software that supports the execution of safety-critical, mission-
critical, and non-critical software within a single, secure compute platform�.
The mixed-criticality distributed embedded systems constitute the focus of our

2 Introduction

Figure 1.1: Example of a distributed embedded system in a modern
car [Car04]

thesis.

Giving the wide range of applications in which embedded systems are used, the
requirements for embedded systems vary in terms of performance, size, cost, de-
pendability etc. Many safety-critical applications impose physical, modularity
and, of course, safety constraints. Following these constraints, it is not un-
usual that the implementations are distributed, consisting of di�erent hardware
components (nodes) interconnected in a network. An example of a distributed
system as it can be found in a modern car is depicted in Figure 1.1.

Initially, each function was implemented in a separate hardware component
(node) - the so-called federated architecture. In an airplane or in a car, the
number of such nodes could reach over one hundred. An obvious disadvantage
of the federated architectures is that they require a lot of hardware - (at least)
one node for each function. Often, the hardware is replicated for achieving
fault tolerance. Besides the pure hardware cost, there are other factors to be
considered: space required by the hardware, power consumption, weight, wiring,
maintenance [Rus99].

3

A solution was needed for reducing the number of nodes and, implicitly, the
costs. The solution was provided by the so-called integrated architecture ap-
proach, where several functions are integrated into one node. Moreover, the
current trends are towards the integration of functions of di�erent criticality
levels, as well as non-critical functions, onto the same node. Thus, we can now
speak about mixed-criticality embedded systems, systems where applications
with di�erent levels of criticality share the same computing platform.

The concept of common resource sharing is applied in integrated architectures
with the restriction that tasks having di�erent criticality levels need to be sepa-
rated (so they can't in�uence each other). Otherwise, for example, a faulty low
criticality task could corrupt the memory of a high criticality task.

Avionics is a real-world example of a domain where this shift from federated
architectures to integrated architectures has happened. There, the separation
required between functions with di�erent criticality levels is achieved at plat-
form level with IMA (Integrated Modular Avionics, speci�ed in the ARINC 651
standard) [Ari91] and at communication level with AFDX (Avionics Full Duplex
Switched Ethernet, standardized as ARINC 664) [ARI09].

IMA speci�es spatial and temporal operating system-level partitioning mecha-
nisms [Ari97] that make possible the execution of mixed-criticality application
on the same processing node. AFDX achieves the required separation at net-
work level through communication multiplexing. Other communication-level
separation solutions are available such as SAFEBus [HD93], TTP [Kop11] and
the TTEthernet protocol [as611]. The TTEthernet protocol is based on Eth-
ernet and is AFDX compliant. In this thesis, TTEthernet is the technology
considered for communication.

In avionics, as well as in other safety-critical systems, it is essential that the
data is delivered from the sender to the receiver in a timely fashion, up-to-date
and complete. Otherwise said, deterministic guarantees are needed for the end-
to-end communication delays. AFDX provides mechanisms for guaranteeing the
determinism of the avionics communications.

In Chapter 2, we will give an overview of two of the state-of-the-art technologies
used to implement today's integrated architectures. The �rst part of the chapter
deals with IMA (�Integrated Modular Avionics�), which provides the partitioning
mechanisms necessary at platform level for the integration of mixed-criticality
applications. The chapter's second part is dedicated to the presentation of
the TTEthernet protocol, which provides support for applications of mixed-
criticality at network level. In Chapter 3 we propose a response time analysis
for tasks scheduled on IMA-like partitioned architectures. In Chapter 4 we
present the existing TTEthernet timing analysis, as well as the state-of-the-

4 Introduction

art timing analyses for AFDX whose applicability to TTEthernet is discussed.
In the last part of Chapter 4 we describe the TTEthernet simulator that we
have implemented and evaluated against the existing TTEthernet timing anal-
ysis. Finally, we present our conclusions and some directions for future work in
Chapter 5.

1.1 Thesis Objectives

The objective of the thesis is to develop and evaluate analysis methods for
mixed-criticality applications implemented on distributed architectures that use
TTEthernet as communication technology. So we are concerned both with the
analysis of mixed-criticality tasks running on processing units and with the
analysis of mixed-criticality messages sent over the network.

At the CPU-level we consider IMA to be used as the partitioning solution. This
means that applications with di�erent criticality levels will run on the same com-
puting node as long as they are run in separate partitions. Each partition can
have its own scheduling policy and it is our assumption that the applications
are scheduled using either a time-triggered approach (static cyclic scheduling
(SCS), for example), or an event-triggered approach (like �xed-priority preemp-
tive scheduling (FPS)).

At the communication level we use the TTEthernet protocol. TTEthernet uses
the concepts of �virtual links� to provide spatial separation between messages
of di�erent safety-criticality. Regarding time-criticality, TTEthernet provides
three tra�c classes: Time-Triggered (TT), Rate Constrained (RC) and Best
E�ort (BE), which support the transmission of messages with di�erent time
constraints.

We assume that the hardware platform is given (including the topology if the
virtual links), and that the designer has speci�ed the mapping of the tasks to
processing elements and of messages to virtual links. Furthermore, we consider
as input the assignment of tasks to partitions (which can implement both SCS
or FPS scheduling) and of each message to one of the two time-critical tra�c
classes (TT or RC).

In such a context, the thesis objectives are:

• Propose a new schedulability analysis for FPS tasks such that the parti-
tions are taken into account. The current state-of-the-art schedulability

1.1 Thesis Objectives 5

analyses cannot handle partitions, or are too pessimistic when taking par-
titions into account.

• Implement the schedulability analysis in a tool and evaluate its pessimism
by comparing it to the existing analyses on several synthetic and realistic
benchmarks.

• Propose a new schedulability analysis for RC messages on TTEthernet
networks, which can take into account the TT message schedules. There
are many approaches to the analysis of RC messages on AFDX. However,
there is a single proposed analysis for RC messages on TTEthernet, which
makes very restrictive assumptions and, thus, is overly-pessimistic.

• Implement the analysis of RC messages in a tool and evaluate it by com-
paring it to the existing analysis on several benchmarks. Due to time
constraints, and the inherently di�culty of the TTEthernet analysis, we
were not able to �nish the implementation of our proposed analysis. In-
stead, we have implemented a TTEthernet simulator, which has been used
to evaluate the pessimism of the existing RC message analysis. In addi-
tion, we have also corrected and extended the Java implementation of the
currently existing RC message analysis.

The methods and tools have been extensively described, tested and evaluated.

6 Introduction

Chapter 2

Partitioned Architectures

As we indicated in the previous chapter, the subject of this thesis is the analysis
of mixed-criticality application implemented on TTEthernet-based distributed
architectures. In this chapter we give an overview of the concepts and technolo-
gies underlying this type of applications.

In the �rst part of the chapter we will present the IMA design concept for mixed-
criticality applications. In the second part of the chapter we will focus on the
TTEthernet protocol. We will present its main characteristics and we will also
give a more detailed account of its inner workings through an example.

2.1 Integrated Modular Avionics

We can distinguish two approaches largely employed in avionics concerning the
architecture styles in which the digital �ight control functions are implemented.
One approach is to use a federated architecture, the other one relies on a so-
called integrated architecture.

In a federated architecture each �ight function (like autopilot, yaw damping etc.)
is implemented on its own computer system (or, using another term from the

8 Partitioned Architectures

literature, node). The computer system of one function is only loosely coupled
to the computer systems of other functions [Rus99]. In such an architecture,
fault containment is intrinsically achieved. Because of the loosely coupling of
the computer systems performing di�erent functions, a (software or hardware)
fault in the computer system performing a certain function can not propagate
to the other functions. Put di�erently, in a federated architecture the compo-
nents interact with one another (where it is necessary), so there is information
exchange between di�erent components, but the components can be designed in
such a way that they're immune to faulty data coming from other components.

An obvious disadvantage of the federated architectures is that they require a
lot of hardware - (at least) one node for each function. Often, the hardware is
replicated for achieving fault tolerance. Besides the pure hardware cost, there
are other factors to be considered: space required by the hardware, power con-
sumption, weight, cooling, installation, maintenance [Rus99]. Moreover, the
complexity of the avionics systems was doubling every �ve years [CC93], limit-
ing the evolution possibilities of the federated architectures.

The alternative to the federated architecture style is the IMA (Integrated Mod-
ular Avionics) architecture, considered to be today's state-of-the-art in avionics.
IMA is used, for example, in Airbus A-380, F-22, F-35 and Boeing 787 [Ram07].
Although, there is no overall standard for this integrated architecture, IMA
is supported in practice by standards such as ARlNC 651 ("Design Guidance
for Integrated Modular Avionics") [Ari91], ARINC 653 ("Avionics Application
Software Standard Interface", where the APEX API is de�ned) [Ari97], ARINC
659 ("Backplane data bus") [Ari93] and ARINC 629 ("Multi-Transmitter Data
Bus; Part 1, Technical Description (with �ve supplements); Part 2, Application
Guide (with one supplement)") [Ari96].

In IMA we have multiple functions sharing the same computing platform. Sev-
eral functions can be integrated onto the same node and the nodes are inter-
connected in a network. Because of the existence of this shared computing
platform in IMA, the fault containment between functions is not as strong as
in the federated architecture. For example, one function can monopolize the
computing resources (memory, processor, bus), a�ecting this way all the other
functions sharing the same computing platform. It can be also possible for one
function to corrupt the memory used by another function; or for the error in one
function to propagate to and perturb other functions. The only way in which
functions can be protected against this kind of scenarios is to have a partitioning
mechanism. This partitioning mechanism should protect against fault propaga-
tion from one function to another to a degree equivalent to the one inherently
existing in the federated architectures.

The advantage of integrated architectures is that, by integrating more functions

2.1 Integrated Modular Avionics 9

(a) Federated architecture (b) Integrated architecture

Figure 2.1: Evolution of avionics architectures

on one node, the number of nodes is reduced. This leads to a decrease in the
pure cost of hardware, the wiring and space required, the power consumption,
the maintenance cost etc..

An illustration of the di�erences between the two architectural paradigms we
discussed is given in Figure 2.1. The three applications shown in the �gure have
di�erent criticality levels. Their criticality levels are captured by their associated
Safety Integrity Levels (SILs). There are four SIL levels - 1, 2, 3, 4 - with 4
being the most critical and 1 being the least critical. The gray squares that
appear in the two sides of the �gure represent the computing nodes on which
the applications are executed. Figure 2.1a shows a possible distribution of the
applications' functions in a federated architecture, while Figure 2.1b shows how
the same functions could be distributed over an integrated architecture. In the
case of the integrated architecture, due to their di�erent criticality levels, the
applications are placed in separate partitions (in our �gure, the partitions on a
processing node are separated by black lines).

One can notice that the advantage of intrinsic fault containment in the federated
architectures also implies a cost in poorly coordinated control and fault-prone
pilot interfaces [Rus99]. Actually, the allocation of �ight automation to separate
functions in the federated architecture is mostly the result of largely acciden-
tal historical factors [Rus99]. It can happen that control variables that are
tightly coupled in a dynamical sense (for example, engine thrust and pitch an-
gle) [Rus99] to be managed by separate functions. A change in either one of

10 Partitioned Architectures

these coupled variables implies a change in the other one and, since there is no
coordinated control for them, simple services employing these variables (such as
cruise speed control or altitude select) end up having too complex implemen-
tations that are di�cult to manage [Rus99]. The aforementioned exaggerated
complexity is revealed by the multiple modes and submodes employed in the
functions in the federated architecture. This complexity creates problems in
the �ight crew's interaction with the automation systems and also increases the
costs with development and certi�cation. Without an integrated control, this
complexity is unavoidable.

Another problem with the fact that the federated architecture uses many com-
puter systems is that, typically, the computer systems implementing di�erent
functions are di�erent. This diversity in platforms increases signi�cantly the
cost of the development and of the certi�cation of the software that needs to
run on these platforms. IMA brings the advantage of its hardware platform
standardization.

Hardware fault tolerance in the federated architecture is achieved by replication.
Critical �ight functions run on replicated hardware (typically, quad-redundant
or greater for primary �ight control, triple for autopilot and auto-landing, dual
for �ight management) [Rus99]. In these conditions, the costs of achieving
hardware fault tolerance in a federated architecture are signi�cant (there can
be even 50 processors needed), but the operational �exibility is limited: a single
faulty processor in any function can keep the plane on the ground [Rus99]. On
the other hand, IMA has the advantage that its processors are not tied to a
speci�c function. The replicated processors can be allocated according to the
necessities as long as the total number of non-faulty processors is su�cient to
provide the level of replication needed for each function [Rus99].

2.1.1 Partitioning in IMA

We already said that the partitioning is a protection mechanism against propa-
gation of faults from one function to other functions. Otherwise put, the purpose
of partitioning is fault containment [Rus99]. It is important to clarify which is
the scope of this partitioning that we're discussing about. Is partitioning con-
sidered only for limiting fault propagation between computer systems (nodes)
implementing di�erent functions or it is considered also for limiting fault prop-
agation within nodes? If there would be no internal partitioning in the nodes
(that is, partitioning between di�erent applications running on the same node
and ful�lling di�erent functions) and only partitioning between nodes would
be employed, then one disadvantage clearly arises. The disadvantage is that
all applications running on a certain node should be certi�ed at the highest

2.1 Integrated Modular Avionics 11

criticality level amongst them. This would lead to signi�cant increases in de-
velopment and certi�cation costs. With internal partitioning, the functions can
be decomposed into software components with di�erent criticality levels, this
way reducing the development costs while localizing where the assurance e�ort
should be put [Rus99]. In these conditions, the answer to our previous ques-
tion is obvious: partitioning must be considered within nodes, not only between
them.

In IMA, di�erent functions share the same resources (such as computing units,
buses, peripherals). This resource sharing facilitates fault propagation and the
function of partitioning is to not allow for this fault propagation to happen.
In [Rus99], a benchmark for the e�ectiveness of partitioning is introduced. The
benchmark is called the �Gold Standard� and is presented in the following:

�A partitioned system should provide fault containment equivalent to an idealized
system in which each partition is allocated an independent processor and associ-
ated peripherals and all inter-partition communications are carried on dedicated
lines.�

This partitioning requirements' formulation has the problem that it is hard to
use in real life, since the software that will run in these partitions will not be
developed and tested in the conditions described in the Gold Standard. The ide-
alized system dedicated to a function alone that is mentioned in the standard is
just an imaginary artifact, and can not really be used in the function's develop-
ment, testing and certi�cation. The only available environment is constituted
by the partitioned system itself, so a reconsideration of the Gold Standard in
terms of the available systems is necessary. The �Alternative Gold Standard for
Partitioning� is such a reconsideration [Rus99]:

�The behavior and performance of software in one partition must be una�ected
by the software in other partitions.�

The standard says that the software in one partition must be una�ected by the
software in other partitions. But it rarely happens that the software functions
executing in di�erent partitions are completely independent. On the contrary,
frequently data and control inputs are exchanged between functions. This points
out one of the hazards to be avoided: that a fault in one partition can corrupt
the data, the control inputs or the code speci�c to another partition. Another
type of hazard to be avoided appears more obvious if we read again the Gold
standard. It refers to the ability of functions in one partition to gain access or
service from a shared resource like a processor, peripherals or a bus [Rus99].

In regard of these hazard types, according to [Rus99], there are two classes of
partitioning that can be devised: temporal and spatial. They will be presented

12 Partitioned Architectures

below.

Spatial partitioning:

�Spatial partitioning must ensure that software in one partition cannot change
the software or private data of another partition (either in memory or in transit)
nor command the private devices or actuators of other partitions.� [Rus99]

The resources are statically allocated to partitions by the system integrator, so
the system integrator needs to make sure that it allocates enough resources to
each partition and that the spatial separation between partitions is respected.

One way to ensure that the spatial segregation in avionics is respected is through
hardware mediation performed by a memory management unit (MMU). It is the
responsibility of the operating system to protect the partition data from being
modi�ed by software running in other partitions. With hardware mediation this
is achieved through di�erent modes of operation for the processor. The idea is
to have at least two operation modes (user and supervisor) and to verify with
the MMU all the memory accesses done in user mode by the processor. The
MMU contains tables with the addresses that can be accessed by each partition
and the operating system kernel makes sure that these addresses don't overlap.

Since the spatial partitioning forbids shared data areas between partitions,
the applications in di�erent partitions can exchange data only through inter-
partition communication. The inter-partition communication is done through
messages sent over the AFDX network in case the partitions are not on the same
module and through blackboards, bu�ers, event or semaphore services in case
they are.

Temporal partitioning:

�Temporal partitioning must ensure that the service received from shared re-
sources by the software in one partition cannot be a�ected by the software in
another partition. This includes the performance of the resource concerned, as
well as the rate, latency, jitter, and duration of scheduled access to it.� [Rus99]

The parameters that temporally de�ne a partition and the partitions' scheduling
are speci�ed o�ine by the system integrator. The temporal attributes of a
partition are: duration (which needs to be calculated considering the amount of
time required by the functions executing in the partition), deadline and period.
Partitions have no priority. The operating system ensures that the scheduling
and the temporal allocations for the partitions are respected. Every partition
must be allocated execution time equal to its duration, but not mandatory at
once, so the duration can be split over several execution windows. Once the

2.2 TTEthernet 13

Figure 2.2: Time partitioning in IMA

temporal execution window allocated to a partition ends, the execution of the
partition's functions is suspended and the operating system starts the execution
of the next partition in the schedule. Partitions in an avionics module are
grouped into a Major Frame (MF), as it can be seen in Figure 2.2. The major
frame has a �xed duration and is repeated continuously during the module's
functioning. Its period (which is equal to its duration) de�nes the periodicity
of the scheduling and is calculated as the least common multiple of the periods
of the partitions composing the major frame. A major frame can also contain
idle time, which is not allocated to any partition.

In conclusion, we repeat that the purpose of partitioning is fault containment
and for this it must block both the spatial and temporal pathways for fault
propagation [Rus99].

Although the concept of partitioning was discussed in the context of avionics,
it can be easily seen that it is not exclusive to this �eld. It is a general concept
with a large area of application in embedded systems, from avionics and medical
devices to automotive, wherever mixed criticality functions are to be run on the
same platform.

