
Tabu Search-Based Synthesis of Dynamically
Reconfigurable Digital Microfluidic Biochips

Elena Maftei
em@imm.dtu.dk

Paul Pop
pop@imm.dtu.dk

Jan Madsen
jan@imm.dtu.dk

DTU Informatics
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark

ABSTRACT

Microfluidic biochips are replacing the conventional biochemical
analyzers, and are able to integrate on-chip all the necessary func-
tions for biochemical analysis. The “digital” microfluidic biochips
are manipulating liquids not as a continuous flow, but as discrete
droplets, and hence they are highly reconfigurable and scalable. A
digital biochip is composed of a two-dimensional array of cells,
together with reservoirs for storing the samples and reagents. Sev-
eral adjacent cells are dynamically grouped to form a virtual de-
vice, on which operations are executed. During the execution of
an operation, the virtual device can be reconfigured to occupy a
different group of cells on the array. In this paper, we present
a Tabu Search metaheuristic for the synthesis of digital microflu-
idic biochips, which, starting from a biochemical application and
a given biochip architecture, determines the allocation, resource
binding, scheduling and placement of the operations in the appli-
cation. In our approach, we consider moving the modules during
their operation, in order to improve the completion time of the bio-
chemical application. The proposed heuristic has been evaluated
using three real-life case studies and ten synthetic benchmarks.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids

General Terms

Algorithms, Performance, Design

Keywords

Microfluidics, biochips, reconfigurability

1. INTRODUCTION
Microfluidic biochips (also referred to as lab-on-a-chip) repre-

sent a promising alternative to conventional biochemical laborato-
ries, and are able to integrate on-chip all the necessary functions for
biochemical analysis using microfluidics, such as, transport, split-
ting, merging, dispensing, mixing, and detection [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-626-7/09/10 ...$10.00.

Biochips offer a number of advantages over conventional bio-
chemical procedures. By handling small amount of fluids, they
provide higher sensitivity while decreasing reagent consumption,
hence reducing cost. Moreover, due to their miniaturization and
automation, they can be used as point-of-care devices, in areas that
lack the infrastructure needed by conventional laboratories [20].

Due to these advantages, biochips are expected to revolutionize
clinical diagnosis, especially immediate point of care diagnosis of
diseases. Other emerging application areas include drug discovery,
DNA analysis (e.g., polymerase chain reaction and nucleic acid se-
quence analysis), protein and enzyme analysis and immuno-assays.
Microfluidic devices can also be used for environment monitoring,
by pathogen detection in air or water samples [20].

There are two generations of microfludic biochips. The first gen-
eration is based on the manipulation of continuous liquid through
fabricated micro-channels, using external pressure sources or inte-
grated mechanical micro-pumps [20]. Although adequate for many
simple biochemical applications, their integrated micro-structures
make continuous-flow biochips unsuitable for more complex appli-
cations, requiring complicated fluid manipulations [3]. The second
generation is based on the manipulation of discrete, individually
controllable droplets, on a two-dimensional array of identical cells.
The actuation of droplets is performed without the need of micro-
structures, leading to increased scalability and flexibility compared
with continuous-flow biochips [13]. This generation is also re-
ferred to as “digital microfluidics”, due to the analogy between the
droplets and the bits in a digital system. Such biochips, consist-
ing of hundreds [1] and thousands [15] of cells have already been
successfuly designed and commercialized. In this paper, we are
interested in the second generation, droplet-based digital biochips.

1.1 Related work
Researchers have initially addressed separately architectural and

physical-level synthesis of DMBs. Su and Chakrabarty [16] have
proposed an integer linear programming (ILP) model for scheduling
and binding, considering a given allocation, but without address-
ing placement and routing. During the physical-level synthesis, the
placement [18, 25] of each module on the microfluidic array and
the droplets routes [6, 23, 28] have to be determined.

A unified high-level synthesis and module placement methodolo-
gy has been proposed in [17], where the focus has been on deriving
an implementation that can tolerate faulty cells in the biochip array.
Their algorithm was modified in [22] to include droplet-routing-
aware physical design decisions. Yuh et al. [25] have proposed a
synthesis and placement algorithm which uses a tree-based topo-
logical representation and is able to improve on the results from
[17]. The algorithm has later been extended to consider defec-
tive cells on the biochip array [26]. In [11] we have proposed an

195

(a) Cell architecture (b) Biochip: array of cells (c) Mixer

Figure 1: Biochip architecture

ILP-based architectural-level synthesis and placement approach for
DMBs, and shown that considering the placement during the syn-
thesis can significantly reduce the biochemical application com-
pletion time. We have also used ILP to generate implementations
which have high chances of successful reconfiguration in case of
faults [10]. Although ILP has the advantage that it produces the
optimal solution, it is only feasible for limited problem sizes.
The combined architectural- and physical-synthesis problem has

some similarities with the simultaneous scheduling and placement
problem of dynamically reconfigurable field-programmable gate
arrays (DR-FPGAs) [2], which is typically formulated as a 3D
packing problem that minimizes the volume, seen as area × exe-
cution time. Bazargan et al. [2] have proposed offline algorithms
for statically reconfigurable FPGAs and online algorithms for dy-
namically reconfigurable FPGAs. Yuh et al. [27] use a 3D transitive
closure subGraph for the 3D packing problem. Their earlier work
on temporal floorplanning using a tree-based topological represen-
tation [24] has been extended for DMBs [25].
However, there are three main differences when doing scheduling

and placement for DMBs: (1) the virtual devices (created by group-
ing adjacent cells) can easily be moved during the execution of op-
erations without incurring a significant overhead—see Section 2.1
for details; (2) non-reconfigurable devices, such as reservoirs and
detectors also have to be considered; and (3) additional operations
have to be introduced to temporarily store a droplet in-between op-
erations that are not scheduled at consecutive time-steps.

