Module-Based Synthesis of Digital Microfluidic Biochips with
Droplet-Aware Operation Execution

ELENA MAFTEI, PAUL POP, and JAN MADSEN, Technical University of Denmark

Microfluidic biochips represent an alternative to conventional biochemical analyzers. A digital biochip ma-
nipulates liquids not as continuous flow, but as discrete droplets on a two-dimensional array of electrodes.
Several electrodes are dynamically grouped to form a virtual device, on which operations are executed by
moving the droplets. So far, researchers have ignored the locations of droplets inside devices, considering
that all the electrodes forming the device are occupied throughout the operation execution. In this article,
we consider a droplet-aware execution of microfluidic operations, which means that we know the exact posi-
tion of droplets inside the modules at each time-step. We propose a Tabu Search-based metaheuristic for the
synthesis of digital biochips with droplet-aware operation execution. Experimental results show that our
approach can significantly reduce the application completion time, allowing us to use smaller area biochips
and thus reduce costs.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids
General Terms: Algorithms, Design, Performance
Additional Key Words and Phrases: Biochips, microfluidics, synthesis

ACM Reference Format:

Maftei, E., Pop, P., and Madsen, J. 2013. Module-Based Synthesis of Digital Microfluidic Biochips with
Droplet-Aware Operation Execution. ACM J. Emerg. Technol. Comput. Syst. 9, 1, Article 2 (February 2013),
21 pages.

DOI:http://dx.doi.org/10.1145/2422094.2422096

1. INTRODUCTION

According to Moore’s law [Moore 1965] the number of transistors on an integrated
circuit doubles approximately every two years. “More than Moore” explores new appli-
cations in which such systems can be used, focusing on function diversification rather
than increasing density. An emerging field related to embedded systems is the design
of efficient, low-cost devices for the biomedical area, which has been highlighted by the
International Technology Roadmap for Semiconductors 2007 [[TRS07] as an important
system driver for the near-future [Chakrabarty et al. 2010].

In recent years, microfluidic biochips (also called labs-on-chips) have emerged as a
miniaturized alternative to conventional laboratories. On such devices, biochemical
applications can be performed using small amounts of fluids, in the range of micro- or
nanolitres. In addition to lower reagent costs compared to conventional laboratories,
biochips can be fully automated and provide higher sensitivity.

This article is an extended and revised version of the paper presented in Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’09), 195-203.
Authors’ address: E. Maftei, P. Pop, and J. Madsen, Technical University of Denmark, 2800, Kgs. Lyngby,
Denmark; email: paul.pop@mm.dtu.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2013 ACM 1550-4832/2013/02-ART2 $15.00

DOI:http://dx.doi.org/10.1145/2422094.2422096

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:2 E. Maftei et al.

Microfluidic biochips can be used in a wide range of fields such as clinical diagnosis,
DNA analysis, protein assays and immuno-assays [Chakrabarty 2010]. Considering
the potential of such devices for the biotechnology industry, the complexity of biochips
is expected to increase, with thousands of operations executed concurrently. In order to
support the increase in complexity of these devices and therefore their market growth,
computer aided design (CAD) tools are required, which can offer the same level of sup-
port as the one taken for granted currently in the semiconductor industry. Initially,
designers have used a bottom up approach for the design of biochips, combining fluidic
components to create specific-application devices [Fair 2007]. However, this bottom-up
approach does not scale to the new designs. Consequently, top-down design methods
have been proposed in Chakrabarty and Zeng [2007], increasing the level of abstrac-
tion in biochip synthesis. Such techniques are necessary in order to improve the design
of biochips, and to hide the implementation details of running biochemical assays from
the users [Chakrabarty 2010].

This article focuses on the synthesis of digital microfluidic biochips (DMBs). On
these devices, fluids are manipulated as discrete droplets on a two-dimensional ar-
ray of identical cells, without the need of micro-structures, which offers flexibility and
reconfigurability.

1.1. Related Work

On a digital biochip, operations such as mixing and dilution are performed on the mi-
crofluidic array by routing the corresponding droplets on a series of electrodes. Two
approaches have been considered so far for operation execution. The module-based
approach considers that a microfluidic operation is performed by routing the corre-
sponding droplet on a group of adjacent electrodes, forming a virtual device. A differ-
ent approach, called routing-based synthesis, has been proposed by us in Maftei et al.
[2010a], where the concept of modules has been eliminated, allowing droplets to move
on any route during operation execution.

This article is based on the module-based synthesis approach. Researchers have ini-
tially addressed architectural-level and physical-level synthesis of DMBs separately.
In one of the first papers on this topic, an ILP and two heuristic techniques (a mod-
ified List Scheduling algorithm and a Genetic Algorithm) have been proposed for the
architectural-level synthesis of biochips [Su and Chakrabarty 2004]. The methods con-
sider the problem of scheduling under resource constraints, by roughly estimating the
placement of devices on the microfluidic array. The results in Su and Chakrabarty
[2004] have been improved in Ricketts et al. [2006], by using a hybrid Genetic Algo-
rithm for scheduling operations under resource constraints.

Although it reduces the complexity of the synthesis problem, the separation of ar-
chitectural and physical-level synthesis has disadvantages, leading in many cases to a
longer completion time of the applications on the biochips [Maftei et al. 2008]. There-
fore, the next step taken by researchers was considering a unified approach for the
architectural-level synthesis and placement for digital microfluidic biochips.

The first unified methodology was proposed in Su and Chakrabarty [2005], by us-
ing a combination of Simulated Annealing and Genetic Algorithms. The focus of the
developed method has been on deriving an implementation that can tolerate faulty
electrodes. Xu and Chakrabarty [2007] have extended the work done by Su and
Chakrabarty [2005], by incorporating routing-awareness during the architectural-
level synthesis and placement of modules. The results obtained in Su and Chakrabarty
[2005] have been improved in Yuh et al. [2007], by using a tree-based topological rep-
resentation. The floorplanning algorithm has also been extended to take into account
the reconfigurability of biochips in case of defective electrodes. In Maftei et al. [2009]
we proposed a Tabu Search-based algorithm for the unified synthesis problem and we

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:3

have shown in Maftei [2011] that our method obtains better results than the T-tree
approach presented in Yuh et al. [2007].

So far, researchers have assumed that during operation execution in module-based
synthesis the droplet repeatedly follows the same pattern inside the virtual module,
leading to an operation completion time determined through experiments. The actual
position of the droplet inside the virtual device has been ignored, by considering that
all the electrodes forming the device are occupied throughout the operation execution.
In order to avoid the accidental merging of droplets it was considered that a device is
surrounded by a 1-cell segregation area, containing cells that cannot be used until the
operation performing on the device is completed.

In this article, we consider a droplet-aware execution of microfluidic operations,
which means that we know the exact position of droplets inside the modules at each
time-step, and we can control them to avoid accidental merging, if necessary.

1.2. Contribution

In this article, we propose a synthesis approach based on a Tabu Search metaheuristic,
which, starting from a biochemical application modeled as a sequencing graph and a
given biochip array, determines the allocation, resource binding, and scheduling of the
operations in the application at the same time as module placement.

Our scheduling and placement steps consider the positions of droplets inside virtual
devices during their execution. This allows us to better utilize the chip area, since no
segregation cells are needed to separate the modules, and improve the routing step,
since the routes can now cross over modules, if needed. Another advantage of droplet-
aware operation execution, is that it allows the partial overlapping of modules, which
can increase parallelism. However, in this article we do not consider module overlap-
ping, which is left for future work. We show that our droplet-aware operation execu-
tion approach can significantly reduce the application completion time compared to
the black-box approach.

The article is organized in six sections. Section 2.1 presents the architecture of a dig-
ital microfluidic biochip. We introduce the abstract model used to capture a biochemi-
cal application in Section 2.2. We formulate the problem in Section 3 and illustrate the
design tasks using several examples. The proposed approach is presented in Section 4
and evaluated in Section 5. Section 6 presents our conclusions.

