
Placement-Aware Architectural Synthesis of
Digital Microfluidic Biochips using ILP

Elena Maftei, Paul Pop, Jan Madsen, Thomas Stidsen
Technical Univ. of Denmark, DK-2800 Kgs. Lyngby

{em|pop|jan|tks}@imm.dtu.dk

Abstract—Microfluidic-based biochips are replacing the con-
ventional biochemical analyzers, and are able to integrateon-
chip all the necessary functions for biochemical analysis using
microfluidics. The digital microfluidic biochips are based on
the manipulation of liquids not as a continuous flow, but as
discrete droplets (hence the termdigital), and thus are highly
reconfigurable and scalable. We model a biochemical application
using an abstract model consisting of a sequencing graph. The
digital biochip is modeled as a two-dimensional array of cells,
where each cell can hold a droplet. In this paper we propose
an integer linear programming (ILP) synthesis methodology
that determines the allocation, resource binding, and scheduling
of the operations in the application (architectural synthesis)
at the same time with module placement (physical synthesis).
Although architectural and physical synthesis steps are typically
performed separately, we show that significant improvements
can be gained by considering the placement during architectural
synthesis. To handle large problem sizes, we have extended the
ILP implementation with Local Branching, which is a meta-
heuristic for design-space exploration that uses the ILP solver
to perform the local searches. The proposed methodology has
been evaluated using several real-life examples.

I. I NTRODUCTION

Microfluidic-based biochips (also referred to as lab-on-a-
chip) are replacing the conventional biochemical analyzers,
and are able to integrate on-chip all the necessary functions
for biochemical analysis using microfluidics, such as, trans-
port, splitting, merging, dispensing, mixing, and detection.
Applications areas of biochips include: clinical diagnostics,
bio-defense applications, massively parallel DNA analysis
and automated drug discovery [1]. Biochips are able to:
provide miniaturization, thus enabling very small volumes
and speeding up chemical reactions and analytical detection;
obtain higher throughput with minimal human intervention;
use smaller sample and reagent consumption; provide higher
sensitivity at significantly lower costs per assay than the tradi-
tional methods; and increase productivity through automation
and parallelization [1].

There are two approaches to microfluidics. The “first gen-
eration” is based on the continuous flow of liquid through
micro-channels using micropumps and microvalves [2] The
“second generation” is based on the manipulation of liq-
uids not as a continuous flow, but as discrete droplets [3].
Although the continuous-flow biochips have been used for
simple biochemical applications, due to their lack of flexibility
they are unsuitable for more complex applications that require
complicated fluid manipulations [4]. Therefore, in this paper,
we are interested in droplet-based digital biochips, whichare
highly reconfigurable and scalable.

CAD tools for digital microfluidic biochips (DMBs) are in
their infancy, and designers are using manual, bottom-up, full-
custom, design approaches to implement such biochips [5].
However, DMBs are becoming increasingly complex, and are
expected to be integrated with microelectronic components
in next generation system-on-chips. Consequently, the current
bottom-up full-custom design approach will not scale to the
new designs. Therefore, new top-down methods and tech-
niques are required, which can offer the same level of support
as the one taken for granted currently in the semiconductors
industry [5].

Researchers have initially addressed separately architec-
tural-level and physical-level synthesis of DMBs. Su and
Chakrabarty [6] have proposed an ILP model for schedul-
ing and binding, considering a given allocation, and with-
out addressing placement and routing. During the physical-
level synthesis, the placement [7] of each module on the
microfluidic array and the routing [8], [9] of droplets from
one module to another have to be determined. A unified high-
level synthesis and module placement methodology has been
proposed in [10], where the focus has been on deriving an im-
plementation that can tolerate faulty cells in the biochip array.
Their algorithm has later been improved by Yuh et al [11].
However, the placement has been done without considering
that droplets require additional on-chip space for routing.