2.2 TTEthernet

In safety-critical areas (like the automotive or aeronautic industries), the time-
triggered communication paradigm is widely employed because of the determin-
istic behavior it o�ers. One condition for employing the time-triggered approach
in a distributed environment is to assure that the systems in the network are
synchronized (that is, they have the same perception of the current moment in

14 Partitioned Architectures

time). Once this condition is ful�lled, the systems in the network just need to
follow a static communication schedule. This communication schedule is typi-
cally built and veri�ed o�ine so that no resource con�icts on the network can
yield surprises.

However, besides the time-triggered approach in the scheduling of messages
and tasks, there exists another complementary approach - the event-triggered
paradigm. These two approaches have been long analyzed [ATB93, Kop11] in
terms of �exibility, jitter control, predictability etc. Each approach has ad-
vantages and disadvantages and the consensus in the real-time and embedded
systems community is that the best approach to use depends on the applica-
tion [TSP12], this also implying that both approaches can be simultaneously
employed in a system.

The time-triggered communication paradigm is the appropriate approach for ap-
plications with high criticality temporal and fault tolerance requirements [Ste11].
Typically, in the mixed-criticality systems, the applications with high critical-
ity temporal requirements will coexist and share the physical network with less
demanding applications [Ste11]. The integration of these applications with dif-
ferent criticality levels should optimally use the available resource, but it was
shown in [Foh94] that, more likely, the use of static schedules will eventuate in
resources not being optimally used (i.e., idle times in between tasks) [Ste11]. A
similar observation was made for statically scheduled networks and led to the
development of the TTEthernet design [SBH+09, Ste11, KAGS05].

TTEthernet can handle both event-triggered and time-triggered tra�c. One of
the design rationales behind TTEthernet was to obtain a �novel uni�ed com-
munication architecture based on Ethernet that meets the requirements of all
types of non-real-time, real-time, and multimedia applications up to the most
demanding safety-critical real-time products, while still maintaining full com-
patibility with the existing Ethernet standard.� [KAGS05].

TTEthernet is originating from the academic TT-Ethernet technology [KAGS05],
which on its turn is originating from the standard Ethernet and TTP [Kop11].
Currently, TTEthernet is developed by TTTech ComputerTechnik AG and is
standardized in SAE AS6802 [as611].

It is worth mentioning that TTEthernet is compliant with the AFDX (or ARINC
664 Speci�cation Part 7) standard [ARI09]. As mentioned in section 2.2.1, the
communication provided by AFDX is event-triggered and deterministic. TTEth-
ernet is supporting event-triggered communication, using for this the free band-
width available after the static communication schedules for the time-triggered
communication were determined. Since the AFDX concepts regarding the event-
triggered tra�c are relevant also for TTEthernet, we will brie�y present them

2.2 TTEthernet 15

Figure 2.3: A safety-critical TTEthernet con�guration

in section 2.2.1.

By adding determinism to the classical Ethernet, TTEthernet quali�es as a
communication technology for mixed-criticality applications. The required sep-
aration between di�erent criticality levels is achieved, at temporal level, through
the static TT communication schedules and the bandwidth allocation for RC
messages. The spatial separation is achieved through the concept of virtual
links.

Time-triggered communication requires a synchronized time base across the
network to be maintained. TTEthernet uses synchronization messages (the
so-called protocol control frames) to maintain a global notion of time. TTEth-
ernet tra�c can coexist on the same physical network with Ethernet or AFDX
tra�c (that is, TTEthernet is a transparent synchronization protocol [as611]).
In these conditions, TTEthernet is able to maintain the dispatch order and
the relative timing of the TTEthernet messages based on its transparent clock
mechanism [as611].

Using TTEthernet, depending on the speci�cs of the supported applications,
one can build safety-critical con�gurations, as well as standard con�gurations

16 Partitioned Architectures

(appropriate for non-critical applications). TTEthernet services are built with
emphasis on modularity, so it is also possible to construct con�gurations for
intermediate safety requirements. In Figure 2.3 we present an example of a
safety-critical TTEthernet con�guration. The TTEthernet switches used in
safety-critical con�gurations are the same as the ones used in standard con-
�gurations, but in the safety-critical con�gurations the switches are monitored
by guardians. The guardians constitute an independent fault-containment unit,
that monitors the operation of the switch and of the controllers connected to
the switch [KAGS05]. In case it detects errors, the guardian can disable the
inputs and outputs of the TTEthernet switch.

Compared to the safety-critical con�guration presented in Figure 2.3, a standard
con�guration would not employ guardians and, instead of safety-critical TTEth-
ernet controllers, it would employ standard TTEthernet controllers. Note that
in a standard con�guration, due to the TTEthernet's compatibility with Ether-
net, standard Ethernet controllers are also accepted. There is no restriction on
the number of controllers in the network.

2.2.1 Avionics Full Duplex Switched Ethernet

AFDX (implementation of the ARINC 664 Part 7 standard [ARI09]) is today the
reference communication technology in avionics. The explosion of the number
of nodes in the federated architectures challenged the communication infras-
tructure in terms of bandwidth, weight and number of needed buses. AFDX
answered to these challenges by multiplexing communication �ows over a full
duplex switched Ethernet network. Because the network links are full duplex,
the contention problem is eliminated. Being based on Ethernet, the data rates
provided by AFDX are much higher than the ones provided by its predecessor
ARINC 429.

An AFDX network is composed of end systems and switches connected trough
full duplex links. Through the end systems, the avionics subsystems send to
and receive data from the network. Besides connecting the avionics subsystems
to the switches, the end systems also perform tra�c shaping. The switches
perform tra�c policing and routing of the data packets to their corresponding
end systems receivers. Each end system is connected to a single switch port
and, correspondingly, each switch port is connected to a single end system. An
illustrative AFDX network is depicted in Figure 2.4. We can distinguish four
switches (SW1 to SW5) and seven end systems (ES1 to ES7). We notice that
the previously mentioned restrictions regarding the interconnection of network
elements are respected.

2.2 TTEthernet 17

Figure 2.4: An example AFDX network.

The fundamental concept in a AFDX network is the virtual link (VL). A virtual
link (VL) is de�ned in [ARI09] as a �conceptual communication object�, a vir-
tual communication channel [BSF09] through which the end systems exchange
messages. A virtual link has the following properties:

• it de�nes a �logical unidirectional connection from one source end-system
to one or more destination end systems� [ARI09]. That is, only one end
system can be the source of an virtual link. A switch can not be the source
or the destination of a virtual link, it can be only a part of a VL path.
For routing packets, the AFDX switches use virtual link IDs.

• for each virtual link, a maximum bandwidth was designated o�-line, by
the system integrator. In this regard, the following VL properties are
important: the BAG (Bandwidth Allocation Gap) and the minimum and
the maximum frame length (smin and smax).

The BAG is the minimum time interval between two consecutive frames belong-
ing to the same virtual link. Therefore the maximum usable bandwidth for a
VL can be calculated as smax/BAG.

In Figure 2.4 there are ten virtual links, some of which are unicast (only one
receiver), the rest being multicast (multiple receivers). For example, v5 is an
unicast VL with the path (ES1 - SW1 - SW4 - ES7) and v9 is a multicast VL
with the paths (ES5 - SW3 - SW4 - ES7) and (ES5 - SW3 - ES6).

All the virtual links in an AFDX network (that is, their routing and their band-
width parameters) are statically de�ned. This is important because in the safety-

18 Partitioned Architectures

critical area of avionics deterministic timing guarantees are required and having
the virtual links' parameters statically de�ned allows the o�ine calculation of
the maximum end-to-end network delays.

AFDX needs to assure deterministic avionics communications. Analyzing the
AFDX network for a given �ow, we observe that the transmission delays in the
network links can be easily computed since they depend only on the transmis-
sion rate and on the frame length. What are not so easy to evaluate are the
latencies in switches experienced by a �ow. The �ows in an AFDX network are
asynchronous and they can enter in competition over a switch's output ports. In
this context, it is necessary to analyze for each �ow the latencies in the switches'
output ports, so that the upper bounds on the network end-to-end delays can
be determined. We will talk in more detail about the state-of-the-art methods
for determining worst-case end-to-end delays in AFDX networks in section 4.2.

2.2.2 Tra�c Classes

We reiterate that TTEthernet supports both event-triggered and time-triggered
communication, distinguishing for this purpose two fundamental tra�c classes:
standard Ethernet (ET) tra�c and TT Ethernet tra�c. These can be further
divided in the following three classes of tra�c: time-triggered (TT) tra�c, rate-
constrained (RC) tra�c and best-e�ort (BE) tra�c.

The time-triggered (TT) tra�c is suitable for applications that require tight
latency, predictability and jitter requirements. The TT tra�c has the highest
priority and it is driven by static communication schedules. The communication
schedules are locally stored in the network's senders and switches. For the time-
triggered communication to work, the systems participating in the conversation
need to be synchronized. Synchronized time is essential for the isolation of
critical applications from the less critical ones and for partitioning [as611].

The rate-constrained (RC) tra�c is respecting the RC communication paradigm
speci�ed by AFDX. The idea behind RC communication is to guarantee that two
consecutive frames belonging to the same RC �ow are never sent back-to-back,
but are always o�set by a minimum pre-con�gured duration [SBH+09]. The
inter-frame gap is assured for each RC �ow on the end systems side by a tra�c
shaping function. A faulty end system may attempt to send frames more often
then it should. In this scenario, the network is protected by the switches that
implement a tra�c policing function (the leaky bucket algorithm). This function
checks if the message �ow generated by an end system is indeed well-shaped. In
case the minimum interval between two successive frames is not respected, the
switch drops the too-early frames. In the RC tra�c there is no synchronized

2.2 TTEthernet 19

time base, the messages being asynchronous. This implies that multiple senders
can simultaneously send frames. These RC frames may end up accumulating
in the network switches and, consequently, have increased transmission jitter.
Also, for making sure that switches' bu�ers have enough space so no message is
lost or for calculating the bu�ers' necessary capacity, peak-load scenarios need
to be considered at design time. Since the network parameters (bu�er sizes
etc.) and the frames' transmission rates are apriori known, the frames' jitters
and latencies can be calculated o�ine. That's why we can say that the �RC
transfers guarantee su�cient bandwidth allocation for each transmission, with
de�ned limits for delays and temporal deviations� [as611]. Therefore, the RC
tra�c has bounded end-to-end latencies being suitable for applications which
have less strict determinism and timing requirements.

The third tra�c class supported by TTEthernet is Best E�ort (BE). The BE
tra�c is analog to the normal Ethernet tra�c; it doesn't o�er any temporal or
deterministic guarantees. This means that there is no guarantee that a message
will reach its receiver and, in case it will, there is no guarantee regarding the
message's delay. The BE tra�c has the lowest priority among the TTEthernet
tra�c classes and it utilizes the bandwidth left unused by TT and RC transfers.
Taking into account the lack of quality of service guarantees, the BE tra�c class
is not suitable for safety-critical communication.

2.2.3 Data�ow Integration

TTEthernet needs to handle the contentions that will most probable occur on
the end systems' and switches' output ports when data�ows of di�erent tra�c
classes are integrated onto a single physical network. In case contention occurs
between messages of the same tra�c class, the messages will be serviced accord-
ing to the FIFO policy [SBH+09]. The situation in which a low priority message
becomes ready while a high priority message is transmitted has a straightfor-
ward solution: the transmission of the high priority message is continued and
the low priority message is queued.

The handling for the case in which a high priority message becomes ready while
a low priority message is transmitting is more complex, TTEthernet providing
three integration methods for this situation. Let's discuss them considering
the example TTEthernet cluster in Figure 2.5 composed of three end systems
(ES1, ES2, ES3) and one network switch (SW1). A possible Gantt chart with
the tra�c on the physical links in the system is shown in Figure 2.6. The
two messages in the system (the TT message tt1 and the RC message rc1) are
represented by colored rectangles. The left edge of the rectangle marks the start
of the message's transmission on the physical link. Correspondingly, the right

20 Partitioned Architectures

edge of the rectangle indicates the ending of the transmission. tt1 is sent by
ES1 to ES3 through SW1, while rc1 has the same destination, but a di�erent
origin (ES2).

We can see that the high priority TT message tt1 reaches the switch SW1 after
the lower priority RC message rc1. The three TTEthernet integration methods
((a) preemption, (b) timely block and (c) shu�ing) are illustrated in Figure 2.6
by the three possible scenarios for the tra�c on the SW1 − ES3 link.

When the integration policy employed is preemption, the transmission of the
low priority message (rc1 in our case) is stopped and (after establishing the
minimum amount of silence on the channel) the high priority message (tt1) is
relayed. The transmission of the low priority message is restarted after the high
priority message �nished transmitting. Stopping the transmission of rc1 implies
that ES3 will receive a truncated version of this message. TTEthernet provides
mechanisms for avoiding that the receiver of a truncated message interprets it
as correct. When rc1 is transmitted again, after tt1, it is transmitted integrally.
One drawback of this method would be then that each truncation leads to a
loss of bandwidth [SBH+09]. One advantage is that, in regard to high priority
messages, the switch guarantees a known and constant latency.

The timely block integration method implies that the switch will not forward
RC messages when TT messages are expected [SBH+09]. Since the TT mes-
sages are transmitted based on static schedules, the switch can appreciate if the
transmission of a low priority message will �nish before a TT message needs
to be relayed. This can be seen in Figure 2.6, in scenario (b), where rc1 is
blocked (postponed) from transmission until tt1 frees the communication link.
The amount of time while rc1 is blocked and the switch doesn't transmit any-
thing is represented by a hatched rectangle. In case the length of the lower
priority message is not known, the switch will have to consider the maximum
possible length of the lower priority message when calculating the timely block
interval. The timely block approach guarantees that the outgoing ports will be
available for the high priority messages, so the delays due to integration are
known and constant for these messages.

In the case of the third integration method (shu�ing), the arrival of a high
priority message doesn't interrupt the ongoing transmission of the low priority
message. So, the high priority message is delayed until the low priority message
is transmitted. This situation can be seen in scenario (c) of Figure 2.6. In this
case, the maximum delay that can be experienced by a high priority message is
equal to the maximum transmission duration of a low priority message. From
a utilization point of view, shu�ing is an optimal solution [SBH+09], since the
outgoing ports will not be blocked for low priority messages and these message
will not be truncated. However, with shu�ing, the real-time quality of the

2.2 TTEthernet 21

Figure 2.5: TTEthernet cluster

Figure 2.6: Integration policies for RC and TT tra�c

22 Partitioned Architectures

Figure 2.7: Integrated tra�c in a TTEthernet network [as611]

TT tra�c su�ers in terms of transmission jitter and latency. Since the TT
tra�c is relaying on a synchronized time base, the dispatch points in time for
the TT messages are known apriori to the receivers. The transmission jitter
can be mitigated by including in the messages of low priority tra�c class a
global timestamp informing the receivers of their dispatch time [SBH+09]. The
increased latency and jitter imposed by the shu�ing policy a�ects the static
communication schedule for the TT tra�c. For this reason, the changes of the
TT timing which can appear due to the RC and BE tra�c need to be considered
when creating the communication schedule. It is considered that, in 100 Mbps
or 1 Gbps networks, shu�ing provides good-enough real-time quality for a big
variety of applications in automotive and avionics [SBH+09].

A concrete example of possible tra�c in a TTEthernet network composed of
two senders, one receiver and one switch is presented in Figure 2.7 [as611]. One
sender is transmitting a TT frame every 3 ms and also some BE frames. The
other sender emits some BE frames and TT frames with a period of 2 ms. The
switch gets the frames from the sender end systems and composes the integrated
data�ow that reaches the receiver.

2.2.4 Basic TTEthernet Modeling Concepts

In what is next we present a model for the TTEthernet networks as it is proposed
in [Ste11, TSP12, Ste10b]. A TTEthernet network can be formally de�ned as

2.2 TTEthernet 23

an undirected graph G(V, E). The set of vertices V is the set of the end systems
and switches in the network. The set of edges E is the set of the physical
links that connect the vertices. In the TTEthernet cluster from Figure 2.8,
V = {ES1, ES2, ES3, SW1, SW2}, and the physical links composing set E are
represented with double black arrows.

The physical links are modelled as data�ow links. A data�ow link connects one
sender vertex to one receiver vertex. Since the physical links are full duplex (they
allow communication in both directions), a physical link de�nes two data�ow
links. More formally, the data�ow link li = [vx, vy] ∈ L, where L is the set of
all data�ow links in the network, represents the direct communication channel
between vx and vy. In Figure 2.8, examples of data�ow links are l1 and l2
connecting the switch SW1 with the end systems ES1 and ES2. An ordered
sequence of data�ow links connecting one sender to one receiver forms a data�ow
path. A data�ow path denoted dpi, connecting a sender v1 to a receiver vx, can
then be expressed as [[v1, v2], ..., [v(x−1), vx]. The data�ow path dp2 depicted in
Figure 2.8 can be then expressed as [[ES3, SW2], [SW2, SW1], [SW1, ES2]]. The
set of the data�ow paths in the network is denoted by DP.

Figure 2.8: TTEthernet network cluster example

A data�ow path represents a unidirectional connection from a sender to a re-
ceiver. Virtual links, as we explain in section 2.2.1, represent logical unidirec-
tional connections between one sender end system and multiple receiver end
systems. A virtual link can also be thought of as a directed tree, the sender

24 Partitioned Architectures

being the root and the receivers being the leafs. The virtual link vl1, illustrated
with red dot-dash arrows in Figure 2.8, is a tree with root ES3 and leafs ES1

and ES2. In this context, a virtual link vl can be expressed as the reunion of
the data�ow paths connecting the sender to each of the receivers: vl =

⋃
dpi.

The set of all virtual links in the system is denoted by VL. Virtual links are a
way to achieve spatial partitioning between messages with di�erent criticality
levels transmitted over the network.

Messages that are transmitted over the network are packed into frames. We
assume that each message is packed into exactly one frame and each frame
carries only one message. The issue of frame packing, addressed for example
in [PEP05], is orthogonal to our problem. We denote the set of all frames
in the network by F , where can be further divided into FTT , FRC and FBE
which represent the sets of frames belonging to the three tra�c classes provided
by TTEthernet (F = FTT ∪ FRC ∪ FBE). The identi�cation of a frame's
tra�c class is done based on a bit pattern in the frame's header. Although in
a multi-clustered TTEthernet network, a frame can belong to di�erent tra�c
classes in di�erent synchronization domains, we assume in our model that the
frames keep in the whole network the tra�c class they have been assigned by
the designer. An equivalent assumption would be to consider our model only for
one TTEthernet cluster or to consider the network as composed by one cluster.

