
Des Autom Embed Syst (2010) 14: 287–307
DOI 10.1007/s10617-010-9059-x

Tabu search-based synthesis of digital microfluidic
biochips with dynamically reconfigurable
non-rectangular devices

Elena Maftei · Paul Pop · Jan Madsen

Received: 12 May 2010 / Accepted: 28 June 2010 / Published online: 21 July 2010
© Springer Science+Business Media, LLC 2010

Abstract Microfluidic biochips are replacing the conventional biochemical analyzers, and
are able to integrate on-chip all the necessary functions for biochemical analysis. The “dig-
ital” microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete
droplets, and hence they are highly reconfigurable and scalable. A digital biochip is com-
posed of a two-dimensional array of cells, together with reservoirs for storing the samples
and reagents. Several adjacent cells are dynamically grouped to form a virtual device, on
which operations are performed. So far, researchers have assumed that throughout its exe-
cution, an operation is performed on a rectangular virtual device, whose position remains
fixed. However, during the execution of an operation, the virtual device can be reconfigured
to occupy a different group of cells on the array, forming any shape, not necessarily rec-
tangular. In this paper, we present a Tabu Search metaheuristic for the synthesis of digital
microfluidic biochips, which, starting from a biochemical application and a given biochip
architecture, determines the allocation, resource binding, scheduling and placement of the
operations in the application. In our approach, we consider changing the device to which an
operation is bound during its execution, to improve the completion time of the biochemical
application. Moreover, we devise an analytical method for determining the completion time
of an operation on a device of any given shape. The proposed heuristic has been evaluated
using a real-life case study and ten synthetic benchmarks.

Keywords Microfluidics · Biochips · Reconfigurability · Synthesis

1 Introduction

Microfluidic biochips (also referred to as lab-on-a-chip) represent a promising alternative
to conventional biochemical laboratories, and are able to integrate on-chip all the necessary
functions for biochemical analysis using microfluidics, such as, transport, splitting, merging,
dispensing, mixing, and detection [8].

E. Maftei (!) · P. Pop · J. Madsen
Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
e-mail: em@imm.dtu.dk

mailto:em@imm.dtu.dk


288 E. Maftei et al.

Biochips offer a number of advantages over conventional biochemical procedures. By
handling small amount of fluids, they provide higher sensitivity while decreasing reagent
consumption, hence reducing cost. Moreover, due to their miniaturization and automation,
they can be used as point-of-care devices, in areas that lack the infrastructure needed by
conventional laboratories [21].

Due to these advantages, biochips are expected to revolutionize clinical diagnosis, es-
pecially immediate point-of-care diagnosis of diseases. Other emerging application areas
include drug discovery, DNA analysis (e.g., polymerase chain reaction and nucleic acid se-
quence analysis), protein and enzyme analysis and immuno-assays. Microfluidic devices can
also be used for environment monitoring, by pathogen detection in air or water samples [21].

There are two generations of microfludic biochips. The first generation is based on
the manipulation of continuous liquid through fabricated micro-channels, using external
pressure sources or integrated mechanical micro-pumps [21]. Although adequate for many
simple biochemical applications, their integrated micro-structures make continuous-flow
biochips unsuitable for more complex applications, requiring complicated fluid manipula-
tions [5]. The second generation is based on the manipulation of discrete, individually con-
trollable droplets, on a two-dimensional array of identical cells. The actuation of droplets
is performed without the need of micro-structures, leading to increased scalability and flex-
ibility compared with continuous-flow biochips [14]. This generation is also referred to as
“digital microfluidics”, due to the analogy between the droplets and the bits in a digital
system. Such biochips, consisting of hundreds [1] and thousands [16] of cells have already
been successfully designed and commercialized. In this paper, we are interested in the sec-
ond generation, droplet-based digital biochips.

1.1 Related work

Researchers have initially addressed separately architectural and physical-level synthesis of
DMBs. Su and Chakrabarty [17] have proposed an integer linear programming (ILP) model
for scheduling and binding, considering a given allocation, but without addressing placement
and routing. During the physical-level synthesis, the placement [19, 25] of each module on
the microfluidic array and the droplets routes [6, 20] have to be determined.

A unified high-level synthesis and module placement methodology has been proposed
in [18], where the focus has been on deriving an implementation that can tolerate faulty cells
in the biochip array. Their algorithm was modified in [22] to include droplet-routing-aware
physical design decisions. Yuh et al. [24] have proposed a synthesis and placement algorithm
which uses a tree-based topological representation and is able to improve on the results
from [18]. The algorithm has later been extended to consider defective cells on the biochip
array [25]. In [10] we have proposed a unified ILP-based architectural-level synthesis and
placement approach for DMBs, that although produces the optimal solution, is only feasible
for limited problem sizes.

The combined architectural- and physical-synthesis problem has some similarities with
the simultaneous scheduling and placement problem of dynamically reconfigurable field-
programmable gate arrays (DR-FPGAs) [2], which is typically formulated as a 3D packing
problem that minimizes the volume, seen as area × execution time. Bazargan et al. [2] have
proposed offline algorithms for statically reconfigurable FPGAs and online algorithms for
dynamically reconfigurable FPGAs. Yuh et al. [26] use a 3D transitive closure subGraph for
the 3D packing problem. Their earlier work on temporal floorplanning using a tree-based
topological representation [23] has been extended for DMBs [24].

However, there are three main differences when doing scheduling and placement for
digital microfluidic biochips (DMBs): (1) operations that are executed on virtual devices



Tabu search-based synthesis of digital microfluidic biochips 289

(created by grouping adjacent cells) can easily be re-assigned to a different group of cells
during the execution of operations without incurring a significant overhead—see Sect. 2.1
for details; (2) non-reconfigurable devices, such as reservoirs and detectors also have to be
considered; and (3) additional operations have to be introduced to temporarily store a droplet
in-between operations that are not scheduled at consecutive time-steps.

1.2 Contribution

In this paper, we propose a Tabu Search-based synthesis approach that, starting from a bio-
chemical application modeled as a sequencing graph and a given biochip array, determines
the allocation, resource binding, and scheduling of the operations in the application at the
same time with module placement. All of previous approaches to DMBs and DR-FPGAs
assume that a reconfigurable operation is performed on a rectangular virtual module whose
placement and shape remain fixed throughout the execution of the operation. However, our
scheduling and placement steps consider that during its execution, an operation can be re-
assigned to another module having different location and shape, in order to improve the
biochemical application completion time on the given biochip array. Moreover, we propose
an analytical method for determining the completion time of an operation on a device of
any given shape. We show that by allowing operations to be re-assigned to modules of any
shape during their execution, significant improvements can be obtained in the application
completion time, allowing us to use smaller area biochips and thus reduce costs.

The paper is organized in six sections. Section 2.1 presents the architecture of a digi-
tal microfluidic biochip. We propose a method for determining the completion time of an
operation on a virtual device in Sect. 2.2. We introduce the abstract model used to capture
a biochemical application in Sect. 2.3. We formulate the problem in Sect. 3 and illustrate
the design tasks using several examples. The proposed approach is presented in Sect. 4 and
evaluated in Sect. 5. The last section presents our conclusions.