The combined architectural- and physical-synthesis problem
has similarities with the offline configuration management
of dynamically reconfigurable FPGAs [12] and in particular
with that of 3D module placement. Whereas, offline 3D
placement algorithms aim at packing operations as densly as
possible [13], our goal is to derive an implementation that
minimizes the completion time of the biochemical application,
given an area constraint.

In this paper we propose an integer linear programming
(ILP) synthesis methodology that, starting from a biochem-
ical application modeled as a sequencing graph and a given
biochip array, determines the allocation, resource binding, and
scheduling of the operations in the application at the same
time with module placement. The placement is performed such
that the droplets are routable. ILP is a generic, expressiveand
extensible approach that relies on sophisticated solvers to pro-
duce provable optimal solutions. However, the optimality often
comes at a very expensive computational cost. To handle large
problem sizes within the ILP framework, we have usedLocal
Branching [14], which is a meta-heuristic for design-space
exploration that uses the ILP solver to efficiently perform the
local searches.

(a) Cell architecture (b) Biochip: array of cells

Operation Area (cells) Time (s)
Mixing 2x2 6
Mixing 2x3 5
Mixing 2x4 4
Dilution 2x2 6
Dilution 2x3 5
Dilution 2x4 4
Storage 1x1 –

Detection – 8

(c) Module library

Fig. 1: Biochip architecture

The paper is organized in six sections. Sections II-A and
II-B present the model of the digital microfluidic biochip and
the sequencing graph model we use to capture a biochemical
application, respectively. We formulate the problem in Sec-
tion III and illustrate the design tasks using several examples.
The proposed ILP model is presented in Section IV. The
evaluation of the proposed approach is performed in SectionV.
The last section presents our conclusions.

II. SYSTEM MODEL

A. Digital Microfluidic Biochip Architecture

In a digital microfluidic biochip the manipulation of liquids
is performed using discrete droplets. There are several mech-
anisms for droplet manipulation [15]. Our proposed research
will consider electrowetting-on-dielectric (EWD) [3], but can
be extended to handle other techniques as well. EWD is the
most promising technique, and can provide high droplet speeds
of up to 20 cm/s.

A biochip is composed of a two-dimensional array of cells.
The schematic of a cell is presented in Figure 1(a). The droplet
is sandwiched between two glass plates (the top plate and
the bottom plate), and moves within a filler fluid. The top
plate contains a single ground electrode, while the bottom plate
has several control electrodes. The electrodes are insulated
from the droplet trough an insulation material. With EWD,
the movement of droplets is controlled by applying voltages
to the required electrodes. For example, turning off the middle
control electrode and turning on the right control electrode in
Figure 1(a) will force the droplet to move to the right. For
the details of the EWD-based chip fabrication, the reader is
directed to [3].

Several cells are put together to form a two-dimensional
array (an example architecture is presented in Figure 1(b)).
Using EWD manipulation, droplets can be moved to any
location without the need for pumps and valves, which are
required in a continuous-flow biochip. Besides the basic cell
discussed previously, the chip typically contains input and
output ports and detectors. The detection can be done by using,

for example, a LED beneath the bottom plate and a photodiode
on the top plate.

Using this architecture, and changing correspondingly the
control voltages, several operations, such as transport, split-
ting, merging, dispensing, mixing, and detection, can be
performed. For example, mixing is done by transporting two
droplets to the same location, and then moving them next to
each other on a circular path within a delimited cell block,
until they mix. Any cells in the chip can be used for such an
operation, thus, we say that the chip is “reconfigurable”.

As is the case with digital circuits, we consider that design-
ers will build and characterize a module libraryL, where for
each operation there are several options varying in terms of
area and execution time, see Figure 1(c).

B. Biochemical Application Model

We model a biochemical application using an abstract model
consisting of a sequencing graph [5]. The graphG(V ,E) is
directed, acyclic and polar (i.e., there is asource node, which
is a node that has no predecessors and asink nodethat has
no successors). Each nodeOi ∈ V represents one operation.
The binding of operations to modules in the architecture is
captured by the functionB : V → A , whereA ⊂ L is the set
of allocated modules from the given libraryL.