The instance of a frame fi ∈ F on a data�ow link [vx, vy] is denoted by f
[vx,vy]
i .

A TT frame f
[vx,vy]
i is completely temporally speci�ed by the following set of pa-

rameters: {fi.period, f
[vx,vy]
i .offset, fi.size, fi.deadline}. A RC frame f

[vx,vy]
i

is fully described by the parameters {fi.rate, fi.size, fi.deadline}. The TT
frames are periodic, while the RC frames are not necessarily periodic, the RC
frames having a minimum inter-arrival time. In this respect the rate of the RC
frames can be seen as fi.rate = 1/fi.period. The o�set fi.offset of a TT frame
fi represents the sending time of a frame relative to its period. The size, the
deadline, the period (of the TT) or the rate (of the RC) frames are con�gured
o�ine by the designer, so in our analyses these parameters are given apriori.
Based on the size of the frame fi and on the speed of the physical link [vx, vy] it

is easy to determine the transmission duration (denoted C
[vx,vy]
i) of the frame

on the data�ow link.

2.2.5 How TTEthernet Works

This section will illustrate how TTEthernet works through the example in Fig-
ure 2.9 (taken from [TSP12]). We consider two applications, A1 (composed of
tasks τ1 and τ3) and A2 (consisting of τ2 and τ4). Because they are of di�er-

2.2 TTEthernet 25

Figure 2.9: Example transmission of TT and RC messages [TSP12]

ent criticality levels, the applications are executed in separate partitions on the
processing elements. The separation at the communication level between the
applications' messages is achieved by sending the messages on di�erent virtual
links. The TTEthernet network supporting the communication in our example
consists of two end systems (ES1 and ES2) and three switches (SW1, SW2 and
SW3).

We consider that task τ1 mapped on ES1 sends the RC message m1 to task τ3
on ES2 and that task τ2 mapped as well on ES1 sends the TT message m2 to
task τ4 on ES2 [TSP12]. The messages are considered to �t in one frame each
(m1 is packed in frame f1 and m2 is packed in frame f2). Like we previously
stated, the frames are assigned to di�erent virtual links, but the virtual links
are not depicted in Figure 2.9, instead, what is depicted, is their trajectory with
details of the transmission steps. We can see in Figure 2.9, how the frames f1
and f2 cross the switch SW1 (which is also crossed by frames f3 and f4 coming
from SW2 and SW3) in their way from ES1 to ES2. The transmission steps for
the frames under analysis (f1 and f2) are marked in the �gure with letters from
(a) to (m) or numbers from (1) to (13) on blue, respectively green, background.

The details of the time-triggered transmission are illustrated using the TT mes-
sage m2 packed in frame f2 and sent by task τ2 on ES1 to task τ4 on ES2.
The transmission starts with the packing of the message m2 into the frame f2
- step (a). In the next step, (b), the frame is put in the transmission bu�er
B2,Tx from where, according to the static send schedule kept in ES1 - (c) -,
it is taken and transmitted to the switch SW1 by the scheduler task TTS -
(d). Conceptually, for each TT message sent from an end system there is a
transmission bu�er like B1,Tx [TSP12]. We reiterate that all the end systems
and switches in the network store the static communication schedules based on
which the TT communication is performed. There are both receive and send
schedules, denoted by SR, respectively SS , and these schedules are determined
o�ine. So, the scheduler task TTS will send frame f2 to switch SW1 at the time

26 Partitioned Architectures

speci�ed in the send schedule SS of ES1. The TT sender task TTS provides a
fault-tolerance service against the so-called �babbling idiot� failure. This failure
could manifest if, for example, a task would become faulty and start to send
more TT messages than it should according to the schedule. In such a case, the
TT sender task TTS will transmit messages only as it is speci�ed in the static
schedule SS and, thus, protect the network. The transmission of frame f2, on a
data�ow link, to switch SW1 is marked in the �gure as step (e). Upon arriving
at the switch, the frame is checked for validity and integrity by the Filtering
Unit (FU) hardware task - (f). This veri�cation is done for all frames received
by the switch, since it is essential for the overall network robustness that only
valid frames are forwarded [ARI09]. If frame f2 is found valid, then the frame
is forwarded to the TT receiver task TTR in step (h).

The TTEthernet switch provides mechanisms to ensure fault containment over
the network. One of these services is implemented by the TT receiver task TTR.
Analogously to the TT sender task TTS , the TT receiver task TTR relies on the
receive schedule SR (marked with (g) on the �gure) when handling the reception
of a TT frame. More precisely, the TTR task checks if the TT frames arrived
according to the SR schedule within a speci�ed receiving window [TSP12]. The
size of the receiving window is calculated o�ine based on the sending times
in the send schedules, the integration policy employed in the network and the
clock synchronization mechanism's precision [TSP12]. The TT frames that ar-
rive outside this receiving window are considered faulty and are, consequently,
dropped.

Continuing with our example, if frame f2 arrived within the receiving window,
then the TTR task will place it in the transmission bu�er B2,Tx - (h). From
here, similar to the transmission process in the end system ES1, the frame will
be taken over by the TT sender task TTS - (i) - when the time is right (that is,
at the time speci�ed for the frame in the SS send schedule stored in the switch)
and transmitted to the end system ES2 - (j). The arrival of the frame at the
end system and the checking of the frame's validity by the FU task in ES2 is
marked in the �gure as step (k). If the validation is successful, the FU task will
place f2 in its dedicated receive bu�er B2,Rx - (l). The frame will be taken from
the receive bu�er by task τ4 when the task will be activated - (m).

For illustrating the internals of the RC transmission, we will use the message m1

packed in frame f1 and sent by task τ1 on ES1 to task τ3 on ES2. The message
m1 will cross the switch SW1 on its way. Like in the case of TT messages, the
transmission of m1 starts with its packing into frame f1 - step marked as (1)
on the �gure. After packing the message, task τ1 places it in the queue Q1,Tx

- (2). Such a queue is assigned for every RC virtual link and has a role in the
tra�c control at the end system.

2.2 TTEthernet 27

It is required from end systems to ensure that each virtual link is serviced ac-
cording to its BAG, irrespective of the attempted use of bandwidth by other
virtual links [ARI09]. We remind the reader that each virtual link is charac-
terized by a so-called BAG (Bandwidth Allocation Gap) which speci�es the
minimum time interval between two consecutive frames belonging to the same
virtual link. That is, the BAG (together with the maximum frame size) deter-
mines the maximum usable bandwidth for a virtual link. The control of the
amount of bandwidth given to a virtual link is performed by the Tra�c Regula-
tor (TR) task according to the virtual link's BAG. The tra�c is regulated on a
per virtual link basis so that, for each virtual link, the end system will not send
more than one frame in each BAG interval. Regardless of the instantaneous
frame rate of the virtual links, the TR task will space the frames to respect the
BAG [ARI09]. In our example, this regulation step done by task TR1 is marked
with (3).

In the case of an end system with multiple RC virtual links, the RC scheduler
task RCS has the role of multiplexing the RC �ows coming from the tra�c
regulator tasks - (4). The consequence of this multiplexing is that the �ows
can be a�ected by jitter. Besides the interference from other RC frames, solved
by multiplexing by the RC scheduler task, the RC frames need to endure the
interference of the TT tra�c, which has higher priority. The possible integration
methods for the TT and RC tra�c have been discussed in section 2.2.3. The
TT sender task TTS on ES1, depending on the TT static schedules and on the
integration policy used, will send frame f1 to SW1 at an appropriate time - (5).
The transmission of f1 on the [ES1, SW1] data�ow link is marked with (6) on
the �gure.

Like the TT frames, at their arrival at end systems or switches, the RC frames
are checked for validity and integrity by the Filtering Unit (FU) tasks - (7).
Another fault-containment feature of the TTEthernet switches is implemented
by the Tra�c Policing (TP) task. The purpose of the TP tasks in switches is
somehow analogue to the purpose of the TR tasks in end systems. The TP task
checks if the bandwidth allocation for virtual links is respected at the receiv-
ing end - that is, checks that the time interval between two consecutive frame
instances on the same virtual link is greater than or equal to the correspond-
ing BAG. The TP task implements the so-called leaky-bucket algorithm, which
drops the frames arriving at shorter intervals than the speci�ed BAG. This way,
a faulty end system sending RC frames at an erroneous rate can not disturb the
network.

If f1 passes the TP task's checks (8), then it will be placed in the outgoing
queue QTx - (9). The frames from the QTx queue are typically handled in FIFO
order by the TT sender task TTS - (10). Like the TT sender task on ES1, the
TT sender task on SW1 will determine the sending time of f1 based on the

28 Partitioned Architectures

TT static schedules according to the TT and RC tra�c integration policy used.
After traversing the data�ow link [SW1, ES2], f1 will be checked for validity
and integrity by the FU task on ES2 - (11). If f1 passes the veri�cation, it will
be placed in the receiving queue Q1,Rx - (12). The addressee task τ3 can then
read f1 from the queue when it becomes active - (13).

Chapter 3

IMA Analysis

We saw in the previous chapter that the integration of mixed-criticality appli-
cations onto the same architecture is permitted only if there is enough temporal
and spatial separation among them. This separation is achieved through parti-
tioning and, in this chapter, we consider an IMA-like partitioning scheme.

In this chapter we will present our proposed schedulability analysis for tasks
running in partitions that use �xed priority preemptive scheduling (FPS). The
considered application and system models are presented in section 3.1 and, re-
spectively, section 3.2. An example showing the importance of taking into ac-
count the partitions when performing the schedulability analysis is given in
section 3.3. Our proposed response time analysis, based on the WCDOPS+ al-
gorithm, is presented in section 3.4. The proposed analysis has been compared,
in section 3.5, with the schedulability analysis for FPS tasks running in parti-
tions proposed by Audsley and Wellings. Throughout this section we will denote
the analysis proposed by Audsley and Wellings with SA (from �Schedulatibility
Analysis�). Our analysis will be denoted by SA+.

Based on the work presented in this chapter, we wrote a paper [MTSAP12] which
was presented in the work in progress section of the 17th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA 2012).

30 IMA Analysis

3.1 Application Model

We consider a set of mixed-criticality applications. Each application has a SIL-
level, from SIL4 (most critical) to SIL0 (non-critical) and is developed ac-
cording to the certi�cation requirements for the particular SIL. The application
model presented in this section is referring to applications scheduled with FPS
and is a simpli�cation of the application model from [TSP11a].

We consider that the mapping of tasks to processing elements (PEs) and the
assignment of tasks to partitions is given, and can be determined using the
approach from [TSP11a]. We model an application A as a directed, acyclic
graph Γ(V, E). Each node τi ∈ V represents one task. An edge eij ∈ E represents
a precedence relationship between τi and τj , and indicates that τi must complete
its execution before τj . Each task τi is characterized by a worst-case execution
time (WCET) Ci (on the PE that it's assigned to for execution), a best-case
execution time Cmini , and in case the task uses shared resources, a maximum
blocking time Bi. Additionally, τi has an unique priority denoted by prio(τi),
an o�set Φi and a maximum release time jitter Ji. Thus, considering that the
graph Γ to which τi belongs is triggered by an external event arriving at t0, τi
arrives at time t0 + Φi and is released after an additional maximum delay of Ji.
For each application we have a deadline DA and a period TA.

3.2 System Model

We consider architectures composed of a set N of PEs connected by a broad-
cast communication channel. We assume that the hardware and software ar-
chitecture implements a temporal- and space-partitioning scheme similar to
IMA [TSP11a].

Each application Ai is allowed to execute only within its de�ned partition Pj .
Each partition can use its own scheduling policy. On a processing element Ni,
a partition Pj is de�ned as the sequence Pij of k partition slices pkij , k ≥ 1.

A partition slice pkij is a predetermined time interval in which the tasks of
application Aj mapped to Ni are allowed to use the PE. All the slices on a
processor are grouped within a Major Frame (MF), that is repeated periodically.
The period TMF of the major frame is given by the designer and is the same
on each node. Several MFs are combined together in a system cycle that is
repeated periodically, with a period Tcycle.

In Figure 3.1 we have 3 applications, A1, A2 and A3, implemented on 2 PEs,

3.3 Motivational Example 31

Figure 3.1: Partitioned architecture

N1 and N2, with TMF = 10 and Tcycle = 20. The tasks of A1, for example, can
execute only in partition P1 on PE N1, composed of the partition slice p11,1, and
in partition P1 on PE N2, composed of the slice p12,1. The sequence and length
of the partition slices in a MF are the same (on a given PE), but the contents of
the slices can di�er. An application can extend its execution over several MFs.

We don't consider communication in our analysis. However, researchers have
shown how realistic bus protocols, e.g., FlexRay [PPE+08] or TTP, can be
integrated into the analysis.

3.3 Motivational Example

Let us illustrate the importance of accurately taking the partitions into account
during the analysis using the example in Figure 3.2. We consider a system
with 2 PEs and 6 tasks. The partition table is given in Figure 3.2a, where two
consecutive MFs with TMF = 20 are presented. The details of the application
are given in Figure 3.2b (the tasks are sorted according to their priorities�highest
being on top�and the deadlines are equal to the periods).

The mapping and the partitioning are given, and we assume they are derived
with our approach from [TSP11a]. The hatched partition slices represent parti-
tions on which the application A1 is not allowed to execute. The partition slices
corresponding to application A1 are colored in green.

We are interested to determine the worst-case response times of the tasks in
Figure 3.2b considering the partitions in Figure 3.2a. We have compared the
SA analysis from [AW96] with our proposed analysis, SA+. To facilitate the

32 IMA Analysis

Figure 3.2: Motivational example

comparison, we consider the assumptions from [AW96], i.e., deadlines are equal
to the periods, and we ignore the dependencies. The SA results are presented in
column 5 in Fig. 2b, and the SA+ results are in column 6. As we can see, SA is
much more pessimistic (the application is considered unschedulable) compared
to our proposed analysis, SA+.

The pessimism of SA comes from its limiting assumptions that the partition
slices have to be periodic within a MF. This assumption is not true in practice,
but it simpli�es the analysis. When analyzing the tasks in a partition Pj on
a PE Ni, SA merges all the other partition slices into a �higher priority task"
with WCET Cp0 (the length of the other slices) and period T p0 . In order to apply
SA in the general context of Fig. 3.2a, we have to consider Cp0 as the longest
time-interval of continuous partition slices /∈ Pj on Ni, and T p0 as the shortest
inter-arrival time of these intervals. These values are calculated for each PE.
For example, the values of Cp0 and T p0 for N1 and N2 in Fig. 3.2a are as depicted
in the �gure. Our proposed analysis, SA+, does not assume that the partition
slices have to be periodic, and thus reduces the pessimism of SA by accurately
taking into account the exact position and size of the partition slices.

3.4 Response Time Analysis 33

3.4 Response Time Analysis

WCDOPS+ [Red04] is an algorithm which performs worst-case response time
analysis on �xed priority scheduled tasks disposed in tree-shaped transactions
taking into consideration the precedence constraints between them, which later
was extended to consider graphs [KM07].

The WCDOPS+ response time analysis for a certain task τab is based on �nding
the contributions from each transaction in the system to a busy period of τab.
The busy period (also called busy window) of τab is de�ned as the longest interval
of time during which tasks with priority greater or equal than τab are executed
continuously [Fid98].

When studying the contribution of a transaction Γi to the worst case response
time of a task τab, it may be useful to somehow group the tasks of Γi and treat
each group as if it were a single task. The creation of these groups of tasks
is accomplished by de�ning the concepts of H sections and H segments. Two
tasks of a transaction Γi belong to the same H section for the analysis of τab
if they belong to hpi(τab) and there is no intermediate task in the transaction
that belongs to lpi(ab). Similarly, two tasks of a transaction Γi belong to the
same H segment for the analysis of τab if they belong to hpi(τab) and there is
no intermediate task in the transaction that does not belong to hpi(ab). The
set of tasks hpi(ab) represents the tasks belonging to a transaction Γi that are
executed on the same PE as τab and have a priority greater or equal than τab.
The set lpi(τab) contains tasks belonging to Γi and executed on the same PE as
τab that have lower priorities than τab.

H segments are more restrictive than H sections in the sense that if two tasks
belong to the same H section with respect to a task τab, then they may belong
to the same τab busy period, while if two tasks belong to the same H segment
with respect to a task τab, then they must belong to the same τab busy period.

WCDOPS+ analyzes separately the contributions to the τab busy period: �rst,
the contributions made by all the transactions to which the task τab doesn't
belong to; secondly, the contribution made by the transaction Γa of which τab
is a part of. For each transaction, two types of contributions are considered:
a non-blocking interference (Wi) and a blocking interference (WBi). Since, as
shown in [Red04] only one blocking H segment can contribute to the busy pe-
riod, WCDOPS+ allows this contribution to the transaction with the maximum
interference increase (∆W = WBi - Wi).

The worst-case response time of an instance of τab with the index pab is deter-
mined by WCDOPS+ based on its completion time, wabc(pab). The completion

34 IMA Analysis

time is composed of the maximum blocking time from lower priority tasks, a
blocking interference and a non-blocking interference from the transactions in
the system. The blocking interference is expressed through the interference in-
crease which has to be maximized for the calculation of worst case completion
time. Since there can only be one blocking segment executing in a busy period,
the interference increase is chosen to be the maximum from the interference
increases calculated separately:

∆W ∗ac(τab, w, pab) = MAX(∆Wac(τab, w, pab),∆W
∗
i (τab, w, pab, τac)) (3.1)

The non blocking interference is obtained by summing up the non blocking in-
terferences from all transactions in the system, so the completion time wabc(pab)
is

wabc(pab) = Bab +Wac(τab, w, pab)+∑
∀i6=a

W ∗i (τab, w, τac) + ∆W ∗ac(τab, w, pab)
(3.2)

This equation is solved iteratively and because the instance pab of task τab arrives
at ϕabc + (pab − 1)Ta, its response time is [Red04]:

Rwabc(pab) = wabc(pab)− ϕabc − (pab − 1)Ta + φab (3.3)

The worst-case response time Rwab for the task τab is the maximum value of the
result in Eq. 3.3, considering all the critical instants initiated by higher priority
tasks and by τab as well as all the job instances.