2 System model

2.1 Biochip architecture

In a digital microfluidic biochip the manipulation of liquids is performed using discrete
droplets. There are several mechanisms for droplet manipulation [8]. Our work considers
electrowetting-on-dielectric (EWD) [14], but can be extended to handle other techniques as
well. EWD is the most promising technique, and can provide high droplet speeds of up to
20 cm/s [14]. A biochip is composed of several cells, see Fig. 1b. The schematic of a cell
is presented in Fig. 1a. The droplet is sandwiched between two glass plates (the top plate
and the bottom plate), and moves within a filler fluid. The top plate contains a single ground
electrode, while the bottom plate has several control electrodes. The electrodes are insulated
from the droplet through an insulation material. With EWD, the movement of droplets is
controlled by applying voltages to the required electrodes. For example, turning off the
middle control electrode and turning on the right control electrode in Fig. 1a will force the
droplet to move to the right. For the details on EWD, the reader is directed to [14].

Several cells are put together to form a two-dimensional array (an example architecture
is presented in Fig. 1b). Using EWD manipulation, droplets can be moved to any location
without the need for pumps and valves, which are required in a continuous-flow biochip.
Besides the basic cell discussed previously, a chip typically contains input and output ports



290 E. Maftei et al.

Fig. 1 Biochip architecture

and detectors. The detection can be done by using, for example, a light-emitting diode (LED)
beneath the bottom plate and a photodiode on the top plate. The chip shown in Fig. 1b
can be used for the diagnosis of metabolic disorders, by measuring the glucose and lactate
level in human physiological fluids. Hence, the device contains the necessary input ports for
introducing the samples (urine, plasma and serum) and the reagents (glucose oxidase, lactate
oxidase and buffer substance NaOH) on the microfluidic array, where the corresponding
protocol will be performed.

Using this architecture, and changing correspondingly the control voltages, all the ba-
sic microfluidic operations, such as transport, splitting, merging, dispensing, mixing, and
detection, can be performed. For example, mixing is done by bringing two droplets to the
same location and merging them, followed by the transport of the droplet over a series of
electrodes. By moving the droplet, external energy is introduced, creating complex flow
patterns (due to the formation of multilaminates), thus leading to a faster mixing [13]. The
operation can be executed by routing the droplet inside a virtual module, created by group-
ing adjacent cells. Any cells can be used for this purpose, thus we say that the operation is
“reconfigurable”.

In order to prevent the accidental merging of a droplet with another droplet in its vicinity,
a minimum distance must be kept between operations executing on the microfluidic array.
These fluidic constraints are enforced by surrounding a module by a 1-cell segregation area
(the hashed area), containing cells that can not be used until the operation executing on the
device is completed. The role of the segregation area will be further discussed in Sect. 3.1.

An example of a mixer device is shown in Fig. 1c, where a mixing operation is performed
by routing the droplet inside the 2×4 module. However, due to reconfigurability of the mix-
ing, the same operation can be executed on a different group of electrodes, for example the
2 × 2 mixer shown in the same figure, the only difference consisting in the completion time
for the operation. We consider that designers will build and characterize a module library L,
where for each operation there are several options with varying areas and execution times.
For example, the module library in Table 1 shows the completion times for executing the
mixing operation on the 2×4 and on the 2×2 devices, based on the experiments performed
in [13].

So far, it has been considered that a reconfigurable operation is performed on a rectangu-
lar group of adjacent cells on the microfluidic array, representing one of the virtual devices
in the module library. Therefore, the number of electrodes used for an operation and their
location on the microfluidic array were fixed throughout the execution. However, because
of the virtual character of the devices, in this paper we consider that during a reconfigurable



Tabu search-based synthesis of digital microfluidic biochips 291

Table 1 Module library
Operation Area (cells) Time (s)

Mixing/Dilution 2 × 4 2.9

Mixing/Dilution 1 × 4 4.6

Mixing/Dilution 2 × 3 6.1

Mixing/Dilution 2 × 2 9.95

operation the droplet can be routed to another group of electrodes, where the operation can
be continued, possibly on a device of a different shape.1 Let us consider the example in
Fig. 1c. We assume that 2 s after the mixing operation started executing on the 2 × 4 virtual
module, with the droplet being on the cell denoted by c1, we decide to change the position at
which the operation is performed and the number of electrodes used for mixing. In our ex-
ample, the droplet will be routed to the nearest position belonging to the new group of cells,
c2, where it will continue executing. As mixing is performed by routing, the operation is not
interrupted while being transported between the two positions, however, for simplicity, we
ignore the percentage of mixing obtained during transport. As the operation was executed
for only 2 s out of the 2.9 s required for completion on the 2 × 4 module (see Table 1), only
68.96% of the mixing was performed. Therefore, the operation will continue to execute on
the new 2 × 2 group of cells, until is done. Considering the completion time of the mixing
operation on a 2 × 2 module of 9.95 s as shown in Table 1, the remaining 31.04% of the
mixing is obtained by routing the droplet inside the 2 × 2 module for 3.08 s. In the end, the
completion time for the operation is 5.08 s.

One aspect that must be considered when changing the location at which an operation is
executed is the additional time required to transport the droplet between the two positions.
In this paper we consider the data2 from [14], which allows us to approximate that the time
required to route the droplet one cell is 0.01 s, which is an order of magnitude smaller than
operation execution times, see Table 1. The routing overhead will be considered during the
synthesis process.

A biochemical application may also contain “non-reconfigurable” operations, that are
executed on real devices, such as reservoirs or optical detectors.

2.2 Characterizing non-rectangular virtual modules

Table 1 gives completion times for performing reconfigurable operations on various areas.
The experiments have considered a limited set of devices, of rectangular shape. However,
reconfigurable operations can be executed by routing the droplet on any route, as shown
in Fig. 2a, where a mixing operation is executed on a “L-shaped” virtual module. Since
the virtual modules can consist of a varying number of electrodes, arranged in any form,
characterizing all devices through experiments is time consuming. Moreover, the completion
time of an operation is also influenced by the route taken by the droplet, inside the module,
during the execution of the operation. Therefore, in this section we propose an analytical
method for determining how the percentage of mixing varies depending on the movement
of the droplet inside a module of a given size and shape. Our method provides safe estimates
by decomposing the devices from Table 1.

1Non-rectangular shaped devices will be discussed in the next section.
2Electrode pitch size = 1.5 mm, gap spacing = 0.3 mm, average linear velocity = 20 cm/s.



292 E. Maftei et al.

Fig. 2 Execution of a mixing operation

Fig. 3 Characterization of module library

Let us consider that while routing the droplet inside the mixer module in Fig. 2b, it
reaches the cell c2 at time t . The previous movements for the droplet are as shown by the
arrows in the same figure. We have five possibilities for t + 1: routing the droplet to the left,
to the right, up, down or keeping the droplet on c2. Let us denote with p0 the percentage of
mixing obtained while routing the droplet on an electrode in a forward movement (relative
to the previous move), with p90 the percentage obtained from a perpendicular movement of
the droplet and with p180 the percentage of mixing obtained from a backward movement,
see Fig. 2b.

Considering Table 1, we can estimate the percentage of mixing over one cell, corespond-
ing to each type of movement (forward, backward, perpendicular). The time required for a
droplet to be transported one cell is 0.01 s. In order to approximate p0, p90 and p180 we
decompose the mixing patterns from the module library in Table 1 in a sequence of forward,
backward and perpendicular motions, as shown in Fig. 3. For example, the 2 × 2 mixer
in Fig. 3d can be decomposed in perpendicular movements, because after each move the
droplet changes its routing direction by 90°. As shown in Table 1, the operation takes 9.95 s
to execute inside the 2×2 module, thus we can safely approximate the percentage of mixing
p90 to 0.1%.