An edgeei, j ∈ E from Oi to O j indicates that the output of
operationOi is the input ofO j . An operation can be activated
after all its inputs have arrived and it issues its outputs when
it terminates. Operations are non-preemptable and thus cannot
be interrupted during their execution.

We assume that, for each operationOi , we know the execu-
tion timeCMk

i on moduleMk = B(Oi) where it is assigned for
execution. Currently, the routing time between two operations
is an order of magnitude smaller compared to the operation
time. Hence, we consider the routing time to be part of the
operation execution time and do not model it explicitly.

III. PROBLEM FORMULATION

The problem we are addressing in this paper can be formu-
lated as follows. Given (1) a biochemical application modeled
as a graphG , (2) a biochip consisting of a two-dimensional

(a) Example application

(b) Separate synthesis and placement

(c) Unified synthesis and placement

Fig. 2: Implementation example

m×n array of cells, and (3) a characterized module library
L, we are interested to synthesize that implementationΨ,
which minimizes the completion time of the application (i.e.,
finishing time of the sink node,t f inish

sink).
Synthesizing an implementationΨ = < A , P , B , S > means

deciding on: (1) the allocationA ⊂ L, which determines what
modules from the libraryL should be used, (2) the placement
P of the modules on them× n array, (3) the bindingB of
each operationOi ∈ V to a moduleMk ∈ A , and the schedule
S of the operations, which contains the start timetstart

i of
each operationOi on its corresponding module. The next
subsections will illustrate each of these subproblems.

A. Allocation and placement

Let us consider the application graphG in Figure 2(a),
where we have ten operations,O1 to O10. We would like
to implement this application on the 10x10 biochip from
Figure 1(b). The input and detection operations are already
assigned to the corresponding input ports and detection mod-
ule, respectively. Thus,O1 is assigned to the input portS1,
O2 to R1, O5 to B, O6 to S2 and O8 to R2. The detection
operationO4 will be performed by the on-chip detector, and
then the droplet will be moved to the waste reservoir through
the output portW. However, for the mixing operations (O3, O9

andO10) and the dilution operationO7 our synthesis approach
will have to allocate the appropriate modules.

Let us assume that the available module library is the one
captured by the table in Figure 1(c). We have to select those
modules that will lead to the minimum application completion
time and place them on the 10x10 chip. Figure 2(c) presents

the allocation and placement. We use the following modules:
two 2x4 mixers, one 2x4 diluter and one 1x1 “store” module.

Note that special “store” modules have to be allocated if
a droplet has to wait before being processed. Consider the
mixing operationO10, which mixes two droplets, one from
O7 and one fromO9. After O7 finishes, a 1x1 storage cell is
required to store the droplet beforeO10 starts. In general, if
there exists an edgeei, j from Oi to O j such thatO j is not
immediately scheduled afterOi (i.e., there is a delay between
the finishing time ofOi and the start time ofO j) then we will
have to allocate a storage cell forei, j . Hence, the allocation
of storage cells depends on how the schedule is constructed.

The placement for the discussed solution is as indicated in
Figure 2(c), where we can notice that modules occupy a space
larger than their size (the hashed area corresponding to each
module). This is to avoid droplet-merging and contamination.
If two droplets are next to each other on two adjacent cells,
they will tend to merge to form one single droplet. Therefore,
we consider for each module a border of one-cell size. For
example,Mixer1 which has a size of 2x4 will occupy 4x6
cells. The borders also guarantee that the droplets are routable.
In addition, to allow routing from and to the input and output
ports, we also reserve cells for routing along the chip borders.
Hence, the usable chip area in our case is 8x8.

The main difference between our placement problem and
the placement for microelectronic chips [16] is that, in our
case, modules can physically overlap on-chip as long as they
do not overlap in time, i.e., they are used during different time
intervals. This property is due to the reconfigurability of the

digital microfluidic biochip. After an operation has finished
executing on a module, we can reuse the same cells as part of
another module.