3.4.0.1 Extending WCDOPS+ with Partitioning

We have extended WCDOPS+ to take into account the partitions by using
the concepts of availability and demand, inspired by the approach presented
in [PPEP08]. Informally, the availability associated to a task τij during a time
interval t, denoted as Aij(t), is equal to the processor time that is not used by
other partitions during t. The demand for a task τij during a time interval t,
denoted as Hij(t), is equal to the sum of the processor times required by τij and
all higher priority tasks mapped to the same processor during t.

In more general terms, the demand of a task scheduled in a partition Pk is equal
to the length of its busy period when there wouldn't be any time partitions
considered or when Pk would be the only partition on the processor. Fig. 3.3
shows that the demand of task τi during the busy window wi is equal to the
sum of the worst-case execution time of the higher priority tasks Ca and Cb and

3.4 Response Time Analysis 35

Figure 3.3: Availability and demand

the worst-case execution time of the task in question, Ci. In the WCDOPS+
analysis, the length of a τab busy period is called τab's completion time and is
expressed in Eq. 3.2. Thus, the demand Habc(pab) of an instance pab of a task
τab during a busy period initiated by a task τac is equal to pab's completion
time.

Habc(pab) = wabc(pab) (3.4)

The availability associated to an instance pab of a task τab, scheduled in a par-
tition Pk, is the processing time available during wab(pab) for Pk. Because of
the time partitioning scheme and because task τi can execute only during its
own partition Pk, the availability is calculated by subtracting from wab(pab) the
time reserved for the �other" partitions. In Fig. 3.3, the availability is shown as
what is left after subtracting from wi the durations of the other partitions, s1
and s2.

As a consequence of considering the partitioning scheme, the completion time
wabc(pab) of an instance pab of task τab is replaced by an extended completion
time, eabc(pab), computed according to Algorithm 1. The purpose of this algo-
rithm is to increase a task's completion time until the availability is at least as
large as the demand during this time interval. The algorithm starts by initializ-
ing the extended completion time of pab with pab's original completion time and
the availability and demand with 0 (lines 10�12). It then proceeds to iteratively
re-compute the availability and demand until the availability is greater or equal
to the demand (lines 13�19). At each iteration, the extended completion time of
pab is increased with the di�erence between the current values of the availability
and demand (lines 16�18). Finally, the obtained extended completion time is
returned (line 20).

36 IMA Analysis

Algorithm 1 EXTENDED_COMPLETION_TIME

1: Inputs:

2: τab - a task;
3: pab - an instance of τab;
4: τac - a task starting a pab busy period;
5: wabc - completion time of pab;
6: Outputs:

7: eabc - extended completion time of pab;
8:

9: begin

10: eabc ← wabc;
11: demand← 0;
12: availability ← 0;
13: repeat

14: demand ← COMPUTE_DEMAND(τab, pab, τac, eabc);
15: availability ← COMPUTE_AV AILABILITY (wabc);
16: if demand > availability then
17: eabc ← eabc + demand− availability;
18: end if

19: until availability ≥ demand
20: return eabc;
21: end

Acknowledgments The solution to the problem of extending WCDOPS+ to con-
sider partitioning was found by me together with my colleague Vlad Acretoaie.
I would like to acknowledge here his contribution.

3.5 Evaluation

Table 3.1 presents our experimental evaluation. We have used seven synthetic
benchmarks and one real-life example. The synthetic benchmarks were gener-
ated similar to [TSP11a], and the number of PEs and number of tasks in the
FPS applications are presented in columns 2 and 3, respectively, in Table 3.1.
The real-life case study is derived from the �automotive" benchmark in the E3S
suite [Dic]. The partition tables and the mapping have been generated using
the �Initial Solution" approach from [TSP11a]. We have run both SA and SA+
on these tasks sets. Columns 4 and 5 present the number of tasks found schedu-
lable, i.e., Ri ≤ Di, using SA and SA+, respectively. Columns 6 and 7 present
the minimum and, respectively, maximum percentage reduction of worst-case
response times obtained with SA+ compared to SA for the tasks in the bench-

3.5 Evaluation 37

mark. To show the overall reduction in the pessimism of SA+ over SA, the last
column in the table represents the percentage reduction of worst-case response
times obtained with SA+ compared to SA averaged over all tasks.

As we can see from these results, accurately taking into account the partitions
during the analysis can signi�cantly reduce the pessimism of the results.

Table 3.1: Experimental results

Test Case PEs Tasks SA SA+ Min %
reduction

Max %
reduction

% reduction

1 2 4 3 4 41.66 68.29 59.04
2 3 7 5 7 0 64 27.95
3 3 10 6 10 21.05 71.35 46.82
4 4 16 12 15 30.11 78.06 41.66
5 4 19 17 19 8.43 59.34 24.91
6 5 22 20 22 25.42 70.15 56.67
7 5 25 21 25 12.58 59.21 30.23

automotive 3 5 4 4 13.81 44.44 34.18

38 IMA Analysis

Chapter 4

TTEthernet Analysis and

Simulation

This chapter presents methods for performing worst-case delay analysis for the
RC messages in TTEthernet and AFDX networks. We will start by presenting a
state-of-the-art analysis for TTEthernet and continue with analyses for AFDX.
Out of the presented methods for AFDX there is none with a direct and complete
applicability to TTEthernet, but these analyses are relevant since they provide
a starting point for new analyses for TTEthernet. We will focus in this regard
on the so-called �trajectory approach� which we present extensively and for
which we propose an extension to make it more suitable for being applied to
TTEthernet networks.

In its last part, this chapter also presents a simulator for the behavior of a
TTEthernet network. The simulator is implemented to mimic the network's
functioning as it was described in section 2.2.5 and has the purpose to obtain
worst-case end-to-end delays for the RC tra�c in the network. We will compare
the results of the simulations with the results analytically derived with the
method described in section 4.1.

40 TTEthernet Analysis and Simulation

4.1 TTEthernet Analysis

The integration of TT and RC tra�c is a fundamental problem in a TTEthernet
network used in mixed-criticality systems. In [Ste10a], Steiner proposes a solu-
tion to synthesize static TT schedules based on a SMT-solver, but ignores the
RC tra�c. In [Ste10c, Ste10b], Steiner proposes an analysis for rate-constrained
tra�c. Later, in [Ste11], these approaches are integrated. We are interested here
in the analysis of the rate-constraint tra�c, but for a complete understanding
we need to refer to some concepts related to the synthesis of static schedules for
TT communication.

When generating the static schedules one thing that should be avoided is to have
time-triggered messages scheduled back to back, since this can lead to a star-
vation problem for the rate-constrained tra�c [Ste11]. That is why, in [Ste11],
Steiner introduces the concept of �schedule porosity� as a characteristic of the
TT schedule which measures whether the rate-constrained tra�c has enough
bandwidth for reasonable functioning in terms of latency and jitter. In simpler
terms, achieving schedule porosity is about having enough free (blank) intervals
in the TT schedule in which the RC frames can be transmitted [Ste11]. In the
rate-constrained tra�c analysis from [Ste11] that we present, the assumption
is that the TT schedule porosity is obtained by alternating the TT and RC
transmission slots (a TT slot has the length lTT , while a blank slot reserved for
RC transmission has the length lblank).

We consider a network composed of one switch (denoted k) and n end systems
(denoted vi, i = 1 . . . n). The transmission speed is considered to be equal on
all the physical links. We already established that the physical link connecting
an end system with the switch corresponds to two data�ow links. Thus, from
the perspective of an end system vi, [vi, k] is an egress data�ow link and [k, vi]
is an ingress data�ow link. From the perspective of switch k, the egress link is
[k, vi] and the ingress link is [vi, k].

The maximum burst on a data�ow link (denoted by burst[vx,k]) equals the sum
of all the frame instances that are transmitted on that link. We can split the
burst on the ingress data�ow links in respect to the egress data�ow links. This
way, we can express the fraction of the data that is received by the switch on an

ingress link which will be transported on an egress link. We denote by burst
[vx,k]
[k,vy]

the fraction of the ingress burst on the link [vx, k] that will be forwarded by the
switch on the egress link [k, vy] (Equation 4.1).

burst
[vx,k]
[k,vy]

=
∑
i

{
f
[vx,k]
i .length if∃f [k,vy]i

0 otherwise
(4.1)

4.1 TTEthernet Analysis 41

Considering the egress link [k, vy], the sum of all the burst
[vx,k]
[k,vy]

is denoted by

BURST ink,vy . The fraction of burst
[vx,k]
[k,vy]

concerning only the RC frames is de-

noted by b̂urst
[vx,k]

[k,vy] and expressed in Equation 4.2. Similarly to BURST ink,vy ,

but involving only RC frames, we de�ne ̂BURST
in

k,vy as the sum of b̂urst
[vx,k]

[k,vy]

for all the ingress data�ow links to the switch.

b̂urst
[vx,k]

[k,vy] =
∑
i

{
rc

[vx,k]
i .length if∃rc[k,vy]i

0 otherwise
(4.2)

The RC frames arriving at the TTEthernet switches are stored in queues (a
queue for each egress data�ow link). The queues are serviced in FIFO order.
This means that the latency of a RC frame fi which entered the switch on
the data�ow link [vx, k] and will leave the switch on the data�ow link [k, vy]
depends on the size of the queue corresponding to the egress link [k, vy] and
on the link's transmission speed (denoted by wirespeed). For obtaining the
maximum latency we need to maximize the backlog.

The backlog is given by the di�erence between the maximum ingress data�ow
and the egress data�ow [Ste11]. The maximum backlog on the egress data�ow
link [k, vy] is given then by Equation 4.3. From this point it is straightforward
to derive the maximum latency for a frame in the switch as the time neces-
sary for the transmission of the maximum backlog and of the frame itself (see
Equation 4.4).

Qout[k,vy]
= BURST ink,vy −max(burst

[vx,k]
[k,vy]

) (4.3)

max(latency
[vx,k]
[k,vy]

) =
Qout[k,vy]

+ fi.length

wirespeed
(4.4)

Taking into account the TT schedule porosity manifested as the alternation
of time-triggered and rate-constraint transmission slots (with lengths lTT and
lblank, as previously de�ned), we need to adjust the calculation of the maxi-
mum latency. The maximum outgoing queue size for a RC frame is given by

42 TTEthernet Analysis and Simulation

Equation 4.5 and the maximum latency is given by Equation 4.6.

Q̂out[k,vy]
= ̂BURST

in

k,vy −max(b̂urst
[vx,k]

[k,vy]) + lTT ×

max(b̂urst
[vx,k]

[k,vy])

lTT + lblank

+ 1


(4.5)

max(̂latency
[vx,k]

[k,vy]) =

Q̂out[k,vy]
+ fi.length+

⌈
Q̂out[k,vy]

lblank

⌉
× lTT

wirespeed
(4.6)

4.2 AFDX Analysis

To provide deterministic upper bounds for the end-to-end delays of the trans-
mitted avionics �ows is a requirement for the certi�cation of AFDX networks.
In the beginning of this section we will make a short survey of the methods used
to obtain these deterministic upper bounds. We will continue by presenting in
more detail the most widely employed methods for the problem in question:
network calculus and trajectory approach.

Exact worst-case end-to-end delays can be obtained with the model-checking
approach described in [CSEF06]. The AFDX network is modeled there using
timed automata and its properties are veri�ed using UPPAAL. Since in this ap-
proach all the possible states of the system are explored, the resulted worst-case
end-to-end delays are exact. This solution is suitable only for small AFDX con-
�gurations. For realistic network con�gurations the models used in [CSEF06]
will generate a combinatorial explosion and they will be impossible to solve.
Besides the mentioned model-checking approach, [CSEF06] also describes a
simulation approach for obtaining the AFDX �ows' worst-case latencies. Dif-
ferent parameters related to the frames' emission are varied in order to evaluate
their in�uence on the end-to-end delays. However, this approach, although use-
ful for estimating the network load, does not provide guarantees for the frames'
latencies.

Another approach that gives exact worst-case latency is presented in [ASF11].
The size of the AFDX con�gurations for which this approach is suitable has
increased a couple of times compared to [CSEF06], to up to 50 virtual links, but
it is still not enough for realistic AFDX networks (which can have more than
1000 virtual links).

4.2 AFDX Analysis 43

A holistic analysis for AFDX-based distributed systems is described in [GPGH11,
GPGH12]. The proposed analysis deals with the whole system, that's why the
term holistic is used to characterize it. In a holistic approach, an end-to-end
�ow is generated by a periodic sequence of external events and includes the tasks
generating the messages that are sent through the AFDX network [GPGH12].
The same authors demonstrate in [RGPH11] that di�erent response time analy-
ses for di�erent resources (like the processor or the communication networks) of
a distributed system can be composed if these analyses can handle o�sets and
input jitter for the triggering events [GPGH12]. The proposed response time
analysis for AFDX messages from [GPGH12] accounts for o�sets and jitters in
the message �ows. Using the composition mechanisms from [RGPH11], this
analysis could be integrated with response time analyses for processing units in
a holistic analysis of a distributed system.

4.2.1 Network Calculus

Network Calculus [Cru91, LBT01] is a theoretical framework which can be used
to solve �ow problems in networks. Network calculus can take into account
di�erent types of constraints typically imposed on tra�c �ows in a network, such
as the network links' transmission rates, congestion control and tra�c shapers.
In the context of AFDX, the Network Calculus has been useful for determining
upper bounds for the end-to-end delays for certi�cation purposes (namely, for
the certi�cation of the avionics network of Airbus A380) [GFF03, FFG06].

One of the fundamental concepts in Network Calculus is the cumulated tra�c
(R), that is the number of bits emitted by the considered �ux from the beginning.
So, the data �ows can be described by the means of the cumulative function
R(t), which represents the number of bits emitted in the interval [0, t] [LBT01].

The constraints on the data �ows are modeled by arrival curves, noted with α.
The arrival curves limit the amount of bits that could be emitted by the �ow in
a certain interval δ. The network elements are modeled through the concept of
service curve, noted with β. Once the arrival curve α for a �ow and the service
curve β for a network element are known, one can calculate an upper-bound
on the delay experienced by each bit passing through the considered network
element.

One of the major advantages of Network Calculus is that it allows the propaga-
tion of results from one element of the network to the next one. More precisely,
if we know the arrival curve α for a �ow which traverses a network element char-
acterized by the service curve β, we can determine the arrival curve α′ which
constrains the output �ow, where α′ = α�β and the meaning of the � operator

44 TTEthernet Analysis and Simulation

is given by the following equation:

α� β(t) = sup
u≥0

(α(t+ u)− β(u)) (4.7)

In the context of AFDX, the arrival curves characterizing the �ows in the system
are de�ned based on the VL parameters. The tra�c emitted on a VL is limited
by an arrival curve expressed as:

γsmax/BAG,smax(t) = smax + (smax/BAG)× t (4.8)

Regarding the service curves for the AFDX network elements, the switch output
port is characterized by a service curve β. The network links are considered
elements that don't modify the tra�c (the electromagnetic transmission delay
is insigni�cant). The end systems are modeled in reception by a simple bu�er
and, in emission, their output is considered a �ow which enters the network.

Besides obtaining upper bounds on the end-to-end delays of �ows, by applying
Network Calculus, one can also obtain information on the latency time in the
switch output ports [BSF09]. This is useful, because based on this information,
the switch memory bu�ers can be dimensioned so that bu�er over�ows are
avoided.

The Network Calculus is a holistic approach. A holistic approach is one that
considers the worst case scenario on each node visited by a �ow and takes into
account the maximum jitter introduced by the previous visited nodes. This type
of approach is considered pessimistic since it can lead to impossible scenarios.
Therefore, Network Calculus is a pessimistic method for the previously men-
tioned reason and also because in Network Calculus envelops are used instead
of the precise arrival and service curves [BSF09].

Network Calculus was extensively used for the timing analysis of AFDX net-
works and, in this context, several improvements appeared along the way. We
will brie�y mention some of them. One such improvement is the �grouping tech-
nique� introduced in [GFF03] and later also applied in the trajectory approach
in [BSF09, BSF12]. The �ows that go through the same switches (that is, they
have at least two common data�ow links) are grouped together. The packets
at the exit of the �rst switch are serialized and they will not delay each other
in the next switches. By taking into account this serialization of packets, this
technique obtains tighter upper bounds for the end-to-end delays.

Heuristic optimization methods (such as genetic algorithms and alpha-beta
search), in conjunction with Network Calculus, were applied in [FFG06]. A
probabilistic analysis for the end-to-end delays' upper bounds using stochastic
Network Calculus is presented in [SRF09]. The extension of the Network Cal-
culus method to consider the scheduling of periodic �ows was also considered

4.2 AFDX Analysis 45

Figure 4.1: The network model in the trajectory approach [Mar04]

by the researchers [LSF10]. The scheduling was modeled by assigning o�sets to
the periodic �ows. The analysis in [LSF10] works with any o�set assignment
algorithm.

4.2.2 Trajectory Approach

The trajectory approach [Mar04, MM05, MM06b] was designed to provide quan-
titative and deterministic Quality of Service (QoS) guarantees for real-time �ows
in a packet switching network [MM05]. More precisely, the two QoS parameters
for which the trajectory approach is able to provide upper bounds are the jitter
and the worst-case end-to-end response times of �ows. The �ows considered by
the trajectory approach are sporadic and there is no assumption regarding the
arrival time of packets.

The trajectory approach was successfully used to determine the worst-case end-
to-end response delays of �ows in AFDX networks [Bau11, BSF09, BSF12] giving
better results than the network calculus. This method is relevant also for the
TTEthernet protocol and we will study its applicability to TTEthernet net-
works. We will focus on the �original� trajectory approach as it was presented
in [Mar04, MM05, MM06b] and not on the versions of trajectory approach op-
timized for AFDX networks introduced in [Bau11, BSF09, BSF12].

4.2.2.1 Models and notations

The general architecture of a network as it is considered by the trajectory ap-
proach is illustrated in Figure 4.1. We can see that the network is composed of
interconnected processing nodes crossed by �ows.

