Des Autom Embed Syst (2010) 14: 287D307
DOI 10.1007/s10617-010-9059-x

Tabu search-based synthesis of digital microf3uidic
biochips with dynamically reconbgurable
non-rectangular devices

Elena Maftei - Paul Pop- Jan Madsen

Received: 12 May 2010 / Accepted: 28 June 2010 / Published online: 21 July 2010
© Springer Science+Business Media, LLC 2010

Abstract Microf3uidic biochips are replacing the conventional biochemical analyzers, and
are able to integrate on-chip all the necessary functions for biochemical analysis. The Odig-
ital® microRuidic biochips are manipulating liquids not as a continuous Row, but as discrete
droplets, and hence they are highly reconpgurable and scalable. A digital biochip is com-
posed of a two-dimensional array of cells, together with reservoirs for storing the samples
and reagents. Several adjacent cells are dynamically grouped to form a virtual device, on
which operations are performed. So far, researchers have assumed that throughout its exe-
cution, an operation is performed on a rectangular virtual device, whose position remains
bxed. However, during the execution of an operation, the virtual device can be reconbgured
to occupy a different group of cells on the array, forming any shape, not necessarily rec-
tangular. In this paper, we present a Tabu Search metaheuristic for the synthesis of digital
microfRuidic biochips, which, starting from a biochemical application and a given biochip
architecture, determines the allocation, resource binding, scheduling and placement of the
operations in the application. In our approach, we consider changing the device to which an
operation is bound during its execution, to improve the completion time of the biochemical
application. Moreover, we devise an analytical method for determining the completion time
of an operation on a device of any given shape. The proposed heuristic has been evaluated
using a real-life case study and ten synthetic benchmarks.

Keywords MicroRuidics- Biochips- Reconbgurability Synthesis

1 Introduction

MicrofRuidic biochips (also referred to as lab-on-a-chip) represent a promising alternative
to conventional biochemical laboratories, and are able to integrate on-chip all the necessary
functions for biochemical analysis using microf3uidics, such as, transport, splitting, merging,
dispensing, mixing, and detectio8]]

E. Maftei () - P. Pop- J. Madsen
Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
e-mail:em@imm.dtu.dk

@ Springer

mailto:em@imm.dtu.dk

288 E. Maftei et al.

Biochips offer a number of advantages over conventional biochemical procedures. By
handling small amount of Buids, they provide higher sensitivity while decreasing reagent
consumption, hence reducing cost. Moreover, due to their miniaturization and automation,
they can be used as point-of-care devices, in areas that lack the infrastructure needed by
conventional laboratorie]].

Due to these advantages, biochips are expected to revolutionize clinical diagnosis, es-
pecially immediate point-of-care diagnosis of diseases. Other emerging application areas
include drug discovery, DNA analysis (e.g., polymerase chain reaction and nucleic acid se-
guence analysis), protein and enzyme analysis and immuno-assays. MicroRuidic devices can
also be used for environment monitoring, by pathogen detection in air or water sagfples [

There are two generations of microf3udic biochips. The brst generation is based on
the manipulation of continuous liquid through fabricated micro-channels, using external
pressure sources or integrated mechanical micro-pufpsAlthough adequate for many
simple biochemical applications, their integrated micro-structures make continuous-f3ow
biochips unsuitable for more complex applications, requiring complicated 3uid manipula-
tions [B]. The second generation is based on the manipulation of discrete, individually con-
trollable droplets, on a two-dimensional array of identical cells. The actuation of droplets
is performed without the need of micro-structures, leading to increased scalability and 3ex-
ibility compared with continuous-Row biochip$4]. This generation is also referred to as
Odigital microRuidicsO, due to the analogy between the droplets and the bits in a digital
system. Such biochips, consisting of hundrefsahd thousandslfg] of cells have already
been successfully designed and commercialized. In this paper, we are interested in the sec-
ond generation, droplet-based digital biochips.

1.1 Related work

Researchers have initially addressed separately architectural and physical-level synthesis of
DMBs. Su and Chakrabartyt] have proposed an integer linear programming (ILP) model

for scheduling and binding, considering a given allocation, but without addressing placement
and routing. During the physical-level synthesis, the placeniéh] of each module on

the microRBuidic array and the droplets routés0] have to be determined.

A unibed high-level synthesis and module placement methodology has been proposed
in [18], where the focus has been on deriving an implementation that can tolerate faulty cells
in the biochip array. Their algorithm was modibed 22][to include droplet-routing-aware
physical design decisions. Yuh et &4] have proposed a synthesis and placement algorithm
which uses a tree-based topological representation and is able to improve on the results
from [18]. The algorithm has later been extended to consider defective cells on the biochip
array R5]. In [10] we have proposed a unibed ILP-based architectural-level synthesis and
placement approach for DMBs, that although produces the optimal solution, is only feasible
for limited problem sizes.

The combined architectural- and physical-synthesis problem has some similarities with
the simultaneous scheduling and placement problem of dynamically reconbgurable peld-
programmable gate arrays (DR-FPGAZ), which is typically formulated as a 3D packing
problem that minimizes the volume, seen as atesxecution time. Bazargan et a2] have
proposed off3ine algorithms for statically reconbgurable FPGAs and online algorithms for
dynamically reconbgurable FPGAs. Yuh et @6J[use a 3D transitive closure subGraph for
the 3D packing problem. Their earlier work on temporal Roorplanning using a tree-based
topological representatio2] has been extended for DMB24].

However, there are three main differences when doing scheduling and placement for
digital microRuidic biochips (DMBs): (1) operations that are executed on virtual devices

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 289

(created by grouping adjacent cells) can easily be re-assigned to a different group of cells
during the execution of operations without incurring a signibPcant overheadNsee Séti

for details; (2) non-reconbgurable devices, such as reservoirs and detectors also have to be
considered; and (3) additional operations have to be introduced to temporarily store a droplet
in-between operations that are not scheduled at consecutive time-steps.

1.2 Contribution

In this paper, we propose a Tabu Search-based synthesis approach that, starting from a bio-
chemical application modeled as a sequencing graph and a given biochip array, determines
the allocation, resource binding, and scheduling of the operations in the application at the
same time with module placement. All of previous approaches to DMBs and DR-FPGAs
assume that a reconbgurable operation is performed on a rectangular virtual module whose
placement and shape remain bxed throughout the execution of the operation. However, our
scheduling and placement steps consider dbaing its execution, an operation can be re-
assigned to another module having different location and shape, in order to improve the
biochemical application completion time on the given biochip array. Moreover, we propose
an analytical method for determining the completion time of an operation on a device of
any given shape. We show that by allowing operations to be re-assigned to modules of any
shape during their execution, signibcant improvements can be obtained in the application
completion time, allowing us to use smaller area biochips and thus reduce costs.

The paper is organized in six sections. Secohpresents the architecture of a digi-
tal microfRuidic biochip. We propose a method for determining the completion time of an
operation on a virtual device in Se@&.2 We introduce the abstract model used to capture
a biochemical application in Se@.3 We formulate the problem in Se@.and illustrate
the design tasks using several examples. The proposed approach is presentediiarect.
evaluated in Seck. The last section presents our conclusions.