For the 2 × 3 module shown in Fig. 3c, the mixing pattern is composed of forward
and perpendicular movements. By considering the mixing time shown in Table 1 and
p90 = 0.1%, we obtain the percentage of mixing resulted from one forward movement
p0 = 0.29%. Note that by decomposing the 2 × 4 module shown in Fig. 3a, we obtain a
different value for p0: 0.58%. This is because the forward mixing percentage is not con-
stant, but it depends on the number of electrodes used. Therefore we consider that there are
two values that estimate the percentage of forward movement: p0

1 , when the forward move-
ment is continued only for one cell as in Fig. 3c, and p0

2 , when the forward movement of the
droplet is of at least two cells. This is a safe (pessimistic) approximation, since the value of
p0 will further increase if the droplet continues to move forward.

Considering the percentage of forward movement p0
2 in the decomposition of the 1 × 4

module in Fig. 3b, we obtain the (pessimistic) percentage of mixing performed during a



Tabu search-based synthesis of digital microfluidic biochips 293

Fig. 4 Application graph

backward motion: p180 = −0.5%. The negative mixing is explained by the unfolding of
patterns inside the droplet, i.e., the two droplets tend to separate when moved backward.

Using these percentages, we can determine the completion time for an operation on a
module of any given shape. For example, for the L-shaped module in Fig. 2c, routing the
droplet once according to the mixing pattern shown by the arrows leads to 8.72% of mixing.
Therefore, in order to complete the mixing operation on the L-shaped module, the droplet
will be circularly routed on the showned path 11.46 times, leading to a total time of 2.29 s.

We assume that before synthesis is performed, the set of percentages µ = {p0
1 , p0

2 , p90,
p180} is determined through experiments such as the ones in [13] which have produced
Table 1. The method presented in this subsection can be applied to any such experimental
data, to obtain the completion time of an operation on any module shape.

2.3 Biochemical application model

We model a biochemical application using an abstract model consisting of a sequencing
graph [4]. The graph G(V, E ) is directed, acyclic and polar (i.e., there is a source node,
which is a node that has no predecessors and a sink node that has no successors). Each node
Oi ∈ V represents one operation. The binding of operations to modules in the architecture is
captured by the function B : V → A, where A is the set of allocated modules from the given
library L.

An edge ei,j ∈ E from Oi to Oj indicates that the output of operation Oi is the input
of Oj . An operation can be activated after all its inputs have arrived and it issues its outputs
when it terminates. We assume that, for each operation Oi , we know the execution time C

Mk
i

on module Mk = B(Oi) where it is assigned for execution. In Fig. 4 we have an example of
an application graph with ten operations, O1 to O10. The application consists of three mixing
operations (O8, O9 and O10), one diluting operation (O3) and six input operations (O1, O2,
O4, O5, O6, O7). O3 is a diluting operation that has two outgoing edges, representing an
output of two droplets. This requires a split operation. Considering Fig. 1a, a droplet is
split by turning on the left and right electrodes and turning off the middle electrode [15].
Thus, the droplet volume will vary during the application execution. We assume that the
biochemical application has been correctly designed, such that all the operations will have
the required input droplet volumes. Let us consider that the operation O8 is bound to a 2 × 3
mixing module denoted by Mixer1 (i.e., B(O8) = Mixer1). Then, according to Table 1, the
execution time for O8 on the 2 × 3 device will be C

Mixer1
8 = 6.1 s.



294 E. Maftei et al.

Fig. 5 Implementation example

3 Problem formulation

The problem we are addressing in this paper can be formulated as follows. Given (1) a bio-
chemical application modeled as a graph G , (2) a biochip consisting of a two-dimensional
m × n array C of cells and (3) a characterized module library L, we are interested to synthe-
size that implementation ! , which minimizes the completion time δG (i.e., finishing time of
the sink node, t

finish
sink ).

Synthesizing an implementation ! = 〈A, B, S, P〉 means deciding on: (1) the allocation
A, which determines what modules from the library L should be used, (2) the binding B of
each operation Oi ∈ V to one or more modules Mk ∈ A, (3) the schedule S of the operations,
which contains the start time t start

i of each operation Oi on its corresponding module and
(4) the placement P of the modules on the m × n array.

The next subsections will illustrate each of these tasks. The presentation order does not
correspond to the order in which our synthesis approach performs these tasks.

3.1 Allocation and placement

Let us consider the graph shown in Fig. 4. We would like to implement the operations on the
9×9 biochip from Fig. 1b. We consider the current time as being t . The input operations are
already assigned to the corresponding input ports. Thus, O1 is assigned to the input port B ,
O2 to S2, O4 to S1, O5 to R1, O6 to S2, O7 to R2. However, for the mixing operations (O8,
O9 and O10) and the dilution operation (O3) our synthesis approach will have to allocate the
appropriate modules, bind operations to them and perform the placement and scheduling.

Let us assume that the available module library is the one captured by Table 1. We have
to select modules from the library while trying to minimize the application completion time
and place them on the 9 × 9 chip. A solution to the problem is presented in Fig. 5b–d, where
the following modules3 are used: one 2 × 2 mixer (Mixer1), one 2 × 3 mixer (Mixer2), one
2 × 4 mixer (Mixer3) and one 1 × 4 diluter (Diluter1).

The placement for the solution is as indicated in Fig. 5b–d, where we can notice that
modules occupy a space larger than their size, due to the segregation area. If two droplets are
next to each other on two adjacent cells, they will tend to merge to form one single droplet.
Two approaches have been considered for solving this problem. The first approach, used
in [18], consists in having a one-cell distance between any two adjacent modules, which is
sufficient for isolating the functional regions on which operations are executing. However, if
routing is not considered at the same time with placement, the resulted solution will require

3In the figures we denote Mixeri with Mi and Diluteri with Di .



Tabu search-based synthesis of digital microfluidic biochips 295

significant modifications for accommodating the necessary routes. As routing needs a 3-cell
width channel, one cell between adjacent modules will not be sufficient for creating the
necessary routes and thus transporting the droplet. Moreover, the lack of segregation cells
between reservoirs and modules placed in their proximity can make the dispensing process
impossible. In the second approach, proposed in [3], a segregation area is wrapped around
each module. This approach is depicted in Fig. 5b, where Diluter1, which has a size of 1 × 4
occupies 3 × 6 cells. As it can be seen, module wrapping provides a 2-cell width channel
between any two adjacent modules as well as a 1-cell channel between modules placed at
the chip boundary and reservoirs. The advantage of this approach is that the segregation
areas can be adjusted during a post-processing step to introduce the necessary paths for
droplet movement. In this article, we consider this second approach, and we assume that the
routing will be performed in a separate phase, after the positions of the modules have been
determined.

Our placement problem has similarities with the placement of DR-FPGAs, where mod-
ules can physically overlap on-chip as long as they do not overlap in time, i.e., they are used
during different time intervals. After an operation has finished executing on a module, we
can reuse the same cells as part of another module. The main difference to DR-FPGAs is
that we can easily re-assign operations to devices during their execution, as discussed in
Sect. 2.1. This property will be used to improve the scheduling, see Sect. 3.3.

3.2 Binding and scheduling

Once the modules have been allocated and placed on the cell array, we have to decide on
which modules to execute the operations (binding) and in which order (scheduling), such
that the application completion time is minimized.