1.2 Contribution
In this paper, we propose a Tabu Search-based synthesis ap-

proach that, starting from a biochemical application modeled as
a sequencing graph and a given biochip array, determines the al-
location, resource binding, and scheduling of the operations in the
application at the same time with module placement. All of previ-
ous approaches to DMBs and DR-FPGAs consider the placement
of a module fixed throughout its operation. However, our schedul-
ing and placement steps consider moving the virtual devices during
their operation to improve the biochemical application completion
time on the given biochip area. We show that by taking advantage
of the dynamically reconfigurable characteristic of DMBs, signif-
icant improvements can be obtained in the application completion
time, allowing us to use smaller area biochips and thus reduce costs.
The paper is organized in six sections. Section 2.1 presents the

architecture of a digital microfluidic biochip. We introduce the
abstract model used to capture a biochemical application in Sec-

tion 2.2. We formulate the problem in Section 2.3 and illustrate
the design tasks using several examples. The proposed approach is
presented in Section 3 and evaluated in Section 4. The last section
presents our conclusions.

2. SYSTEMMODEL

2.1 Biochip Architecture

In a digital microfluidic biochip the manipulation of liquids is
performed using discrete droplets. There are several mechanisms
for droplet manipulation [8]. Our work considers electrowetting-
on-dielectric (EWD) [13], but can be extended to handle other tech-
niques as well. EWD is the most promising technique, and can
provide high droplet speeds of up to 20 cm/s [13]. A biochip is
composed of several cells, see Fig. 1b. The schematic of a cell is
presented in Fig. 1a. The droplet is sandwiched between two glass
plates (the top plate and the bottom plate), and moves within a filler
fluid. The top plate contains a single ground electrode, while the
bottom plate has several control electrodes. The electrodes are in-
sulated from the droplet trough an insulation material. With EWD,
the movement of droplets is controlled by applying voltages to the
required electrodes. For example, turning off the middle control
electrode and turning on the right control electrode in Fig. 1a will
force the droplet to move to the right. For the details on EWD, the
reader is directed to [13].

Several cells are put together to form a two-dimensional array
(an example architecture is presented in Fig. 1b). Using EWD ma-
nipulation, droplets can be moved to any location without the need
for pumps and valves, which are required in a continuous-flow
biochip. Besides the basic cell discussed previously, a chip typi-
cally contains input and output ports and detectors. The detection
can be done by using, for example, a light-emitting diode (LED) be-
neath the bottom plate and a photodiode on the top plate. The chip
shown in Fig. 1b can be used for the diagnosis of metabolic dis-
orders, by measuring the lactate and glucose level in human phys-
iological fluids. Hence, the device contains the necessary input
ports for introducing the samples (urine, plasma and serum) and
the reagents (lactate and glutamate oxidase and buffer substance
NaOH) on the microfluidic array, where the corresponding proto-
col will be performed. Using this architecture, and changing corre-
spondingly the control voltages, all of the required operations, such
as transport, splitting, merging, dispensing, mixing, and detection,
can be performed. For example, a mixing operation on a 2×4 mix-
ing module is shown in Fig. 1c. Mixing is done by transporting two

196

Table 1: Module library

Operation Area (cells) Time (s)

Mixing 2×4 3
Mixing 1×3 5
Mixing 2×2 10
Dilution 2×5 3
Dilution 1×3 8
Dilution 2×2 13

droplets to the same location, and then moving them next to each
other according to a certain pattern, such as the one in Fig. 1c. A
mixing module can be created by grouping adjacent electrodes on
which the droplet will be moved. Any cells in the chip can be used
for such a purpose, thus, we say that the chip is “reconfigurable”.
Because of the virtual character of the mixer, the device can be

shifted to a different position, by routing the droplet to another
group of electrodes, where the mixing operation can be continued.
Fig. 1c shows how the 2×4 mixing module can be reconfigured to
occupy a different group of cells. We consider that while the mix-
ing operation is being performed, with the droplet being on the cell
denoted byC1, we decide to change the position of the mixer. In our
example, the droplet will be routed to the nearest position belong-
ing to the new group of cells, C2, where it will continue the initial
mixing pattern. The only overhead that must be considered while
moving the module is the additional time required to transport the
droplet between the two positions. In this paper we consider the
data1 from [13], which allows us to approximate that the time re-
quired to route the droplet one cell is 0.01 s, which is an order of
magnitude smaller than operation times, see Table 1. The routing
overhead will be considered during the synthesis process.
A given pattern will require a particular chip area and operation

completion time. We consider that designers will build and charac-
terize a module libraryL , where for each operation there are several
options with varying areas and execution times, see Table 1.