B. Binding and Scheduling

Once the modules have been allocated and placed on the
cell array, we have to decide where to execute the operations
(binding) and in which order (scheduling), such that the
application completion time is minimized.

Considering the graph in Figure 2(a), Figure 2(c) presents
the optimal schedule. The schedule is depicted as a Gantt
chart, where, for each module, we represent the operations
as rectangles with their length corresponding to the duration
of that operation on the module. For example, operationO9

is bound to moduleMixer1 (i.e., B(O9) = Mixer1). O9 starts
immediately after the dilution operationO7 (i.e, tstart

9 = 4) and
takes 4 s, finishing at timet f inish

9 = 8s. The total schedule
length will be 12 s. We consider that the schedule is divided
in time-steps of one second, and we capture the set of time-
steps withT . Note that a new operation has been introduced,
O11, which corresponds to the storing of the second droplet
before undergoing detection.

The examples so far have illustrated the optimal solution for
the unified architectural synthesis and placement problem.If
the architectural synthesis phase is considered separately from
the placement, we get the allocation as in Figure 2(b), where
three modules are used: a 2x2 mixer (4x4 with border), a 2x4
mixer (4x6 with border) and a 2x4 diluter (4x6 with border).
Since 4x4 + 4x6 + 4x6 = 64, the architectural synthesis will
wrongly assume that the modules can be placed concurrently
on the array (which has a usable area of 8x8 = 64). This
would parallelize operationsO3 (on Mixer2), O7 (on Diluter)
and O9 (on Mixer1) and lead to the best schedule. However,
the modules cannot be placed on the chip without overlapping,
unless they are separated in time. This will lead to the schedule
in Figure 2(b), whereO9 on Mixer1 has to be delayed to not
to overlap withMixer2 andDiluter.

IV. ILP-BASED SYNTHESIS

The problem presented in the previous section is NP-
complete (scheduling in even simpler contexts is NP-
complete [17]). We have developed an ILP model, and we use
an ILP solver to obtain those implementations that minimize
the schedule length under the imposed constraints.

In an ILP model a system is described by a minimization
objective and a set of constraints which define valid conditions
for the system variables. A solution to the modeled problem
is an enumeration of all system variables, such that the
constraints are satisfied. The optimization objective is specified
as minimizing the completion time of the application,

minimize t f inish
sink , (1)

where t f inish
sink is the finishing time of the sink node of the

application.
The constraints fall under the following categories: (i)

scheduling and precedence, (ii) resource and (iii) placement

constraints. In order to be able to express them, a binary
variable is defined as follows:

zi, j ,k,l =















1, if operationOi starts executing at
time-step j on moduleMk placed
with its top-left corner over cellcl

0, otherwise

Such a variable captures the allocation and binding (operation
Oi is executing on moduleMk), the scheduling (Oi starts to
execute at time-stepj, with a duration ofCMk

i) and the place-
ment (the top-left corner of moduleMk is placed over cellcl).
For example, considering the dilution operation implemented
as in Figure 2(c), the binary variable will be expressed as:

zi, j ,k,l =

{

1, if i=7, j=1, k=Diluter, l=46

0, otherwise

By using the defined variable, the start time of an operation
Oi ∈ V becomes:

tstart
i = ∑

j
∑
k

∑
l

j ×zi, j ,k,l , ∀Oi ∈ V , (2)

where j represents the time-step when the operation starts
executing.

A. Scheduling and precedence constraints

The scheduling constraint requires that every operationOi

be scheduled only once:

∑
j
∑
k

∑
l

zi, j ,k,l = 1, ∀Oi ∈ V . (3)

For each edge in the application graph we have to introduce
a precedence constraint. Consider the operationsOi and On

∈ V for which there exists a dependencyei,n ∈ E in the
sequencing graphG . ThenOn must be scheduled for execution
only after the completion ofOi :

tstart
i +∑

j
∑
k

∑
l

(

CMk
i ×zi, j ,k,l

)

≤ tstart
n ,

∀Oi andOn such that∃ei,n ∈ E .