Considering the graph in Fig. 4 with the allocation presented in the previous section,
Fig. 5a presents the optimal schedule in the case of static virtual modules, whose place-
ment remains the same throughout their operation. The schedule is depicted as a Gantt
chart, where, for each module, we represent the operations as rectangles with their length
corresponding to the duration of that operation on the module. For example, operation
O9 is bound to module Mixer2, starts immediately after the dilution operation O3 (i.e,
t start
9 = t + 4.6) and takes 6.1 s, finishing at time t

finish
9 = t + 10.7 s.

The mixing operation O10 cannot start on module Mixer3 until the operation bound to
Mixer1 has finished executing, at time t + 9.95. Scheduling also decides the access to non-
reconfigurable modules, such as input/output ports and detectors, but in this example we
have omitted it for simplicity.

Note that special “store” modules have to be allocated if a droplet has to wait before
being processed, which is different from DR-FPGAs. Consider the dilution operation O3,
which outputs two droplets corresponding to operations O9 and O10. As O10 is not scheduled
immediately after O3 finishes, a 1 × 1 storage cell is required to store the droplet until O10

can be executed (see Fig. 5c). In general, if there exists an edge ei,j from Oi to Oj such
that Oj is not immediately scheduled after Oi (i.e., there is a delay between the finishing
time of Oi and the start time of Oj ) then we will have to allocate a storage cell for ei,j . The
allocation of storage cells depends on how the schedule is constructed.

3.3 Synthesis with dynamically reconfigurable modules of any shape

Although the schedule presented in Fig. 5a is optimal for the given allocation and binding, it
can be further improved by taking advantage of the property of dynamic reconfiguration of



296 E. Maftei et al.

Fig. 6 Motivational example

the digital biochip. Consider the placement in Fig. 5c. Even though the number of free cells
on the microfluidic array at time t + 4.6 is higher than the number of cells in Mixer3, the
fragmentation of the space makes the placement of Mixer3 impossible. Hence, the operation
has to wait until t + 9.95, in Fig. 5d, when Mixer1 finishes executing, and there are enough
free adjacent cells for accommodating Mixer3.

However, this delay can be avoided by changing the location and the shape of the module
Mixer1 on which the mixing operation is performed such that the space fragmentation is
minimized. For example, by re-assigning the operation to the “L-shaped” device shown in
Fig. 6c and moving the droplet to the new location, we can place Mixer3 at time t + 4.6,
obtaining the schedule in Fig. 6a. Shifting is done by changing the activation sequence of
the electrodes, such that the droplet is routed to the new position, where it continues moving
according to the mixing pattern. Considering that at time t + 4.6 the mixing operation still
had 5.35 s to execute on the 2 × 2 module out of the total 9.95 s, the rest 53.76% of mixing
will be executed on the “L-shaped” mixer. Using the method proposed in Sect. 2.2, the
completion time of an operation on the “L-shaped” module is 2.89 s, thus the mixing will
complete at time t + 6.15.

The overhead that needs to be considered for moving the module is equal to the routing
time to the new destination, which, under the assumptions in Sect. 2.1 is 2 × 0.01 s. In order
to constrain the amount of additional routing caused by dynamic routing, our placement
approach considers that the routing overhead performed in order to accommodate one device
should not exceed a given threshold, Overheadmax.

4 Tabu Search based synthesis

We have shown that Tabu Search can be used successfully to synthesize good quality so-
lutions in the context of DMBs [11]. In this paper we extend the approach from [11] to
consider dynamically reconfigurable non-rectangular devices. Our synthesis strategy, pre-
sented in Fig. 7, takes as input the application graph G(V, E ), the given biochip cell array
C , the module library L, and produces that implementation ! = 〈A, B, S, P〉 consisting of,
respectively, the allocation, binding, scheduling and placement, which minimizes the sched-
ule length δG on the given biochip C . As the result of the synthesis process depends on the
order of executing the operations, we use priorities # to decide the scheduling sequence for
two or more operations that are ready to be executed at the same time t . In this approach,
we use a Tabu Search metaheuristic [9] to decide the allocation A, binding B and priorities



Tabu search-based synthesis of digital microfluidic biochips 297

DMBSynthesis(G , C , L)
1 < A◦, B◦ >= InitialSolution(G, L)

2 #◦ = CriticalPath(G, A◦, B◦)
3 < A, B,# >= TabuSearch(G, C, L, A◦, B◦,#◦)
4 < S, P >= ScheduleAndPlace(G, C, A, B,#)

5 return ! =< A, B, S, P >

Fig. 7 Synthesis algorithm for DMBs

of operations # (line 3 in Fig. 7). TS starts from an initial solution, where we consider that
for the initial allocation A◦ each operation Oi ∈ V is bound to a randomly chosen module
Mi ∈ L (line 1 in Fig. 7). The initial execution priorities, #◦, are given according to the
critical path priority function (line 2 in Fig. 7) [12]. According to this, the priority of an
operation is defined as the longest possible schedule length from the execution of the oper-
ation to the completion of all the operations in the graph. The next two sections present our
proposed scheduling and placement algorithms, respectively, and Sect. 4.3 presents our TS
implementation.

4.1 Scheduling heuristic

For given allocation, binding and priorities decided by TS, we use the ScheduleAndPlace
function presented in Fig. 8 to decide the schedule S of the operations and the placement P .
This section presents the scheduling, and the next section presents the placement algorithm.
Our scheduling is based on a List Scheduling (LS) [12] heuristic. LS takes as input the
application graph G(V, E ), the cell array C , the allocation A, binding B and priorities #

and returns the scheduling S and the placement P . The List Scheduling heuristic is based
on a sorted priority list, Lready, containing the operations Oi ∈ V which are ready to be
scheduled. The start and finish times of all the operations are initialized to 0 in the beginning
of the algorithm (lines 2 and 3 in Fig. 8). A list Lexecute which contains the operations that
are executing at the current time step is created in the beginning of the algorithm (line 4).
Initially, Lready will contain those operations in the graph that do not have any predecessors
(line 5 in Fig. 8). We do not consider input operations as part of the ready list. As they do
not have any precedence constraints, input operations can be executed at any time. However,
our algorithm schedules inputs and their successors sequentially, in order to avoid storing
the dispensed droplets. Let us consider time tcurrent during the execution of the application.
For each operation that finishes executing at tcurrent (line 9) we update the microfluidic array,
by removing the device to which the operation was bound to (line 11). The successors of the
operation that are ready to be scheduled are added to Lready (line 14 in Fig. 8).

Next, we try and schedule the ready operations, starting with the operation Oj having
the highest priority (line 17 in Fig. 8). If the module B(Oj ) to which the operation is bound
can be placed on the microfluidic array the placement is updated (line 18 in Fig. 8). If there
exists a placed storage module associated with the operation Oj , the storage is removed
from the array.