46 TTEthernet Analysis and Simulation

The trajectory approach considers the worst case scenario experienced by a
packet on its trajectory. The worst case scenario is considered for the whole
trajectory and not on any node visited. But before going into more details, let's
brie�y present the models considered by the trajectory approach, as in [MM06a]:

• The scheduling model: in every node of the network the packets are sched-
uled based on their �xed and dynamic priorities (a FP/DP* policy as it
is named in [Mar04]). The �rst criterion used when scheduling packets
is their �xed priority (FP). The dynamic priority (DP) is the secondary
criterion, employed only for the packets having the same �xed priority.
In the trajectory approach, the dynamic priority of a packet is calculated
on the �rst visited node (this is marked by the star in DP*). The packet
scheduling is assumed to be non-preemptive. This means that a node
can send a packet only after the current packet transmission (if any) has
ended.

• The network model: it is assumed that the network links are FIFO and
that the network delay between two nodes is bounded by Lmin and Lmax.
It is assumed that there are neither packet losses nor network failures.

• The tra�c model: the trajectory approach considers a set {τ1, ..., τn} of n
sporadic �ows. Each �ow τi is following a �xed path (denoted by Pi). A
path is an ordered sequence of nodes, the �rst node in the sequence being
the ingress node of the �ow. In Figure 4.1 we have two �ows τ1 and τ2, with
τ1 following path P1 = {4, 5, 6, 7} and τ2 following path P2 = {1, 5, 6, 3}.

It is assumed in the trajectory approach that any two �ows τi and τj following
distinct and intersecting paths (Pi 6= Pj and Pi ∩ Pj 6= ∅) can not cross each
other twice. That is, there can be only one common portion between their paths.
In the cases where this assumption is not veri�ed, the solution is to decompose
the �ows violating the assumption into as many independent �ows as necessary
to meet the assumption. Practically, if �ow τj violates the assumption in regard
to path Pi of τi, then �ow τj will be considered as a new �ow after leaving Pi.
This decomposition is done repeatedly until all the �ows in the network respect
the assumption.

In the case of the �ows following intersecting paths, it is useful to denote the
�rst and the last nodes of the common path section. Thus, in [Mar04, MM05]
the following notations are introduced: firsti,j and lasti,j are the �rst and,
respectively, the last nodes visited by τj on the path Pi of τi. Analogue meanings
are reserved for firstj,i and lastj,i. An illustration of these notations is provided
in Figure 4.2 (taken from [MM05]) for both possible �ow orientations.

A sporadic �ow τi is de�ned by the following properties:

4.2 AFDX Analysis 47

Figure 4.2: firsti,j , lasti,j , firstj,i and lastj,i [MM05]

• Ti is the minimum inter-arrival time between two successive packets at the
ingress node of the �ow

• Pi is the static priority of τi

• Chi is the maximum processing time on the node h (h ∈ Pi) of a packet of
τi

• Ji is the maximum release jitter (at the ingress node) of packets of τi

• Di is the maximum end-to-end response time acceptable for a packet of τi

As mentioned above, in the FP/DP* scheduling scheme proposed by the trajec-
tory approach the �xed priority of packets (inherited from the �ows the packets
belong to) is the principal criterion. It makes sense then to divide the �ows
according to their �xed priority levels. In [Mar04], in regard to each �ow τi, the
following sets are introduced:

• hpi = {j ∈ [1, n], Pj > Pi} - the set of �ows with a (strictly) higher �xed
priority than the priority of τi

• spi = {j ∈ [1, n], j 6= i, Pj = Pi} - the set of �ows having the same �xed
priority as τi

• lpi = {j ∈ [1, n], Pj < Pi} - the set of �ows having a (strictly) lower �xed
priority than this of τi

From the multiple �avors of FP/DP* that can be employed (like FP/FIFO,
FP/EDF or FP/WFQ), taking into account the speci�cs of the AFDX and

48 TTEthernet Analysis and Simulation

TTEthernet networks, in this thesis we will consider only FIFO (when all �ows
have the same static priority) and FP/FIFO.

4.2.2.2 Study of a packet's trajectory

The problem solved by the trajectory approach is to determine the worst case
end-to-end response times of a set of sporadic �ows. The solution needs, of
course, to be general enough so it doesn't depend on the arrival times of the
packets in the network. The time is considered to be discrete. This simplifying
assumption doesn't a�ect the generality of the solution since it was proven
in [BHR90] that the results obtained with discrete scheduling are as valid as
those obtained with continuous scheduling if the �ow parameters are multiples
of the node clock tick.

The end-to-end response time of a packet has two components: the time spent
in each node the packet has crossed and the time spent by the packet �traveling�
on the network links. We already said that the transmission delay on a network
link is upper-bounded by Lmax. Then, since we are interested in the worst case
response times, the delay on the network links can be easily maximized using
Lmax. The second component (the time spent in the nodes) is more complicated
to analyze.

The non-preemptive scheduling of packets considered in the trajectory approach
has the e�ect that once the transmission ofm is started it can not be interrupted.
Since the processing time of m in each node of the path is easy to obtain, we
need to determine only the latest starting time of m on it last visited node.

This is done in the trajectory approach by moving backwards through m's tra-
jectory (from the last visited node to the ingress node), in each visited node
identifying the busy period and the preceding packets impacting the end-to-end
response time of m.

The busy period concept may need a bit more detailed explaining: �a busy
period of level L is an interval [t, t′) such that t and t′ are both idle times of
level L and there is no idle time of level L in (t, t′). An idle time t of level L
is a time such as all packets with priority greater than or equal to L generated
before t have been processed at time t� [MM06a, MM05]. So the busy period is
an interval of time in which the processing node is continuously busy.

In the following, we will exemplify the principles of trajectory approach �rst
from a theoretical perspective (as in [MM06a, MM05, MM06b]) and, later on,
from a more concrete perspective (by applying the trajectory approach to a

4.2 AFDX Analysis 49

simple AFDX network).

Let's consider the node q, found on the trajectory of the packet m. Let bpq be
the busy period in which m is processed on node q. We refer to the �rst packet
processed in the busy period bpq as f(q). Since f(q) belongs to bpq, f(q) has
a priority higher or equal to this of packet m. It is not mandatory that packet
f(q) comes from the previous node in the trajectory, q − 1. f(q) can belong to
a �ow following a di�erent path than Pi.

We reiterate that the trajectory approach strategy is to move backwards through
the sequence of nodes m has visited and to identify the busy periods and the
preceding packets that have an impact on the delay of m. This is why a new
packet needs to be considered: p(q−1). With p(q−1) we denote the �rst packet
processed between f(q) and m on node q which comes from node q−1. On node
q− 1, the packet p(q− 1) was processed in a busy period of level corresponding
to the priority of p(q − 1); busy period which we denote bpq−1.

We can perform on node q − 1 an analysis analogue to the one applied on node
q. Let f(q − 1) be the �rst packet processed in the busy period bpq−1 with a
priority higher or equal to this of packet p(q − 1). f(q − 1) may have not come
from node q − 2, so we de�ne p(q − 2) as the �rst packet processed between
f(q − 1) and m on node q − 1 and coming from node q − 2.

This reasoning needs to be applied repeatedly until we reach the ingress node of
the �ow, that is, until we consider the busy period of level corresponding to the
priority of p(1) in which the packet f(1) is processed. When we are done, the
busy periods that will be used in the computation of the end-to-end response
time of m have been determined. In Figure 4.3 we illustrate the decomposition
strategy employed by the trajectory approach that we just described.

Let ahm be the arrival time of packet m on node h. The arrival time of packet
f(1) at node 1 can be considered the time origin (a1f(1) = 0). For simplicity,

the packets processed on a node h between f(h) and p(h) are consecutively
numbered [MM06a]. So, on node q, packet (m − 1) is the packet preceding
packet m.

The latest starting time of packet m on the last node in its trajectory can be
calculated using parts of the busy periods we previously analyzed [MM05]. So,
the latest starting time of packet m in node q can be expressed as:

the processing time on node 1 of packets f(1) to p(1) + Lmax
+ the processing time on node 2 of packets f(2) to p(2) + Lmax - (a

2
p(1) - a

2
f(2))

+ . . .

50 TTEthernet Analysis and Simulation

Figure 4.3: Response time of packet m

+ the processing time on node q of packets f(q) to (m− 1) - (aqp(q−1) - a
q
f(q))

+ δ1,qi (t)

δ1,qi (t) (or, more simply, δi(t) or δi) represents the delay incurred by m directly
directly due to non-preemption along its trajectory from node 1 to q [MM05].
We will come back to this term in section 4.2.2.4.

We introduce now the notation τ(g) which is used to denote the index of the
�ow to which the packet g belongs to. If we denote the latest starting time on
node h of the packet m of �ow τi (packet generated at time t) by W q

i (t), then,
by summing up the terms above, we get:

W q
i (t) =

q∑
h=1

(

p(h)∑
g=f(h)

Chτ(g))−C
q
i + (q − 1) · Lmax + δ1,qi (t)−

q∑
h=2

(ahp(h−1) − a
h
f(h))

(4.9)

This latest starting time can be further maximized. In [MM06a] it is proposed to
annul the term (ahp(h−1)−a

h
f(h)) for all the nodes in the trajectory. The reasoning

for this is based on the following observation. For any node h belonging to
the path Pi of the �ow τi, if there is no �ow τj such that h = firstj,i, then
p(h − 1) = f(h) [MM05]. If so, then (ahp(h−1) − ahf(h)) = 0. Otherwise put,

p(h − 1) not being the same as f(h) implies that there must be a �ow τj such
that h is the �rst node visited by τj on path Pi. This means that all the
packets in the interval [f(h), p(h− 1)) cross path Pi for the �rst time at node h,
therefore their arrival times can be postponed in the busy period where p(h−1)
is processed [MM05]. Therefore, in the worst case scenario p(h) = f(h+ 1) for
all nodes in Pi. In these conditions, the latest starting time of packet m on node

4.2 AFDX Analysis 51

h can be expressed as:

W q
i (t) =

q∑
h=1

(

f(h+1)∑
g=f(h)

Chτ(g)) + (q − 1) · Lmax − Cqi + δi(t) (4.10)

Still, the goal is to obtain an upper bound on the end-to-end response time of
any �ow in the network, not on the latest starting time of packet m on node h.
This is achieved in [MM06a], where it is proven that the worst case end-to-end
response time of any �ow τi can not be greater than:

Ri = max
t≥−Ji

(W lasti
i,t + Clastii − t) (4.11)

W lasti
i,t represents the latest starting time of packet m generated at time t on its

last node visited and lasti denotes this last visited node.

4.2.2.3 Trajectory approach applied to AFDX

After presenting the principle behind the trajectory approach, in this section we
will show how the trajectory approach can be applied in the context of AFDX.
The correspondence between the trajectory approach and the AFDX concepts is
detailed �rst, as in [BSF09]. The concept of node from the trajectory approach
corresponds to an AFDX switch output port (including the output link). It is
important to notice that an AFDX switch does not correspond to a trajectory
approach node, but each of its output ports does. The concept of �ow in the
trajectory approach is paired by the concept of virtual link path in AFDX. The
links in the trajectory approach system correspond to the switching fabric in
AFDX.

Furthermore, the following assumptions of the trajectory approach are veri�ed
by AFDX [BSF09]:

• the delay experienced by a packet on the switching fabric can be considered
constant: Lmin = Lmax = 16 µs

• on the AFDX networks there are neither collisions nor packet losses

• the routing of the AFDX VLs is statically de�ned

52 TTEthernet Analysis and Simulation

Figure 4.4: Example AFDX network

The correspondence between the VL parameters and the parameters of the
sporadic �ows is given next:

Ji = 0, Ti = BAG, Chi = smax/R

The transmission rate R is constant (typically, R = 100 Mb/s) for all AFDX
ports, so the processing time is constant for every node h in the network (Chi =
Ci = smax/R).

In the following we are going to apply the trajectory approach to an example
AFDX network. The system is shown in Figure 4.4 and the characteristics of the
�ve virtual links appearing in the network are given in Table 4.1. We consider
that the transmission rate is uniform across the network (R = 100 Mb/s) and
that the latency on the switching fabric is constant (L = 16 µs). We emphasize
that, as it can be seen in Table 4.1, for our example, Chi = smax/R = C = 40 µs.
We consider that the packets are scheduled in this example according to the
FIFO policy and that the static priorities of the corresponding trajectory ap-
proach �ows are equal. The distributed system on which the trajectory approach
is applied is shown in Figure 4.5. This system is the trajectory approach equiv-
alent of our example AFDX con�guration.

We are going to consider the arbitrary scheduling of the packets depicted in
Figure 4.6. By convention, the packets are numbered according to their corre-
sponding virtual link. We are interested in the starting time of packet 4 on node
SW3−ES6. We consider the origin of time to be the arrival time of packet 4 on
node ES4−SW2. Before packet 4 is processed on node ES4−SW2, we can see

4.2 AFDX Analysis 53

V L BAG(µs) smax(bits) C(µs)
v1 4000 4000 40
v2 4000 4000 40
v3 4000 4000 40
v4 4000 4000 40
v5 4000 4000 40

Table 4.1: Virtual links' characteristics

Figure 4.5: The trajectory approach system corresponding to the AFDX ex-
ample

54 TTEthernet Analysis and Simulation

Figure 4.6: Example scheduling of packets

other packets arriving on nodes SW2−SW3 and SW3−ES6: packet 3 on node
SW2− SW3 (aSW2−SW3

3 = 25 µs) and packet 5 on SW3−ES6 (aSW3−ES6
5 =

10 µs). After it has been processed on node ES4 − SW2, packet 4 arrives on
SW2 − SW3 with the switching fabric delay at aSW2−SW3

4 = 56 µs, when the
previously arrived packet 3 is being processed. So packet 4 needs to wait until
packet 3 is freeing the switch output. Taking into account the switching fabric
latency, packet 4 arrives at node SW3 − ES6 at aSW3−ES6

4 = 121 µs. In the
meanwhile, on node SW3−ES6, have arrived packet 1 (at aSW3−ES6

1 = 42 µs)
and packet 3 coming from SW2− SW3 at (aSW3−ES6

3 = 81 µs).

To apply the trajectory approach we need to consider the busy periods traversed
by packet 4 along its path. These busy periods need to be considered backwards
(from the last visited node to the ingress node). Thus, we must start with busy
period bpSW3−ES6 - the busy period in which packet 4 is processed on node
SW3− ES6.

We identify f(SW3−ES6) to be packet 5 (belonging to v5). Indeed, packet 5 is
the �rst packet processed in the busy period bpSW3−ES6 with a priority higher
than or equal to this of packet 4, thus matching the de�nition of f(SW3−ES6).
Since packet 5 is not coming from the same node as packet 4, the next step would
be to identify p(SW2 − SW3). We remind the reader that p(SW2 − SW3) is
the �rst packet processed between f(SW3 − ES6) and packet 4, that comes
from the same node as packet 4. It is clear then that p(SW2− SW3) is packet
3.

Packet p(SW2−SW3) was processed on node SW2−SW3 in the busy period

4.2 AFDX Analysis 55

bpSW2−SW3. For the busy period bpSW2−SW3 we need to identify the packet
f(SW2 − SW3) with an analogue meaning to the one of f(SW3 − ES6). We
can see that, in the example we proposed, f(SW2− SW3) = p(SW2− SW3).
On node SW2− SW3 we identify p(ES4− SW2) as being packet 4.

We move backwards to the busy period bpES4−SW2 of level corresponding to
p(ES4−SW2). For this busy period we can see that f(ES4−SW2) = p(ES4−
SW2).

Since we already detailed the arrival times of the packets on the di�erent nodes,
we have all the elements to determine the latest starting time of packet 4 on
node SW3 − ES6. We remind the principle of calculation: �In a node h, we
count the processing times of the packets between f(h) and p(h) minus the
di�erence between the arrival time of p(h − 1) and f(h) in node h (ahp(h−1) -

ahf(h))� [BSF09].

We apply the calculation principle for each node (we remind that the processing
times are constant in the system (and denoted by C) and that the switching
fabric delay is noted with L):

• for ES4− SW2 we have only CES4−SW2
4 = C

• for SW2−SW3 we have CSW2−SW3
3 − (aSW2−SW3

4 − aSW2−SW3
3) = C −

(56− 25)

• for SW3−ES6 we have CSW3−ES6
5 +CSW3−ES6

1 +CSW3−ES6
3 −(aSW3−ES6

3 −
aSW3−ES6
5) = 3 · C − (81− 10)

By taking into consideration the switching fabric delay and summing up, we get
the following result for the latest starting time of packet 4 on node SW3−ES6:
5 · C + 2 · L− (aSW2−SW3

4 − aSW2−SW3
3)− (aSW3−ES6

3 − aSW3−ES6
5) = 5 · C +

2 · L − (56 − 25) − (81 − 10) = 5 · 40 + 2 · 16 − 31 − 71 = 130 (µs). From this
point, for �nding out the end-to-end delay of packet 4 we just need to add to the
previous result the processing time of packet 4 on node SW3−ES6. Summing
up, the end-to-end delay is 130 + 40 = 170 (µs).

4.2.2.4 Computation of the worst-case response time

In the beginning of the section 4.2.2 we presented the principle behind the
trajectory approach and in section 4.2.2.3 we saw this principle applied to a
simple AFDX network. In this section we will present in more detail how the

56 TTEthernet Analysis and Simulation

worst-case response times of sporadic �ows are calculated using the trajectory
approach. Without restricting too much from the generality of the solution and
having in mind the scheduling policies that are most interesting for our thesis,
we will consider in this section that the packets' scheduling is done according
to a FP/FIFO algorithm.