(4)

For example, considering operationsO9 and O10 in Fig-
ure 2(a), withO10 depending onO9, we havet f inish

9 ≤ tstart
10 .

If On is not scheduled immediately after the completion ofOi

then a storage module is required. The number of such storage
modules during a time-stepj is important in defining the
placement constraints for the model, since the storage modules
also occupy chip area. Using a binary variablemi, j defined as:

mi, j =

{

1, if a storage unit is needed forOi in step j

0, otherwise

we can capture the number of storage units required during a
time-stepj. Thus, at time-stepj, the binary variable associated
with the edge between operationsOi andOn is expressed as:

j−C
Mk
i

∑
h=1

∑
k

∑
l

zi,h,k,l −
j

∑
h=1

∑
k

∑
l

zn,h,k,l = mi, j ,

∀ j ∈ T ,∀Oi ,On ∈ V such that∃ei,n ∈ E

(5)

Variable mi, j will have the value 1 at that time-stepj when
Oi has finished executing (first sum of the equation equals 1),
but O j has not started yet (second term of the equation is 0).

B. Resource constraints

Considering the fact that two operations of the same type
can be bound to the same resource, a constraint must be
expressed to prevent the overlapping of these operations during
their execution. An operationOi is executing at time-stepj if:

j

∑
h= j−C

Mk
i +1

∑
k

∑
l

zi,h,k,l = 1, ∀Oi ∈ V .

Thus, at any time-stepj ∈ T and for any moduleMk ∈ L
there must be at most one operation that is executing:

∑
i

j

∑
h= j−C

Mk
i +1

∑
l

zi,h,k,l ≤ 1., ∀Mk ∈ L, j ∈ T . (6)

C. Placement constraints

The allocated modules have to be placed on-chip such that
they do notphysically overlap. However, since a biochip is
reconfigurable, the same cell area can be used by two different
modules as long as they do not overlapin time. Hence, the
placement constraints will be expressed as a function of time,
considering each time-stepj in the schedule.

The first constraint to be considered is the size of the
microfluidic array of the biochip. At each time stepj, the
sum of the modules that are placed on the array should not
exceed the total area size,m×n:

∑
i

j

∑
h= j−C

Mk
i +1

∑
k

∑
l

zi,h,k,l ×Lk×Wk ≤ m×n,∀ j ∈ T (7)

where Lk and Wk are the length and width of moduleMk,
respectively, measured in number of cells.

The second constraint captures that no modules should
overlap, i.e., a cellcl on the array can be occupied by at
most one module during time stept j .

Let us consider a cellcr (with coordinatesxr andyr) which
is the top-left corner of moduleMk. If cell cl is within the
rectangle formed byMk, i.e., xl − Lk + 1 ≤ xr ≤ xl and yl −
Wk +1≤ yr ≤ yl , then we have to impose the restriction that
no other module is active during this time interval:

∑
i

k

∑
h= j−C

Mk
i +1

∑
k

∑
r

zi,h,k,r ≤ 1. (8)

D. Local Branching

Given the ILP model defined above, an ILP solver will
search the design space extensively to produce aprovable
optimal solution. However, for practical applications, weare
often interested to produce good quality solutions in a reason-
able time. Local Branching (LB) [14] is a meta-heuristic for
design space exploration that controls the behavior of the ILP
solver, by directing it to quickly explore well-defined local
neighborhoods. LB is applied within the framework of ILP,
by automatically introducing search-limiting constraints into
the ILP model, and interacting with the ILP solver.

Figure 3 illustrates how LB works. The search starts from
an initial feasible solutionx. Next, we define thek-OPT neigh-
borhoodN (x,k) of x, wherek is a parameter that determines

Fig. 3: Exploring the design space using Local Branching

the neighborhood size. Those solutionsx are included inN ,
which satisfy the following constraint:

∆(x,x) := ∑
j∈S

(1−x j)+ ∑
j∈B\S

x j ≤ k, (9)

whereB is the set of binary variables that define the solution,
x j ∈ B is a binary variable, andS is the subset ofB for which
x j = 1. Thus,∆ will count the number of binary variables inx
that change their value (from 1 to 0 or viceversa), with respect
to x.