The ScheduleAndPlace function (Fig. 8), calls the DynamicPlacement function from
Fig. 10. Once the placement is known, LS takes into account the routing time, in terms
of Manhattan distance, between Mj and the source modules. Once an operation is sched-
uled it is removed from Lready (line 23 in Fig. 8) and added to Lexecute (line 24 in Fig. 8).
Before the end of the iteration, the storage constraints are considered. If the successors of the
operations that finished at tcurrent have not yet been scheduled for execution, a storage unit



298 E. Maftei et al.

ScheduleAndPlace(G , C , A, B, #)
1 tcurrent = 0
2 t start

i = 0, ∀Oi ∈ G
3 t

finish
i = 0, ∀Oi ∈ G

4 Lexecute = ∅
5 LreWady = ConstructReadyList(G,#)

6 // schedule and place operations
7 while ∃ Oi ∈ G such that t

finish
i = 0 do

8 // for finishing operations
9 for all Oj ∈ Lexecute such that t

finish
j = tcurrenWt do

10 // update placement
11 UpdatePlacement(C , P , B(Oj ))
12 RemoveFromExecuteList(Oj , Lexecute)
13 // add ready successors to Lready

14 AddReadySuccessorToList(Oj , Lready)
15 end for
16 // schedule ready operations
17 for all Oj ∈ Lready do
18 placed = DynamicPlacement(C , P , B(Oj ))
19 if placed then
20 // set the start and finish times
21 t start

j = tcurrent

22 t
finish
j = t start

j + C
B(Oj )

j

23 RemoveFromReadyList(Oj , Lready)
24 AddOperationToExecuteList(Oj , Lexecute)
25 end if
26 end for
27 tcurrent = tcurrent + 1
28 end while
29 return < S, P >

Fig. 8 List scheduling algorithm for DMBs

is placed on the microfluidic array. TS uses design transformations to search the solution
space. Inside TS, we use the ScheduleAndPlace function to determine the schedule length
δG of each solution.

4.2 Dynamic placement algorithm

We have extended the online placement algorithm from Bazargan et al. [2] for DR-FPGAs
to handle DMBs, where we allow dynamic reconfiguration of modules during their execu-
tion. Although the algorithm was proposed for online placement, we can use it offline, since
we know beforehand all the operations that have to be executed. The algorithm from [2] has
three parts: (i) a free space manager which divides the free space on the biochip into a list
of overlapping rectangles, Lrect, (ii) a search engine which selects an empty rectangle from
Lrect that best accommodates the module Mi to be placed, according to a given criteria, such
as “best fit” and (iii) a placer that inserts Mi on the microfluidic array. Each rectangle can be
represented by the coordinates of its left bottom and right upper corners, (xl, yl, xr , yr ). In



Tabu search-based synthesis of digital microfluidic biochips 299

Fig. 9 Dynamic placement example

order to allow the placement on the array of modules of any shape we consider in our place-
ment approach that for non-rectangular devices the search engine can select a set Rchosen

of overlapping free rectangles in which the module can be placed. For rectangular shaped
devices Rchosen will consist of only one rectangle.

The placement algorithm takes as input the m×n matrix C of cells, the current placement
of modules P and the module Mi to be placed, updates the array and returns a boolean value
stating if the accommodation of Mi on the array was successful or not. If the module was
not placed, LS will have to delay the operation corresponding to Mi .

Let us illustrate the placement algorithm by using Fig. 5c. The ready list consists of the
operations in the graph that are ready to be scheduled, hence Lready = {O9,O10}. Considering
the same allocation and binding presented in Sect. 3.1, the initial priorities for the operations
are: #◦

O9
= C

Mixer2
O9

= 6.1 s and #◦
O10

= C
Mixer3
O10

= 4.6 s.
The LS algorithm will select O9 to be scheduled first and will call DynamicPlacement to

place Mixer2 on the biochip array. The module Mixer1, which is currently executing at time
t + 4.6, divides the free space into three overlapping rectangles Lrect = {Rect1 = (0,0,3,9),
Rect2 = (0,4,9,9), Rect3 = (7,0,9,9)}, see Fig. 9a (line 2 in Fig. 10). As Mixer2 is a
module of rectangular shape, the placement algorithm searches for the smallest rectangle
in Lrect that fits the 2 × 3 virtual device. As Rect2 = (0,4,9,9) is the only rectangle suf-
ficiently large to accommodate the module, Rchosen = {Rect2} and Mixer2 will be placed at
its bottom corner (line 6 in Fig. 10). Consequently the free space will be updated (line 7)
to Lrect = {Rect1 = (0,0,3,4), Rect2 = (5,4,9,9), Rect3 = (7,0,9,9), Rect4 = (0,8,9,9)}
as depicted in Fig. 9b.

After the scheduling and placement of O9, the next operation to be considered for
scheduling at time t + 4.6 is O10. Because of space fragmentation, no free rectangle can
accommodate the 2 × 4 mixer currently assigned to O10 and the operation would have to be
delayed until t + 9.95, as depicted in Fig. 5d, where the mixer is denoted with M3. How-
ever, when no suitable rectangle can be found for accommodating a device, our algorithm,
as opposed to [2], will try to decrease the space fragmentation on the microfluidic array by
moving and, if necessary, re-assigning operations to modules (possibly of different shape)
during their operation.

We use a greedy approach to decide on which modules to move (lines 12–23), until
there is space for the current module Mi or a termination criteria is reached. As moving a
device requires routing the droplet from the initial position to another one on the array, we
place a constraint on the increase in routing time due to moving devices, of one time step,
i.e., Overheadmax is one second. Therefore, after each move, the variable RoutingOverhead,



300 E. Maftei et al.

DynamicPlacement(C , P , Mi )
1 // construct list of empty rectangles
2 Lrect = ConstructRectList(C)

3 // search for Rchosen that best fits Mi

4 Rchosen = SelectRectangles(Lrect,Mi)

5 if Rchosen += ∅ then
6 placed = UpdatePlacement(P , Rchosen, Mi )
7 UpdateFreeSpace(Lrect)
8 else
9 RoutingOverhead = 0

10 MovesList = ∅
11 // dynamically reconfigure already placed modules
12 while Rchosen = ∅ ∧ RoutingOverhead ≤ Overheadmax do
13 Rchosen = EvaluatePossibleMoves(C, P,Lrect,Mi)

14 if Rchosen += ∅ then
15 placed = UpdatePlacement(P,Rchosen,Mi)

16 UpdateFreeSpace(Lrect)
17 else
18 BestMove = SelectBestMove(C , P , Lrect)
19 PerformMove(BestMove, P , Lrect)
20 RecordMove(MovesList, BestMove)
21 RoutingOverhead = RoutingOverhead + DeterminePerformedRouting(BestMove)
22 end if
23 end while
24 // no placement has been found, restore the original P
25 if Rchosen = ∅ then
26 UndoMoves(P , Lrect , MovesList)
27 end if
28 end if
29 return placed

Fig. 10 Placement algorithm for DMBs

capturing the extra routing required for moving the droplet between the two locations is
updated (line 21). For example, for a routing time of 0.01 s across one cell, we move modules
to accommodate the current module Mi such that routing would not increase with more
than 100 cells. The routing distance is calculated based on the Manhattan distance between
the left top corners of the old position and the new position of the module considered for
moving. In order to have an accurate approximation of the routing overhead, we consider
that a module can be moved only if there are no other modules blocking the path between
the two locations.

Considering the placement in Fig. 9b, Mixer1 can be moved at most three cells to the
left and two to the right while Mixer2 can be moved at most four cells to the right and
one up. In order to choose the best move we evaluate all moves that can be performed in
a greedy fashion: (i) we check if the new placement obtained after performing one move
while maintaining the initial binding can accommodate Mixer3; (ii) if not, we characterize
the free space existent on the microfluidic array after the move, considered as a device, and
change the shape of the moved device to the new created one; (iii) if no space could be
created for accommodating Mixer3 we perform the best move possible, the one minimizing
the fragmentation of the space. The moving and, if necessary, re-assigning of operations to



Tabu search-based synthesis of digital microfluidic biochips 301

modules continues until the routing constraint is violated (line 12 in Fig. 10). If not enough
adjacent cells have been obtained for placing Mi , we restore the initial placement (line 26).