Coming back to the latest starting time of a packet m of �ow τi on the last node
of its trajectory expressed in Equation 4.10, three components of W q

i (t) can be
identi�ed as in [Mar04, MM06b]:

• Xi(t) =
∑q
h=1(

∑f(h+1)
g=f(h) C

h
τ(g)

) − Cqi - the delay caused by the packets

having a priority higher or equal to m

• δi - the delay directly due to the non-preemption

• (q − 1) · Lmax - the maximum network delay

Because the packet scheduling is not preemptive it can happen that a packet
with high prioritym1 of any �ow τi can be delayed by a lower priority packetm2

of any �ow belonging to lpi if the high priority packet arrives at the processing
node while the low priority packet is processed. In such a case, due to the non-
preemption, the high priority packet needs to wait until the processing of the
low priority packet is �nished [MM05]. This the direct non-preemptive e�ect
quanti�ed by δi. We emphasize on direct because the non-preemptive e�ect has
also an indirect component. In case packets belonging to hpi would have arrived
while m1 was waiting for m2, these packets, having a higher �xed priority than
m1, would have been processed before m1. The delay that would have been
incurred by m1 in such a case represents the indirect non-preemptive e�ect. δi
refers only to the maximum delay su�ered by a packet of a �ow τi directly due
to �ows belonging to lpi. Upper bounds for δi are given in [MM05] (property
2) and in [MM06b] (property 1).

The processing time of a packet m of �ow τi on node h we know it's expressed
by Chi . It would be useful to have some notations with which upper bounds
for the processing time of m along its trajectory could be expressed. Therefore,
in [Mar04] the notation slowi representing the slowest node visited by τi on its
trajectory is introduced. slowj,i represents the slowest node visited by �ow τj
on the path Pi followed by �ow τi.

In order to obtain an upper bound for W q
i (t), an upper bound needs to be

determined for Xi(t). The non-preemptive e�ect is ignored in the analysis of
Xi(t). In the following we will brie�y present the results given in [Mar04, MM05,
MM06b]. Let's consider again the trajectory of packet m of �ow τi that we

4.2 AFDX Analysis 57

discussed in section 4.2.2.2. It is shown in [Mar04] (property 7.3.2) that only
one packet is counted twice when considering two consecutive busy periods.
That is, only one packet is common to two consecutive busy periods bph and
bph+1 and that packet is f(h+ 1). In the worst-case, the packet that is counted
twice is also the packet whose processing takes the longest [Bau11]. On a certain
node h, the maximum processing time among all the packets visiting node h is
denoted by maxj∈hpi∪spi∪{i}{Chj }.

Based on the previous result, we can identify two components of Xi(t). The �rst
one is represented by the packets that systematically appear in two consecutive
busy periods and contribute to the packet m's delay. The second component
is represented by the rest of the packets that can delay m. The contribution
of each packet from the two categories is maximized by using in the expression
of Xi(t)'s upper bound the longest processing time of the packet. The upper
bound of Xi(t) is given in Equation 4.12 [Bau11, Mar04].

Xi(t) ≤
m∑

g=f(1)

C
slowτ(g),i
τ(g) − Cqi +

q∑
h=1,h 6=slowi

max
j∈hpi∪spi∪{i}

{Chj } (4.12)

An important question to be answered is which packets can belong to the busy
periods of packet m of τi along its trajectory and, implicitly, contribute to
Xi(t)? Which packets can delay m and how can their contribution to Xi(t)
be quanti�ed? When should they be generated so that they can interfere with
the transmission of packet m? We will get to the answers of these questions by
analyzing the packets that can delay m separately, based on their membership
to the sets hpi, spi and {i}.

We start by analyzing a packetm′ belonging to �ow τj ∈ spi. For the beginning,
we consider only the case when �ow τj and �ow τi intersect in only one node h
(Pi ∩ Pj = {h}).

It is demonstrated in [Mar04] (propriety 7.3.3) that a packet belonging to a �ow
τj ∈ hpi ∪ spi ∪ {i} can not delay m if (1) it arrives at the node firsti,j before
the packet f(firsti,j) or (2) it arrives at the node lasti,j after the processing
of m started. This implies, in our case, that in order for m′ to delay m, m′

must arrive at node h at soonest in the same time as f(h) (whose arrival time
is denoted by ahf(h)) and at latest in the same time as m.

So we need to �nd a lower bound for the (soonest) arrival time of f(h) and an
upper bound for the (latest) arrival of m at node h. The lower bound on the
starting time of the busy period of �ow τi at node h is denoted by Mh

i [Mar04,
MM05], so we have ahf(h) ≥M

h
i . Because we are in the search of a lower bound

we will consider the packets which have the shortest processing times and the

58 TTEthernet Analysis and Simulation

Figure 4.7: The interval of generation for a packet m′ of �ow τj ∈ spi

shortest network delay Lmin. This lower bound is obtained by summing up
the shortest packet processing times and the shortest network delays on all the
nodes of the τi's trajectory. The mathematical expression for Mh

i is given in
Equation 4.13 [Mar04, Bau11], where the notation prei(h) denotes the node
visited by �ow τi just before node h.

Mh
i =

prei(h)∑
h′=firsti

(min
j∈hpi∪spi∪{i},firsti,j=firstj,i

{Ch
′

j }+ Lmin) (4.13)

Shmaxj denotes the maximum time taken by a packet of �ow τj to reach node

h after being generated at its source node at time t (and, analogously, Shminj
denotes the minimum time). We can see that Shmaxi is the upper bound we were
searching for the arrival of m at node h.

We have now the upper and lower ends of the interval in which a packet m′

of �ow τj can arrive at node h and delay the processing of m. If Shmaxi is the
last moment when m′ could interfere in m's transmission, then in order for this
interference to be possible m′ must be generated at its source (node firstj) at
latest Shminj earlier that S

h
maxi . Analogously, for m

′ to arrive at h in time to be

comprised in the busy period, m′ must be generated at soonest at Shmaxj − Ji
before ahf(h). Figure 4.7 [Bau11] illustrates the limits of the interval in which

a packet m′ of �ow τj ∈ spi needs to be generated so it can delay m. In the
�gure, the white box represents a packet of lower priority than this of m, and
the blue boxes represent packets with the same priority as this of m.

Let's consider now the more general case, when �ow τj and τi don't intersect
just in node h. Then the interval in which a packet of τj can be generated so
it can delay a packet m of τi generated at time t has the duration Ai,j . The
expression of Ai,j is given in Equation 4.14 [MM06b, Bau11].

Ai,j = Sfirstj,imaxi − Sfirstj,iminj
+ Sfirsti,jmaxj −Mfirsti,j

i + Ji (4.14)

4.2 AFDX Analysis 59

Figure 4.8: The interval of generation for a packet m′ of �ow τj ∈ hpi

We analyzed how packets of �ows belonging to spi can delay m. In what is next
we will focus on how packets of �ows belonging to hpi or other packets of �ow
τi can delay the packet under study.

Regarding the packets of �ow τi, it is proven in [Mar04] that they can delay m
(generated at time t and also a packet of τi) only if they are generated in the
interval [−Ji, t].

We will start the analysis of packet m′ of �ow τj ∈ hpi with the simplifying
assumption that τj and τi have only node h in common (Pi ∩ Pj = {h}). We
are again interested in the interval of generation of m′ of τj so that it can delay
m. The earliest m′ can arrive at h and delay m is, as in the case of the �ows
belonging to spi, at the arrival of f(h). The whole reasoning regarding the
earliest generation time of m′ that we previously have done for �ows in spi is
also valid for �ows in hpi. This is not the case for the latest generation time of
m′.

Since τj has a higher �xed priority than this of τi, the latest arrival time ofm′ on
node h so that it can delay m is limited by the start of the processing of m. So
Wh
i (t) constitutes the upper limit of the generation interval of m′. This interval

is depicted in Figure 4.8 [Bau11], where with green boxes we represented the
packets with higher static priority than this of m, with blue boxes we draw the
packets having the same priority than m and with white boxes the packets with
a lower priority than this of m.

If �ows τj and τi have more than one node in common, then the last node on
which m′ could delay m is lasti,j . On this node the last time when m′ could

intervene in m's transmission is limited by W
lasti,j
i (t). Considering the limit

given by W
lasti,j
i (t), the latest time of generation for m′ on its source node

firstj so that it can arrive at lasti,j in due time is W
lasti,j
i (t)− Slasti,jminj

.

We can conclude, as in [MM06b], that in order for packets of �ow τj , j ∈ hpi

60 TTEthernet Analysis and Simulation

to delay packet m of �ow τi generated at time t, the packets of τj need to be

generated during the interval [M
firsti,j
i − S

firsti,j
maxj − Ji,W

lasti,j
i (t) − S

lasti,j
minj

].

The length of this interval is W
lasti,j
i (t) + Bi,j , where Bi,j is given in Equa-

tion 4.15 [Bau11].

Bi,j = −Slasti,jminj
+ Sfirsti,jmaxj −Mfirsti,j

i + Ji (4.15)

We know that the maximum workload generated by any �ow τj on node h
in the interval [a, b] is equal to (1 + b(b− a)/Tjc)+ · Chj [MM06b], where (1 +
bac)+ = max(0; 1 + bac). Based on the previously obtained results regarding
the contributions to Xi(t) from all the categories of �ows relative to τi (hpi, spi
and {i}), the following upper bound for Xi(t) is obtained [MM06b, Bau11]:

Xi(t) ≤
∑
j∈hpi

(
W

lasti,j
i (t) +Bi,j

Tj

)+

· Cslowj,ij +
∑

j∈spi∪{i}

(
1 +

t+Ai,j
Tj

)+

· Cslowj,ij

+
∑

h∈Pi,h6=slowi

max
j∈hpi∪spi∪{i}

{Chj } − C
lasti
i

(4.16)

The result from Equation 4.16 leads to the following upper bound for the starting
time of packet m of �ow τi on its last node [MM06b, Bau11]:

W lasti
i (t) ≤

∑
j∈hpi

(
W

lasti,j
i (t) +Bi,j

Tj

)+

· Cslowj,ij +
∑

j∈spi∪{i}

(
1 +

t+Ai,j
Tj

)+

· Cslowj,ij

+
∑

h∈Pi,h6=slowi

max
j∈hpi∪spi∪{i}

{Chj } − C
lasti
i + δi + (|Pi| − 1) · Lmax

(4.17)

This expression for W lasti
i (t) is to be used in Equation 4.11 to calculate the

worst-case end-to-end response time of �ow τi. The interval over which the
maximization of Ri needs to be done is t ≥ −Ji, so an upper bound for this
interval would prove very useful. In [Mar04] a limit is given for this interval for
scheduling policies such as FP/FIFO, FP/EDF or FIFO. Using this result, the
expression of Ri over the restricted interval is given by Equation 4.18. Term
Bslowii is detailed in Equation 4.19 and veri�es the relation W lasti

i,t+Bslowii

(t) ≤

W lasti
i,t (t) + Bslowii for any time t ≥ −Ji [Mar04].

Ri = max
−Ji≤t≤−Ji+B

slowi
i

(W lasti
i,t + Clastii − t) (4.18)

4.2 AFDX Analysis 61

Bslowii =
∑

j∈hpi∪spi∪{i}

⌈
Bslowii

Tj

⌉
· Cslowj,ij (4.19)

4.2.2.5 Applying trajectory approach to TTEthernet

In this section of the thesis, we will discuss the problematic of using the tra-
jectory approach to determine worst-case end-to-end delays in TTEthernet net-
works. In which conditions can the trajectory approach be applied? How can
the trajectory approach be extended for a complete applicability to TTEther-
net networks? We mention from the start that we are only interested in the TT
and RC tra�c, since these are two tra�c classes that can carry safety-critical
messages and, consequently, timing guarantees are required for them.

A TTEthernet network is mapped to a trajectory approach distributed system
in the same way as an AFDX con�guration is:

• each TTEthernet switch output port (including the output link) corre-
sponds to a processing node in the trajectory approach system

• the TTEthernet switching fabric represents a link in the trajectory ap-
proach system

• each virtual link path in a TTEthernet network de�nes a �ow in the tra-
jectory approach system

The TTEthernet RC tra�c class is equivalent with the AFDX tra�c. Therefore,
it can be modeled in the trajectory approach in the same way as the AFDX
tra�c. More precisely, the trajectory approach �ow τi corresponding to an RC
frame fi is de�ned by the following parameters (R represents the transmission
rate for the TTEthernet switch output ports and output links):

Ji = 0, Ti = fi.rate, C
h
i = fi.size/R, Di = fi.deadline

While the mapping of the RC tra�c to the trajectory approach concepts is
straightforward, the mapping of the TT tra�c class is more challenging. We
identi�ed two problems. One is that the TT frames are periodic and they have
o�sets and the trajectory approach doesn't consider o�sets. The second one is
that the TT frames can preempt the RC frames when the preemptive integration
policy is employed in the TTEthernet network.

62 TTEthernet Analysis and Simulation

We thought about two possible ways in which the TT tra�c could be handled
by the trajectory approach. The �rst one implies that the trajectory approach is
used only for the RC tra�c. The TT static schedules would have been considered
given (apriori known). In this case, the purpose of the analysis would have been
to obtain the worst-case end-to-end delays of the RC frames taking into account
the given TT schedules. This is a very similar problem to the one addressed by
the TTEthernet analysis presented in section 4.1 and also by our TTEthernet
simulator, which is described in section 4.3.

In conclusion, the trajectory approach needed to be extended to account for
the TT static schedules. This way of framing the problem seemed promising
because we already encountered a similar problem at the processor level. We
described in Chapter 3 a schedulability analysis for FPS tasks when these tasks
were allowed to execute only on their designated time partitions. Actually, the
concepts of availability and demand, inspired by the approach in [PPEP08],
that we used in our schedulability analysis, can be traced back to [PA00] where
they were used in the timing analysis of the FTT-CAN protocol. Similarly
to the partitioning scheme considered in Chapter 3, the TT static schedules
would represent time partitions on the network level where the RC frames would
not be allowed to be transmitted. In this context, to introduce the concepts
of availability and demand (already successfully used both at processor and
network level) in the trajectory approach seemed like a winning idea. However,
due to the encountered di�culties we suspended the search for a solution in this
direction. This was the �rst solution we envisioned for the problem of adapting
the trajectory approach to consider the TT tra�c. We will detail our second
approach in the following.

The second way to integrate the TTEthernet TT tra�c in the trajectory ap-
proach was based on the idea to model the TT frames as �ows. For this inte-
gration, we already pointed out the problems of o�sets and preemption. For the
beginning, we make the simplifying assumption that the o�sets are zero for all
the TT frames on all the data�ow links and we treat the problem of preemption.

Since the TT tra�c has priority over the RC tra�c in the TTEthernet protocol,
it is clear that the scheduling policy considered by the trajectory approach
should be FP/FIFO.

In the trajectory approach, the scheduling of packets is considered to be non-
preemptive. This means that once the transmission of a packet on a data�ow link
was started, it can't be stopped. According to the shu�ing integration policy
in the TTEthernet protocol, the transmission of an RC frame once started it
can not be interrupted by the arrival of TT frame. The TT frame is delayed
until the transmission of the RC frame is �nished. Based on these observations,
we can say that the trajectory approach is a suitable timing analysis method

4.2 AFDX Analysis 63

for TTEthernet networks where the TT and RC frames are integrated using
shu�ing.

But besides shu�ing, there are two other integration policies for the RC and
TT tra�c that can be employed in a TTEthernet network: preemption and
timely block. Timely block is not a preemptive strategy. On the contrary, it is
based on the prevention of preemption. The decision of whether to send or not
a RC frame is taken depending on the possible interference with the scheduled
transmission of a TT frame. Both integration policies have some overheads:
the timely block due to the computations that the switch needs to perform,
the preemption policy due to the truncated RC frames which are sent in the
network. If we consider these overheads equivalent, we saw in section 2.2.3 that
the two integration policies have the same e�ect on the end-to-end response
times. Therefore, we can conclude that from the point of view of an end-to-end
delays analysis the two integration policies (timely block and preemption) are
equivalent. Based on this result, from now on we will focus our attention on the
TTEthernet networks where preemption is the employed integration policy.

We point out again that the trajectory approach employs a non-preemptive
packet scheduling. We will try to extend it to consider a preemptive scheduling
of packets so it can be applied to TTEthernet networks which use preemption
as integration policy. A preemptive scheduling of packets means that a packet
belonging to a �ow with a higher static priority (a TT frame in our case) can
preempt the �execution� of a packet of a �ow with a lower static priority (a RC
frame in our case). The transmission of a TTEthernet frame on a data�ow link
is equivalent, in the trajectory approach model, with the execution of packet
on a processing node. That processing node in the trajectory approach system
corresponds to the TTEthernet switch output port and the data�ow link on
which the packet is transmitted.

We think that even if we change one of the basic premises of the trajectory
approach analysis (the non-preemptive packet scheduling), the principles and
concepts behind trajectory approach remain valid. One thing that changes
though, if we account for a preemptive packet scheduling, is the direct non-
preemptive e�ect (denoted by δ in section 4.2.2.4). Practically, the direct and
indirect non-preemptive e�ects disappear since the packets of �ows with higher
static priority can not be anymore delayed by packets of �ows of lower static
priority.

For assessing the impact of allowing packet preemption on the worst-case end-to-
end delays, we go back to the study of a packet's trajectory, that we once did in
section 4.2.2.4. Let's study the packetm belonging to �ow τi. For the beginning,
let's consider a packet m′ belonging to �ow τj ∈ spi ∪ {i} with Pi ∩ Pj 6= ∅.
The contribution of packet m′ to the worst-case end-to-end delay of m does

64 TTEthernet Analysis and Simulation

not change because the packet scheduling is now preemptive. According to the
FP/FIFO scheduling algorithm that we consider in the network, packets like
m′ (that is, belonging to �ows with a static priority as high as this of τi) can
not preempt m. So, the way their contribution is calculated by the trajectory
approach remains unchanged.

Let's consider now the case of packet m′′ belonging to �ow τj ∈ hpi with Pi ∩
Pj 6= ∅. We know that m′′ can preempt m. The previous calculation of the
contribution of the packets like m′′ to the end-to-end delay of m was based on
the premise that: �a packet of the �ow τj can't a�ect m if it arrives after the
moment when packet m has started execution on the last node lasti,j�. This
implies, as shown in section 4.2.2.4, that the packet m′′ needs to be generated

in the interval [M
firsti,j
i − Sfirsti,jmaxj − Ji,W

lasti,j
i (t)− Slasti,jminj

].