2 System model
2.1 Biochip architecture

In a digital microfRuidic biochip the manipulation of liquids is performed using discrete
droplets. There are several mechanisms for droplet manipula&]o®{ir work considers
electrowetting-on-dielectric (EWD)L{], but can be extended to handle other techniques as
well. EWD is the most promising technique, and can provide high droplet speeds of up to
20 cm/s [L4]. A biochip is composed of several cells, see Hig. The schematic of a cell

is presented in Figla. The droplet is sandwiched between two glass plates (the top plate
and the bottom plate), and moves within a bller Buid. The top plate contains a single ground
electrode, while the bottom plate has several control electrodes. The electrodes are insulated
from the droplet through an insulation material. With EWD, the movement of droplets is
controlled by applying voltages to the required electrodes. For example, turning off the
middle control electrode and turning on the right control electrode inTigvill force the
droplet to move to the right. For the details on EWD, the reader is directddffo [

Several cells are put together to form a two-dimensional array (an example architecture
is presented in Figlb). Using EWD manipulation, droplets can be moved to any location
without the need for pumps and valves, which are required in a continuous-ow biochip.
Besides the basic cell discussed previously, a chip typically contains input and output ports

@ Springer

290 E. Maftei et al.

o 1]
Scrulil NaOI—i § = =
EEEEEEEE
EEEEEEEN
s, I Y oy
Ground electrode Urine on;g;f
HEERER i segregation
Top plate ... R cells
vl Dueplt i EEEE
ENEEECEN
Bottom platt™, * e Output Photo- 2x4mixing
Control electrodes port diode module
(a) Cell architecture (b) Biochip: array of cells (c) Mixer

Fig. 1 Biochip architecture

and detectors. The detection can be done by using, for example, a light-emitting diode (LED)
beneath the bottom plate and a photodiode on the top plate. The chip shown itbFig.

can be used for the diagnosis of metabolic disorders, by measuring the glucose and lactate
level in human physiological Buids. Hence, the device contains the necessary input ports for
introducing the samples (urine, plasma and serum) and the reagents (glucose oxidase, lactate
oxidase and buffer substance NaOH) on the microRuidic array, where the corresponding
protocol will be performed.

Using this architecture, and changing correspondingly the control voltages, all the ba-
sic microf3uidic operations, such as transport, splitting, merging, dispensing, mixing, and
detection, can be performed. For example, mixing is done by bringing two droplets to the
same location and merging them, followed by the transport of the droplet over a series of
electrodes. By moving the droplet, external energy is introduced, creating complex Zow
patterns (due to the formation of multilaminates), thus leading to a faster mik#hgllhe
operation can be executed by routing the droplet inside a virtual module, created by group-
ing adjacent cells. Any cells can be used for this purpose, thus we say that the operation is
OreconbgurableO.

In order to prevent the accidental merging of a droplet with another droplet in its vicinity,

a minimum distance must be kept between operations executing on the microRuidic array.
These Ruidic constraints are enforced by surrounding a module by a 1-cell segregation area
(the hashed area), containing cells that can not be used until the operation executing on the
device is completed. The role of the segregation area will be further discussed i8.%ect.

An example of a mixer device is shown in Filg., where a mixing operation is performed
by routing the droplet inside thex24 module. However, due to reconbgurability of the mix-
ing, the same operation can be executed on a different group of electrodes, for example the
2 x 2 mixer shown in the same bgure, the only difference consisting in the completion time
for the operation. We consider that designers will build and characterize a module kibrary
where for each operation there are several options with varying areas and execution times.
For example, the module library in Tableshows the completion times for executing the
mixing operation on the 4 and on the % 2 devices, based on the experiments performed
in[13].

So far, it has been considered that a reconbgurable operation is performed on a rectangu-
lar group of adjacent cells on the microf3uidic array, representing one of the virtual devices
in the module library. Therefore, the number of electrodes used for an operation and their
location on the microRuidic array were bxed throughout the execution. However, because
of the virtual character of the devices, in this paper we consider that during a reconpgurable

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 291

Table 1 Module library

Operation Area (cells) Time (s)
Mixing/Dilution 2x4 2.9
Mixing/Dilution 1x4 4.6
Mixing/Dilution 2x3 6.1
Mixing/Dilution 2x2 9.95

operation the droplet can be routed to another group of electrodes, where the operation can
be continued, possibly on a device of a different shfapet us consider the example in

Fig. 1c. We assume that 2 s after the mixing operation started executing orxtdevttual
module, with the droplet being on the cell denotedchywe decide to change the position at
which the operation is performed and the number of electrodes used for mixing. In our ex-
ample, the droplet will be routed to the nearest position belonging to the new group of cells,
C, where it will continue executing. As mixing is performed by routing, the operation is not
interrupted while being transported between the two positions, however, for simplicity, we
ignore the percentage of mixing obtained during transport. As the operation was executed
for only 2 s out of the 2.9 s required for completion on the 2 module (see Tablg), only
68.96% of the mixing was performed. Therefore, the operation will continue to execute on
the new 2x 2 group of cells, until is done. Considering the completion time of the mixing
operation on a % 2 module of 9.95 s as shown in Taldethe remaining 31.04% of the
mixing is obtained by routing the droplet inside thes 2 module for 3.08 s. In the end, the
completion time for the operation is 5.08 s.

One aspect that must be considered when changing the location at which an operation is
executed is the additional time required to transport the droplet between the two positions.
In this paper we consider the dafaom [14], which allows us to approximate that the time
required to route the droplet one cell is 0.01 s, which is an order of magnitude smaller than
operation execution times, see TalleThe routing overhead will be considered during the
synthesis process.

A biochemical application may also contain Onon-reconPgurableO operations, that are
executed on real devices, such as reservoirs or optical detectors.

2.2 Characterizing non-rectangular virtual modules

Table 1 gives completion times for performing reconbgurable operations on various areas.
The experiments have considered a limited set of devices, of rectangular shape. However,
reconbgurable operations can be executed by routing the droplet on any route, as shown
in Fig. 2a, where a mixing operation is executed on a OL-shapedO virtual module. Since
the virtual modules can consist of a varying number of electrodes, arranged in any form,
characterizing all devices through experiments is time consuming. Moreover, the completion
time of an operation is also inBuenced by the route taken by the droplet, inside the module,
during the execution of the operation. Therefore, in this section we propose an analytical
method for determining how the percentage of mixing varies depending on the movement
of the droplet inside a module of a given size and shape. Our method provides safe estimates
by decomposing the devices from Talile

INon-rectangular shaped devices will be discussed in the next section.
2Electrode pitch size= 1.5 mm, gap spacing 0.3 mm, average linear velocity 20 cm/s.

@ Springer

292 E. Maftei et al.

s,] [B] [s,] [B] [s,] (8]
R
K !
5 R[5 22 o e IR
90° :*
:
[s / R, [S, ! R, [S, 1 ' R,|
C‘ %é — -
V] V] V]
(a) L-shaped mixer (b) Droplet movement (c) Mixing pattern

Fig. 2 Execution of a mixing operation

0 180" 0 0O ¥
S = A
o0y o0 | < <— <— | oph|- 90" 9050490
tioaw S5evw raaw iy
(a) 2 X 4 module (b) I X 4 module (c) 2 x 3 module (d) 2 x 2 module

Fig. 3 Characterization of module library

Let us consider that while routing the droplet inside the mixer module in Zkgit
reaches the cell, at timet. The previous movements for the droplet are as shown by the
arrows in the same bgure. We have bve possibilitiesfot.: routing the droplet to the left,
to the right, up, down or keeping the droplet@n Let us denote witlp® the percentage of
mixing obtained while routing the droplet on an electrode in a forward movement (relative
to the previous move), with*° the percentage obtained from a perpendicular movement of
the droplet and withp1& the percentage of mixing obtained from a backward movement,
see Fig2b.