2. SYSTEM MODEL
2.1. Biochip Architecture

The architecture of a digital biochip is dependent on the actuation mechanism used for
creating and manipulating the droplets. The most-used methods are dielectrophore-
sis (DEP) and electrowetting-on-dielectric (EWOD) [Tabeling 2006]. Both methods are
based on electrical forces and can provide high transportation speeds for droplets, us-
ing simple biochip architectures [Chakrabarty and Zeng 2007]. In this article we con-
sider digital microfluidic biochips based on the EWOD actuation method.

The schematic of a general EWOD architecture is presented in Figure 1(a). The
chip is composed of a microfluidic array of identical cells, together with reservoirs
for storing the liquid. Each cell is composed of two parallel glass plates, as shown
in Figure 1(b). The top plate contains a single indium tin oxide (ITO) ground electrode,
while the bottom plate has several ITO control electrodes. The electrodes are insu-
lated from the droplet through an insulation layer of ParyleneC, on which a thin film
of Teflon-AF is added [Srinivasan et al. 2004]. The role of the Teflon layer is to provide
a hydrophobic surface on which the droplet will move. The two parallel plates are sep-
arated through a spacer, providing a fixed gap height. The droplet moves between the
two plates, in a filler fluid (e.g., silicone oil), used in order to prevent evaporation and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:4 E. Maftei et al.

Serur3n.N II-I.
ENEEEEEN
ENEEEEEE
o > | LTI 1] ek Cround electrad
rine (];)z:ic;:; round electrode
ENEEEEEN Top plate

o SE>| &9 | | 1] | |e Ei: F11 Droplet t’"
asma ucose grors
- AnAEEEEE O

EEEEECEE

By: Out N . Bottom plate
put § 4 Photo
NaOH . port . diode Control electrodes
(a) Biochip: array of cells (b) Cell architecture

Fig. 1. Biochip architecture.

S B, S5 B, S, B,
‘Sl LR ‘51 My R]HS] P e @) Rl‘
15 Segregation T<q.- <My == ‘
cells Y
-«
‘Sz &1 2 ‘52 Rszz SN Rz‘
« M Y i 1 My
Cy ¥ ©| () (Y] L)) WS i =C
B2 1 x4 mixer w B2 W B2 W

(a) Modules with segregation cells (b) Routing with black-box modules (c¢) Routing with droplet-aware
modules

Fig. 2. Microfluidic modules.

the adhesion of molecules on the surface of the chip [Chakrabarty et al. 2010]. Besides
the microfluidic array, the chip also contains nonreconfigurable devices, such as detec-
tors and reservoirs, whose locations are fixed after the fabrication of the biochip. The
number of nonreconfigurable devices to be integrated on the chip is decided during the
design phase.

With EWOD, the droplet is transported on the chip by applying voltages on the con-
trol electrodes, thus modifying the contact angle between the liquid and the hydropho-
bic surface. If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the direction
of the applied voltage, leading to the movement of the droplet [Pollack et al. 2002a].
For example, turning off the middle control electrode and turning on the right control
electrode in Figure 1(b) will force the droplet to move to the right.

Using the architecture in Figure 1(a), and changing the control voltages, the basic
microfluidic operations, such as transport, splitting, dispensing, mixing, and detection,
can be performed. For example, two mixing operations on 1 x 4 modules (Mixer; and
Mixery)! are shown in Figure 2(a). Mixing is done by transporting two droplets to
the same location and merging them. Mixing through diffusion, where the resulting
droplet remains on the same electrode, is very slow. In order to enhance the mixing
process, the droplet is routed over a series of electrodes according to a certain pattern.
During movement, the complexity of flow patterns inside the droplet increases, leading

In the figures we denote Mixer; with M; and Diluter; with D;.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:5

to faster operation execution [Paik et al. 2003]. Mixing modules are created by group-
ing adjacent electrodes on which the droplets corresponding to the operations will be
moved. Any cells in the chip can be used for such a purpose, thus we say that the chip
is reconfigurable.

Table I presents the results of the experiments performed in Paik et al. [2003], where
several mixing times were obtained for various areas, creating a module library. For
each experiment, the corresponding droplet has been repeatedly moved inside the vir-
tual module, using a predefined movement pattern. The synthesis tools for biochips
proposed so far use such a module library, ignoring the location of the droplet during
operation execution and thus considering a module as a black box in which an opera-
tion is performed.

However, the position of all droplets on the chip at each time-step is important
in order to avoid droplet-merging. If two droplets are next to each other on two
adjacent cells, they will tend to merge and form one single droplet. For further
details on these fluidic constraints see Section 3. Segregation cells have been used
for solving this problem, while ignoring the position of droplets in virtual devices
[Su and Chakrabarty 2005; Yuh et al. 2007]. Thus, each device has been surrounded
by a 1-cell segregation border to isolate functional areas on which operations are
executing (see Figure 2(a)). This results in two segregation cells between modules,
although a single cell is enough. The two-cell space has the advantage that is easier
to adjust to create droplet routing paths. If the positions of droplets inside devices
are not known, routing needs a three-cell path width. So far it has been considered
that these paths are created during a post-processing routing step. For example, in
Figure 2(b) the position of Mixerg is modified in order to introduce necessary path for
droplet movement between the two mixer modules.

However, segregation cells can be eliminated if we take into account the posi-
tion of droplets inside modules during execution. Let us consider the two mixers in
Figure 2(a). Each mixer is composed of a 1 x 4 functional area, surrounded by segrega-
tion cells to avoid accidental merging. We eliminate the segregation area and consider
that the corresponding cells become part of the virtual device (e.g., Mixer; transforms
froma 1l x 4toa3 x 6device). We can prevent the accidental merging of the droplets by
knowing their locations inside the devices at any time-step. For example, considering
the initial positions of the two droplets as shown in Figure 2(c), the mixing operations
can be performed by repeatedly routing the droplets according to the movement pat-
terns described by the arrows. The droplets are never too close to each other during
execution, so the fluidic constraints are enforced. Such a synchronization of droplets to
avoid accidental merging is not always possible.

However, since we know the positions of the droplets we can decide to stop a droplet
or change its movement pattern inside a module, to enforce fluidic constraints.

Knowing the locations of droplets inside modules can also be an advantage dur-
ing the post-synthesis routing step. Let us consider that during the routing step a
droplet d must be routed from the cell denoted by c¢; to the cell denoted by cg (see
Figure 2(b)). The post-synthesis routing algorithms proposed so far have considered
devices placed on the chip as obstacles in defining the routes between two modules
or between modules and reservoirs, and that the initial placement has to be adjusted
in order to introduce the three-cell-width paths necessary for routing, as shown in
Figure 2(b). However, droplets can be routed through the functional area of a module,
as long as accidental merging is avoided. Let us assume that at time ¢, the droplets
inside the mixers are positioned as shown in Figure 2(c) and are moved according to
the pattern shown by the arrows in the mixers. Then droplet d can be routed from
the start cell ¢ to the destination cell ¢y on the shortest possible route (shown by the
arrow between ¢ and cg), using electrodes belonging to Mixer;, as long as we ensure

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:6 E. Maftei et al.

Table I. Module Library

Operation Area (cells) | Time (s)
Mixing/Dilution 2x4 2.9
Mixing/Dilution 1x4 4.6
Mixing/Dilution 2x3 6.1
Mixing/Dilution 2 x 2 9.9

Dispensing — 2

e SoUrCg s

Y
lns.,(i)InB(:)y lnSlﬂi) (i)\lnk,
| | \ |
{ | | |
\) \)
Dilute\> ~/Mix
\)

® N ©
InS3~~InB InRy InB
\ | \ /
\ | \
@ ©;
Dilute Dilute

X

= Sink =
Fig. 3. Application graph.

the fluidic constraints. For example, in order to avoid accidental merging inside Mixer
we can stop the mixer droplet for four time-steps on its current position (we mark the
stopping place by an “X” on the corresponding electrode). This will allow the routed
droplet d to be transported on its optimal path to the electrode denoted by cy. Due to
the fact that the droplets in Mixer; and Mixery are no longer synchronized, we cannot
continue moving the droplet in Mixery according to its original movement pattern, as
this would result in an accidental merging with the stopped mixing droplet in Mixer;.
Thus, in order to enforce fluidic constraints, we can deviate the movement pattern for
the droplet in Mixery, as shown with dashed arrows in Figure 2(c).