In order to be able to accommodate on the microfluidic array modules of any possible
shape, we allow the search engine to group a set of overlapping free rectangles in the case of
non-rectangular devices. For example, while evaluating the moves that can be performed on
Mixer1 in Fig. 9b (line 13), the algorithm moves Mixer1 two cells to the right. As the move
is not sufficient for accommodating Mixer3, we change the module on which Mixer1 is
executing. By grouping the free space in the overlapping rectangles Rect2 = (5,4,9,9) and
Rect3 = (7,0,9,9) we create a new “L-shaped” device, on which Mixer1 can be executed.
We assume that the completion time for non-rectangular modules, such as the “L-shape”,
are computed during the synthesis process, as shown in Sect. 2.2. Once characterized, the
devices are added to the given module library for later use. After the re-assignment of Mixer1

to the “L-shape”, the free space consists of two rectangles, Rect1 = {0,0,6,4} and Rect2 =
{0,8,5,9}. As there are now enough adjacent cells in Rect1, Mixer3 will be placed on the
microfluidic array and the placement algorithm will terminate.

4.3 Tabu Search

Tabu Search (TS) is a metaheuristic based on a neighborhood search technique which uses
design transformations (moves) applied to the current solution, !current, to generate a set of
neighboring solutions, N , that can be further explored by the algorithm. Our TS implemen-
tation performs two types of transformations: (i) re-binding moves and (ii) priority swapping
moves. A re-binding move consists in the re-binding of a randomly chosen operation, Oi ,
currently executing on module Mi , to another module Mj . Such a move will take care of
the allocation, e.g., removing Mi and allocating Mj . A priority swapping move consists in
swapping the priorities of two randomly chosen operations in the graph.

In order to efficiently perform the search, TS uses memory structures, maintaining a his-
tory of the recent visited solutions (a “tabu” list). By labeling the entries in the list as tabu
(i.e., forbidden), the algorithm limits the possibility of duplicating a previous neighborhood
upon revisiting a solution. We use two tabu lists, one for each type of move. These are con-
structed as attribute-based memory structures, containing not the complete recent solutions,
but only relevant modified attributes. Hence, if an operation Oi is re-bound to a module Mj

as result of a re-binding move, the change of the solution will be recorded in the correspond-
ing tabu list as a pair of the form (Oi,Mj ) and if the priorities of two operations Oi and Oj

are swapped as part of the diversification process, the move will be recorded as (Oi,Oj ).
However, in order not to prohibit attractive moves, an “aspiration criteria” may be used,

allowing tabu moves that result in solutions better than the currently best known one. More-
over, in order to avoid getting stuck in a local optima, TS uses “diversification”. This in-
volves incorporating new elements that were not previously included in the solution, in or-
der to diversify the search space and force the algorithm to look in unexplored areas. Based
on experiments, we have decided to use priority swapping as a diversification move, only
when the best known solution does not improve for a defined number of iterations, numdiv,
determined experimentally.

The TS algorithm described in Fig. 11 takes as input the application graph G , the mi-
crofluidic array C , the module library L, the initial allocation A◦, binding B◦ and priorities
#◦, and returns the best found implementation, !best. Initially the best solution is consid-
ered the initial one, in which each operation is assigned to a randomly chosen device in the
module library and has the priority given according to the critical path length. The evalua-
tion of the initial solution !◦ is performed by the ScheduleAndPlace method, which returns



302 E. Maftei et al.

TabuSearch(G , C , L, A◦, B◦, #◦)
1 < S ◦, P ◦ >= ScheduleAndPlace(G, C, A◦, B◦,#◦)
2 !best = !current = !◦ =< A◦, B◦, S ◦, P ◦ >

3 δbest
G = δcurrent

G = δ◦
G = GetCompletionTime(S ◦)

4 TabuListdev = ∅
5 TabuListprio = ∅
6 numiter = 0
7 while timeLimit not reached do
8 N = GenerateNeighborhood(!current, L)

9 Ñ = SelectAllowedMoves(N)

10 (Oi, B(Oi)) = SelectBestMove(Ñ)

11 PerformBestMove(!current , Oi, B(Oi))
12 RecordRebindMove(Oi , B(Oi), TabuListdev)
13 δcurrent

G = GetCompletionTime(S current)

14 if δcurrent
G < δbest

G then
15 !best = !current; δbest

G = δcurrent
G

16 else
17 numiter = numiter + 1
18 if numiter = numdiv then
19 (Oi,Oj ) = SelectSwapMove(G,#current,TabuListprio)

20 PerformSwapMove(!current , Oi,Oj )
21 RecordSwapMove(Oi , Oj , TabuListprio)
22 δcurrent

G = GetCompletionTime(S current)
23 if δcurrent

G < δbest
G then

24 !best = !current; δbest
G = δcurrent

G
25 end if
26 numiter = 0
27 end if
28 end if
29 end while
30 return !best

Fig. 11 Tabu Search algorithm for DMBs

the schedule length δ◦
G obtained for the given allocation, binding and priorities (line 3 in

Fig. 11). Two tabu lists, TabuListdev and TabuListprio are used for recording the re-binding
moves, respectively the priority swapping moves. Each list has a given size, tabuSizedev

and tabuSizeprio correspondingly, specifying the maximum number of moves that can be
recorded by the list. Initially, the lists are empty (lines 4–5 in Fig. 11). A variable numiter is
used to keep track of the number of iterations passed without the improvement of the best
solution, !best

G (line 6).
The algorithm is based on a number of iterations (lines 7–29 in Fig. 11) during which

moves are applied to the current solution in order to try and improve the overall best solu-
tion !best

G . In each iteration, a set of possible candidates N is obtained by applying moves
to the current solution, !current (line 8). However, N might contain solutions that are dis-
allowed by TS. According to the aspiration criteria, a tabu move (Oi,Mj ) ∈ TabuListdev is
only allowed if it leads to a solution better than the currently best known one. Therefore,
all the tabu moves resulting in solutions with schedule lengths δcurrent

G worse than the cur-
rently best one are removed from N and thus, the set Ñ of allowed moves is created (line 9).



Tabu search-based synthesis of digital microfluidic biochips 303

Fig. 12 Tabu Search neighborhood

Operation Area (cells) Time (s)

Mixing 2 × 5 2
Mixing 2 × 4 3
Mixing 1 × 3 5
Mixing 3 × 3 7
Mixing 2 × 2 10
Dilution 2 × 5 4
Dilution 2 × 4 5
Dilution 1 × 3 7
Dilution 3 × 3 10
Dilution 2 × 2 12
Dispensing – 7
Detection 1 × 1 30

(a) Module library for the experimental
evaluation

Operation Label Area (cells) Time (s)

Mixing L1 4 × 2 × 1 1.92
Mixing L2 5 × 2 × 1 1.78
Mixing T 4 × 3 × 1 2.14
Mixing 1 × 5 1.60
Mixing 1 × 6 1.53
Dilution L1 4 × 2 × 1 3.78
Dilution L2 5 × 2 × 1 3.57
Dilution T 4 × 3 × 1 4.10
Dilution 1 × 5 3.22
Dilution 1 × 6 3.12

(b) Library of characterized modules

Fig. 13 Experimental evaluation

The ScheduleAndPlace function is used for determining the move (Oi,Mj ) ∈ Ñ leading to
the solution with the shortest schedule length δcurrent

G among all the moves in Ñ . The move
is selected and marked as tabu (lines 10–12). If the obtained solution has a better schedule
length that the currently known one, the best-so-far solution is updated (lines 14–15). When
the best known solution does not improve for a given number of iterations numdiv a diversi-
fication move is considered (line 18), forcing the search into unexplored areas of the search
space. The move consists in swapping the priorities of two randomly selected operations
Oi and Oj , with (Oi,Oj ) /∈ TabuListprio. If the move results in a new best known solution,
!best is updated to !current (line 23). Finally, the variable numiter is reset to 0 (line 26).