2.2 Biochemical Application Model
We model a biochemical application using an abstract model

consisting of a sequencing graph [5]. The graph G(V ,E) is di-
rected, acyclic and polar (i.e., there is a source node, which is a
node that has no predecessors and a sink node that has no succes-
sors). Each node Oi ∈ V represents one operation. The binding of
operations to modules in the architecture is captured by the func-
tion B : V → A , where A is the set of allocated modules from the
given library L .
An edge ei, j ∈ E from Oi to O j indicates that the output of op-

eration Oi is the input of O j. An operation can be activated after
all its inputs have arrived and it issues its outputs when it termi-
nates. We assume that, for each operation Oi, we know the exe-

cution time C
Mk

i on module Mk = B(Oi) where it is assigned for
execution. In Fig. 2 we have an example of an application graph
with twelve operations, O1 to O12. The application consists of four
mixing operations (O7, O8, O9 and O10), one diluting operation
(O1) and seven input operations (O2, O3, O4, O5, O6, O11, O12).
O1 is a diluting operation that has two outgoing edges, representing
an output of two droplets. This requires a split operation. Consid-
ering Fig. 1a, a droplet is split by turning on the left and right elec-
trodes and turning off the middle electrode [14]. Thus, the droplet
volume will vary during the application execution. We assume that
the biochemical application has been correctly designed, such that

1Electrode pitch size = 1.5 mm, gap spacing = 0.3 mm, average
linear velocity = 20 cm/s.

all the operations will have the required input droplet volumes. Let
us consider that the operation O7 is bound to a 2×2 mixing mod-
ule denoted by Mixer1 (i.e., B(O7) = Mixer1). Then, according to

Table 1, the execution time for O7 will be C
Mixer1
7 = 10 s.

2.3 Problem Formulation
The problem we are addressing in this paper can be formulated

as follows. Given (1) a biochemical application modeled as a graph
G , (2) a biochip consisting of a two-dimensional m×n array C of
cells and (3) a characterized module library L , we are interested to
synthesize that implementation Ψ, which minimizes the completion

time δG (i.e., finishing time of the sink node, t
f inish
sink).

Synthesizing an implementation Ψ = < A , B , S , P > means de-
ciding on: (1) the allocation A , which determines what modules
from the library L should be used, (2) the binding B of each oper-
ation Oi ∈ V to a module Mk ∈ A , (3) the schedule S of the oper-
ations, which contains the start time tstarti of each operation Oi on
its corresponding module and (4) the placement P of the modules
on the m × n array.

The next subsections will illustrate each of these tasks. The pre-
sentation order does not correspond to the order in which our syn-
thesis approach performs these tasks. The proposed synthesis ap-
proach can be extended to take into account faults in the cells of the
array, as we have shown in [11].

2.4 Allocation and placement
Let us consider the graph shown in Fig. 2. We would like to

implement the operations on the 8×8 biochip from Fig. 1b. We
consider the current moment of time as being t. We assume that
a diluting operation from another application has been scheduled
at an earlier time step on the module denoted with D1, has been
placed on the microfluidic array as shown in Fig. 3b and will finish
executing at t+5. The input operations are already assigned to the
corresponding input ports. Thus, O2 is assigned to the input port
S1, O3 to R1, O4 to S2, O5 to R2, O6 to S3, O11 to B and O12 to S2.
However, for the mixing operations (O7, O8, O9 and O10) and the
dilution operation (O1) our synthesis approach will have to allocate
the appropriate modules, bind operations to them and perform the
placement and scheduling.

Let us assume that the available module library is the one cap-
tured by Table 1, without the 2×4 mixing module. We have to
select modules from the library while trying to minimize the appli-
cation completion time and place them on the 8×8 chip. A solu-
tion to the problem is presented in Fig. 3b–(e), where the following

Figure 2: Application graph

197

(a) Schedule

(b) Placement at t (c) t+5

(d) t+8 (e) t+10

Figure 3: Implementation example

modules2 are used: two 2×2 mixers (Mixer1, Mixer2), two 1×3
mixers (Mixer3,Mixer4) and one 2×5 diluter (Diluter2).
The placement for the solution is as indicated in Fig. 3b–(e),

where we can notice that modules occupy a space larger than their
size (the hashed area corresponding to each module).This is to avoid
droplet-merging and contamination. If two droplets are next to each
other on two adjacent cells, they will tend to merge to form one sin-
gle droplet. Two approaches have been considered for solving this
problem. The first approach, used in [17, 23], consists in having a
one-cell distance between any two adjacent modules, which is suf-
ficient for isolating the functional regions on which operations are
executing. However, if routing is not considered at the same time
with placement, the resulted solution will require significant modi-
fications for accomodating the necessary routes. As routing needs
a 3-cell width channel, one cell between adjacent modules will not
be sufficient for creating the necessary routes and thus transporting
the droplet. Moreover, the lack of segregation cells between reser-
voirs and modules placed in their proximity can make the dispens-
ing process impossible. In the second approach, proposed in [4], a
segregation area is wrapped around each module. This approach is
depicted in Fig. 3b, where Diluter1, which has a size of 2×2 oc-
cupies 4×4 cells. As it can be seen, module wrapping provides a
2-cell width channel between any two adjacent modules as well as
a 1-cell channel between modules placed at the chip boundary and
reservoirs. The advantage of this approach is that the segregation
areas can be adjusted during a post-processing step to introduce the
necessary paths for droplet movement. In this article, we consider
the second approach, and we assume that the routing will be per-
formed in a separate phase, after the positions of the modules have
been determined.
Our placement problem has similarities with the placement of

DR-FPGAs, where modules can physically overlap on-chip as long
as they do not overlap in time, i.e., they are used during differ-

2In the figures we denoteMixeri with Mi and Diluteri with Di.

ent time intervals. After an operation has finished executing on a
module, we can reuse the same cells as part of another module.
The main difference to DR-FPGAs is that we can easily move op-
erations during their execution, as discussed in Section 2.1. This
property will be used to improve the scheduling, see Section 2.6.