Changing this movement will result in an irregular pattern, and lead to nonstandard
operation completion times (i.e., we cannot use the numbers in Table I, which assume a
certain fixed movement pattern). Hence, we instead use the execution time calculation
method proposed by us in Maftei et al. [2010a] to compute the completion time of an
operation on a droplet-aware device.

The analytical method in Maftei et al. [2010a] takes into account the exact move-
ment pattern of a droplet inside a device to give a safe conservative estimate of the
operation completion time. We use the routing approach presented in Maftei et al.
[2010a] to decide the initial locations of droplets inside modules.

2.2. Biochemical Application Model

We model a biochemical application using an abstract model consisting of a sequencing
graph [Chakrabarty and Zeng 2005]. The graph G(V, &) is directed, acyclic, and polar
(i.e., there is a source node, which is a node that has no predecessors and a sink node
that has no successors). Each node O; € V represents one operation. The binding of
operations to modules in the architecture is captured by the function B : V — A, where
A is the list of allocated modules from the given library L.

An edgee; ; € € from O; to O; indicates that the output of operation O; is the input
of O;. An operation can be activated after all its inputs have arrived and it issues its

outputs when it terminates. We assume that for each operation O;, we know the execu-
tion time C?lk on module M}, = B(O;), where it is assigned for execution. In Figure 3 we

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:7

have an example of an application graph with thirteen operations, O1 to O13. The ap-
plication consists of two mixing operations (Og and Oy), three diluting operations (Os,
019 and O;3), and eight input operations (01, Oq, O3, O4, Og, Og, O1y and O17). O
is a diluting operation during which the concentration of the sample input droplet is
changed to an intermediate concentration. The operation is performed by a sequence of
mixing and splitting steps. Considering Figure 1(b), a droplet is split by turning on the
left and right electrodes and turning off the middle electrode [Ren et al. 2003]. Thus,
the droplet volume will vary during the application execution. We assume that the
biochemical application has been correctly designed, such that all the operations will
have the required input droplet volumes. Let us consider that operation Oj is bound
to a 2 x 2 diluter module denoted by Dilutery (i.e., B(O5) = Diluters). Then, according
to Table I, the execution time for O5 will be C15) iluters _ 9 9 5. The execution? of an op-
eration is divided in time-steps of 10 ms, and we capture the set of time-steps with 7.

3. PROBLEM FORMULATION
The problem we are addressing in this article can be formulated as follows.

Input.

(1) A biochemical application modeled as a graph G(V, &);

(2) a biochip consisting of a two-dimensional m x n array C of cells;

(3) a characterized module library Z;

(4) the maximum number of nonreconfigurable devices of each type that can be inte-
grated on the chip.

Output.

(1) Allocation A, which determines what modules from the library £ should be used;
(2) the binding B of each operation O; € V to a module M}, € A,
(3) the schedule S of the operations, which contains the start time tfta’ ¢ and finish

time t’j nish of each operation O; on its corresponding module, My;

(4) the placement P containing for each M), € A, the bottom left corner (xé, yé) and
the upper right corner (xz, yz) describing the position of the module on the m x n
array, i.e., P(M}) = (xi,yi,xz,yz);

(5) the route R taken during the execution of an operation O;, described by a set of
points (xf,y%), Vi {tftart,t?niSh},VOi €q.

Objective. minimize the schedule length Jg, i.e., minimize the finishing time t’: L’;llzh of
the sink node of graph gG.

Subject to the following.

(1) Precedence (a) and storage (b) constraints.
(a) A successor operation can only start executing after the completion of its pre-
decessor: tij nish t;?t“’ 'YO; and VO; € V, such that Je; ; € €.

(b) If a successor operation is not scheduled immediately after the com-
pletion of its predecessor, a storage unit must be placed on the chip:

2Approximate time required to route the droplet one cell considering the data in Pollack et al. [2002a]:
electrode pitch size = 1.5 mm, gap spacing = 0.3 mm, average linear velocity = 20 cm/s.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:8 E. Maftei et al.

store(O;, teurrent) Vtcurrent € T andVO; and VO; € Vsuchthat 3e;; ¢
£ and t}jnwh < teurrent < t;tart'

(2) Nonreconfigurable resource constraints.
No operations bound to the same nonreconfigurable device should overlap in time:

t’? nish tjs.ta’t VO, and VO; nonreconfigurable operations € V such that B(0;) =
B(OJ) = Mk'

(3) Placement constraints.
No modules placed on the microfluidic array at time ¢ should physically overlap:
2 < xloral < xy oryf < er oryjl- < y! VO; and VO; € V such that P(B(0;)) =

=7 J =
(xf,yf,xlr,y;) and P(B(0))) = (le.,yf,er,er) and tls-t‘"t < th,tart < t}iimSh.
(4) Fluidic constraints during operation execution.
(a) The location of any two droplets present on the array at time ¢ cannot

be directly or diagonally adjacent to each other: ‘xf —th’ > 2o0r ‘xf - yj‘ >
2 VO, and YO; € V, such that R(0;,t) = (xf,y!) and R(0j,t) = (xjt.,xjt.) vteT.
(b) The activated cell for a droplet cannot be adjacent to any other droplet present

t+1

on the array: ’xl“l—x;’ > 2or ‘yf” —yjt.‘ > 2or ‘xf—xjfl > 2or ’yﬁ—yj

2 VO; and YO; € V, such that R(O;,?) = (xf,yf) and R(0}, 1) = (x;.,y;.) VteT.

The next sections will illustrate each of the output tasks. The presentation order
does not correspond to the order in which our synthesis approach performs these tasks.

3.1. Allocation and Placement

Let us consider the graph shown in Figure 3. We would like to implement the opera-
tions on the 8 x 8 biochip from Figure 1(a). The graph contains two types of operations:
nonreconfigurable (input) and reconfigurable (mixing and dilution). The scheduling of
input operations is determined at the same time as the other operations, the fixed
number of reservoirs representing a constraint to the final completion time of the ap-
plication. However, inputs execute outside the microfluidic array and therefore do not
affect the placement of the other operations. We assume that the locations of reservoirs
have been decided during the fabrication of the chip and are as shown in Figure 1(a).
We need to assign each input operation to a reservoir of the same type, e.g., Oy can
only be assigned to one of the buffer reservoirs, By and By. Let us consider that the
input operations are assigned to the input ports as follows: O to the input port S;, O9
to By, O3 to Sy, O4 to Rq, Og to S3, Og to By, O19 to Ry, and Oq7 to By. The synthesis
approach will have to decide the scheduling of the input operations and make sure that
each reservoir is used by at most one input operation at each time-step. For the recon-
figurable operations in Figure 3, the mixing operations (Og and O7) and the dilution
operations (05, O19 and O3), our synthesis approach will have to allocate the appro-
priate modules, bind operations to them, and perform the placement and scheduling.
Let us assume that the available module library is the one captured by Table I. We
have to select modules from the library while trying to minimize the application com-
pletion time and place them on the 8 x 8 chip. We ignore the position of droplets inside
modules, and we wrap the modules in segregation cells, as explained in Section 2.1.
One solution to the problem is presented in Figure 4, where the following modules
are used: one 2 x 4 mixer (4 x 6 with segregation area), one 2 x 4 diluter (4 x 6 with
segregation area), one 1 x 4 mixer (3 x 6 with segregation area), and two 2 x 3 diluters
(4 x 5 with segregation area). The resulting schedule for this allocation is shown in
Figure 4(a). The schedule is depicted as a Gantt chart, where for each module, we

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:9

S3 Bl S3 Bl
D3(013)
2 49 11 S Ry S R
Diluter, | Os D, M, N =
vive, [0 s o] el ms Bl ool =
Mixer, 0; rtY12)
Diluter, 0p
Diluter, O3 B, W B, w
(a) Schedule with segregation (b) Placement at ¢ = 2 (00t=4.9

cells

Fig. 4. Black-box operation execution example.

represent the operations as rectangles with their length corresponding to the duration
of that operation on the module.