Let us use the mixing stage of the polymerase chain reaction (PCR/M) shown in Fig. 12a,
and the module library in Fig. 13a to illustrate how each iteration is performed. Consider the
current solution as being the one represented by the schedule in Fig. 12b. The current tabu
list, presented to the right, contains the recently performed transformations. As all operations
are mixing operations, we will denote a module by its area, e.g. O1 is bound to a mixing
module of 2 × 2 cells. Starting from this solution, TS uses re-binding moves to generate



304 E. Maftei et al.

the neighbor solutions (line 8). Out of the possible neighboring solutions we present three
in Fig. 12c–d. The solution in Fig. 12c is tabu and the one in Fig. 12d is worse than the
current solution (which is the best so far). In the solution in Fig. 12e O7 is re-bound to a
new, 1 × 3 mixer, which results in a non-tabu solution better than the current one. However,
TS will select the move in Fig. 12c, that would change the 1 × 3 mixer in Fig. 12b for
O5 to a 2 × 5 mixer module (line 10). Although the move (O5,2 × 5) is marked as being
tabu, it leads to a better result than the currently best known one and thus, according to the
aspiration criteria, it is accepted (lines 14–15). The evaluation of the new solution is done by
using the unified scheduling and placement algorithm presented before which determines the
completion time δG of the application graph. If the best solution !best has not been improved
for a number of numdiv iterations, the algorithm diversifies the search space by performing
a priority swapping move, which is recorded into tabuListprio (lines 18–28). The algorithm
terminates when a given time-limit for performing the search has been reached.

5 Experimental evaluation

In order to evaluate our proposed approach, we have used a real life example and ten syn-
thetic benchmarks. The Tabu Search-based algorithm4 was implemented in Java (JDK 1.6),
running on SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz and 8 GB of
RAM. The module library used for all the experiments is shown in Fig. 13a. For simplicity,
we have considered in our implementation that the characterization of new modules is done
offline. For example, Fig. 13b contains a set of devices of different shapes, characterized
from the given module library in Fig. 13a. The non-rectangular devices (having “L” and “T”
shapes) are described by the lengths of the two segments and the thickness. During the syn-
thesis process, the operations can be re-bound to one of the other devices in Fig. 13a or to a
new device characterized in Fig. 13b.

In our first set of experiments we measured the quality of the TS implementation, that is,
how consistently it produces good quality solutions. Hence, we used our TS-based approach
for synthesizing a large real-life application implementing a colorimetric protein assay (103
operations), utilized for measuring the concentration of a protein in a solution.

Table 2 presents the results obtained by synthesizing the protein application on three
progressively smaller microfluidic arrays. We present the best solution (in terms of schedule
length), the average and the standard deviation obtained after 50 runs of the TS algorithm.
Let us first concentrate on the results obtained for the case when we have used a time limit of
60 minutes for the TS. As we can see, the standard deviation is quite small, which indicates
that TS consistently finds solutions which are very close to the best solution found over
the 50 runs, which will explore differently the solution space, resulting thus in different
solutions.

Moreover, the quality of the solutions does not degrade significantly if we reduce the
time limit from 60 minutes to 10 minutes and 1 minute. This is important, since we envision
using TS for architecture exploration, where several biochip architectures have to be quickly
evaluated in the early design phases (considering not only different areas, but also different
placement of non-reconfigurable resources such as reservoirs or detectors).

For the second set of experiments we were interested in the gains that can be obtained
by allowing the dynamic reconfiguration of the devices during their execution. Hence, we

4Values for TS parameters determined experimentally: numdiv = 7, tabuSizedev = 8, tabuSizeprio = 8.



Tabu search-based synthesis of digital microfluidic biochips 305

Table 2 Results for the colorimetric protein assay

Area Time limit Best (s) Average (s) Standard dev.

TS TS− TS TS− TS TS−

13 × 13 60 min 178.49 182 182.03 189.88 2.53 2.90

10 min 178.49 182 188.42 192.00 4.53 3.64

1 min 187.49 191 194.09 199.20 4.07 4.70

12 × 12 60 min 178.49 182 183.38 190.86 3.09 3.20

10 min 178.49 185 189.99 197.73 4.41 6.50

1 min 190.50 193 195.13 212.62 8.97 10.97

11 × 12 60 min 178.49 184 189.18 192.50 5.50 3.78

10 min 178.49 194 193.85 211.72 4.90 14.37

1 min 191.50 226 225.13 252.19 9.27 15.76

have modified our TS approach to eliminate the possibility of moving devices and changing
their shape during their execution from our TS approach. Table 2 presents the comparison
between this modified TS approach, denoted by TS−, and TS for the protein application. As
we can see, taking into account the dynamic reconfigurability property of the biochip, sig-
nificant improvements can be gained in terms of schedule length, allowing us to use smaller
areas and thus reduce costs. For example, in the most constrained case, a 11 × 12 array, we
have obtained an improvement of 10.73% in the average completion time compared with
TS−, for the same limit of time, 1 minute.

In a third set of experiments we have evaluated our proposed method on ten synthetic
applications. Due to the lack of biochemical application benchmarks, we have generated a
set of synthetic graphs using Task Graphs For Free (TGFF) [7]. We have manually modified
the graphs in order to capture the characteristics of biochemical applications. The applica-
tions are composed of 10 up to 100 operations and the results in Table 3 show the best and
the average completion time obtained out of 50 runs of TS and TS− using a time limit of 10
minutes.

For each synthetic application we have considered three areas, from Area1 (largest) to
Area3 (smallest). The results in Table 3 confirm the conclusion from Table 2: as the area
decreases, considering dynamic reconfiguration becomes more important, and leads to sig-
nificant improvements. For example, for the synthetic application with 50 operations, in the
most constrained case, a 9 × 9 array, we have obtained an improvement of 24.52% in the
average completion time compared with TS−.