Considering Tabld, we can estimate the percentage of mixing over one cell, corespond-
ing to each type of movement (forward, backward, perpendicular). The time required for a
droplet to be transported one cell is 0.01 s. In order to approxim3te*® andp® we
decompose the mixing patterns from the module library in Talihea sequence of forward,
backward and perpendicular motions, as shown in Bid-or example, the % 2 mixer
in Fig. 3d can be decomposed in perpendicular movements, because after each move the
droplet changes its routing direction by 90j. As shown in Tdblihe operation takes 9.95 s
to execute inside the:2 2 module, thus we can safely approximate the percentage of mixing
p* to 0.1%.

For the 2x 3 module shown in Fig3c, the mixing pattern is composed of forward
and perpendicular movements. By considering the mixing time shown in Tabled
p% = 0.1%, we obtain the percentage of mixing resulted from one forward movement
p® = 0.29%. Note that by decomposing thex24 module shown in Fig3a, we obtain a
different value forp®: 0.58%. This is because the forward mixing percentage is not con-
stant, but it depends on the number of electrodes used. Therefore we consider that there are
two values that estimate the percentage of forward moverp@nivhen the forward move-
ment is continued only for one cell as in FRg, andp3, when the forward movement of the
droplet is of at least two cells. This is a safe (pessimistic) approximation, since the value of
p° will further increase if the droplet continues to move forward.

Considering the percentage of forward movemghin the decomposition of the % 4
module in Fig.3b, we obtain the (pessimistic) percentage of mixing performed during a

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 293

Fig. 4 Application graph

Source

InB InS,

Dilut@
©.0.0 /M Q,

In S] InR, InS,;

Mix la Mix @ .@ Mix

Sink

backward motionp*® = —0.5%. The negative mixing is explained by the unfolding of
patterns inside the droplet, i.e., the two droplets tend to separate when moved backward.
Using these percentages, we can determine the completion time for an operation on a
module of any given shape. For example, for the L-shaped module ir2&igouting the
droplet once according to the mixing pattern shown by the arrows leads to 8.72% of mixing.
Therefore, in order to complete the mixing operation on the L-shaped module, the droplet
will be circularly routed on the showned path 11.46 times, leading to a total time of 2.29 s.
We assume that before synthesis is performed, the set of perceptaggs?, pd, p%,
p!8% is determined through experiments such as the oned3hWhich have produced
Tablel. The method presented in this subsection can be applied to any such experimental
data, to obtain the completion time of an operation on any module shape.

2.3 Biochemical application model

We model a biochemical application using an abstract model consisting of a sequencing
graph HB]. The graphg(V, £) is directed, acyclic and polar (i.e., there isa@urce node,
which is a node that has no predecessors aikarode that has no successors). Each node
O; €V represents one operation. The binding of operations to modules in the architecture is
captured by the functiofs : V — A, whereA is the set of allocated modules from the given
library L.

An edgee; €& from O; to O; indicates that the output of operati@) is the input
of O; . An operation can be activated after all its inputs have arrived and it issues its outputs
when it terminates. We assume that, for each oper@iomwe know the execution tim@iMk
on moduleMy = B(O;) where it is assigned for execution. In Figwe have an example of
an application graph with ten operatio®, to O,o. The application consists of three mixing
operations Qg, Og andO1;), one diluting operationd3) and six input operations);, O,
Oy, Os, Og, O7). O3 is a diluting operation that has two outgoing edges, representing an
output of two droplets. This requires a split operation. Considering Féga droplet is
split by turning on the left and right electrodes and turning off the middle electibge [
Thus, the droplet volume will vary during the application execution. We assume that the
biochemical application has been correctly designed, such that all the operations will have
the required input droplet volumes. Let us consider that the oper@gaésbound to a & 3
mixing module denoted biylixer; (i.e., B(Og) = Mixer;). Then, according to Tablg the
execution time foOg on the 2x 3 device will beCy™*" = 6.1 s.

@ Springer

294 E. Maftei et al.

51 [6] 5[5
S, R| [S, R |
t t+4.6 t+12.85 |
Diluter,|_03 S, R] [R}
Mixer, 08
Mixul m | | storage
Mixer, 010 w W
(a) Schedule (b) Placement at ¢ (c) t+4.6 (d) 1+9.95

Fig. 5 Implementation example

3 Problem formulation

The problem we are addressing in this paper can be formulated as follows. Given (1) a bio-
chemical application modeled as a graph(2) a biochip consisting of a two-dimensional
m x n arrayC of cells and (3) a characterized module librarywe are interested to synthe-
size that implementatioh , which minimizes the completion tinig (i.e., Pnishing time of
the sink nodet/""

Synthesizing an implementation = (A4, B, S, P) means deciding on: (1) the allocation
A, which determines what modules from the libraghould be used, (2) the bindirgyof
each operatio®; € V to one or more moduldd € A, (3) the scheduls of the operations,
which contains the start timeg"®" of each operatio®; on its corresponding module and
(4) the placemenP of the modules on thm x n array.

The next subsections will illustrate each of these tasks. The presentation order does not
correspond to the order in which our synthesis approach performs these tasks.

3.1 Allocation and placement

Let us consider the graph shown in FigWe would like to implement the operations on the

9 x 9 biochip from Fig.1b. We consider the current time as betn@he input operations are
already assigned to the corresponding input ports. TBuss assigned to the input paa,
0,t0S;, 0410 S, Os to Ry, Og t0 3, O7 to R,. However, for the mixing operation©g,

Og andO4p) and the dilution operatiorz) our synthesis approach will have to allocate the
appropriate modules, bind operations to them and perform the placement and scheduling.

Let us assume that the available module library is the one captured byITabkehave
to select modules from the library while trying to minimize the application completion time
and place them on the>99 chip. A solution to the problem is presented in Figbd, where
the following module$are used: one 2 2 mixer (Mixery), one 2x 3 mixer (Mixer,), one
2 x 4 mixer Mixers) and one 1x 4 diluter Dilutery).

The placement for the solution is as indicated in Figbd, where we can notice that
modules occupy a space larger than their size, due to the segregation area. If two droplets are
next to each other on two adjacent cells, they will tend to merge to form one single droplet.
Two approaches have been considered for solving this problem. The brst approach, used
in [18], consists in having a one-cell distance between any two adjacent modules, which is
sufbcient for isolating the functional regions on which operations are executing. However, if
routing is not considered at the same time with placement, the resulted solution will require

3Inthe bgures we denotixer; with M; andDiluter; with D;.

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 295

signibcant modibcations for accommodating the necessary routes. As routing needs a 3-cell
width channel, one cell between adjacent modules will not be sufbcient for creating the
necessary routes and thus transporting the droplet. Moreover, the lack of segregation cells
between reservoirs and modules placed in their proximity can make the dispensing process
impossible. In the second approach, proposedjind segregation area is wrapped around
each module. This approach is depicted in Blg.whereDiluter;, which has a size of &« 4
occupies 3x 6 cells. As it can be seen, module wrapping provides a 2-cell width channel
between any two adjacent modules as well as a 1-cell channel between modules placed at
the chip boundary and reservoirs. The advantage of this approach is that the segregation
areas can be adjusted during a post-processing step to introduce the necessary paths for
droplet movement. In this article, we consider this second approach, and we assume that the
routing will be performed in a separate phase, after the positions of the modules have been
determined.

