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Abstract—Microfluidic-based biochips are replacing the con- CAD tools for digital microfluidic biochips (DMBs) are in
ventional biochemical analyzers, and are able to integrat®n- their infancy, and designers are using manual, bottomuilp,
chip all the necessary functions for biochemical analysis sing custom, design approaches to implement such biochips [5]
microfluidics. The digital microfluidic biochips are based on ' L . ’
the manipulation of liquids not as a continuous flow, but as However, DMBs f”‘re becom'”g mcrgasmgly Complex, and are
discrete droplets (hence the termdigital), and thus are highly €Xpected to be integrated with microelectronic components
reconfigurable and scalable. We model a biochemical applit@n in next generation system-on-chips. Consequently, theeotir
using an abstract model consisting of a sequencing graph. Bh pottom-up full-custom design approach will not scale to the
digital biochip is modeled as a two-dimensional array of cés, new designs. Therefore, new top-down methods and tech-
where each cell can hold a droplet. In this paper we propose . . .’
an integer linear programming (ILP) synthesis methodology MdUes are required, which can offer the.same Ieve! of suppor
that determines the allocation, resource binding, and sctiuling @S the one taken for granted currently in the semiconductors
of the operations in the application (architectural synthesis) industry [5].
at the same time with module placement (physical synthesis) Researchers have initially addressed separately arehitec
Although architectural and physical synthesis steps are tgically tural-level and physical-level synthesis of DMBs. Su and

performed separately, we show that significant improvemerst
can be gained by considering the placement during architecatal Chakrabarty [6] have proposed an ILP model for schedul-

synthesis. To handle large problem sizes, we have extendedet INg and binding, considering a given allocation, and with-
ILP implementation with Local Branching, which is a meta- out addressing placement and routing. During the physical-
heuristic for design-space exploration that uses the ILP deer |aye] synthesis, the placement [7] of each module on the
to perform the local searches. The proposed methodology has yicrofiuidic array and the routing [8], [9] of droplets from
been evaluated using several real-life examples. one module to another have to be determined. A unified high-
level synthesis and module placement methodology has been
proposed in [10], where the focus has been on deriving an im-
Microfluidic-based biochips (also referred to as lab-on-@lementation that can tolerate faulty cells in the biochiaga
chip) are replacing the conventional biochemical analyzeTheir algorithm has later been improved by Yuh et al [11].
and are able to integrate on-chip all the necessary furstiddowever, the placement has been done without considering
for biochemical analysis using microfluidics, such as, granthat droplets require additional on-chip space for routing
port, spliting, merging, dispensing, mixing, and detaeti  The combined architectural- and physical-synthesis jrabl
Applications areas of biochips include: clinical diagnest has similarities with the offline configuration management
bio-defense applications, massively parallel DNA analysof dynamically reconfigurable FPGAs [12] and in particular
and automated drug discovery [1]. Biochips are able twith that of 3D module placement. Whereas, offline 3D
provide miniaturization, thus enabling very small volumeplacement algorithms aim at packing operations as densly as
and speeding up chemical reactions and analytical detectipossible [13], our goal is to derive an implementation that
obtain higher throughput with minimal human interventionminimizes the completion time of the biochemical applicati
use smaller sample and reagent consumption; provide high@en an area constraint.

I. INTRODUCTION

sensitivity at significantly lower costs per assay than thdit In this paper we propose an integer linear programming
tional methods; and increase productivity through aut@nat (ILP) synthesis methodology that, starting from a biochem-
and parallelization [1]. ical application modeled as a sequencing graph and a given

There are two approaches to microfluidics. The “first gemiochip array, determines the allocation, resource bipdimd
eration” is based on the continuous flow of liquid througbcheduling of the operations in the application at the same
micro-channels using micropumps and microvalves [2] Thane with module placement. The placement is performed such
“second generation” is based on the manipulation of lighat the droplets are routable. ILP is a generic, expresside
uids not as a continuous flow, but as discrete droplets [&xtensible approach that relies on sophisticated soleepsa-
Although the continuous-flow biochips have been used fduce provable optimal solutions. However, the optimalitgo
simple biochemical applications, due to their lack of flélitp comes at a very expensive computational cost. To handle larg
they are unsuitable for more complex applications thatirequproblem sizes within the ILP framework, we have usedal
complicated fluid manipulations [4]. Therefore, in this pgp Branching[14], which is a meta-heuristic for design-space
we are interested in droplet-based digital biochips, widodk exploration that uses the ILP solver to efficiently perfoim t
highly reconfigurable and scalable. local searches.
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Fig. 1: Biochip architecture

The paper is organized in six sections. Sections II-A arfdr example, a LED beneath the bottom plate and a photodiode
[I-B present the model of the digital microfluidic biochipdan on the top plate.
the sequencing graph model we use to capture a biochemicdlsing this architecture, and changing correspondingly the
application, respectively. We formulate the problem in -Secontrol voltages, several operations, such as transpgit; s
tion 11l and illustrate the design tasks using several eXesp ting, merging, dispensing, mixing, and detection, can be
The proposed ILP model is presented in Section IV. Theerformed. For example, mixing is done by transporting two
evaluation of the proposed approach is performed in Sedtiondroplets to the same location, and then moving them next to