2.5 Binding and Scheduling
Once the modules have been allocated and placed on the cell ar-

ray, we have to decide on which modules to execute the operations
(binding) and in which order (scheduling), such that the application
completion time is minimized.

Considering the graph in Fig. 2 with the allocation presented in
the previous section, Fig. 3a presents the optimal schedule in the
case of static virtual modules, whose placement remains the same
throughout their operation. The schedule is depicted as a Gantt
chart, where, for each module, we represent the operations as rect-
angles with their length corresponding to the duration of that op-
eration on the module. For example, operation O10 is bound to
module Mixer4, starts immediately after the mixing operation O7

(i.e, tstart10 = t+10) and takes 5 s, finishing at time t
f inish
10 = t+15 s.

The diluting operation O1 cannot start on module Diluter2 until
the operation bound to Diluter1 has finished executing, at time t+5.
Scheduling also decides the access to non-reconfigurable modules,
such as input/output ports and detectors, but in this example we
have omitted it for simplicity.

2.6 Dynamic Reconfiguration
Although the schedule presented in Fig. 3a is optimal for the

given allocation and binding, it can be further improved by taking
advantage of the property of dynamic reconfiguration of the digital
biochip. Consider the placement in Fig. 3b. Even though the num-
ber of free cells on the microfluidic array at time t is higher than the
number of cells in Diluter2, the fragmentation of the space makes
the placement of Diluter2 impossible. Hence, the operation has to

198

(a) Schedule (b) Placement at t (c) Dynamic reconfigurability

Figure 4: Motivational example

wait until t+5, in Fig. 3c, when Diluter1 finishes executing, and
there are enough free adjacent cells for accomodating Diluter2.
However, this delay can be avoided by “shifting” Diluter1 to

another location such that the space fragmentation is minimized.
For example, by moving the module three cells to the left as in
Fig. 4b, we can place Diluter2 at time t, obtaining the schedule in
Fig. 4a. Shifting is done by changing the activation sequence of the
electrodes, such that the droplet is routed to the new position, where
it continues moving according to the mixing pattern. The moving
overhead is equal to the routing time to the new destination, which,
under the assumptions in Section 2.1 is 3×0.01 s.
Note that special “store” modules have to be allocated if a droplet

has to wait before being processed, which is different from DR-
FPGAs. In general, if there exists an edge ei, j from Oi to O j such
that O j is not immediately scheduled after Oi (i.e., there is a delay
between the finishing time of Oi and the start time of O j) then we
will have to allocate a storage cell for ei, j . Hence, the allocation of
storage cells depends on how the schedule is constructed. In Fig. 4a
one of the two droplets resulted from the diluting operation O1 has
to be stored until O9 is scheduled for execution. The placement in
Fig. 4c shows the 1×1 storage module.

3. TABU SEARCH BASED SYNTHESIS
The problem presented in the previous section is NP-complete

(scheduling in even simpler contexts is NP-complete [21]). Hence,
in [11] we have proposed an ILP-based method for the problem
described in Section 2.3, but without considering dynamic recon-
figuration. However, as biochips are becoming larger, ILP is no
longer feasible for their synthesis. In addition, significant gains
can be obtained by considering dynamic reconfigurability during
synthesis. Our synthesis strategy, presented in Fig. 5, takes as input
the application graph G(V ,E), the given biochip cell array C and
the module library L and produces that implementation Ψ = < A ,

B , S , P > consisting of the allocation, binding, scheduling and
placement, which minimizes the schedule length δG on the given
biochip C . In this paper, we use a Tabu Search (TS) metaheuris-
tic [9] to decide the allocation A and binding B (line 3 in Fig. 5).

DMBSynthesis(G , C , L)

1 < A◦,B◦ > = InitialSolution(G , L)
2 Π◦ = CriticalPath(G , A◦, B◦)
3 < A ,B ,Π > = TabuSearch(G , C , L , A◦, B◦, Π◦)
4 < S ,P > = ScheduleAndPlace(G , C , A , B , Π)
5 return Ψ = < A , B , S , P >

Figure 5: Synthesis algorithm for DMBs

For a given allocation and binding decided by TS, we use a List
Scheduling (LS) heuristic [12] to decide the schedule S of the op-
erations. LS is based on a sorted priority list, Lready, containing
the operations Oi ∈ V which are ready to be scheduled (all the
predecessor operations have finished executing). During each iter-
ation, the operation Oi with the highest priority is selected to be
scheduled. The priorities Π of the operations are also decided by
TS. Before a ready operation Oi can be scheduled, its correspond-
ing module, Mi = B(Oi), is placed on the microfluidic array. The
combined scheduling and placement is implemented by the Sched-
uleAndPlace function (line 4 in Fig. 5), which calls the Dynamic-
Placement function from Fig. 8. Once the placement is known, LS
takes into account the routing time, in terms of Manhattan distance,
between Mi and the source modules. The routing times, one order
of magnitude smaller than operation times, were considered part of
the operation times during the experiments.

TS uses design transformations to search the solution space. In-
side TS, we use the ScheduleAndPlace function to determine the
schedule length δG of each solution. TS starts from an initial solu-

tion, where each operation Oi ∈ V is bound to a randomly chosen
module Mi ∈ L (line 1). The initial execution priorities are given
according to the critical path priority function (line 2) [12].