Our placement problem has similarities with the placement of DR-FPGAs, where mod-
ules can physically overlap on-chip as long as they do not overlap in time, i.e., they are used
during different time intervals. After an operation has Pnished executing on a module, we
can reuse the same cells as part of another module. The main difference to DR-FPGAs is
that we can easily re-assign operations to deviteing their execution, as discussed in
Sect.2.1 This property will be used to improve the scheduling, see Segt.

3.2 Binding and scheduling

Once the modules have been allocated and placed on the cell array, we have to decide on
which modules to execute the operations (binding) and in which order (scheduling), such
that the application completion time is minimized.

Considering the graph in Figl with the allocation presented in the previous section,
Fig. 5a presents the optimal schedule in the case of static virtual modules, whose place-
ment remains the same throughout their operation. The schedule is depicted as a Gantt
chart, where, for each module, we represent the operations as rectangles with their length
corresponding to the duration of that operation on the module. For example, operation
Og is bound to moduleMixer,, starts immediately after the dilution operati@y (i.e,
t$@" —t + 4.6) and takes 6.1 s, Pnishing at titf8*" =t 4+ 10.7 s.

The mixing operatiorD;o cannot start on modullixers until the operation bound to
Mixer; has bnished executing, at tihg- 9.95. Scheduling also decides the access to non-
reconbgurable modules, such as input/output ports and detectors, but in this example we
have omitted it for simplicity.

Note that special OstoreO modules have to be allocated if a droplet has to wait before
being processed, which is different from DR-FPGAs. Consider the dilution oper@gon
which outputs two droplets corresponding to operatiogandO1. As Oyq is not scheduled
immediately aftelO3 Pnishes, a Xk 1 storage cell is required to store the droplet udti
can be executed (see Figr). In general, if there exists an edgg from O; to O; such
that O; is not immediately scheduled afte; (i.e., there is a delay between the bnishing
time of O; and the start time dD;) then we will have to allocate a storage cell &yr. The
allocation of storage cells depends on how the schedule is constructed.

3.3 Synthesis with dynamically reconbgurable modules of any shape

Although the schedule presented in Fg.is optimal for the given allocation and binding, it
can be further improved by taking advantage of the property of dynamic reconbguration of

@ Springer

296 E. Maftei et al.

S B S, B
Il
s, R]
t t+6.15 t+10.7
Diluter, 03 S HH ‘ I‘ ‘I R |
Mixer, 08 2 L IJ \I
e 09 I [Tl
Mixer, m ﬂ
(a) Schedule (b) Placement at ¢ (c) Dynamic reconfigurability at t+4.6

Fig. 6 Motivational example

the digital biochip. Consider the placement in F3g. Even though the number of free cells
on the microRuidic array at time+ 4.6 is higher than the number of cells Mixers, the
fragmentation of the space makes the placementigér; impossible. Hence, the operation
has to wait untit + 9.95, in Fig.5d, whenMixer; Pnishes executing, and there are enough
free adjacent cells for accommodatiltixers.

However, this delay can be avoided by changing the location and the shape of the module
Mixer; on which the mixing operation is performed such that the space fragmentation is
minimized. For example, by re-assigning the operation to the OL-shapedO device shown in
Fig. 6¢c and moving the droplet to the new location, we can plslieer; at timet + 4.6,
obtaining the schedule in Figa. Shifting is done by changing the activation sequence of
the electrodes, such that the droplet is routed to the new position, where it continues moving
according to the mixing pattern. Considering that at tirae4.6 the mixing operation still
had 5.35 s to execute on the<2 module out of the total 9.95 s, the rest 53.76% of mixing
will be executed on the OL-shapedO mixer. Using the method proposed if.Seitte
completion time of an operation on the OL-shaped® module is 2.89 s, thus the mixing will
complete at time: + 6.15.

The overhead that needs to be considered for moving the module is equal to the routing
time to the new destination, which, under the assumptions in 34ds 2 x 0.01 s. In order
to constrain the amount of additional routing caused by dynamic routing, our placement
approach considers that the routing overhead performed in order to accommodate one device
should not exceed a given threshdlierheadmay.

4 Tabu Search based synthesis

We have shown that Tabu Search can be used successfully to synthesize good quality so-
lutions in the context of DMBs11]. In this paper we extend the approach froiri][to
consider dynamically reconbgurable non-rectangular devices. Our synthesis strategy, pre-
sented in Fig7, takes as input the application gragfy, £), the given biochip cell array

C, the module libraryZ, and produces that implementatibn= (A4, B, S, P) consisting of,
respectively, the allocation, binding, scheduling and placement, which minimizes the sched-
ule length"s on the given biochig. As the result of the synthesis process depends on the
order of executing the operations, we use prioritie® decide the scheduling sequence for

two or more operations that are ready to be executed at the same. timthis approach,

we use a Tabu Search metaheuristictp decide the allocationt, binding B and priorities

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 297

DMBSynthesis@, C, L)
1 < A°, B°>=InitialSolutionG, L)
2 # ° = CriticalPatl{g, A°, B°)
3 < A, B,#> =TabuSearcty, C, L, A°, B°,# °)
4 < §,P>=ScheduleAndPla¢§, C, A, B, #)
5retun ! =< A,B,S,P>

Fig. 7 Synthesis algorithm for DMBs

of operationg# (line 3in Fig.7). TS starts from an initial solution, where we consider that

for the initial allocationA° each operatiol®; € V is bound to a randomly chosen module

M; € £ (line 1 in Fig. 7). The initial execution priorities# °, are given according to the
critical path priority function (line 2 in Fig7) [12]. According to this, the priority of an
operation is debned as the longest possible schedule length from the execution of the oper-
ation to the completion of all the operations in the graph. The next two sections present our
proposed scheduling and placement algorithms, respectively, andiSutesents our TS
implementation.

4.1 Scheduling heuristic

For given allocation, binding and priorities decided by TS, we useStheduleAndPlace
function presented in Fi@ to decide the schedulg of the operations and the placemént
This section presents the scheduling, and the next section presents the placement algorithm.
Our scheduling is based on a List Scheduling (L8)] [heuristic. LS takes as input the
application graptlg (v, £), the cell arrayC, the allocationA, binding B and priorities#
and returns the schedulingand the placemer®. The List Scheduling heuristic is based
on a sorted priority listL aqy, CONtaining the operation®; € ¥V which are ready to be
scheduled. The start and Pnish times of all the operations are initialized to 0 in the beginning
of the algorithm (lines 2 and 3 in Fi@). A list L eecute Which contains the operations that
are executing at the current time step is created in the beginning of the algorithm (line 4).
Initially, L reagy Will contain those operations in the graph that do not have any predecessors
(line 5 in Fig.8). We do not consider input operations as part of the ready list. As they do
not have any precedence constraints, input operations can be executed at any time. However,
our algorithm schedules inputs and their successors sequentially, in order to avoid storing
the dispensed droplets. Let us consider tigg. during the execution of the application.
For each operation that Pnishes executintg,as: (line 9) we update the microRuidic array,
by removing the device to which the operation was bound to (line 11). The successors of the
operation that are ready to be scheduled are addeg g (line 14 in Fig.8).

Next, we try and schedule the ready operations, starting with the opef@tidraving
the highest priority (line 17 in Figg). If the moduleB(O;) to which the operation is bound
can be placed on the microRuidic array the placement is updated (line 18 i8) Higthere
exists a placed storage module associated with the oper@jipthe storage is removed
from the array.