The placement for the allocation and schedule is as indicated in Figures 4(b)—(c). Our
placement problem has similarities with the placement of DR-FPGAs, where virtual
modules can physically overlap on-chip as long as they do not overlap in time, i.e., they
are used during different time intervals. After an operation has finished executing on
a module, we can reuse the same cells as part of another module.

The placement problem of DMBs can also include finding the location of nonreconfig-
urable devices (e.g., reservoirs, optical detectors), whose number is constrained by the
design specifications. As input operations are executed outside the microfluidic array,
the positions of reservoirs are determined manually, after the placement of the other
devices. The locations of optical detectors on the array are decided during the place-
ment step of the synthesis process and remain fixed throughout the execution of the
application. If the synthesis process decides the mapping of a biochemical application
to an already fabricated biochip, then the locations of nonreconfigurable devices are
given as part of the input specifications.

3.2. Binding and Scheduling

Once the modules have been allocated and placed on the cell array, we have to decide
on which modules to execute the operations (binding) and in which order (scheduling),
such that the application completion time is minimized.

Considering the graph in Figure 3 and the allocation presented in Section 3.1,
Figure 4(a) presents the optimal schedule in the case when we do not consider the
position of droplets inside the virtual modules. For example, operation O7 is bound
to module Mixers, starts immediately after the diluting operation O5 (¢5/%"* = 4.9) and

takes 4.6 s, finishing at time t’;nwh =9.5 s. We consider that input operations are sched-
uled for execution as follows: #5/@7% = ¢5art = ¢5tart = glart = (g, glart = gstart — ystart -
t“fl‘” t = 2.9 s. Each dispensing operation takes 2 s, as shown in Table I. For space rea-
sons, we do not show the schedule of input operations, however the starting times of
the reconfigurable operations shown in Figure 4(a) do take into consideration the time
required for dispensing the droplets on the microfluidic array.

Note that special “store” modules have to be allocated if a droplet has to wait before
being processed, which is different from DR-FPGAs. In general, if there exists an edge
e;j from O; to O; such that O; is not immediately scheduled after O; (i.e., there is a
delay between the finishing time of O; and the start time of O;), then we will have to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:10 E. Maftei et al.

S; B, S B,
RIS PHZ I
D30
S, —> > reosf, > 3(013) i R,
| T e
Diluter,
>
: D{(O M{(O M5(O
Mixer m S, A 1(Os) 1(O6) R, S, 2(07) A R,
Mixer, \ | Dy(012)
Diluter, 2 < r6\ ” /?) @
Diluter, B, W B, W
(a) Improved schedule (b) Placement at ¢ = 2 (c)t=4.17

Fig. 5. Droplet-aware operation execution example.

allocate a storage cell for e; ;. Hence, the allocation of storage cells depends on how the

schedule is constructed. Any available cell on the microfluidic array can be used for
temporarily storing the droplet.

3.3. Synthesis with Droplet-Aware Operation Execution

The schedule presented in Figure 4(a) is optimal for the given allocation considering
that the positions of droplets inside modules are unknown during operation execution.
Therefore, modules are surrounded by segregation cells, which ensure that the fluidic
constraints are satisfied at each time-step. However, the solution can be further im-
proved (see Figure 5(a)) by taking into account the location of droplets inside virtual
modules. Consider the same synthesis example as in Section 3.1, with the allocation
presented in Figure 4(a). At time ¢ = 2, operations O5 and Og are scheduled, and
modules Dilutery and Mixer; are placed on the chip. Let us assume that the droplets
corresponding to the two operations are routed to the positions shown in Figure 5(b),
where the dilution and mixing operations start executing, according to the illustrated
movement patterns.

We eliminate the segregation cells, and consider them as part of the functional area
of the devices. For example, operation O5, which was initially bound to a 2 x 4 device
can now be executed by routing the corresponding droplet on a 4 x 6 area. The area
occupied for performing O remains the same as in Section 3.1, however all the cells in
the device can now be used for operation execution. By routing the droplets correspond-
ing to O5 and Og as shown in Figure 5(b), the droplets are never too close and therefore
the fluidic constraints are enforced. The same situation is shown in Figure 5(c), where
operations O7, O19, and Oq3 are repeatedly routed from their initial positions accord-
ing to the depicted movement patterns, without the need of segregation cells.

The completion times for the droplet-aware operations shown in Figure 5 are com-
puted using the analytical method proposed by us in Maftei et al. [2010a]. Although
for simplicity reasons, the movement patterns of the droplets in Figure 5 are synchro-
nized, this is not always possible due to fluidic constraints. Our approach takes this
into consideration by allowing a flexible movement pattern of the droplets during op-
eration execution. In order to avoid accidental merging, a droplet can be deviated from
its preestablished movement pattern according to the characterized module library, or
can be kept at the same location on the chip for several time-steps.

The exact routes taken by droplets inside a module during operation execution are
determined offline and are stored in the memory of a microcontroller, which coordi-
nates the activation of the electrodes on the microfluidic array. In order to minimize

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:11

DMBSynthesis(G, C, £)
1 < A°,B° > = InitialSolution(G, £)
2 TI° = InitialPriorities(G, A°, B°)
3 < A, B,II > = TabuSearch(g, C, L, A°, B°, I1°)
4 return V=< A, B,S,P, R >

Fig. 6. Synthesis algorithm for DMBs.

memory requirements we consider that only the preestablished routes and the devi-
ations of the droplets from these routes will be recorded in memory, in a compressed
form.

4. TABU SEARCH-BASED SYNTHESIS

The problem presented in the previous section is NP-complete. Scheduling in even sim-
pler contexts is NP-complete [Ullman 1975]. In addition, the placement is equivalent
to a sequence of 2D packing problems, known to be NP-complete [Garey and Johnson
1979].

Our synthesis strategy, presented in Figure 6, takes as input the application graph
GV,), the given biochip cell array C, and the module library £, and produces that
implementation ¥ = < A, B, S, P, R > consisting of, respectively, the allocation A,
binding B, scheduling S, placement P, and routing R of operations during execution,
which minimizes the schedule length Jg on the given biochip C. In this article, we use
a Tabu Search (T'S) metaheuristic to decide the allocation .4 and binding B (line 3 in
Figure 6). For a given allocation and binding decided by TS, we use a List Scheduling
(LS) heuristic [Micheli 1994] to decide the schedule S of the operations. As the result
of the synthesis process depends on the order of executing the operations, we use pri-
orities II to decide the scheduling sequence for two or more operations that are ready
to be executed at the same time ¢.

4.1. List Scheduling

For given allocation, binding and priorities decided by TS, we use the ScheduleAnd-
Place function in Figure 7 to determine the scheduling S, placement P, and routing
R of droplets inside modules, during operation execution. Our scheduling is based on
a List Scheduling heuristic. LS takes as input the application graph G(V, &), the cell
array C, the module library £, the allocation A, binding B, and priorities II, and re-
turns the scheduling S, placement P, and the routes of droplets inside modules R. The
List Scheduling heuristic is based on a sorted priority list, L,,,qy, containing the op-
erations O; € V, which are ready to be scheduled. TS starts from an initial solution,
where we consider that each operation O; € V is bound to a randomly chosen module
B(O;) € L (line 1 in Figure 6). The initial execution priorities, II°, are given according
to the bottom-level values of the nodes in the graph (line 2) [Sinnen 2007]. According
to this, the priority of an operation is defined as the length of the longest path from
the operation to the sink node of the graph. The start and finish times of all the oper-
ations are initialized to 0 in the beginning of the algorithm (lines 2 and 3 in Figure 7).
A list Leyecute, which contains the operations that are executing at the current time
step is created in the beginning of the algorithm (line 4). Initially, L,,,4, will contain
those operations in the graph that do not have any predecessors (line 5 in Figure 7).
We do not consider input operations as part of the ready list. As they do not have any
precedence constraints, input operations can be executed at any moment. However, it
is important that inputs and their successors are performed sequentially, in order to
avoid storing the dispensed droplets. Let us consider moment ¢cyrrent during the ex-
ecution of the application. For all the operations that finish executing at #.yrren: We

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:12 E. Maftei et al.