The next section presents our proposed placement algorithm and
Section 3.2 presents our TS implementation.

3.1 Dynamic Placement Algorithm
We have extended the online placement algorithm fromBazargan

et al. [2] for DR-FPGAs to handle DMBs, where we allow dynamic
reconfiguration of modules during their execution. Although the
algorithm was proposed for online placement, we can use it of-
fline, since we know beforehand all the operations that have to be
executed. The algorithm from [2] has two parts: (i) a free space
manager which divides the free space on the biochip into a list of
overlapping rectangles, Lrect , and (ii) a search engine which selects
an empty rectangle from Lrect that best accommodates the mod-
ule Mi to be placed, according to a given criteria, such as “best
fit”. Each rectangle can be represented by the coordinates of its left
bottom and right upper corners, (xl ,yl ,xr,yr). Our proposed algo-
rithm, DynamicPlacement, is presented in Fig. 8. The placement
algorithm takes as input the m × n matrix C of cells, the current
placement of modules P , the free space Lrect and the module Mi

to be placed and returns the rectangle Ri = (xl , yl , xr, yr) with the
location of Mi. If no rectangle is found, LS will have to delay the
operation corresponding toMi.

Let us illustrate the placement algorithm by using Fig. 3b. The
ready list consists of the operations in the graph that are ready to
be scheduled, hence Lready = {O7, O1}. Let us assume that O7 has

199

(a) Initial placement (b) Placement at t (c) Dynamic reconfigurability

Figure 6: Dynamic placement example

DynamicPlacement(C , P , Lrect ,Mi)

1 // search for Ri ∈ Lrect that best fits Mi

2 Ri = SelectRectangle(Lrect ,Mi)
3 if ∃ Ri then

4 UpdatePlacement(P , Ri)
5 UpdateFreeSpace(Lrect , Ri)
6 return Ri

7 end if

8 // dynamically reconfigure already placed modules

9 while ∄ Ri ∧ RoutingOverhead ≤ 1 s do
10 BestMove = SelectBestMove(C , P , Lrect)
11 PerformMove(BestMove, P , Lrect)
12 RecordMove(MovesList, BestMove)
13 // search for Ri that best fits Mi

14 Ri = SelectRectangle(Lrect ,Mi)
15 if ∃ Ri then

16 UpdatePlacement(P , Ri)
17 UpdateFreeSpace(Lrect , Ri)
18 return Ri

19 end if

20 end while

21 // no placement has been found, restore the original P
22 UndoMoves(P , Lrect , MovesList)

Figure 8: Placement algorithm for DMBs

the highest priority and is bound to a 2×2 module, Mixer1. The
LS algorithm will select O7 and will call DynamicPlacement to
place Mixer1 on the biochip array. The module Diluter1, which is
currently executing at time t, divides the free space into three over-
lapping rectangles Lrect = {Rect1 = (0,0,3,8), Rect2 = (0,4,8,8),
Rect3 = (7,0,8,8)}, see Fig. 6a. As rectangle Rect2 = (0,4,8,8) is
the only one sufficiently large to accommodate the module,Mixer1
will be placed at its bottom corner (line 2 in Fig. 8). Consequently
the free space will be updated (line 5) to Lrect = {Rect1 = (0,0,3,4),
Rect2 = (4,4,8,8), Rect3 = (7,0,8,8)} as depicted in Fig. 6b.
After the scheduling and placement of O7, the next operation

to be considered for scheduling at time t is O1. Because of space
fragmentation, no free rectangle can accommodate the 2×5 diluter
currently assigned to O1 and the operation would have to be de-
layed until t+5, as depicted in Fig. 3c, where the diluter is denoted
with D2. However, when no suitable rectangle can be found for
accommodating a device, our algorithm, as opposed to [2], will try

to decrease the space fragmentation on the microfluidic array by
moving the modules during their operation.

We use a greedy approach to decide on which modules to move
(line 9–20), until there is space for the current module Mi or a ter-
mination criteria is reached. As moving a device requires routing
the droplet from the initial position to another one on the array,
we place a constraint on the increase in routing time due to mov-
ing a device, of one time step, i.e., one second. For example, for a
routing time of 0.01 s accross one cell, we move modules to accom-
modate the current moduleMi such that routing would not increase
with more than 100 cells. The routing distance is calculated based
on the Manhattan distance between the left top corners of the old
position and the new position of the module considered for mov-
ing. If not enough free space is thus created for Mi, we restore
the previous placement (line 22). In each iteration (lines 9–20),
our greedy approach selects the best move (line 10), the one which
brings two rectactangles as close as possible (minimizing the Man-
hattan distance between the upper left corners) and at the same time
increases the number of free adjacent cells that would be obtained
by merging them. For example, in Fig. 3b we consider all the pos-
sible moves that can be performed on the currently placed modules,
Mixer1 and Diluter1 ∈ P . As we can see in Fig. 6b,Mixer1 can be
moved at most four cells to the right, while Diluter1 can be moved
at most three cells to the left and one to the right. The algorithm
will choose to shift Diluter1 three cells to the left, which is the best
move: after the move, the Manhattan distance between Rect1 and
Rect2 is 4 and the two rectangles contain 28 cells, corresponding to
a cost of 32. The existing free space is thus merged into only one
rectangle with coordinates Rect3 = (4,0,8,8). As there are now
enough adjacent cells, Diluter1 will be placed on the microfluidic
array and the placement algorithm will terminate.