The ScheduleAndPlace function (Fig. 8), calls theDynamicPlacement function from
Fig. 10. Once the placement is known, LS takes into account the routing time, in terms
of Manhattan distance, betwedfy and the source modules. Once an operation is sched-
uled it is removed fronik reaqy (line 23 in Fig.8) and added td execure (line 24 in Fig.8).
Before the end of the iteration, the storage constraints are considered. If the successors of the
operations that bPnished &t have not yet been scheduled for execution, a storage unit

@ Springer

298 E. Maftei et al.

ScheduleAndPlaceg, C, A, B, #)

1 teurrent =0

2 tftan =0,V0; €g

3t"™"=0,v0, eg

4 Lexecute =0

5 L rewady = ConstructReadyLi$g, #)

6 // schedule and place operations

7 while 3 O; € G such that™" = 0 do

8 [/l for finishing operations -
nis|

9 forall Oj € Lexecute such thaty™ = teyrrenwt do

10 I/l update placement

11 UpdatePlacemerd(P, B(O;))

12 RemoveFromExecuteLig , L eyecute)
13 /1 add ready successors to L reaqy

14 AddReadySuccessorToLi§Y(, L ready)
15 end for

16 // schedule ready operations
17 forall O; €L reaqy do
18 placed = DynamicPlacemedt(P, B(O;))

19 if placedthen

20 /I set the start and finish times

21 tjstart = tcurrent

22 tJ_finish _ tf‘a” + CJ-B G5)

23 RemoveFromReadyLisI , L ready)

24 AddOperationToExecuteLisd , L execute)
25 end if

26 end for

27 tcurrent - tcurrent + 1

28 end while

29 return < §,P>
Fig. 8 List scheduling algorithm for DMBs

is placed on the microfRuidic array. TS uses design transformations to search the solution
space. Inside TS, we use tBeheduleAndPlace function to determine the schedule length
"s of each solution.

4.2 Dynamic placement algorithm

We have extended the online placement algorithm from Bazargan &t &dr DR-FPGAs

to handle DMBs, where we allow dynamic reconbguration of modules during their execu-
tion. Although the algorithm was proposed for online placement, we can use it of3ine, since
we know beforehand all the operations that have to be executed. The algorithn2froas

three parts: (i) a free space manager which divides the free space on the biochip into a list
of overlapping rectangles, ., (i) a search engine which selects an empty rectangle from

L rect that best accommodates the moduleto be placed, according to a given criteria, such

as Obest btO and (iii) a placer that indérten the microRuidic array. Each rectangle can be
represented by the coordinates of its left bottom and right upper cormgng, &, y:). In

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 299

S.13.9) |B 9.9) [s.]
g 5] e S @ s 119%‘” 5| 6908
T T ove o % 05
| ¥] e p—— T —
| M 1
M |M
Siy X I lﬂ 5 o9 T aR] [5 69 iy R |
(04 . L= ; sa) T Tyl
. I o 1 1 T
(5. | 1 O S R f T &[S I R |
A | I . ! i I I
¢ =l= g 4 - o M| R
(0,0) [w] @0) (0.0) W] 7.0) g W]
(a) Initial placement at ¢t 4 4.6 (b) Placing Mizers (c) Dynamic reconfigurability

Fig. 9 Dynamic placement example

order to allow the placement on the array of modules of any shape we consider in our place-
ment approach that for non-rectangular devices the search engine can seleR;aset

of overlapping free rectangles in which the module can be placed. For rectangular shaped
devicesRgosen Will consist of only one rectangle.

The placement algorithm takes as inputihhe n matrixC of cells, the current placement
of modulesP and the modul®/; to be placed, updates the array and returns a boolean value
stating if the accommodation ®f; on the array was successful or not. If the module was
not placed, LS will have to delay the operation corresponding;to

Let us illustrate the placement algorithm by using Fg. The ready list consists of the
operations in the graph that are ready to be scheduled, henge= {Og, O10}. Considering
the same allocation and binding presented in Settthe initial priorities for the operations
are# g =Cor?=61sandty =Cor°=46s.

The LS algorithm will selec©g to be scheduled brst and will c&lynamicPlacement to
placeMixer, on the biochip array. The modubMixer, which is currently executing at time
t + 4.6, divides the free space into three overlapping rectariglgs= {Rect; = (0, 0, 3,9),

Rect, = (0,4,9,9), Rectz = (7,0, 9,9)}, see Fig.%9a (line 2 in Fig.10). As Mixer; is a
module of rectangular shape, the placement algorithm searches for the smallest rectangle
in Lt that bts the 2 3 virtual device. AsRect, = (0, 4,9, 9) is the only rectangle suf-
bciently large to accommodate the modiRg,.sen = {Rect,} andMixer, will be placed at

its bottom corner (line 6 in Figl0). Consequently the free space will be updated (line 7)

to L et = {Rect; = (0,0, 3, 4), Rect, = (5,4, 9,9), Rect; = (7,0, 9, 9), Rect; = (0, 8,9, 9)}

as depicted in Figob.

After the scheduling and placement @k, the next operation to be considered for
scheduling at time + 4.6 is O40. Because of space fragmentation, no free rectangle can
accommodate the 2 4 mixer currently assigned 10,0 and the operation would have to be
delayed untilt + 9.95, as depicted in Fighd, where the mixer is denoted witfl3. How-
ever, when no suitable rectangle can be found for accommodating a device, our algorithm,
as opposed ta?], will try to decrease the space fragmentation on the microRuidic array by
moving and, if necessary, re-assigning operations to modules (possibly of different shape)
during their operation.

We use a greedy approach to decide on which modules to move (lines 12D23), until
there is space for the current modiMg or a termination criteria is reached. As moving a
device requires routing the droplet from the initial position to another one on the array, we
place a constraint on the increase in routing time due to moving devices, of one time step,
i.e.,Overheadna is one second. Therefore, after each move, the varRdaléingOverhead,

@ Springer

300 E. Maftei et al.

DynamicPlacementC, P, M)
1 /I construct list of empty rectangles
2 L yrect = ConstructRectLigt)
3 [search for R¢posen that best fits M
4 Rchosen = SelectRectangléks rect, M)
5 if Rehosen # ¥ then
6 placed= UpdatePlaceme(®, Rchosen, Mi)
7 UpdateFreeSpadefect)
8 else
9 RoutingOverheag: 0
10 MovesList=0
11 /I dynamically reconfigure already placed modules
12 while Rehosen =9 A RoutingOverheack Overheadmax do

13 Rchosen = EvaluatePossibleMovés, P, L rect, M)

14 if Rehosen 7 ¥ then

15 placed= UpdatePlaceme(®, R¢nosen, Mi)

16 UpdateFreeSpadefect)

17 else

18 BestMove= SelectBestMové], P, L rect)

19 PerformMove(BestMovePR, L rect)

20 RecordMove(MovesList, BestMove)

21 RoutingOverheag= RoutingOverhead- DeterminePerformedRouting(BestMove)
22 end if

23 end while
24 /I no placement has been found, restore the original P
25 if Rehosen = ¥ then

26 UndoMovesP, L rect, MovesList)
27 endif
28 end if

29 return placed

Fig. 10 Placement algorithm for DMBs

capturing the extra routing required for moving the droplet between the two locations is
updated (line 21). For example, for a routing time of 0.01 s across one cell, we move modules
to accommodate the current modig such that routing would not increase with more
than 100 cells. The routing distance is calculated based on the Manhattan distance between
the left top corners of the old position and the new position of the module considered for
moving. In order to have an accurate approximation of the routing overhead, we consider
that a module can be moved only if there are no other modules blocking the path between
the two locations.