ScheduleAndPlace(G, C, L, A, B, 1I)
1 teurrent = 0
tstert = 0,V0; € G
t{znzsh - 0’ VOL c g
Lezecute -
Lycady = ConstructReadyList(G, II)
/| schedule and place operations
while 30; € G At/"*" =0 do
/| for finishing operations
9 for all O; € Legecute such that tf””s’” = teyrrent dO
10 /| update placement
11 UpdatePlacement(C, P, B(O;))
12 RemoveFromExecuteList(O;, Legecute)
13 /| add ready successors to Lycady
14 AddReadySuccessorToList(O;, Lycady)
15 end for
16 // schedule ready operations
17 forall O; € L,cqqy do
18 placed = Placement(C, P, B(O;,))

0 O ULk W N

19 if placed then

20 /| set the start time

21 t;tu,'rt = tcu'r'rent

22 RemoveFromReadyList(O;, Lready)

23 AddOperationToExecuteList(O;, Lezecute)
24 end if

25 end for

26 R = RunOperationsOneTimeStep(Lezecute, C, P, R, L, teurrent)
27 teurrent = teurrent + 1

28 end while

29 return < S, P, R >

Fig. 7. List scheduling algorithm for DMBs.

check if their successors are ready to be scheduled (line 14 in Figure 7). An operation
is considered to be ready if all its predecessors (except input operations) have finished
executing. Next, we try and schedule the ready operations, starting with operation O;
having the highest priority (line 17 in Figure 7). Before O; can be scheduled, its input
constraints must be checked. If O; has as predecessor an input operation Oy, we try to

schedule Oy, such that tfznwh = tjs.ta’t = teurrent.- However, as reservoirs/dispensing ports

are nonreconfigurable devices, their number is constrained during design specifica-
tions. That is, operation O; can be scheduled at time ¢ only if at time ¢ — C}?%" VOIr there
is an available reservoir/dispensing port on which O, can be executed. Otherwise, O;
will be delayed and the next highest priority operation is considered for execution. If
all the constraints related to O; are satisfied, its corresponding module, B(0O)), is placed
on the microfluidic array (line 18 in Figure 7) and the start time of the operation is up-
dated (line 21). If there exists a placed storage module associated with the operation
O;, the storage is removed and the placement is updated.

The combined scheduling, placement, and routing during operation execution is im-
plemented by the ScheduleAndPlace function (Figure 7). Once an operation is sched-
uled it is removed from Ly eady and added to Leyecute. Before the end of the iteration,
the storage constraints are considered. For all the operations that finished at tcyrrent,
the placement of the microfluidic array must be updated by removing the modules to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:13

Placement(C, P, M,)
/ / construct list of empty rectangles
Lycct = ConstructRectList(C)
/ | search for R; € L.+ that best fits M;
R; = SelectRectangle(L,cct, M;)
if 3 R; then
placed = UpdatePlacement(P, R;, M;)
UpdateFreeSpace(Lcct)
end if
return placed

[y

© 00030 U W

Fig. 8. Placement algorithm for DMBs.

which they are bound (line 11 in Figure 7). Also, if their successors have not yet been
scheduled for execution, a storage unit is placed on the microfluidic array. T'S uses
design transformations to search the solution space. Inside TS, we use the Schedule-
AndPlace function to determine the schedule, placement and routing of droplets during
operation execution for an implementation W.

The next section presents our proposed placement algorithm, while Sections 4.3 and
4.4 present our droplet-aware operation execution algorithm and T'S implementation,
respectively. Section 4.5 discusses the time complexity of the proposed TS algorithm.

4.2. Placement Algorithm

The placement for DMBs can be considered as a 2D rectangle packing problem, in
which at each time-step, the position of modules to be accommodated on the microflu-
idic array must be decided. Our placement approach, presented in Figure 8, is based
on the “keep all maximal empty rectangles” (KAMER) algorithm proposed in Bazargan
et al. [2000] for DR-FPGAs. The algorithm partitions the free space on the chip into
a list of overlapping rectangles, represented by the coordinates of their left bottom
and right upper corners. When an operation is scheduled, the Placement algorithm in
Figure 8 selects an empty rectangle that best fits the module to which the operation
is bound. If there is no empty rectangle that can accommodate the device, the corre-
sponding operation will be delayed until more space is freed on the microfluidic array.

Consider the synthesis example in Figure 5(c). At ¢ = 4.17 s there are three opera-
tions that are ready to be scheduled, hence L,,q, = {O7, O12, O13}. We consider that
the reconfigurable operations are bound to the same devices as in Section 3.3, thus Oy
is bound to a 3 x 6 mixer, O;9, and O3 to 4 x 5 diluters. Then the priorities of the
operations ready to be scheduled are computed based on the optimal routes on which

the operations can be executed inside the modules: ¢, = cMixers _ 9 5, TOy = CglluterS
7 12
=225, 7q,, = Co " = 2.25.

Accordingly, the LS algorithm will select 07 and will call Placement to place Mixerg
on the biochip array. At time ¢ = 4.17 s, mixing operation Os and dilution operation Og
have finished executing, therefore the microﬂuidic array forms one big empty rectangle
Rect1 = (0,0,8,8). The mixer bound to Oy is placed at the bottom corner of Rect;
(line 6 in Figure 8). Consequently, in line 7, the free space will be updated to Lyect =
{Rect1 =(3,0,8,8), Rectg = (0,6,8,8)}, as depicted in Figure 9(a).

After the scheduling and placement of Oy, the next operation to be considered for
scheduling is Oq5. As rectangle Rect; = (3,0, 8, 8) is the only one sufficiently large to
accommodate the 4 x 5 module (line 4), Dilutery will be placed at its bottom corner
and the free space will be updated to Lyt = {Rect1 = (3,4, 8, 8), Rectg = (0,6, 8,8)}, see

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:14 E. Maftei et al.

S| B G&® S| B _ &Y S 38 By
| I 1
|
0.6) ') 1 06 s
s, RS, SIEY | Ri]
I I 3,4) | |
= I =5 =5
‘Sz =X I IRZ‘ ‘ S| 5" Do(O15) RZ‘ ‘ S, st Dy(O1-) RZ‘
I I A\ J \ 2)
li3
(0,0) S)— - I (0,0) (0,0)
B, w B, w B, w
(a) Placement of Diluters (b) Placement of Diluters (c) Final placement at t = 4.17

Fig. 9. Placement example.

Figure 9(b). Finally, Rect; will be chosen for accommodating the diluter bound to O3
and the final placement at ¢ = 4.17 will be as shown in Figure 9(c).

In this case, the free space on the microfluidic array permits scheduling Oy, Oq9,
and O3 at time ¢. If however, there is not enough space to place the module bound to
a ready operation, the scheduling of the operation will have to be delayed.

4.2.1. Placement of Nonreconfigurable Devices. The placement of a nonreconfigurable de-
vice (e.g., an optical detector) on the microfluidic array is similar to that of a re-
configurable module. However, once decided, the location of the device remains fixed
throughout the execution of the application. Therefore our algorithm maintains a list
of locations at which nonreconfigurable operations of each type (e.g., detection opera-
tions) can be performed, L, recons- These locations are established during the execu-
tion of the placement algorithm. The size of the list is constrained by the maximum
number of devices of the given type that can be integrated on the chip, given as an
input during design specifications. Let us consider that at time ¢ a nonreconfigurable
detection operation is ready to be scheduled. We try to place the 3 x 3 detector at one
of the locations in L j,;,.;- If no locations have been established previously or if they are
all occupied but we can still integrate detectors on the array, we use the algorithm in
Figure 8 to find a new detector location. If a free rectangle that can accommodate the
3 x 3 module is found, the operation is scheduled at time ¢ and the point corresponding
to the left bottom corner of the rectangle is added to Lgj.,;. Otherwise the detection
operation cannot be scheduled at time ¢. Just as in the case of reconfigurable modules,
nonreconfigurable devices cannot overlap with other modules placed on the chip.