3.2 Tabu Search
Tabu Search (TS) is a metaheuristic based on a neighborhood

search technique which uses design transformations (moves) ap-
plied to the current solution, xcurrent , to generate a set of neigh-
boring solutions, Ncurrent , that can be further explored by the al-
gorithm. Our TS implementation performs two types of transfor-
mations: (i) re-binding moves and (ii) priority swapping moves. A
re-binding move consists in the re-binding of a randomly chosen
operation, Oi, currently executing on module Mi, to another mod-
uleM j. Such a move will take care of the allocation, e.g., removing
Mi and allocating M j. A priority swapping move consists in swap-
ping the priorities of two randomly chosen operations in the graph.

200

(a) Current solution (b) Rebind O5 to a 2×5 module

(c) Rebind O4 to a 1×3 module (d) Rebind O7 to a 1×3 module

Figure 7: Tabu Search neighborhood

In order to efficiently perform the search, TS uses memory struc-
tures, maintaining a history of the recent visited solutions (a “tabu”
list). By labeling the entries in the list as tabu (i.e., forbidden), the
algorithm limits the possibility of duplicating a previous neighbor-
hood upon revisiting a solution. We use two tabu lists, one for each
type of move. These are constructed as attribute-based memory
structures, containing not the complete recent solutions, but only
relevant modified attributes, thus reducing the amount of memory
required to memorize the history of the search algorithm. Hence,
if an operation Oi is re-bound to a module M j as result of a re-
binding move, the change of the solution will be recorded in the
corresponding tabu list as a pair of the form (Oi,M j) and if the
priorities of two operations Oi and O j are swapped as part of the
diversification process, the move will be recorded as (Oi,O j).
However, in order not to prohibit attractive moves, an “aspira-

tion criteria” may be used, allowing tabu moves that result in solu-
tions better than the currently best known one. Moreover, in order
to avoid getting stuck in a local optima, TS uses “diversification”.
This involves incorporating new elements that were not previously
included in the solution, in order to diversify the search space and
force the algorithm to look in unexplored areas. Based on experi-
ments, we have decided to use priority swapping as a diversification
move, only when the best known solution does not improve for a
defined number of iterations, nodiv, determined experimentally.
Let us use the mixing stage of the polymerase chain reaction (see

Section 4 for details), shown in Fig. 9a, and the module library in

(a) PCR/M graph

Operation Area (cells) Time (s)

Mixing 2×5 2
Mixing 2×4 3
Mixing 1×3 5
Mixing 3×3 7
Mixing 2×2 10
Dilution 2×5 4
Dilution 2×4 5
Dilution 1×3 7
Dilution 3×3 10
Dilution 2×2 12
Detection 1×1 30

(b) Module library

Figure 9: Experimental evaluation

Fig. 9b to illustrate how TS works. Consider the current solution as
being the one represented by the schedule in Fig. 7a. The current
tabu list, presented to the right, contains the recently performed
transformations. As all operations are mixing operations, we will
denote a module by its area, e.g. O1 is bound to a mixing module
of 2×5 cells. Starting from this solution, TS uses rebinding moves
to generate the neighbor solutions. Out of the possible neighboring
solutions we present three in Fig. 7b–(d). The solution in Fig. 7b
is tabu and the one in Fig. 7c is worse than the current solution
(which is the best so far). In the solution in Fig. 7d O7 is re-bound
to a new, 1×3 mixer, which results in a non-tabu solution better
than the current one. However, TS will select the move in Fig. 7b,
that would change the 1×3 mixer in Fig. 7a for O5 to a 2×5 mixer
module. Although the move (O5,2× 5) is marked as being tabu,
it leads to a better result than the currently best known one and
thus, according to the aspiration criteria, it is accepted. The new
solution is evaluated by using the unified scheduling and placement
algorithm presented before which determines the completion time
δG of the application graph G . The algorithm terminates when a
given time-limit for performing the search has been reached.

4. EXPERIMENTAL EVALUATION
In order to evaluate our proposed approach, we have used three-

real life examples and ten synthetic benchmarks. The Tabu Search-
based algorithm3 was implemented in Java (JDK 1.6), running on
SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz
and 8 GB of RAM. The module library used for all the experiments
is shown in Fig. 9b.

In the first set of experiments we were interested to determine
the quality of our TS approach. Hence, we have used the ILP im-
plementation from [11] to determine the optimal solutions. ILP
does not consider the dynamic reconfigurability of virtual devices
during the execution of operations and is only able to produce re-
sults for smaller applications. In order to have a fair comparison
with the ILP, we removed the possibility of moving devices dur-
ing their execution from our TS approach. Table 2 presents the
results obtained for this modified TS approach, denoted by TS−,
and ILP for two real-life examples: (1) In-vitro diagnostics on hu-

3Values for TS parameters determined experimentally: nodiv = 7,
length of the tabu list = 8.

201

man physiological fluids (IVD) [19], which has 15 operations4 and
(2) The mixing stage of a polymerase chain reaction application
(PCR/M) [18], which is one of the most common techniques for
DNA analysis and has 7 operations. The comparison is made for
three area constraints.