Considering the placement in Figb, Mixer; can be moved at most three cells to the
left and two to the right whileMixer, can be moved at most four cells to the right and
one up. In order to choose the best move we evaluate all moves that can be performed in
a greedy fashion: (i) we check if the new placement obtained after performing one move
while maintaining the initial binding can accommodaexers; (ii) if not, we characterize
the free space existent on the microf3uidic array after the move, considered as a device, and
change the shape of the moved device to the new created one; (iii) if no space could be
created for accommodatiridixer; we perform the best move possible, the one minimizing
the fragmentation of the space. The moving and, if necessary, re-assigning of operations to

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 301

modules continues until the routing constraint is violated (line 12 in . If not enough
adjacent cells have been obtained for pladilg we restore the initial placement (line 26).

In order to be able to accommodate on the microfRuidic array modules of any possible
shape, we allow the search engine to group a set of overlapping free rectangles in the case of
non-rectangular devices. For example, while evaluating the moves that can be performed on
Mixery in Fig. 9b (line 13), the algorithm movedlixer; two cells to the right. As the move
is not sufpcient for accommodatirigixers, we change the module on whid¥ixer; is
executing. By grouping the free space in the overlapping rectaRglgs= (5, 4, 9, 9) and
Rects = (7,0, 9, 9) we create a new OL-shapedO device, on vMiger, can be executed.

We assume that the completion time for non-rectangular modules, such as the OL-shapeO,
are computed during the synthesis process, as shown inSgdDnce characterized, the
devices are added to the given module library for later use. After the re-assignriviireof

to the OL-shapeO, the free space consists of two recteRegass {0,0,6,4} andRect, =
{0,8,5,9}. As there are now enough adjacent cellRatt;, Mixerz will be placed on the
microf3uidic array and the placement algorithm will terminate.

4.3 Tabu Search

Tabu Search (TS) is a metaheuristic based on a neighborhood search technique which uses
design transformations (moves) applied to the current solutiéti™™, to generate a set of
neighboring solutiond\, that can be further explored by the algorithm. Our TS implemen-
tation performs two types of transformations: (i) re-binding moves and (ii) priority swapping
moves. A re-binding move consists in the re-binding of a randomly chosen opef@tion,
currently executing on modulkl;, to another modul®/; . Such a move will take care of

the allocation, e.g., removing; and allocatingVi; . A priority swapping move consists in
swapping the priorities of two randomly chosen operations in the graph.

In order to efbciently perform the search, TS uses memory structures, maintaining a his-
tory of the recent visited solutions (a OtabuO list). By labeling the entries in the list as tabu
(i.e., forbidden), the algorithm limits the possibility of duplicating a previous neighborhood
upon revisiting a solution. We use two tabu lists, one for each type of move. These are con-
structed as attribute-based memory structures, containing not the complete recent solutions,
but only relevant modibed attributes. Hence, if an operafipis re-bound to a moduli;
as result of a re-binding move, the change of the solution will be recorded in the correspond-
ing tabu list as a pair of the forf®©;, M;) and if the priorities of two operatior®; andO;
are swapped as part of the diversibcation process, the move will be recor@@d@s).

However, in order not to prohibit attractive moves, an Oaspiration criteriaO may be used,
allowing tabu moves that result in solutions better than the currently best known one. More-
over, in order to avoid getting stuck in a local optima, TS uses OdiversibcationO. This in-
volves incorporating new elements that were not previously included in the solution, in or-
der to diversify the search space and force the algorithm to look in unexplored areas. Based
on experiments, we have decided to use priority swapping as a diversibcation move, only
when the best known solution does not improve for a debPned number of iterationg,,
determined experimentally.

The TS algorithm described in Figl takes as input the application graghthe mi-
croRuidic arrayC, the module libraryZ, the initial allocation4°, binding 3° and priorities
#°, and returns the best found implementatibfe, Initially the best solution is consid-
ered the initial one, in which each operation is assigned to a randomly chosen device in the
module library and has the priority given according to the critical path length. The evalua-
tion of the initial solution! ° is performed by th&cheduleAndPlace method, which returns

@ Springer

302 E. Maftei et al.

TabuSearch@, C, L, A°, B°, #°)
1 < &§°,P°>= ScheduleAndPlag¢, C, A°, B°,# °)
21 best:! current:! o _« AO,BO’SO'P0>
3 "Rest_naurrent _ o — GetCompletionTimes®)
4 TabuListgey =9
5 TabuListyo =¥
6 NUMiter =0
7 while timeLimit not reachedlo
8 N = GenerateNeighborho¢d ®™" 1)
9 N = SelectAllowedMoveg\)
10 (Oj, B(O;)) = SelectBestMoveN)
11 PerformBestMove(™", O;, B(0;))
12 RecordRebindMové&d;, B(O;), TabuListgey)
13 "grent — GetCompletionTimgseurrent)
14 if --éurrent <" (b;est then

best __ t. wbest __ n» t
15 | esl — | curren : Ges — (c;urren
16 else
17 NUMiter = NUMjger + 1
18 if NnUM;jer = NUMg;, then
19 (Oi,0j) = SelectSwapMou@, # ", TabuListyri)
20 PerformSwapMove(™", O;, O;)
21 RecordSwapMoved;, O; , TabuListprio)
22 naurrent — GetCompletionTimgse!™)
23 if n(csurrent <" gest then

best __ t. nbest __n t

24 | .ES _| currenl Ges — éurren
25 end if
26 NUMiter = 0
27 end if
28 endif
29 end while

30 return | best
Fig. 11 Tabu Search algorithm for DMBs

the schedule lengthg obtained for the given allocation, binding and priorities (line 3 in
Fig. 11). Two tabu lists,TabuListg, andTabuListi, are used for recording the re-binding
moves, respectively the priority swapping moves. Each list has a giventaimsizeqe,

and tabuSizei, correspondingly, specifying the maximum number of moves that can be
recorded by the list. Initially, the lists are empty (lines 4D5 in Eij. A variablenumig, is

used to keep track of the number of iterations passed without the improvement of the best
solution,! 2 (line 6).

The algorithm is based on a number of iterations (lines 7D29 inl&E)gduring which
moves are applied to the current solution in order to try and improve the overall best solu-
tion! 2. In each iteration, a set of possible candidatets obtained by applying moves
to the current solution, ™" (line 8). HoweverN might contain solutions that are dis-
allowed by TS. According to the aspiration criteria, a tabu m@g M;) € TabuListgey is
only allowed if it leads to a solution better than the currently best known one. Therefore,
all the tabu moves resulting in solutions with schedule leng#i&™ worse than the cur-

rently best one are removed frdshand thus, the séi of allowed moves is created (line 9).