By varying k, we can control the size ofN . We would
like a size that is much easier to solve than the entire design
space, but still large enough to contain better solutions than
x. To speed up the search, LB can apply time limits to the
exploration of any local neighborhood. Once a better solution
x1 has been found, the search continues in a similar manner,
by defining a neighborhoodN (x1,k), such that∆(x,x1) ≤ k,
see Figure 3. If we are not able to find a better solution starting
from anxi , LB usesdiversification.

Soft diversification enlarges the local neighborhood by
slightly increasing the value ofk, in the hope of finding a
better solution. In case such a solution is not found, LB can
employstrongdiversification, where not only thatk is further
enlarged, but worse solutions than the current one are accepted,
to guide the search into unexplored areas. LB stops when an
imposed time limit has been reached, or when the number
of allowed diversifications has been exceeded. The returned
result is the best solutionxbest found so far.

V. EXPERIMENTAL EVALUATION

We were interested to evaluate the ILP-based approach
proposed in the previous section. For this purpose, we have
used two real-life examples: (1)In-vitro diagnostics on human
physiological fluids (IVD) [8]. IVD has 15 operations. (2) The
mixing stage of a polymerase chain reaction application
(PCR/M) [7], which is one of the most common techniques for
DNA analysis. PCR/M has 5 operations. We have solved the
ILP model with GAMS 21.5 using the CPLEX 9.130 solver,
running on Sun Fire v440 computers with 4 UltraSPARC IIIi
CPUs at 1,062 MHz and 8 GB of RAM. The results are
presented in Table I.

TABLE I: Comparison of SF, OS and LB approaches

App. Area SF OS Exec. Time LB Exec. Time
IVD 10x10 14 s 14 s 70 min 14 s 6 min
IVD 8x8 23 s 19 s 43 min 21 s 20 min
IVD 6x6 49 s 38 s 30 min 38 s 10 min
PCR 10x10 17 s 13 s 37 min 13 s 1 min
PCR 8x8 19 s 15 s 19 min 15 s 6 min
PCR 6x6 38 s 28 s 15 min 34 s 10 min

For each application, we have considered the library from
Figure 1(c) and three, progressively smaller, area constraints
(second column of Table I). We have performed the allocation,
binding, scheduling and placement such that the application
completion time is minimized1. We used three approaches to
derive the implementations:

1) The straight-forward approach (SF) does architectural
synthesis (allocation, binding and scheduling) separately
from placement. First, an implementationΨ0 is derived
using our ILP model, limited by the total chip area, but
without the placement constraints. Next, we attempt the
placement ofΨ0 on the available area, modifying the
scheduling if required to fit the modules, thus obtaining
the final implementationΨ. For both of these steps we
have obtained the optimal solutions. The schedule length
of Ψ is presented in column 4.

2) The Optimal Synthesisapproach (OS) outlined in the
previous section. The schedule lengths and runtime
required by the CPLEX solver to produce the optimal
solutions are presented in columns 4 and 5, respectively.

3) The Local Branching (LB) approach, which quickly
guides the ILP solver to good quality solutions. The
schedule lengths obtained with LB and thetime limits
imposed by us on the LB algorithm are presented in the
last two columns of the table.

As we can see from Table I, considering placement at
the same time with architectural synthesis (OS) can lead to
significant improvements over SF, which does not take into
account placement. On average, we have obtained an 18.2%
improvement on the bio-application completion time, with up
to 26.3% improvement for the PCR application on a 6x6
array. We can see that considering the placement is especially
important as the biochip area is reduced. Our OS approach has
been able to find the optimal solutions in a reasonable time,
for example, the IVD is synthesized optimally on an 8x8 array
in 43 minutes.