4.3. Droplet-Aware Operation Execution

The movement of droplets during operation execution is determined offline by suc-
cessively calling the RunOperationsOneTimeStep algorithm presented in Figure 10.
The algorithm takes as input the list of operations executing at ¢.yrrent, Lexecute, the
m x n matrix C of cells, the current placement of modules P, the partial routes R of
droplets inside devices up to time tcyrrent, the module library £, and the current time-
step tcurrent. For each operation O; under execution at fcyrrent, the algorithm decides
the movement of the corresponding droplet inside the module M}, = B(O;) to which the
operation is bound, for the next time-step. Compared to previous approaches, we con-
sider that the movement pattern followed by a droplet during operation execution can
be dynamically changed, in order to ensure fluidic constraints, and at the same time
minimize the completion time of the operation.

The analytical method proposed in Maftei et al. [2010a] is used for characterizing
the execution of operations, using as a starting point a given module library. According

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:15

RunOperationsOneTimeStep(L..ccuies Cs Ps Ry Ly tewrrent)

1 for all Oz (S Le:cecute do
2 for all direction € {left, right, up, down, stop} do

3 EvaluateMove(C, P, R, L, O;, direction)
4 end for
5 directionpess = GetBestMove(C, P, R, L, Lezecute, Oi)
6 PerformBestMove(O;, directionpest, C, R)
7 UpdateOperationCompletion(O;, R;)
8 if O; finished executing then
9 t{iniSh = teurrent
10 endif
11 end for

12 return R

Fig. 10. Droplet-aware operation execution algorithm for DMBs.

to this method, any route can be decomposed into a sequence of forward, backward,
and perpendicular moves. In order to determine the completion time of an operation
following an irregular movement pattern, we need to approximate the percentage of
execution performed over one cell, corresponding to each type of move. The method
proposed in Maftei et al. [2010a] provides safe estimates of completion percentages,
by decomposing the modules in the given module library that have preestablished
movement patterns and known completion times, determined through experiments. As
a result, the method can be used to approximate the amount of operation completion
for any given droplet, during operation execution.

Let us consider the example in Figure 11(a), at time #.yrrent. There are three op-
erations executing on the array: O7, bound to a 3 x 6 mixer module and O19 and
O13, bound to 4 x 5 diluters. Let us consider that the previous three moves for the
operations are as indicated in Figure 11(b), by the position of the droplets, and the cor-
responding connecting arrows. We use a greedy approach for deciding the directions
in which the droplets are moved at the current time-step. For each droplet we have a
number of feasible moves that can be performed, while avoiding accidental merging.
We consider that the quality of each move is given by the amount of operation comple-
tion performed while transporting the droplet in the corresponding direction. We use
the analytical method proposed by us in Maftei et al. [2010a] to evaluate the quality
of each move (lines 2—4 in Figure 10). Consequently, according to our greedy approach,
the droplet is transported in the best direction (line 6) and the percentage of opera-
tion completion is updated (line 7), using the method proposed in Maftei et al. [2010a].
If the operation finished executing (its completion percentage reached 100%) then its
finishing time is also updated (lines 8-10).

Let us consider that the first droplet to be moved in Figure 11 is the one correspond-
ing to mixing operation O7. The droplet can be moved downwards, backwards, or it can
remain at the current position, see Figure 11(c). Based on the droplet characterization
in Maftei et al. [2010a], the droplet is routed downwards, as this leads to the most
mixing out of the feasible moves. After O is routed, the next droplet to be moved is
O15. The droplet cannot continue its movement upwards, as it risks accidentally merg-
ing with O7 (see Figure 11(d)). Hence, as shown in Figure 11(e), O19 is transported to
the right compared to its current position, which is the best possible move. Finally, the
algorithm chooses to keep O3 on the current position, as moving it backwards leads to
negative mixing [Maftei et al. 2010a] and moving it downwards breaks the fluidic con-
straints (accidental merging with O7). Figure 11(f) shows the positions of the droplets
at time tcyrrent + 1, after the moves have been performed.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:16 E. Maftei et al.

S; B, S; B, S; B,
D3(013)
S WIS) RiJ[s: [Ry
@ @ |Y
My(O7)
s AN (SIS I wisl e ®
Dp(O12)
@) @)
GJ? 12 GJ? 12
E W = W = W
(@) teurrent € (4.17, 6.67] (b) Placement at tcurrent (c) Choosing a move for O~
s S s 8
BEE® T o BB
s |@@@ R[S\ @@ IS @96 R
@ @ @ @ @ @
s - I I T I CSIE N .
@) @ @
12+(12 @ 12 @ 12
B W B W 5 W
(d) Choosing a move for O12 (e) Choosing a move for O;3 (f) Placement at teyrrent + 1

Fig. 11. Running operations O7, O19, and O3 for one time-step.

4.4. Tabu Search

Tabu Search (T'S) [Glover and Laguna 1997] is a metaheuristic method used for solving
optimization problems, by incorporating memory structures during the search process.
This method has already been used successfully for a wide range of optimization prob-
lems, such as scheduling, research planning, and VLSI design [Glover and Laguna
1997]. Tabu Search is based on a neighboring technique, using design transformations
(moves) applied to the current solution, W¢¥’7* to generate a set of neighboring solu-
tions, N, that can be further explored by the algorithm.

In order to efficiently explore the search space and to escape local optimality, the
metaheuristic uses a memory structure that records the recently visited solutions
(a tabu list). The information related to the last performed moves is used to guide
Tabu Search through the search space, by restricting the possibility of reversing a pre-
viously visited solution. However, labeling a move as tabu can result in prohibiting
attractive solutions that have not been visited so far. In order to prevent this situa-
tion, an “aspiration criteria” can be used, which allows a tabu solution to be visited,
if it improves on the currently best known one. Moreover, two other strategies called
“diversification” and “intensification” can be integrated in the Tabu Search in order to
improve the search process. During diversification, the metaheuristic is encouraged to
explore previously unvisited regions of the search space, and thus incorporate new el-
ements that were not previously included in the solution. The intensification strategy
focuses on the extensive exploration of promising regions of the search space that have
already been visited, looking to improve the best found solution.

Our Tabu Search-based algorithm for droplet-aware module-based synthesis is pre-
sented in Figure 12. In order to explore the search space the algorithm uses two types
of moves: (1) rebinding moves; and (2) priority swapping moves. During a rebinding

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:17

TabuSearch(g, C, L, A°, B°, II°)

1 < 8°,P° > = ScheduleAndPlace(g, C, A°, B°, 11°)
\I}best - \I}cumﬂent - ‘I/O =< AO,BO,SO,PO >
3 85t = §grmemt = 53 = GetCompletionTime(S°)
4 tabuListge, =0
5 tabuListyrio = 0
6 nuMiter =0
7
8

\V]

while timeLimit not reached do

N = GenerateNeighborhood(W“ "t ' /)
9 N =SelectAllowedMoves(N)
10 (0;,B(0;)) = SelectBestMove(N)
11 PerformBestMove(¥ """ O;, B(O;))
12 RecordRebindMove(O;, B(O;), tabuListde,)
13 55" " = GetCompletionTime(S*" ")
14 if 5Tt < 5kt then

15 \I[best — \Pcurrent; (SZESt — Jéu'rrent

16 else

17 NUMGter = NUMGter + 1

18 if numiier = numyi, then

19 (04, 0;) = SelectSwapMove(G, 1" tabu List prio)
20 PerformSwapMove(¥ """ O, O;)

21 RecordSwapMove(O;, O;, tabuListyrio)
22 5§ e™ = GetCompletionTime(S“" ™)
23 if 554 < 526“ then

24 \I}best — \I}current; 6gest - 5éur7>ent

25 end if

26 nuUMiter = 0

27 end if

28 end if

29 end while
30 return s

Fig. 12. Tabu Search algorithm for DMBs.

move an operation O; € G is randomly selected and its binding is changed to a dif-
ferent device in the module library. A priority swapping move consists in swapping
the priorities of two randomly chosen operations in the graph. We have used priority
swapping as part of a diversification strategy, when the best found solution does not
improve for a number of iterations, num,;,, determined experimentally.