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 303

2x2 Tabu List 2x2 Tabu move &
Source 2% 2 ,T‘ 0, 0O, 0, O, O, O, O 2 x 2 |T‘bcncr than best-so-far
2x2[03] 2x53x32x42x52x52x42x5 2x2[03 |
@ . @ 2x2 Current & best-so-far solution 2x2
Mix\o/Mix\E/ Mix\=/Mix! 1x3 2x5
@) @ 2x5 2x5 19
Mix Mix 3x3 3x3
@ (b) Current solution (c) Re-bind Os to a 2 x 5 module
Mix
2x2 Non-tabu move & 2x2 Non-tabu move &
Sink 2x2 worse than best-so-far 2% 2 better than best-so-far
(2) PCR/M g 2x2 03]
1x3 2x2
1x3 1 x3
2x5 = 27 2% 5 20
3x3 1x3

(d) Re-bind O4 to a 1 x 3 module (e) Re-bind O7 to a 1 X 3 module

Fig. 12 Tabu Search neighborhood

Operation Area (cells) Time (s)

Mixing 2x5 2 Operation Label Area (cells) Time (s)
Mixing 2x4 3

Mixing 1x3 5 Mixing Ly 4x2x1 1.92
Mixing 3x3 7 Mixing Lo Ex2x1 1.78
Mixing 2x2 10 Mixing T 4x3x1 2.14
Dilution 2x5 4 Mixing 1x5 1.60
Dilution 2x4 5 Mixing 1x6 1.53
Dilution 1x3 7 Dilution Ly 4x2x1 3.78
Dilution 3x3 10 Dilution Lo 5x2x1 3.57
Dilution 2x2 12 Dilution T 4x3x1 4.10
Dispensing D 7 Dilution 1x5 3.22
Detection Ix 1 30 Dilution 1x6 3.12

(a) Module library for the experimental (b) Library of characterized modules

evaluation

Fig. 13 Experimental evaluation

The ScheduleAndPlace function is used for determining the mo{®@;, M;) N leading to
the solution with the shortest schedule lentifi" among all the moves iN. The move
is selected and marked as tabu (lines 10D12). If the obtained solution has a better schedule
length that the currently known one, the best-so-far solution is updated (lines 14D15). When
the best known solution does not improve for a given number of iteratiomg, a diversi-
bcation move is considered (line 18), forcing the search into unexplored areas of the search
space. The move consists in swapping the priorities of two randomly selected operations
O; andO;, with (O;, O;) £ TabuListye. If the move results in a new best known solution,
| bestis ypdated td U™ (line 23). Finally, the variableum is reset to 0 (line 26).

Let us use the mixing stage of the polymerase chain reaction (PCR/M) shown irP&jg.
and the module library in Fid.3a to illustrate how each iteration is performed. Consider the
current solution as being the one represented by the schedule ih2Bigrhe current tabu
list, presented to the right, contains the recently performed transformations. As all operations
are mixing operations, we will denote a module by its area, @,gis bound to a mixing
module of 2x 2 cells. Starting from this solution, TS uses re-binding moves to generate

@ Springer

304 E. Maftei et al.

the neighbor solutions (line 8). Out of the possible neighboring solutions we present three
in Fig. 12cbd. The solution in Figl2c is tabu and the one in Fig2d is worse than the
current solution (which is the best so far). In the solution in Higg O is re-bound to a

new, 1x 3 mixer, which results in a non-tabu solution better than the current one. However,
TS will select the move in Figl2c, that would change the % 3 mixer in Fig.12b for

Os to a 2x 5 mixer module (line 10). Although the moy®s, 2 x 5) is marked as being

tabu, it leads to a better result than the currently best known one and thus, according to the
aspiration criteria, it is accepted (lines 14D15). The evaluation of the new solution is done by
using the unibed scheduling and placement algorithm presented before which determines the
completion timé' of the application graph. If the best solutib#®t has not been improved

for a number ofhumyg;, iterations, the algorithm diversibes the search space by performing

a priority swapping move, which is recorded intebuList,, (lines 18D28). The algorithm
terminates when a given time-limit for performing the search has been reached.

5 Experimental evaluation

In order to evaluate our proposed approach, we have used a real life example and ten syn-
thetic benchmarks. The Tabu Search-based algotitias implemented in Java (JDK 1.6),
running on SunFire v440 computers with UltraSPARC Illi CPUs at 1,062 GHz and 8 GB of
RAM. The module library used for all the experiments is shown in E&g. For simplicity,

we have considered in our implementation that the characterization of new modules is done
of8ine. For example, Figl3b contains a set of devices of different shapes, characterized
from the given module library in Fig.3a. The non-rectangular devices (having OLO and OTO
shapes) are described by the lengths of the two segments and the thickness. During the syn-
thesis process, the operations can be re-bound to one of the other deviceslBakigto a

new device characterized in Fig3b.

In our Prst set of experiments we measured the quality of the TS implementation, that is,
how consistently it produces good quality solutions. Hence, we used our TS-based approach
for synthesizing a large real-life application implementing a colorimetric protein assay (103
operations), utilized for measuring the concentration of a protein in a solution.

Table 2 presents the results obtained by synthesizing the protein application on three
progressively smaller microf3uidic arrays. We present the best solution (in terms of schedule
length), the average and the standard deviation obtained after 50 runs of the TS algorithm.
Let us Prst concentrate on the results obtained for the case when we have used a time limit of
60 minutes for the TS. As we can see, the standard deviation is quite small, which indicates
that TS consistently Pnds solutions which are very close to the best solution found over
the 50 runs, which will explore differently the solution space, resulting thus in different
solutions.

Moreover, the quality of the solutions does not degrade signibcantly if we reduce the
time limit from 60 minutes to 10 minutes and 1 minute. This is important, since we envision
using TS for architecture exploration, where several biochip architectures have to be quickly
evaluated in the early design phases (considering not only different areas, but also different
placement of non-reconbgurable resources such as reservoirs or detectors).

For the second set of experiments we were interested in the gains that can be obtained
by allowing the dynamic reconbguration of the devices during their execution. Hence, we

4values for TS parameters determined experimentallygj, = 7, tabuSizegey = 8, tabuSizeprio = 8.

@ Springer

Tabu search-based synthesis of digital microRuidic biochips 305

Table 2 Results for the colorimetric protein assay

Area Time limit Best (s) Average (s) Standard dev.
TS TS TS TS TS TS

13x 13 60 min 17849 182 18203 18988 253 290
10 min 17849 182 18842 19200 453 364

1 min 18749 191 19409 19920 407 470

12x 12 60 min 17849 182 18338 19086 309 320
10 min 17849 185 1899 19773 441 650

1 min 19050 193 19513 21262 897 1097

11x 12 60 min 17849 184 18918 19250 550 378
10 min 17849 194 1935 21172 490 1437

1 min 19150 226 22513 25219 927 1576

have modibed our TS approach to eliminate the possibility of moving devices and changing
their shape during their execution from our TS approach. Talpieesents the comparison
between this modibed TS approach, denoted by, B8d TS for the protein application. As

we can see, taking into account the dynamic reconbgurability property of the biochip, sig-
nibcant improvements can be gained in terms of schedule length, allowing us to use smaller
areas and thus reduce costs. For example, in the most constrained casel2 afray, we

have obtained an improvement of 10.73% in the average completion time compared with
TS, for the same limit of time, 1 minute.

In a third set of experiments we have evaluated our proposed method on ten synthetic
applications. Due to the lack of biochemical application benchmarks, we have generated a
set of synthetic graphs using Task Graphs For Free (TGHRR)\le have manually modibed
the graphs in order to capture the characteristics of biochemical applications. The applica-
tions are composed of 10 up to 100 operations and the results in Jahtwwv the best and
the average completion time obtained out of 50 runs of TS andusBg a time limit of 10
minutes.