Table 2: Comparison of ILP and TS− approaches

App. Area δILP ILP exec.time δTS
− TS−exec.time

10×10 8s 34min 22s 8s 1min
PCR 10×9 9s 49min 23s 9s 1min

8×10 9s 48min 52s 9s 1min

11×11 11s 75min 32s 11s 1min
IVD 11×9 11s 78min 28s 11s 1min

9×10 11s 85min 55s 11s 1min

As it can be seen, our Tabu Search-based approach is capable of
obtaining the optimal solutions for all three areas within 1 minute
CPU time-limit, while the ILP takes considerable longer, up to 85
minutes CPU time.
Another measure of the quality of a TS implementation is how

consistently it produces good quality solutions. Hence, we used our
TS-based approach for synthesizing a large real-life application im-
plementing a colorimetric protein assay (103 operations), utilized
for measuring the concentration of a protein in a solution.
Table 3 presents the results obtained by synthesizing the protein

application on three progressively smaller microfluidic arrays. We
present the best solution (in terms of schedule length), the average
and the standard deviation obtained after 50 runs of the TS algo-
rithm. Let us first concentrate on the results obtained for the case
when we have used a time limit of 60 minutes for the TS. As we
can see, the standard deviation is quite small, which indicates that
TS consistently finds solutions which are very close to the best so-
lution found over the 50 runs, which will explore differently the
solution space, resulting thus in different solutions.
Moreover, the quality of the solutions does not degrade signif-

icantly if we reduce the time limit from 60 minutes to 10 min-
utes and 1 minute. This is important, since we envision using
TS for architecture exploration, where several biochip architectures
have to be quickly evaluated in the early design phases (consider-
ing not only different areas, but also different placement of non-
reconfigurable resources such as reservoirs or detectors).
For the second set of experiments we were interested in the gains

that can be obtained by allowing the dynamic reconfiguration of
the devices during their execution. Hence, we have compared TS−

with TS for the protein application, and the results are presented in
Table 3. As we can see, taking into account the dynamic reconfig-
urability property of the biochip, significant improvements can be
gained in terms of schedule length, allowing us to use smaller areas
and thus reduce costs. For example, in the most constrained case,
a 11×12 array, we have obtained an improvement of 7.68% in the
average completion time compared with TS−, for the same limit of
time, 1 minute.
In a final set of experiments we have evaluated our proposed

method on ten synthetic applications. Due to the lack of biochem-
ical application benchmarks, we have generated a set of synthetic
graphs using Task Graphs For Free (TGFF) [7]. The applications
are composed of 10 up to 100 operations and the results in Table 4
show the best and the average completion time obtained out of 50
runs of TS and TS− using a time limit of 10 minutes.

4The input and detection operations were not considered.

Table 3: Results for the colorimetric protein assay

Area Time limit Best Average Standard dev.
TS TS− TS TS− TS TS−

60 min 179 182 187.58 189.88 2.68 2.90
13×13 10 min 179 182 187.89 192.00 3.55 3.64

1 min 185 191 195.13 199.20 4.27 4.70

60 min 183 182 189.76 190.86 3.01 3.20
12×12 10 min 185 185 191.84 197.73 2.87 6.50

1 min 187 193 206.80 212.62 7.74 10.97

60 min 182 184 191.48 192.50 3.63 3.78
11×12 10 min 186 194 200.40 211.72 10.20 14.37

1 min 204 226 232.80 252.19 11.34 15.76

For each synthetic application we have considered three areas,
from Area1 (largest) to Area3 (smallest). The results in Table 4
confirm the conclusion from Table 3: as the area decreases, consid-
ering dynamic reconfiguration becomes more important, and leads
to significant improvements. For example, for the synthetic ap-
plication with 50 operations, in the most constrained case, a 9×9
array, we have obtained an improvement of 11.18% in the average
completion time compared with TS−.

5. CONCLUSIONS
In this paper we have presented a Tabu Search based-technique

for the synthesis of digital microfluidic biochips. The proposed ap-
proach considers the unified architectural design (allocation, bind-
ing and scheduling) and physical design (placement of operations
on a microfluidic array). In this work, we have considered that the
virtual devices can be moved during the execution of their opera-
tion. Three real life examples as well as a set of ten synthetic appli-
cations have been used for evaluating the effectiveness of the pro-
posed approach. We have shown that by exploiting the dynamic re-
configurability of digital microfluidic biochips significant improve-
ments can be gained, allowing us to use smaller area biochips and
thus reduce costs.

6. REFERENCES

[1] Advanced Liquid Logic.
http://www.liquid-logic.com/technology.html.

[2] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template
placement for reconfigurable computing systems. IEEE
Design and Test of Computers, 17(1):68–83, 2000.

[3] K. Chakrabarty and J.Zeng. Design automation methods and

tools for microfluidic-based biochips. Springer, 2006.

[4] K. Chakrabarty and F. Su. Digital Microfluidic Biochips:

Synthesis, Testing, and Reconfiguration Techniques. CRC
Press, Boca Raton, FL, 2006.

[5] K. Chakrabarty and J. Zeng. Design automation for
microfluidics-based biochips. ACM Journal on Emerging

Technologies in Computing Systems, 1(3):186–223, 2005.

[6] M. Cho and D. Z. Pan. A high-performance droplet router for
digital microfluidic biochips. In Proceedings of International
Symposium on Physical Design, pages 200–206, 2008.

[7] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs
for free. In Proceedings of the Sixth International Workshop

on Hardware/Software Codesign, pages 97–101, 1998.

[8] R. B. Fair. Digital microfluidics: is a true lab-on-a-chip
possible? Microfluidics and Nanofluidics, 3(3):245–281,
2007.