We have considered that for each type of move, our algorithm maintains a tabu list,
consisting of the recently performed transformations. In order to reduce the amount of
memory required to memorize the search history, we do not record the entire solutions,
but only the attributes that have changed as part of a transformation. For example, if
operation O; is rebound to module M; as part of a rebinding move, the transformation
will be recorded in the corresponding tabu list as a pair of the form (O;, M;). The algo-
rithm starts with an initial solution ¥°, where each operation is bound to a randomly
chosen module and has a priority given according to the bottom-level value of the node
corresponding to the operation. In order to evaluate the quality of the solution, the
ScheduleAndPlace function is used, which returns the schedule S° and placement P°
for the given allocation and binding (line 1).

Two empty tabu lists, tabuListy,, and tabuList,,;,, used to record the rebinding
moves and the priority swapping moves, respectively, are initialized in lines 4-5.
Each list has a given size, tabuSizey,, and tabuSize,,;, correspondingly, specifying

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:18 E. Maftei et al.

the maximum number of moves that can be recorded. In order to implement the
diversification strategy, we use a variable num;,,., which keeps track of the number of

iterations passed without the improvement of the best solution, \I!ge“ (line 6). While

the time limit set for running the algorithm has not been reached, we try to improve
the best found solution, by using a number of iterations (lines 7-29). During each
iteration, we perform rebinding moves to the current solution, and construct a set
of neighboring solutions, N (line 8). However, N might contain solutions that are
disallowed by TS. For example, according to the aspiration criteria, if a move labeled
as tabu is performed, the resulting solution is allowed only if it improves on the cur-
rently best known solution. Therefore, all the tabu moves that are leading to a worse
completion time than the best one, are removed from N and the set N of allowed moves
is created (line 9). These moves are evaluated using the ScheduleAndPlace function,
and the one leading to the best schedule is selected and marked as tabu (lines 10-12).
If the obtained solution has a better schedule length that the currently known one, the
best-so-far solution is updated (lines 14—15). However, if the best known solution does
not improve for a given number of iterations numg;,, our algorithm introduces diversi-
fication into the search by performing a priority swapping move (line 18). If as a result
of diversification the best move is improved, then Ut is updated to W% (line 23).
After diversification is performed, the variable num;,, is reset to 0 (line 26).

The Tabu Search-based algorithm in Figure 12 is given a time limit, during which it
repeatedly performs moves trying to find the best solution in the search space. When
the time limit is reached the best found solution in terms of schedule length, West ig
returned by the algorithm, which then terminates.

4.5. Time Complexity Analysis

Let us consider the overall algorithm presented in Figure 6. The time complexity is
given by the Tabu Search algorithm in line 3, which uses the ScheduleAndPlace algo-
rithm presented in Figure 7 to perform the scheduling, placement, and droplet-aware
operation execution for all the operations O; in V. In order to implement the place-
ment algorithm in Figure 8 we use the area matrix data structure proposed in Handa
and Vemuri [2004]. According to this, the microfluidic array is modeled as a two di-
mensional array m x n, in which each cell represents an electrode and stores a value.
The value can be either positive, giving the number of contiguous empty cells above
the cell, in the same column, or negative, if the cell is occupied by a module. The
data structure leads to an efficient management of the free space using overlapping
rectangles, requiring O(mn) for inserting a new module and the same for deleting a
module from the microfluidic array. As the placement is performed for all the ready
operations (line 18 in Figure 7), it has complexity O(|V| mn). If we consider the while
loop at line 7 in Figure 7, it contains two loops, the first one executing for operations
that are finishing at the current time-step and having complexity O(|V|mn) and the
second one, for placing ready operations, also requiring O(|V|mn). In order to perform
the execution of operations, the ScheduleAndPlace uses the algorithm in Figure 10,
which decides for each droplet on the array, which of the maximum five movements
is the best one to be performed. To ensure the fluidic constraints and therefore define
the valid moves for a droplet, the locations of all other droplets present on the chip
must be considered (line 3 in Figure 10). As a result, the RunOperationsOneTimeStep

algorithm has a complexity of O(|V|2). Considering that the number of elements in the
neighborhood equals the number of operations in V, the overall complexity of the Tabu

Search algorithm is O(‘V?’ ‘ mn).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:19

Table II. Best-, Average Schedule Length, and Standard Deviation for the Real-Life Applications

Application | Area (cells x cells) Best (s) Average (s) Standard dev. (%)
DAS MBS DAS MBS DAS MBS
8x9 69.83 70.40 72.41 75.72 1.86 3.01
In-vitro 8x8 71.69 82.43 83.67 91.31 | 11.73 9.63
7x8 74.13 86.82 82.93 95.73 8.01 8.69
15 x 15 96.60 102.20 99.66 112.22 1.07 4.63
Proteins 14 x 14 95.63 107.12 99.68 116.78 1.12 5.34
13 x 13 98.76 117.25 | 101.00 128.75 0.65 6.46

5. EXPERIMENTAL EVALUATION

In order to evaluate our droplet-aware operation execution approach, we have used
two real-life applications and three synthetic TGFF-generated benchmarks. The Tabu
Search algorithm was implemented in Java (JDK 1.6), running on an Intel Core i7 860
at 2.8 GHz with 8 GB of RAM. The droplet movement characterization of operation ex-
ecution is based on the decomposition of devices shown in Table I, using the analytical
method proposed in Maftei et al. [2010a].

In our experiments we were interested to determine the improvement in completion
time that can be obtained by eliminating segregation cells and considering the position
of droplets inside devices. Therefore we consider two approaches to the synthesis prob-
lem: a droplet-aware operation execution approach (Droplet-Aware Synthesis, DAS)
and a black-box operation execution approach (Module-Based Synthesis, MBS). For
MBS, we have used the synthesis method we proposed in Maftei et al. [2010b].

In order to determine the initial positions of droplets inside modules during droplet-
aware operation execution, we have used the GRASP method developed by us in Maftei
et al. [2010a].

Table II presents the results obtained by using DAS and MBS for the synthesis of
two real-life applications: in-vitro diagnostics on human physiological fluids [Su et al.
2006], which has 28 operations, and the colorimetric protein assay (103 operations)
[Su and Chakrabarty 2005]. Column 3 in the table represents the best solution out
of 50 runs (in terms of the application completion time ¢g) for the droplet-aware ap-
proach, and the black-box approach. The average and standard deviation over the 50
runs compared to the best application completion time are also reported in Table II.
The comparison is made for three progressively smaller areas. In Maftei et al. [2010Db]
we have shown that the quality of solutions produced by the MBS implementation does
not degrade significantly if we reduce the time limit from 60 minutes to 10 minutes.
Hence, we have decided to use a time limit of 10 minutes for all the experiments in this
article. A fast exploration is important since we envision using DAS for architecture
exploration, where several biochip architectures have to be quickly evaluated in the
early design phase (considering not only different areas, but also different placement
of nonreconfigurable resources).