6 Conclusions

In this paper we have presented a Tabu Search based-technique for the synthesis of digi-
tal microfluidic biochips. The proposed approach considers the unified architectural design
(allocation, binding and scheduling) and physical design (placement of operations on a mi-
crofluidic array). In this work, we have considered that the binding of operations to virtual
devices can be changed during their execution. We have also proposed a method for analyti-
cally determining the completion time of a reconfigurable operation on a device of any given
shape. A real-life example as well as a set of ten synthetic applications have been used for
evaluating the effectiveness of the proposed TS approach. We have shown that by exploiting



306 E. Maftei et al.

Ta
bl

e
3

R
es

ul
ts

fo
rs

yn
th

et
ic

be
nc

hm
ar

ks

N
od

es
A

re
a 1

Av
er

ag
e 1

(s
)

B
es

t 1
(s

)
A

re
a 2

Av
er

ag
e 2

(s
)

B
es

t 2
(s

)
A

re
a 3

Av
er

ag
e 3

(s
)

B
es

t 3
(s

)

T
S

T
S−

T
S

T
S−

T
S

T
S−

T
S

T
S−

T
S

T
S−

T
S

T
S−

10
9×

7
20

.2
3

24
.0

0
15

.1
0

20
7×

8
21

.3
9

25
.1

9
16

.1
9

20
8×

6
28

.6
0

32
.5

8
24

.2
0

27

20
8×

7
54

.3
7

55
.1

6
51

.8
2

55
7×

7
55

.7
2

58
.6

1
54

.1
2

58
6×

7
63

.8
6

67
.3

3
60

.4
8

67

30
10

×1
1

46
.4

7
56

.0
0

37
.2

0
41

10
×1

0
53

.9
3

60
.7

8
37

.3
0

41
9×

11
56

.1
0

66
.5

2
44

.4
9

54

40
10

×1
1

53
.5

5
68

.5
8

49
.4

9
58

10
×1

0
58

.8
1

76
.5

0
53

.5
9

58
9×

10
66

.2
5

86
.3

7
54

.5
9

67

50
10

×1
0

10
1.

54
11

7.
78

97
.8

9
10

4
8×

11
10

7.
85

13
2.

44
98

.9
7

11
2

9×
9

10
8.

35
14

3.
56

99
.6

9
11

9

60
11

×1
2

11
1.

56
11

3.
50

10
6.

69
11

0
10

×1
1

11
1.

84
11

5.
40

10
6.

69
11

2
9×

10
11

7.
77

12
5.

58
11

2.
09

11
8

70
12

×1
2

12
3.

01
13

1.
87

11
9.

99
12

1
11

×1
2

12
5.

09
13

7.
66

12
0.

09
12

3
10

×1
1

14
3.

43
15

9.
72

12
3.

39
13

6

80
12

×1
2

14
6.

80
16

1.
60

14
4.

39
15

4
11

×1
1

17
6.

23
19

2.
86

15
3.

12
16

5
10

×1
1

18
7.

72
21

0.
90

15
5.

79
16

8

90
15

×1
5

12
7.

72
12

8.
02

11
4.

79
12

0
14

×1
4

12
9.

67
13

5.
68

12
0.

01
12

7
13

×1
3

14
9.

76
16

4.
20

13
7.

29
14

2

10
0

15
×1

5
16

5.
29

17
8.

36
15

7.
59

16
3

14
×1

4
16

5.
81

17
9.

90
15

9.
49

17
0

13
×1

3
16

6.
68

18
3.

84
15

9.
69

17
5



Tabu search-based synthesis of digital microfluidic biochips 307

the dynamic reconfigurability of digital microfluidic biochips significant improvements can
be gained, allowing us to use smaller area biochips and thus reduce costs.

References

1. Advanced Liquid Logic (2010) http://www.liquid-logic.com/technology.html
2. Bazargan K, Kastner R, Sarrafzadeh M (2000) Fast template placement for reconfigurable computing

systems. IEEE Des Test Comput 17(1):68–83
3. Chakrabarty K, Su F (2006) Digital microfluidic biochips: synthesis, testing, and reconfiguration tech-

niques. CRC Press, Boca Raton
4. Chakrabarty K, Zeng J (2005) Design automation for microfluidics-based biochips. ACM J Emerg Tech-

nol Comput Syst 1(3):186–223
5. Chakrabarty K, Zeng J (2006) Design automation methods and tools for microfluidic-based biochips.

Springer, Berlin
6. Cho M, Pan DZ (2008) A high-performance droplet router for digital microfluidic biochips. In: Proceed-

ings of international symposium on physical design, pp 200–206
7. Dick RP, Rhodes DL, Wolf W (1998) TGFF: task graphs for free. In: Proceedings of the sixth interna-

tional workshop on hardware/software codesign, pp 97–101
8. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–

281
9. Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Dordrecht

10. Maftei E, Paul P, Madsen J, Stidsen T (2008) Placement-aware architectural synthesis of digital microflu-
idic biochips using ILP. In: Proceedings of the international conference on very large scale integration of
system on chip, pp 425–430

11. Maftei E, Paul P, Madsen J (2009) Tabu search-based synthesis of dynamically reconfigurable digital mi-
crofluidic biochips. In: Proceedings of the compilers, architecture, and synthesis for embedded systems
conference, pp 195–203

12. Micheli GD (1994) Synthesis and optimization of digital circuits. McGraw-Hill Science, New York
13. Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip

3:253–259
14. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated

microfluidics. Lab Chip J 2:96–101
15. Ren H, Srinivasan V, Fair RB (2003) Design and testing of an interpolating mixing architecture for

electrowetting-based droplet-on-chip chemical dilution. In: Proceedings of the international conference
on transducers, solid-state sensors, actuators and microsystems, pp 619–622

16. Silicon Biosystems (2010) http://www.siliconbiosystems.com
17. Su F, Chakrabarty K (2004) Architectural-level synthesis of digital microfluidics-based biochips. In:

Proceedings of international conference on computer aided design, pp 223–228
18. Su F, Chakrabarty K (2005) Unified high-level synthesis and module placement for defect-tolerant mi-

crofluidic biochips. In: Proceedings of the 42nd annual conference on design automation, pp 825–830
19. Su F, Chakrabarty K (2006) Module placement for fault-tolerant microfluidics-based biochips. ACM

Trans Des Autom Electron Syst 11(3):682–710
20. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips.

In: Proceedings of design, automation and test in Europe, vol 1, pp 73–78
21. Thorsen T, Maerkl S, Quake S (2002) Microfluidic largescale integration. Science 298:580–584
22. Xu T, Chakrabarty K (2007) Integrated droplet routing and defect tolerance in the synthesis of digital

microfluidic biochips. In: Proceedings of design automation conference, pp 948–953
23. Yuh P-H, Yang C-L, Chang Y-W (2004) Temporal floorplanning using the T-tree formulation. In: Pro-

ceedings of international conference on computer aided design, pp 300–305
24. Yuh P-H, Yang C-L, Chang Y-W (2006) Placement of digital microfluidic biochips using the T-tree

formulation. In: Proceedings of design automation conference, pp 931–934
25. Yuh P-H, Yang C-L, Chang Y-W (2007) Placement of defect-tolerant digital microfluidic

biochips using the T-tree formulation. ACM J Emerg Technolog Comput Syst 3(3). doi:acm.org/
10.1145/1295231.1295234

26. Yuh P-H, Yang C-L, Chang Y-W, Chen H-L (2007) Temporal floorplanning using three dimen-
sional transitive closure subGraph. ACM Trans Des Autom Electron Syst 12(4). doi:acm.org/
10.1145/1278349.1278350

http://www.liquid-logic.com/technology.html
http://www.siliconbiosystems.com
http://dx.doi.org/acm.org/10.1145/1295231.1295234
http://dx.doi.org/acm.org/10.1145/1295231.1295234
http://dx.doi.org/acm.org/10.1145/1278349.1278350
http://dx.doi.org/acm.org/10.1145/1278349.1278350

	Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices
	Abstract
	Introduction
	Related work
	Contribution

	System model
	Biochip architecture
	Characterizing non-rectangular virtual modules
	Biochemical application model

	Problem formulation
	Allocation and placement
	Binding and scheduling
	Synthesis with dynamically reconfigurable modules of any shape

	Tabu Search based synthesis
	Scheduling heuristic
	Dynamic placement algorithm
	Tabu Search

	Experimental evaluation
	Conclusions
	References