202

Table 4: Results for synthetic benchmarks

Nodes Area1 Average1 Best1 Area2 Average2 Best2 Area3 Average3 Best3
TS TS− TS TS− TS TS− TS TS− TS TS− TS TS−

10 9×7 21.94 24.00 20 20 7×8 22.56 25.19 19 20 8×6 29.12 32.58 27 27

20 8×7 55.06 55.16 55 55 7×7 58.53 58.61 58 58 6×7 62.07 67.33 61 67

30 10×11 52.23 56.00 39 41 10×10 55.35 60.78 41 41 9×11 59.60 66.52 46 54

40 10×11 63.82 68.58 56 58 10×10 69.48 76.50 56 58 9×10 76.92 86.37 66 67

50 10×10 107.24 117.78 103 104 8×11 123.70 132.44 111 112 9×9 127.50 143.56 109 119

60 11×12 111.24 113.50 107 110 10×11 112.38 115.40 109 112 9×10 117.94 125.58 112 118

70 12×12 127.69 131.87 121 121 11×12 129.72 137.66 122 123 10×11 143.44 159.72 129 136

80 12×12 159.40 161.60 151 154 11×11 186.54 192.86 165 165 10×11 196.60 210.90 165 168

90 15×15 127.64 128.02 120 120 14×14 131.96 135.68 120 127 13×13 153.86 164.20 133 142

100 15×15 175.04 178.36 163 163 14×14 175.66 179.90 161 170 13×13 175.42 183.84 170 175

[9] F. Glover and M.Laguna. Tabu Search. Kluwer Academic
Publishers, 1997.

[10] E. Maftei, P. Paul, J. Madsen, and T. Stidsen.
Placement-aware architectural synthesis of digital
microfluidic biochips using ILP. In Proceedings of the
International Conference on Very Large Scale Integration of

System on Chip, pages 425–430, 2008.

[11] E. Maftei, P. Paul, and F. P. Vlădicescu. Synthesis of reliable
digital microfluidic biochips using Monte Carlo simulation.
In Proceedings of the European Safety and Reliability

Conference, pages 2333–2341, 2008.

[12] G. D. Micheli. Synthesis and Optimization of Digital

Circuits. McGraw-Hill Science, 1994.

[13] M. G. Pollack, A. D. Shenderov, and R. B. Fair.
Electrowetting-based actuation of droplets for integrated
microfluidics. Lab Chip Journal, 2:96–101, 2002.

[14] H. Ren, V. Srinivasan, and R. B. Fair. Design and testing of
an interpolating mixing architecture for electrowetting-based
droplet-on-chip chemical dilution. In Proceedings of the
International Conference on Transducers, Solid-State

Sensors, Actuators and Microsystems, pages 619–622, 2003.

[15] Silicon Biosystems. http://www.siliconbiosystems.com.

[16] F. Su and K. Chakrabarty. Architectural-level synthesis of
digital microfluidics-based biochips. In Proceedings of
International Conference on Computer Aided Design, pages
223–228, 2004.

[17] F. Su and K. Chakrabarty. Unified high-level synthesis and
module placement for defect-tolerant microfluidic biochips.
In Proceedings of the 42nd annual conference on Design

automation, pages 825–830, 2005.

[18] F. Su and K. Chakrabarty. Module placement for
fault-tolerant microfluidics-based biochips. ACM
Transactions on Design Automation of Electronic Systems,
11(3):682–710, 2006.

[19] F. Su, W. Hwang, and K. Chakrabarty. Droplet routing in the
synthesis of digital microfluidic biochips. In Proceedings of
Design, Automation and Test in Europe, volume 1, pages
73–78, 2006.

[20] T. Thorsen, S. Maerkl, and S. Quake. Microfluidic largescale
integration. Sci., 298:580–584, 2002.

[21] D. Ullman. NP-complete scheduling problems. Journal of
Computing System Science, 10:384–393, 1975.

[22] T. Xu and K. Chakrabarty. Integrated droplet routing and
defect tolerance in the synthesis of digital microfluidic
biochips. In Proceedings of Design Automation Conference,
pages 948–953, 2007.

[23] P. H. Yuh, S. Sapatnekar, C.-L. Yang, and Y.-W. Chang. A
progressive-ILP based routing algorithm for
cross-referencing biochips. In Proceedings of Design
Automation Conference, pages 284–289, 2008.

[24] P. H. Yuh, C.-L. Yang, and Y.-W. Chang. Temporal
floorplanning using the T-tree formulation. In Proceedings of
International Conference on Computer Aided Design, pages
300–305, 2004.

[25] P. H. Yuh, C. L. Yang, and Y. W. Chang. Placement of digital
microfluidic biochips using the T-tree formulation. In
Proceedings of Design Automation Conference, pages
931–934, 2006.

[26] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. Placement of
defect-tolerant digital microfluidic biochips using the T-tree
formulation. ACM Journal on Emerging Technologies in

Computing Systems, 3(3), 2007.

[27] P.-H. Yuh, C.-L. Yang, Y.-W. Chang, and H.-L. Chen.
Temporal floorplanning using three dimensional transitive
closure subGraph. ACM Transactions on Design Automation

of Electronic Systems, 12(4), 2007.

[28] Y. Zhao and K. Chakrabarty. Cross-contamination avoidance
for droplet routing in digital microfluidic biochips. In Proc.
Des., Automat. Test Conf., pages 1290–1296, 2009.

203