As we can see, controlling the movement of droplets inside devices can lead to im-
provements in terms of application completion time. For example, in the most con-
strained case for the colorimetric protein assay (the 13 x 13 array in Table II), we
have obtained an improvement of 15.76% in the best schedule length and 21.55% in
the average schedule length. Note that the comparison between DAS and MBS is un-
fair towards DAS. In DAS, the completion times presented in the table include routing
times (moving the droplets between the devices). There are no routing times in the
results reported for MBS, where we consider that routing is done as a postsynthesis
step, which will introduce additional delays.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

2:20

E. Maftei et al.

Table Ill. Best-, Average Schedule Length, and Standard Deviation for the Synthetic Benchmarks

Operations | Area (cells x cells) Best (s) Average (s) Standard dev. (%)

DAS MBS DAS MBS DAS MBS

8 x 8 40.99 45.01 | 41.79 47.63 0.80 2.01

20 7x8 41.32 45.75 | 43.15 50.46 0.98 2.64
7x7 42.15 47.81 | 46.23 56.77 1.50 6.14

9 x 10 46.85 49.60 | 47.25 53.93 0.17 2.58

40 9x9 47.38 51.10 | 47.76 55.49 0.25 2.60
8 x 8 47.47 83.83 | 55.16 92.35 | 12.27 4.47

9 x 10 82.69 84.00 | 84.88 89.07 1.26 3.11

60 9x9 82.40 85.43 | 85.27 95.14 1.40 5.02
8x9 87.54 100.56 | 95.87 111.89 4.19 7.18

A measure of the quality of a T'S implementation is how consistently it produces good
quality solutions. The results shown in Table IT were obtained for 50 runs of the DAS
and MBS approaches. The standard deviations over the 50 runs compared to the best
application completion times Jg are reported in column 5. We can notice the standard
deviation with DAS is small, which indicates that DAS consistently finds solutions
that are very close to the best solution found over the 50 runs (each run will explore
differently the solution space, resulting thus in different solutions).

In a second set of experiments we have compared DAS with MBS on three synthetic
applications. The graphs are composed of 20, 40, and 60 operations and the results
in Table III show the best and the average completion times, as well as the standard
deviation obtained out of 50 runs for DAS and MBS, using a time limit of 10 minutes.

For each synthetic application we have considered three progressively smaller areas.
As shown in Table III, the DAS approach leads to significant improvements in the av-
erage completion time, compared to the black-box approach. For example we obtained
an improvement of 40.27% in the average schedule length for the application with 40
operations, in the case of the 8 x 8 array.

6. CONCLUSIONS

In this article we have presented a Tabu Search-based technique for the synthesis of
digital microfluidic biochips. Compared to previous approaches, we have considered
the positions of droplets inside virtual devices, during their execution. Two real-life
examples as well as a set of three synthetic applications have been used for evaluating
the effectiveness of the proposed approach. We have shown that by considering the
locations of droplets inside devices we can better utilize the area of the microfluidic
array, leading to improvements in the completion times of applications as compared to
the black-box approach. By reducing the execution time, smaller area biochips can be
used, resulting in a decrease of the design costs necessary for running the biochemical
applications.

REFERENCES

Bazargan, K., Kastner, R., and Sarrafzadeh, M. 2000. Fast template placement for reconfigurable computing
systems. IEEE Des. Test Comput. 17, 1, 68-83.

Chakrabarty, K. 2010. Design automation and test solutions for digital microfluidic biochips. IEEE Trans.
Circuits Syst. I, Reg. Papers 57, 4-17.

Chakrabarty, K., Fair, R. B., and Zeng, J. 2010. Design tools for digital microfluidic biochips: Towards func-
tional diversification and more than Moore. Trans. Computer-Aided Design Integr. Circuits Syst. 29, 7,
1001-1017.

Chakrabarty, K. and Zeng, J. 2005. Design automation for microfluidics-based biochips. ACM J. Emerg.
Technol. Comput. Syst. 1, 3, 186-223.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

Module-Based Synthesis of Digital Microfluidic Biochips 2:21

Chakrabarty, K. and Zeng, J. 2007. Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration
Techniques. CRC Press.

Fair, R. B. 2007. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluidics Nanofluidics 3, 3, 245—
281.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability—A Guide to the Theory of NP-
Completeness. Freeman, New York.

Glover, F. and Laguna, M. 1997. Tabu Search. Kluwer Academic Publishers.

Handa, M. and Vemuri, R. 2004. An efficient algorithm for finding empty space for online FPGA placement.
In Proceedings of the Design Automation Conference. 960-965.

ITRS07. International Technology Roadmap for Semiconductors.
http://www.itrs.net/Links/2007ITRS/Home2007.htm.

Maftei, E. 2011. Synthesis of digital microfluidic biochips with reconfigurable operation execution. Ph.D.
thesis, Technical University of Denmark.

Maftei, E., Paul , P., and Madsen, J. 2009. Tabu search-based synthesis of dynamically reconfigurable dig-
ital microfluidic biochips. In Proceedings of the Compilers, Architecture, and Synthesis for Embedded
Systems Conference. 195-203.

Maftei, E., Paul, P., and Madsen, J. 2010a. Routing-based synthesis of digital microfluidic biochips. In Pro-
ceedings of the Compilers, Architecture, and Synthesis for Embedded Systems Conference. 41-49.

Maftei, E., Paul, P., and Madsen, J. 2010b. Tabu search-based synthesis of digital microfluidic biochips with
dynamically reconfigurable non-rectangular devices. J. Des. Autom. Emb. Syst. 14, 287-308.

Maftei, E., Paul, P., Madsen, J., and Stidsen, T. 2008. Placement-aware architectural synthesis of digital
microfluidic biochips using ILP. In Proceedings of the International Conference on Very Large Scale
Integration of System on Chip. 425-430.

Micheli, G. D. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill Science.

Moore, G. E. 1965. Cramming more components onto integrated circuits. Electronics 38, 8, 114-117.

Paik, P., Pamula, V. K., and Fair, R. B. 2003. Rapid droplet mixers for digital microfluidic biochips. Lab Chip
3, 253-259.

Pollack, M. G., Shenderov, A. D., and Fair, R. B. 2002a. Electrowetting-based actuation of droplets for inte-
grated microfluidics. Lab Chip 2, 96-101.

Ren, H., Sriniasan, V., and Fair, R. B. 2003. Design and testing of an interpolating mixing architecture for
electrowetting-based droplet-on-chip chemical dilution. In Proceedings of the International Conference
on Transducers, Solid-State Sensors, Actuators and Microsystems. 619—622.

Ricketts, A., Irick, K., Vijaykrishnan, N., and Irwin, M. 2006. Priority scheduling in digital microfluidics-
based biochips. In Proceedings of Design, Automation and Test in Europe. Vol. 1. 1-6.

Sinnen, O. 2007. Task Scheduling for Parallel Systems. Wiley.

Srinivasan, V., Pamula, V. K., and Fair, R. B. 2004. Droplet-based microfluidic lab-on-a-chip for glucose
detection. Analytica Chimica Acta 507, 145-150.

Su, F. and Chakrabarty, K. 2004. Architectural-level synthesis of digital microfluidics-based biochips. In
Proceedings of the International Conference on Computer Aided Design. 223-228.

Su, F. and Chakrabarty, K. 2005. Unified high-level synthesis and module placement for defect-tolerant
microfluidic biochips. In Proceedings of the 42nd Annual Conference on Design Automation. 825-830.

Su, F., Hwang, W., and Chakrabarty, K. 2006. Droplet routing in the synthesis of digital microfluidic biochips.
In Proceedings of Design, Automation and Test in Europe. Vol. 1. 73-78.

Tabeling, P. 2006. Introduction to Microfluidics. Oxford University Press.

Ullman, D. 1975. NP-complete scheduling problems. J. Comput. Syst. Sci. 10, 384-393.

Xu, T. and Chakrabarty, K. 2007. Integrated droplet routing and defect tolerance in the synthesis of digital
microfluidic biochips. In Proceedings of the Design Automation Conference. 948-953.

Yuh, P.-H., Yang, C.-L., and Chang, Y.-W. 2007. Placement of defect-tolerant digital microfluidic biochips
using the T-tree formulation. ACM J. Emerg. Technol. Comput. Syst. 3, 3.

Received October 2010; revised April 2011, August 2011; accepted November 2011

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 2, Pub. date: February 2013.