Since preemption is allowed, the last moment when the packet m′′ of τj can
be generated and a�ect the end-to-end delay of packet m needs to be extended
with the processing time of packet m on node lasti,j . We can say that we are
not interested anymore in the latest starting time of packet m on lasti,j , but
on the latest termination time on this node. The new limits for the interval are
then [M

firsti,j
i − Sfirsti,jmaxj − Ji,W

lasti,j
i (t)− Slasti,jminj

+ C
lasti,j
i].

We propagate this change through the subsequent calculations and we obtain the
following expression for W lasti

i (t), valid for a preemptive trajectory approach:

W lasti
i (t) ≤

∑
j∈hpi

(
W

lasti,j
i (t) +Bi,j + C

lasti,j
i

Tj

)+

· Cslowj,ij

+
∑

j∈spi∪{i}

(
1 +

t+Ai,j
Tj

)+

· Cslowj,ij

+
∑

h∈Pi,h6=slowi

max
j∈hpi∪spi∪{i}

{Chj } − C
lasti
i + (|Pi| − 1) · Lmax

(4.20)

This expression for W lasti
i (t) from Equation 4.20 can be then inserted in Equa-

tion 4.11 to calculate the worst-case end-to-end delay of �ow τi.

Summarizing the �ndings from this section, we can say that the trajectory is
partially suitable to be used in the timing analysis of TTEthernet. We saw that
the application of trajectory approach to TTEthernet networks is not straight-
forward. Simplifying premises (like not considering o�sets in the TT tra�c
modeling) are needed. The integration policy of the TT and the RC tra�c that
is employed has also a say in how the trajectory approach can be applied to
TTEthernet. We have shown that, in case shu�ing is used, the �original� tra-

4.3 A TTEthernet Simulator 65

jectory approach with a FP/FIFO non-preemptive scheduling policy works well
for TTEthernet networks. In order for the trajectory approach to be applicable
to TTEthernet when the other integration policies are employed, we needed to
challenge the non-preemptive packet scheduling premise. We proposed an ex-
tension of the trajectory approach that caters for a preemptive scheduling of
the packets in the network.

4.3 A TTEthernet Simulator

We implemented a simulator for a TTEthernet network with the purpose of
determining the end-to-end delays experienced by the RC frames. A high-level
view of the simulator is provided by Figure 4.9. As it can be seen from Figure 4.9,
the inputs of the simulator are:

• the network topology - that is, the layout of the TTEthernet cluster that
we are simulating: the end systems and the switches and how they are
connected by physical links.

• the virtual links describing the communication paths in the network

• the RC and TT messages to be sent over the network, speci�ed by their
parameters (size, period for TT messages and rate for RC messages, dead-
line) as it was described in section 2.2.4

• the assignment of messages to virtual links

• the TT schedule tables - the communication schedules for the de�ned TT
messages containing the sending and receiving times on all the data�ow
links during one application cycle

We consider the TTEthernet to be composed of a single TTEthernet cluster,
so we have a single clock synchronization domain. We assume that there is
no BE tra�c on the network, that one message is carried by one frame and
that there are no errors, packet losses or link failures. The TT tra�c is fully
described by the simulator's inputs, so our simulator is concerned only with
the analysis and simulation of the RC tra�c. A more complete simulator for
TTEthernet, constructed on the basis of the OMNeT++ INET framework, is
described in [SKKS11].

As mentioned, the output of the simulator is represented by the worst-case
values for the end-to-end delays of the RC frames that were encountered during

66 TTEthernet Analysis and Simulation

Figure 4.9: TTEthernet simulator

the simulation. Based on the determined worst-case end-to-end delays we can
assess the schedulability of the rate-constrained frames. Since what we are doing
is a simulation, if we �nd that the deadline is respected for a RC frame, we can
not certainly say that the RC frame is schedulable. But in case we �nd an
end-to-end delay greater than the deadline, we can say with certainty that the
RC frame is not schedulable.

The simulator calculates the end-to-end delays for the RC frames in the way
that was shown in [TSP12]. The worst-case end-to-end delay of an RC frame
can be viewed as having the following two components:

• the queuing delays experienced by the RC frame in the network nodes due
to TT frames or other RC frames being serviced before

• the network delays (basically, the durations of the RC frame's transmis-
sions on the data�ow links in the network)

This decomposition is expressed more formally in Equation 4.21, using the no-
tations presented in section 2.2.4. We denote by Rfi the worst-case end-to-end
delay of a RC frame fi ∈ FRC sent on the virtual link vli.

Rfi =
∑

vj ,vk∈V,[vj ,vk]∈vli

(Q
[vj ,vk]
fi

+ C
[vj ,vk]
fi

) (4.21)

The queuing delay su�ered by frame fi in the network node vj ∈ V, while
waiting to be transmitted on the data�ow link [vj , vk] is further decomposed
based on its causes (Equation 4.22) [TSP12].

Q
[vj ,vk]
fi

= QTTfi,[vj ,vk] +QRCfi,[vj ,vk] +QTLvj (4.22)

4.3 A TTEthernet Simulator 67

The delay induced by the TT tra�c happening from the moment of fi's arrival
at the node vj until fi is sent to the node vk is denoted by QTTfi,[vj ,vk]. fi is

also delayed by the RC frames that arrived before it at the node and, according
to the TTEthernet FIFO policy for RC frames, are serviced before fi. This

delay is expressed by QRCfi,[vj ,vk]. The last part of Q
[vj ,vk]
fi

, QTLvj , refers to the

so-called technical latency that is induced by the hardware tasks implementing
the TTEthernet protocol on the network node [TSP12].

We will exemplify the calculation of the end-to-end delay for an RC frame, using
the transmission scenario in Figure 4.10. The network topology underlying
the example is the one that was discussed in section 2.2.5 and presented in
Figure 2.9. We can see that there are four frames implicated in the scenario. f1
and f2 are being sent from ES1 to ES2 and need to cross switch SW1 in their
way. f3 and f4 are originating from SW2 and SW3, respectively, and they also
cross SW1 in their way to ES2. f1 and f3 ∈ FRC , while f4 and f2 ∈ FTT .
In our analysis, we are concerned with the end-to-end delay of frame f1. We
consider that all the physical links have the same speed. This implies that a
frame's transmission duration is the same on all data�ow links in the network.
For the four frames in our scenario, the transmission durations are as follows:
for f1 - C1 = 120 µs, for f2 - C2 = 125 µs, for f3 - C3 = 80 µs and for f4 -
C4 = 100 µs. The method employed in our example for the integration of the
TT and RC tra�c is preemption. Our example is very similar (we use the same
set of frames and the same transmission parameters) to an example in [TSP12],
with the di�erence that in [TSP12] the considered integration policy is timely
block.

In Figure 4.10 we have illustrated the scenario that leads to the worst-case end-
to-end delay (denoted Rf1) for the frame under analysis, f1. This situation
occurs for the frame instance f1,1, when f1 is delayed by all the other frames
in the system (namely, the frame instances f2,1, f3,1 and f4,1). We assume
that, according to the TT static schedule for the data�ow link [SW1, ES2],
the TT frames f2,1 and f4,1 are scheduled for transmission at 130 µs and 310
µs, respectively. Since the transmission duration of the frame instance f2,1 is
C2 = 125 µs, the data�ow link [SW1, ES2] will be free in the interval (255 µs,
310 µs). In these conditions, it would be disadvantageous for f1,1 to arrive at
SW1 at the 250 µs. Because the frame instance f4,1 is scheduled at 310 µs,
f1,1 would not have enough time for a complete transmission. However, since
preemption is employed in the network, f1,1 would be transmitted by the switch
anyway and its transmission would be interrupted when f4,1 arrives. Since the
RC frames can arrive at arbitrary times, we will consider this moment of arrival
for f1,1 (250 µs) when building the worst-case end-to-end delay scenario for
f1,1. The preempted, incomplete transmission of f1,1 together with the technical
latency, QTLvj , need to be included in the queuing delay due to TT frames. For

68 TTEthernet Analysis and Simulation

Figure 4.10: End-to-end delay analysis for frame f1

the technical latency we will use in our example a value of 5 µs. We can then
evaluate the delay caused by the TT tra�c as being QTTf1,[SW1,ES2]

= 285 µs.

So far, in our analysis, we considered only the TT interference. We also need
to consider the RC interference in f1's worst-case end-to-end delay. Obviously,
for our case, this means that the RC frame instance f3,1 arrives at switch SW1

before f1,1. Because the frames belonging to the same tra�c class are treated
in FIFO order, this phasing of the frames would introduce a supplementary

delay for f1,1: Q
RC
f1,1,[SW1,ES2]

= C
[SW1,ES2]
f3

= C3 = 80 µs. As it is depicted in

Figure 4.10, since f3,1 arrives before f1,1 at SW1 and preemption is in use, f3,1
will be the preempted frame instead of f1,1.

Summing up, the delay su�ered by f1,1 in the switch SW1 is Q
[SW1,ES2]
f1,1

=

QTTf1,1,[SW1,ES2]
+ QRCf1,1,[SW1,ES2]

= 365 µs. In this case, the worst-case end-to-

end delay of f1 is Rf1 = C
[ES1,SW1]
f1

+Q
[SW1,ES2]
f1,1

+ C
[SW1,ES2]
f1

= 605 µs.

4.3.1 Implementation

As we previously stated in the beginning of this section, the RC tra�c is simu-
lated on the basis of a given network architecture and known TT static schedules.

4.3 A TTEthernet Simulator 69

The simulator inputs (as well as the outputs) are stored in �les. When starting
a simulation, the following �les are read:

• network.graphml - the GraphML 1 �le that contains the network's topol-
ogy (the end systems, the switches and how they are connected)

• vls - the �le containing the virtual link's data�ow paths

• msg - the �le where the size, the deadline, the period or the rate of the
TT and RC messages are speci�ed. This �le also contains the mapping of
messages to virtual links.

• historyOPT - the �le that contains the TT static schedules for all the
data�ow links in the network. The TT schedule tables contained in this
�le are the result of the Tabu Search-based optimization strategy for the
synthesis of TT schedules proposed in [TSP12].

One may say that since we have the TT static schedules and we only simulate
the RC tra�c in the network, to have the TT messages also speci�ed in the �le
msg is redundant or useless. We preferred to keep it like this for the sake of the
simulator's extensibility. The simulator is designed in such a way that, after a
minimum implementation e�ort, it should be able to simulate the TT tra�c in
the network as well. Besides this point, all the simulator's input �les (with the
exception of historyOPT) served as input con�guration for the TT schedule
tables synthesis tool developed in [TSP12]. Practically, we reuse the input and
output �les of [TSP12], our tool having a di�erent destination.

The simulator was implemented in Java, in about 40 source �les grouped in
three packages. One of the packages is tte.network which contains the data
structures used to represent the TTEthernet network in our program. The
correspondence between our data structures and the network elements they
model is pretty straightforward as it can be seen from Figure 4.11. A Network

object aggregates NetworkNode objects (that is, either EndSystem, either Switch
objects) and DataflowLink objects. Since the network topology is given in a
GraphML �le, so it is already speci�ed as a graph in the input �le, it was natural
to keep this graph representation for the Network objects. We used for this the
JUNG (Java Universal Network/Graph) Framework 2 and so the Network class
extends the DirectedSparseMultigraph JUNG class. We note here that the
VirtualLink class, which models the virtual links in our program, is also a
JUNG DirectedSparseMultigraph (its vertices and edges are the IDs of the
network elements found on the virtual link's data�ow paths). So, a virtual link
is actually a subgraph of the network graph.

1GraphML - an XML-based format for representing graphs
2JUNG - a Java open-source library for graph modelling and visualization

http://graphml.graphdrawing.org/
http://jung.sourceforge.net/

70 TTEthernet Analysis and Simulation

Figure 4.11: The network model

The behavior of the end systems and switches during simulation is described by
the implementation of the interface ISimNetworkNode in the classes EndSystem
and Switch. The method acceptFrameInstance() is called whenever a frame
reaches a network element, either coming from another network element on
a data�ow link, either, in the case of end systems sources of virtual links,
after just being generated. The method simulateMoment() is called for ev-
ery simulation step, the parameter of the method telling the network element
the current simulation time. The class DataflowLink implements the interface
ISimDataflowLink. By calling the methods de�ned in the interface one may
assign a certain TT static schedule to the data�ow link (the static schedules are
modelled by the StaticSchedule class) or check if the data�ow link is carrying
any TT or RC tra�c at a given time.

We are simulating a single TTEthernet cluster, so we have a single clock synchro-
nization domain, that is, all the network elements have the same sense of time.
In this context, we preferred to implement a time driven simulator (instead of
an event driven one). The core of the simulator is the Simulator class from the
package tte.simulator. This class keeps track of the simulation time and of
the simulated messages, and drives the simulation. Since our assumption is that
every messages �ts in exactly one frame, we use the class Frame to represent a
message read from the msg input �le. A Frame object is a simple container for
the parameters (size, deadline, message ID, rate, the ID of the virtual link to
which the message is assigned to) of the corresponding message. The object also

4.3 A TTEthernet Simulator 71

stores the scenario that lead to the obtained worst-case end-to-end delay for the
frame (this scenario is kept in a FrameInstTransmissionScenario object). In
our implementation, a frame instance is not represented by an instance of the
Frame class, but by an instance of the FrameInstance class. A FrameInstance

object keeps a reference to its corresponding Frame object. A simpli�ed UML
diagram corresponding to the simulator's implementation is provided in Fig-
ure 4.12.

The frame instances to be simulated are created during the initialization phase
of the simulation. For each frame instance we will calculate the end-to-end
delay. This delay is the temporal distance between the moment in which the
frame instance is sent to the communication services of the end system by an
application task (the so-called release time) and the moment in which the frame
instance is available for reading by the destination task at the destination end
system (the so-called arrival time). The asynchronous nature of the RC tra�c
is simulated by assigning to the frame instances random arrival times at their
source end systems.

The most relevant aspects of the simulation routine are presented in Algorithm 2.
As we previously mentioned, the simulator �rst reads the input �les creating
the object representation of the input con�guration. The simulator is initialized
with the number of application cycles to be simulated and, based on this, cal-
culates the number of simulation steps (line 13 in Algorithm 2). Once the RC
frame instances to be simulated are created and initialized with random release
times (line 14), the simulation loop can begin. In each simulation step, the frame
instances which are released in that moment are collected (line 17) and �placed�
to their corresponding source end systems (lines 18-21). By this placement of
the frame to its source end system, the simulator emulates the behavior of a
task that, in real life, would send a message to the end system's communica-
tion ports. This corresponds to step 1 from the RC frames' transmission in a
TTEthernet network that we described in section 2.2.5. After introducing the
newly released frames in the scene, the simulator gives the control to the network
nodes (the end systems and the switches) (lines 22-24). In their implementation
of the method simulateMoment() from the interface ISimNetworkNode, the end
systems and the switches handle the frames found in their internal bu�ers and
queues, and start the frames' transmission on the data�ow links when it's the
case. In our program, the assumption is that the queues and bu�ers in switches
and end systems are large enough to accommodate worst-case tra�c. The tra�c
shaping and the tra�c policing roles of the end systems and, respectively, of the
switches are being implemented in the method simulateMoment().

Like in the real world, in our implementation, the data�ow link is a passive
element that does not �move� frames, but is just transited by frames. The
frames are placed on the data�ow links by the network nodes (end systems and

72 TTEthernet Analysis and Simulation

Figure 4.12: Simpli�ed UML diagram of the simulator implementation

4.3 A TTEthernet Simulator 73

Algorithm 2 CENTRAL_SIMULATION_ALGORITHM

1: Inputs:

2: G(V, E) - the network topology;
3: FRC - the set of RC messages to simulate;
4: VL - the set of virtual links;
5: M - the assignment of frames to virtual links;
6: Tcycle - the application cycle;
7: S - the set of TT static schedules;
8: n - the number of application cycles to simulate;
9: Outputs:

10: WCETED - the worst-case end-to-end delay for each frame f ∈ FRC
11:

12: begin

13: simCycles← n× Tcycle
14: frameInstQueue← InitFrameInstances(F)
15: cycle← 0
16: repeat

17: arrivedFrameInst← GetArrivedFrames(frameInstQueue, cycle)
18: for all fi ∈ arrivedFrameInst do
19: es← GetSourceEndSystem(fi)
20: es.acceptFrameInstance(fi)
21: end for

22: for all networkNode ∈ V do
23: networkNode.simulateMoment(cycle)
24: end for

25: frameInstOnLinks← GetFramesTransmittedOnLinks(cycle)
26: for all fi ∈ frameInstOnLinks do
27: if IsFrameTransmissionOnLinkDone(fi) then
28: if HasFrameReachedF inalDestination(fi) then
29: fi.eToEDelay ← cycle− fi.start
30: ComputeWCETEDelay(fi.frame, fi.eToEDelay)
31: else

32: networkNode← GetNextNetworkNodeOnPath(fi)
33: networkNode.acceptFrameInstance(fi)
34: end if

35: end if

36: end for

37: cycle+ +
38: until cycle = simCycles
39: end

switches) they crossed in their path. The simulator keeps track of the frames

74 TTEthernet Analysis and Simulation

transiting data�ow links in each simulation step (lines 25-36 in Algorithm 2).
The simulator assesses if the transmission of each of these frames on the cor-
responding data�ow link is ending in the current simulation step (line 27). In
case it does, the frame needs to be placed in the next network element on its
path. When the frame reaches its �nal destination, the simulator computes the
end-to-end delay experienced by the frame during its transmission (line 29).
This delay will be stored if it is the maximum delay su�ered by the frame so far
in the simulation (line 30).

4.3.2 Testing

The testing of our program was done using unit tests, as well as pencil and
paper tests. The unit tests were a quick and e�ective way to detect problems in
the way we read the input con�guration. Besides validating the way we handled
the inputs, we also wrote unit tests for the important methods in the simulation
algorithm. The implementation of the unit tests is to be found in the packages
tte.test.*. To test our program, not just with automated tests, but also by
using pencil and paper, proved to be necessary and very useful. Using simple
input con�gurations for which we could manually calculate the worst-case end-
to-end delays, we checked that our algorithm gives the same results. In the cases
when it didn't, the debugging of the program was also made simpler by using
small input con�gurations.