For each synthetic application we have considered three areasAnean (largest) to
Areasz (smallest). The results in TabRconbrm the conclusion from Tab® as the area
decreases, considering dynamic reconbguration becomes more important, and leads to sig-
nibcant improvements. For example, for the synthetic application with 50 operations, in the
most constrained case, @99 array, we have obtained an improvement of 24.52% in the
average completion time compared with TS

6 Conclusions

In this paper we have presented a Tabu Search based-technique for the synthesis of digi-
tal microRuidic biochips. The proposed approach considers the unibed architectural design
(allocation, binding and scheduling) and physical design (placement of operations on a mi-
croBuidic array). In this work, we have considered that the binding of operations to virtual
devices can be changed during their execution. We have also proposed a method for analyti-
cally determining the completion time of a reconbgurable operation on a device of any given
shape. A real-life example as well as a set of ten synthetic applications have been used for
evaluating the effectiveness of the proposed TS approach. We have shown that by exploiting

@ Springer

E. Maftei et al.

306

ST 696ST 78E8T 899971 ETET 0.7 6V6ST 06611 18991 4% 4" €97 6G2ST 9€8.T 625971 ST>XGT 00T
474" 6CLET 0cv9T 9/.6%T ETET LcT T00CT 89GET 196¢T 4% 4! 0ctT 6.VTT c08¢T cllct GTXGT 06
89T 6/,GST 060T¢C ¢L18T 10T G9T C¢TeST 98¢6T €291 TIXRT ST 6EVYT 09191 08971 [4 %A 08
9€T 6EECT ¢LBST EVEVT 1107 €T 600¢T 992€T 60SCT CIAT 1t 666TT L8TET T0€CT [A R4S 0L
81T 60CTT 8GG¢CT LLITT 01>6 4N 6990T OvSTT 78111 T1°0T 01T 6990T 0GETT 9GTTT ¢TXIT 09
61T 6966 9GEVT GEBOT 6°6 40" /686 1444) G820T 11°8 70T 6816 8111 VST0T 0T>X0T 0S
19 6SVS L€98 G299 0T>6 89 6SES 0S92 188S 0T>0T 89 6v6¥ 8589 GSES TTX0T [01%
4] (514744 2599 0T9S T1>6 144 0gLe 8,09 €6ES 0T>0T 1374 0cLe 0095 LY9Y TT>X0T og
19 8109 €€19 98¢€9 1>9 85 [AN %] T98S ZL.5S LX) S§ Z8TS 91585 LEYS 1X8 (174
lc 0cve 8G¢e 098¢ 9>8 (114 6791 6T5¢ 6E£TC 8% (074 0TST 00¥¢ €2¢0¢ L%6 0T
Sl Sl S1 Sl S Sl Sl Sl S1 Sl Sl S1

(s) €158g (s) Eabriany €ealy (s) c1seg (s) ¢abelany Zealy (s) Tisag (s) Tobetony Teary S9pPON

Syewyouag dNBYIUAS Joj S)Nsay € ajgel

pringer

aQs

Tabu search-based synthesis of digital microRuidic biochips 307

the dynamic reconbgurability of digital microBuidic biochips signibcant improvements can
be gained, allowing us to use smaller area biochips and thus reduce costs.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

Advanced Liquid Logic (201(ttp://www.liquid-logic.com/technology.html

Bazargan K, Kastner R, Sarrafzadeh M (2000) Fast template placement for reconbgurable computing
systems. IEEE Des Test Comput 17(1):68D83

Chakrabarty K, Su F (2006) Digital microRuidic biochips: synthesis, testing, and reconbguration tech-
nigues. CRC Press, Boca Raton

Chakrabarty K, Zeng J (2005) Design automation for microf3uidics-based biochips. ACM J Emerg Tech-
nol Comput Syst 1(3):186D223

Chakrabarty K, Zeng J (2006) Design automation methods and tools for microRuidic-based biochips.
Springer, Berlin

Cho M, Pan DZ (2008) A high-performance droplet router for digital microRuidic biochips. In: Proceed-
ings of international symposium on physical design, pp 2000206

Dick RP, Rhodes DL, Wolf W (1998) TGFF: task graphs for free. In: Proceedings of the sixth interna-
tional workshop on hardware/software codesign, pp 979101

Fair RB (2007) Digital microRuidics: is a true lab-on-a-chip possible? MicroRBuid NanofRuid 3(3):245b
281

Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Dordrecht

. Maftei E, Paul P, Madsen J, Stidsen T (2008) Placement-aware architectural synthesis of digital microRBu-

idic biochips using ILP. In: Proceedings of the international conference on very large scale integration of
system on chip, pp 425D430

Maftei E, Paul P, Madsen J (2009) Tabu search-based synthesis of dynamically reconbgurable digital mi-
crof3uidic biochips. In: Proceedings of the compilers, architecture, and synthesis for embedded systems
conference, pp 1959203

Micheli GD (1994) Synthesis and optimization of digital circuits. McGraw-Hill Science, New York

Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microBuidic systems. Lab Chip
3:253D259

Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated
microf3uidics. Lab Chip J 2:96D©101

Ren H, Srinivasan V, Fair RB (2003) Design and testing of an interpolating mixing architecture for
electrowetting-based droplet-on-chip chemical dilution. In: Proceedings of the international conference
on transducers, solid-state sensors, actuators and microsystems, pp 6199622

Silicon Biosystems (201®¥tp://www.siliconbiosystems.com

Su F, Chakrabarty K (2004) Architectural-level synthesis of digital microRBuidics-based biochips. In:
Proceedings of international conference on computer aided design, pp 223D228

Su F, Chakrabarty K (2005) Unibed high-level synthesis and module placement for defect-tolerant mi-
crofuidic biochips. In: Proceedings of the 42nd annual conference on design automation, pp 8256830
Su F, Chakrabarty K (2006) Module placement for fault-tolerant microRuidics-based biochips. ACM
Trans Des Autom Electron Syst 11(3):682D710

Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microRuidic biochips.
In: Proceedings of design, automation and test in Europe, vol 1, pp 73D78

Thorsen T, Maerkl S, Quake S (2002) Microf3uidic largescale integration. Science 298:580D584

Xu T, Chakrabarty K (2007) Integrated droplet routing and defect tolerance in the synthesis of digital
microf3uidic biochips. In: Proceedings of design automation conference, pp 9480953

Yuh P-H, Yang C-L, Chang Y-W (2004) Temporal Boorplanning using the T-tree formulation. In: Pro-
ceedings of international conference on computer aided design, pp 300D305

Yuh P-H, Yang C-L, Chang Y-W (2006) Placement of digital microf3uidic biochips using the T-tree
formulation. In: Proceedings of design automation conference, pp 9319934

Yuh P-H, Yang C-L, Chang Y-W (2007) Placement of defect-tolerant digital microf3uidic
biochips using the T-tree formulation. ACM J Emerg Technolog Comput Syst 3(3)acduiorg/
10.1145/1295231.1295234

Yuh P-H, Yang C-L, Chang Y-W, Chen H-L (2007) Temporal Roorplanning using three dimen-
sional transitive closure subGraph. ACM Trans Des Autom Electron Syst 12(4)acdobrg/
10.1145/1278349.1278350

@ Springer

http://www.liquid-logic.com/technology.html
http://www.siliconbiosystems.com
http://dx.doi.org/acm.org/10.1145/1295231.1295234
http://dx.doi.org/acm.org/10.1145/1295231.1295234
http://dx.doi.org/acm.org/10.1145/1278349.1278350
http://dx.doi.org/acm.org/10.1145/1278349.1278350

	Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices
	Abstract
	Introduction
	Related work
	Contribution

	System model
	Biochip architecture
	Characterizing non-rectangular virtual modules
	Biochemical application model

	Problem formulation
	Allocation and placement
	Binding and scheduling
	Synthesis with dynamically reconfigurable modules of any shape

	Tabu Search based synthesis
	Scheduling heuristic
	Dynamic placement algorithm
	Tabu Search

	Experimental evaluation
	Conclusions
	References