However, biochemical applications are becoming increas-
ingly complex, and thus scalable methods will be required
for their synthesis. Hence, we have proposed the LB approach
which can produce good quality solutions in a reasonable time.
For the applications in Table I, LB has been able to obtain the
optimal solutions for most of the cases, in a fraction of the
time needed by OS, with an average loss of quality of only
5.3%. Such an approach is useful for larger applications which
are intractable by OS.

1The detection operations were ignored.

VI. CONCLUSION

In this paper we have addressed the synthesis of
microfluidic-based biochips, which are based on the manip-
ulation of liquids not as a continuous flow, but as discrete
droplets, and hence are highly reconfigurable and scalable.
We have modeled a biochemical application using a acyclic
polar graph, where each node is an operation and the edges
represent dependencies between the operations.

We have considered architectural synthesis at the same
time with physical synthesis: we have proposed an ILP-based
synthesis methodology for the unified allocation, placement,
binding and scheduling of operations on the biochip. The ILP
model has been complemented with a search heuristic that can
quickly guide the solver to good quality solutions.

Using two real-life examples, we have shown that our ILP-
based approach can successfully synthesize the application and
find the optimal completion time, under given area constraints.
As the experimental section shows, considering the placement
during architectural synthesis leads to significantly better qual-
ity solutions.

REFERENCES

[1] T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic largescale integra-
tion,” Sci., vol. 298, pp. 580–584, 2002.

[2] E. Verpoorte and N. F. D. Rooij, “Microfluidics meets mems,” Proc.
IEEE, vol. 91, pp. 930–953, 2003.

[3] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
actuation of droplets for integrated microfluidics,”Lab Chip J., vol. 2,
pp. 96–101, 2002.

[4] T. Zhang, K. Chakrabarty, and R. B. Fair,Microelectrofluidic Systems:
Modeling and Simulation. Boca Raton, FL: CRC Press, 2002.

[5] K. Chakrabarty and J. Zeng, “Design automation for microfluidics-based
biochips,” ACM J. on Emerging Technologies in Comput. Syst., vol. 1,
no. 3, pp. 186–223, 2005.

[6] F. Su and K. Chakrabarty, “Architectural-level synthesis of digital
microfluidics-based biochips,” inProc. Int. Conf. Comput. Aided Des.,
2004, pp. 223–228.

[7] ——, “Module placement for fault-tolerant microfluidics-based
biochips,” ACM Trans. Des. Automat. Electron. Syst., vol. 11, no. 3,
pp. 682–710, 2006.

[8] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthesis
of digital microfluidic biochips,” inProc. Des., Automat. and Test in
Europe Conf., vol. 1, 2006, pp. 73–78.

[9] M. Cho and D. Z. Pan, “A high-performance droplet router for digital
microfluidic biochips,” inProc. Int. Symp. Phys. Des. (in press), 2008.

[10] F. Su and K. Chakrabarty, “Unified high-level synthesisand module
placement for defect-tolerant microfluidic biochips,” inProceedings of
the 42nd annual conference on Design automation. New York, NY,
USA: ACM, 2005, pp. 825–830.

[11] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of digital microflu-
idic biochips using the t-tree formulation,” inProc. Design Automation
Conference, 2006, pp. 931–934.

[12] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement
for reconfigurable computing systems,”IEEE Des. Test, vol. 17, no. 1,
pp. 68–83, 2000.

[13] A. A. E. Farag, H. M. El-Boghdadi, and S. I. Shaheen, “Improving uti-
lization of reconfigurable resources using two-dimensional compaction,”
J. Supercomput., vol. 42, no. 2, pp. 235–250, 2007.

[14] M. Fischetti and A. Lodi, “Local branching,”Mathematical Program-
ming, vol. 98, no. 1-3, pp. 23–47, 2003.

[15] R. B. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?”
Microfluidics and Nanofluidics, vol. 3, no. 3, pp. 245–281, 2007.

[16] G. D. Micheli,Synthesis and Optimization of Digital Circuits. McGraw-
Hill Science, 1994.

[17] D. Ullman, “Np-complete scheduling problems,”J. Comput. Syst. Sci.,
vol. 10, pp. 384–393, 1975.