4.3.3 Evaluation

It is of vital importance that the results of a simulation are evaluated by com-
paring them either with real-life measurements or with results provided by a
formal framework. In our case, the evaluation of the simulation results was done
against the results obtained by running the TTEthernet analysis presented in
section 4.1. We have used 11 synthetic benchmarks which were derived from the
results obtained by the static schedules' synthesis optimization from [TSP12].
As we previously mentioned, the input static schedules used by the simulator
and by the TTEthernet analysis are the optimized static schedules obtained
with the approach from [TSP12]. The simulations were run on a Dell laptop
equipped with a Intel T6670 CPU and 4 GB RAM. Depending on the length of
the application cycle and on the number of application cycles to be simulated,
one simulation took from 4-5 minutes to 40-50 minutes.

The experimental results we obtained are presented in Table 4.2. We simulated
5, 10 and 20 application cycles for each benchmark. In the table, we display

4.3 A TTEthernet Simulator 75

Table 4.2: Experimental results

Test Case ES SW RC
messages

Frame
instances

∆e−t−e delay
[%]

1 11 4 40 5200 21.60
2 13 3 30 3900 66.10
3 25 6 30 3600 24.76
4 25 6 70 1400 33.41
5 25 6 60 1200 29.45
6 35 8 20 4000 57.85
7 35 8 40 1680 46.44
8 35 8 60 3780 27.49
9 35 8 70 4410 25.48
10 35 8 60 1260 27.56
11 45 10 60 3780 56.13

only the best simulation result for each benchmark. The number of end sys-
tems and switches composing the TTEthernet network is presented in columns
2 and, respectively, 3. Column 4 contains the number of rate-constrained mes-
sages simulated and column 5 contains the total number of frame instances that
were released during the simulation. The last column in Table 4.2 presents the
percentage di�erence between the worst-case end-to-end delays obtained by the
simulator and by the analysis averaged over all messages.

76 TTEthernet Analysis and Simulation

Chapter 5

Conclusions

The safety-critical systems need to have deterministic behaviors, since their haz-
ardous functioning can endanger life or the environment. The mixed-criticality
systems, which have safety-critical functions among other non-critical ones, need
to guarantee that their safety-critical functions are operating hazard-free. This
is one reason why analysis tools that can determine worst-case response times
for tasks and worst-case end-to-end delays for messages are needed.

The subject of this thesis was the analysis of mixed-criticality applications im-
plemented on distributed architectures. In order to have functions with di�erent
criticalities sharing the same computing platform, one must ensure that there is
enough spatial and temporal separation among them. This is also true for the
communication level, when messages with di�erent criticalities are transmitted
on the same network. Our thesis addressed the problematic of mixed-criticality
applications on distributed partitioned architectures both at platform level, as
well as communication level.

IMA analysis. For the separation required at the level of the processing nodes
(elements) we considered an IMA-like partitioning scheme. Applications were
allowed to execute only on their designated partitions (that is, designated time
slots on the processor) and each partition could de�ne its own scheduling policy.
We were interested only in the timing analysis of the applications running in
partitions that employ �xed-priority preemptive scheduling (FPS). The analysis

78 Conclusions

we proposed for these applications was based on the WCDOPS+ algorithm. We
have extended the algorithm to consider a non-periodic partitioning scheme. We
have then compared the worst-case response times that we obtained from run-
ning our algorithm to the results given by the state-of-the-art analysis for FPS
tasks executed on partitioned architectures proposed by Audsley and Wellings.
Our algorithm gave less pessimistic results and also has the advantage that it
can consider non-periodic partitions. As previously mentioned, based on this
work, we wrote a paper presented in the work in progress section of the ETFA
2012 conference.

TTEthernet analysis and simulation. For the separation required at the
communication level we have chosen the TTEthernet protocol. The separation
between mixed-criticality messages is achieved in a TTEthernet network through
the concept of virtual links. TTEthernet integrates three tra�c classes: TT
(time-triggered) messages which are transmitted according to static schedule
tables, RC (rate-constrained) messages which are asynchronous messages with
bounded end-to-end delay and BE (best e�ort) messages for which there are
no timing guarantees provided. In this thesis we were concerned only with the
end-to-end delay analysis of RC messages. We have extensively studied the
trajectory approach analysis method for end-to-end delays in AFDX networks
and proposed an extension of it in order to enable it to be applied in TTEthernet
networks as well. We have built a TTEthernet simulator which determines
the worst-case end-to-end delay of RC messages. The simulation results were
compared with the end-to-end delays obtained with the previously proposed
TTEthernet analysis.

5.1 Future Work

It is our belief that the relatively young �eld of mixed-criticality systems o�ers
broad research perspectives. For example, the �exibility and extensibility of
embedded systems' architectures are considered to be top research priorities by
the ARTEMIS Research Agenda [ART11]. Also, the optimization of mixed-
criticality applications implemented on distributed architectures - our thesis
dealt only with the analysis - is a promising direction in which there is ongoing
research work [TSP11b, TSP11a, TSMP12].

From a closer perspective to our thesis, we list here some suggestions for im-
provements and future work:

• the TTEthernet simulator could be improved by taking into consideration
the BE tra�c. The simulator could also consider packet losses or link

5.1 Future Work 79

failures.

• the TTEthernet networks that we considered both for analysis and simu-
lation were composed of a single cluster. Multi-cluster networks would be
interesting to analyze, since the TTEthernet messages can change their
tra�c classes when moving from one cluster to another.

• the IMA analysis we proposed did not consider communication. A holistic
timing analysis that would integrate our analyses done at the CPU-level
and at the communication level would be a valuable improvement for our
work.

• the analysis of heterogeneous real-time networks is also interesting. There
is ongoing work in the analysis using trajectory approach of network
architectures consisting of CAN buses interconnected by a AFDX. net-
work [LSF12]. Using TTEthernet in such architectures is an option worth
considering.

• the holistic analysis method for AFDX-based distributed systems pro-
posed in [GPGH11, GPGH12] could be extended for TTEthernet-based
distributed architectures.

• a study of the in�uence that di�erent frame parameters (like, for exam-
ple, the frame rate or period) have on the frames' end-to-end delays in
TTEthernet networks could be made.

• we considered the topology of the virtual links given. Various optimization
problems can be de�ned related to the design of the virtual links. For
example, one could determine the virtual links' topology for which the
end-to-end delays are minimized.

• it would be interesting to integrate the tools developed for this project
into existing embedded systems toolchains.

80 Conclusions

Bibliography

[Ari91] ARINC speci�cation 651: Design guidance for integrated modular
avionics. Technical report, Aeronautical Radio Inc., Annapolis,
USA, 1991.

[Ari93] ARINC speci�cation 659: Backplane data bus. Technical report,
Aeronautical Radio Inc., Annapolis, USA, 1993.

[Ari96] ARINC speci�cation 629: Multi-transmitter data bus; part 1, tech-
nical description (with �ve supplements); part 2, application guide
(with one supplement). Technical report, Aeronautical Radio Inc.,
Annapolis, USA, 1996.

[Ari97] ARINC speci�cation 653: Avionics application software standard
interface. Technical report, Aeronautical Radio Inc., Annapolis,
USA, 1997.

[ARI09] ARINC Report 664P7-1. Aircraft Data Network, Part 7: Avionics
Full Duplex Switched Ethernet (AFDX) Network, September 2009.

[ART11] ARTEMIS O�ce, ARTEMIS programme. Strategic research
agenda, 2011.

[as611] AS6802: Time-Triggered Ethernet. SAE International, 2011.

[ASF11] Muhammad Adnan, Jean-Luc Scharbarg, and Christian Fraboul.
Minimizing the search space for computing exact worst-case delays
of afdx periodic �ows. In SIES, pages 294�301, 2011.

82 BIBLIOGRAPHY

[ATB93] N. Audsley, K. Tindell, and A. Burns. The end of the line for
static cyclic scheduling. In Proceedings of Euromicro Workshop on
Real-Time Systems, 1993.

[AW96] N. Audsley and A. Wellings. Analysing APEX applications. In
Real-Time Systems Symp., pages 39 �44, 1996.

[Bau11] Henri Bauer. Analyse pire cas de �ux hétérogenes dans un réseau
embarqué avion. These, Université de Toulouse, October 2011.

[BBB+09] James Barhorst, Todd Belote, Pam Binns, John Ho�man, James
Paunicka, Prakash Sarathy, John Scoredos, Peter Stan�ll, Douglas
Stuart, and Russell Urzi. White paper: A research agenda for
mixed-criticality systems, 2009.

[BHR90] Sanjoy K. Baruah, Rodney R. Howell, and Louis Rosier. Algo-
rithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time Systems,
2:301�324, 1990.

[BSF09] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Applying and optimiz-
ing trajectory approach for performance evaluation of AFDX avion-
ics network. In Proceedings of the IEEE Conference on Emerging
Technologies Factory Automation, 2009.

[BSF12] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. Apply-
ing trajectory approach with static priority queuing for improving
the use of available afdx resources. Real-Time Systems, 48(1):101�
133, 2012.

[Car04] Larry Carley. Brake-By-Wire, 2004.

[CC93] P. Chanet and V. Cassigneul. How to control the increase in the
complexity of civil aircraft onboard systems, 1993.

[Cru91] Rene L. Cruz. A calculus for network delay, part I & II. IEEE
Transactions on Information Theory, 37(1), 1991.

[CSEF06] Hussein Charara, Jean-Luc Scharbarg, Jerome Ermont, and Chris-
tian Fraboul. Methods for bounding end-to-end delays on an afdx
network. In Proceedings of the 18th Euromicro Conference on Real-
Time Systems, ECRTS '06, pages 193�202, Washington, DC, USA,
2006. IEEE Computer Society.

[Dic] Robert Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/�dickrp/e3s/.

BIBLIOGRAPHY 83

[FFG06] Fabrice Frances, Christian Fraboul, and Jérôme Grieu. Us-
ing network calculus to optimize the AFDX network. In
European Congress on Embedded Real-Time Software (ERTS),
Toulouse France, 25/01/06-27/01/06, page (electronic medium).
SIA/3AF/SEE, 2006.

[Fid98] CJ Fidge. Real-time schedulability tests for preemptive multitask-
ing. REAL-TIME SYSTEMS, 14(1):61�93, 1998.

[Foh94] G. Fohler. Flexibility in statically scheduled hard real-time sys-
tems, 1994.

[GFF03] Jérome Grieu, Fabrice Frances, and Christian Fraboul. Preuve de
determinisme d'un reseau embarque avionique . In Colloque Fran-
cophone sur l'ingénierie des protocoles 2003 , Paris, 07/10/2003-
10/10/2003, page 16. Hermès, octobre 2003. (Conférencier invité).

[GPGH11] J. J. Gutiérrez, J. C. Palencia, and M. González Harbour. Response
time analysis in AFDX networks, 2011.

[GPGH12] J. J. Gutiérrez, J. C. Palencia, and M. González Harbour. Re-
sponse time analysis in AFDX networks with sub-virtual links and
prioritized switches, 2012.

[HD93] K. Hoyme and K. Driscoll. SAFEbus. IEEE Aerospace Electronic
Systems Magazine, 8, 1993.

[KAGS05] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Stein-
hammer. The time-triggered ethernet (tte) design. In Proceedings
of the Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, ISORC '05, pages 22�33, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[KM07] Jarik P. Kany and Sigurd H. Madsen. Design optimisation of fault-
tolerant event-triggered embedded systems. Master's thesis, Dept.
of Informatics and Mathematical Modelling, Technical University
of Denmark, 2007.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Springer Verlag, 2nd edition, 2011.

[LBT01] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a
theory of deterministic queuing systems for the internet. Springer-
Verlag, Berlin, Heidelberg, 2001.

[LSF10] Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul. Improv-
ing end-to-end delay upper bounds on an afdx network by integrat-
ing o�sets in worst-case analysis. In ETFA, pages 1�8, 2010.

84 BIBLIOGRAPHY

[LSF12] Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul. Apply-
ing trajectory approach for worst-case delay analysis of a het-
erogeneous real-time network. In Proceedings of the 18th IEEE
Real-Time and Embedded Technology and Applications Symposium,
2012.

[Mar04] Steven Martin. Maîtrise de la dimension temporelle de la qualité
de service dans les réseaux. These, Université Paris XII Val de
Marne, July 2004.

[MM05] Steven Martin and Pascale Minet. Improving the analysis of
distributed non-preemptive fp/dp* scheduling with the trajec-
tory approach. Telecommunication Systems, 30:49�79, 2005.
10.1007/s11235-005-4315-2.

[MM06a] Steven Martin and Pascale Minet. Schedulability analysis of �ows
scheduled with �fo: application to the expedited forwarding class.
In Proceedings of the 20th international conference on Parallel and
distributed processing, IPDPS'06, pages 180�180, Washington, DC,
USA, 2006. IEEE Computer Society.

[MM06b] Steven Martin and Pascale Minet. Worst case end-to-end response
times of �ows scheduled with fp/�fo. In Proceedings of the Inter-
national Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications
and Learning Technologies, ICNICONSMCL '06, pages 54�, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[MTSAP12] Sorin Ovidiu Marinescu, Domiµian T ma³-Selicean, Vlad Acre-
toaie, and Paul Pop. Timing analysis of mixed-criticality hard
real-time applications implemented on distributed partitioned ar-
chitectures. In Proceedings of the 17th IEEE Conference on Emerg-
ing Technologies and Factory Automation, 2012.

[PA00] P. Pedreiras and L. Almeida. Combining event-triggered and time-
triggered tra�c in FTT-CAN: analysis of the asynchronous mes-
saging system. In Factory Communication Systems, 2000. Proceed-
ings. 2000 IEEE International Workshop on, pages 67 �75, 2000.

[PEP05] P. Pop, P. Eles, and Z. Peng. Schedulability-driven frame packing
for multicluster distributed embedded systems. ACM Transactions
on Embedded Computing Systems (TECS), 4(1):112�140, 2005.

[PPE+08] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru An-
drei. Timing analysis of the FlexRay communication protocol.
Real-Time Systems, 39(1-3):205�235, 2008.

BIBLIOGRAPHY 85

[PPEP08] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. Analysis and
optimisation of hierarchically scheduled multiprocessor embedded
systems. International Journal of Parallel Programming, 36(1):37�
67, 2008.

[Ram07] James W. Ramsey. Integrated modular avionics: Less is more,
February 2007.

[Red04] Ola Redell. Analysis of tree-shaped transactions in distributed real-
time systems. In Proceedings of the 16th Euromicro Conference on
Real-Time Systems, pages 239�248, Washington, DC, USA, 2004.
IEEE Computer Society.

[RGPH11] Juan M. Rivas, J. Javier Gutierrez, J. Carlos Palencia, and
Michael González Harbour. Schedulability analysis and optimiza-
tion of heterogeneous edf and fp distributed real-time systems. In
Proceedings of the 2011 23rd Euromicro Conference on Real-Time
Systems, ECRTS '11, pages 195�204, Washington, DC, USA, 2011.
IEEE Computer Society.

[Rus99] John Rushby. Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance. NASA Contractor Report CR-
1999-209347, NASA Langley Research Center, June 1999.

[SBH+09] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan.
TTEthernet Data�ow Concept. In Proceedings of the Eighth IEEE
International Symposium on Network Computing and Applications,
2009.

[SKKS11] Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, and
Thomas C. Schmidt. An extension of the omnet++ inet framework
for simulating real-time ethernet with high accuracy. In Proceed-
ings of the 4th International ICST Conference on Simulation Tools
and Techniques, SIMUTools '11, pages 375�382, ICST, Brussels,
Belgium, Belgium, 2011. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[SRF09] Jean-Luc Scharbarg, Frédéric Ridouard, and Christian Fraboul. A
probabilistic analysis of end-to-end delays on an avionics switched
ethernet. IEEE Trans. Industrial Informatics, 5(1):38�49, 2009.

[Ste10a] Wilfried Steiner. An Evaluation of SMT-based Schedule Synthesis
For Time-Triggered Multi-Hop Networks. In Proceedings of the
Real-Time Systems Symposium, pages 375�384, 2010.

[Ste10b] Wilfried Steiner. Balanced-load planning of unsynchronized tra�c
for hard real-time networks. 2010.

86 BIBLIOGRAPHY

[Ste10c] Wilfried Steiner. On the real-time performance of switches for
rate-constrained multicast data�ow. Technical report, 2010.

[Ste11] W. Steiner. Synthesis of Static Communication Schedules for
Mixed-Criticality Systems. In Proceedings of the 14th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops, 2011.

[TSMP12] Domiµian T ma³-Selicean, Sorin Ovidiu Marinescu, and Paul Pop.
Analysis and optimization of mixed-criticality applications on par-
titioned distributed architectures. In Proceedings of the 7th Inter-
national IET System Safety Conference, 2012.

[TSP11a] Domiµian T ma³-Selicean and Paul Pop. Design Optimization
of Mixed-Criticality Real-Time Applications on Cost-Constrained
Partitioned Architectures. In Proceedings of the Real-Time Systems
Symposium, pages 24�33, 2011.

[TSP11b] Domiµian T ma³-Selicean and Paul Pop. Optimization of time-
partitions for mixed-criticality real-time distributed embedded sys-
tems. In Proceedings of the 2011 14th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops, ISORCW '11, pages 1�10, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[TSP12] Domiµian T ma³-Selicean and Paul Pop. Synthesis of communica-
tion schedules for TTEthernet-based mixed-criticality systems. In
Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, 2012.

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Thesis Objectives

	2 Partitioned Architectures
	2.1 Integrated Modular Avionics
	2.1.1 Partitioning in IMA

	2.2 TTEthernet
	2.2.1 Avionics Full Duplex Switched Ethernet
	2.2.2 Traffic Classes
	2.2.3 Dataflow Integration
	2.2.4 Basic TTEthernet Modeling Concepts
	2.2.5 How TTEthernet Works

	3 IMA Analysis
	3.1 Application Model
	3.2 System Model
	3.3 Motivational Example
	3.4 Response Time Analysis
	3.5 Evaluation

	4 TTEthernet Analysis and Simulation
	4.1 TTEthernet Analysis
	4.2 AFDX Analysis
	4.2.1 Network Calculus
	4.2.2 Trajectory Approach

	4.3 A TTEthernet Simulator
	4.3.1 Implementation
	4.3.2 Testing
	4.3.3 Evaluation

	5 Conclusions
	5.1 Future Work

	Bibliography