The last section presents our conclusions. each other on a circular path within a delimited cell block,
until they mix. Any cells in the chip can be used for such an

Il. SYSTEM MODEL operation, thus, we say that the chip is “reconfigurable”.
As is the case with digital circuits, we consider that design

A. Digital Microfluidic Biochip Architecture ers will build and characterize a module librafy where for

each operation there are several options varying in terms of

In a digital microfluidic biochip the manipulation of liqusd area and execution time, see Figure 1(c).

is performed using discrete droplets. There are severahme
anisms for droplet manipulation [15]. Our proposed redear8. Biochemical Application Model

will consider electrowetting-on-dielectric (EWD) [3], buan  \ye model a biochemical application using an abstract model
be extended to handle other techniques as well. EWD is t@@nsisting of a sequencing graph [5]. The grapf, £) is
most promising technique, and can provide high dropletdpegyirected, acyclic and polar (i.e., there isaurce nodewhich
of up to 20 cm/s. is a node that has no predecessors argihk nodethat has
A biochip is composed of a two-dimensional array of cellg,q successors). Each no@ € 7 represents one operation.
The schematic of a cell is presented in Figure 1(a). The @topine pinding of operations to modules in the architecture is
is sandwiched between two glass plates (the top plate afithtured by the functio: 7 — 4, where4 C L is the set
the bottom plate), and moves within a filler fluid. The topy gjlocated modules from the given librag.
plate contains a single ground electrode, while the bottlatep  ap edges j € E from O; to O; indicates that the output of
has several control electrod_es. The eIectrodes are imsladperationo; is the input ofO;. An operation can be activated
from the droplet trough an insulation material. With EWDagfter all its inputs have arrived and it issues its outputgmvh
the movement of droplets is controlled by applying voltagggterminates. Operations are non-preemptable and thusotan
to the required electrodes. For example, turning off thedfeid e interrupted during their execution.
control electrode and turning on the right control electrau We assume that, for each operation we know the execu-
Figure 1(a) will force the droplet to move to the right. Fofign timeCiMk on moduleMy = B(O;) where it is assigned for
th_e details of the EWD-based chip fabrication, the reader dgecution. Currently, the routing time between two operei
directed to [3]. is an order of magnitude smaller compared to the operation
Several cells are put together to form a two-dimensiongne. Hence, we consider the routing time to be part of the
array (an example architecture is presented in Figure .1(bjperation execution time and do not model it explicitly.
Using EWD manipulation, droplets can be moved to any
location without the need for pumps and valves, which are I1l. PROBLEM FORMULATION
required in a continuous-flow biochip. Besides the basit cel The problem we are addressing in this paper can be formu-
discussed previously, the chip typically contains inputl arated as follows. Given (1) a biochemical application medel
output ports and detectors. The detection can be done bg,usis a graphg, (2) a biochip consisting of a two-dimensional



Mixer,

%;;f%///ﬁ//% “ .Store
— % Diluter

&\\\@ 2 Detectoi 3 O

Source

W | Detector
(b) Separate synthesis and placement
lnB@ In S:@ In R2 s B
, ) Mixer | o | o, |
InS, @ In R‘@ Dﬂme@ Mix @ s, 7////,///% R Stor; 10
| | y/////< Diluter
@ Y s
oo 4 : §§§§E§:\\\\\\\§ Detector 0
Sink W | Detector
(a) Example application (c) Unified synthesis and placement

Fig. 2: Implementation example

mx n array of cells, and (3) a characterized module librape allocation and placement. We use the following modules:
L, we are interested to synthesize that implementatign two 2x4 mixers, one 2x4 diluter and one 1x1 “store” module.
which minimizes the completion time of the application {i.e  Note that special “store” modules have to be allocated if
finishing time of the sink noddpy,")- a droplet has to wait before being processed. Consider the
Synthesizing an implementatioh= < A, P, B, S > means mixing operationOso, Which mixes two droplets, one from
deciding on: (1) the allocatiol C £, which determines what o, and one fromOy. After O finishes, a 1x1 storage cell is
modules from the library. should be used, (2) the placemeniequired to store the droplet befo@ starts. In general, if
# of the modules on thenx n array, (3) the bindingB of  there exists an edge ; from O; to O; such thatO; is not
each operatiod; € 7 to & moduleMy 4, and the schedule jnmediately scheduled aft@; (i.e., there is a delay between
S of the operations, which contains the start tiff€" of the finishing time 0f0; and the start time 0®;) then we will
each operatiorO; on its corresponding module. The nexhaye to allocate a storage cell ferj. Hence, the allocation

subsections will illustrate each of these subproblems. of storage cells depends on how the schedule is constructed.

A. Allocation and placement The placement for the discussed solution is as indicated in

Let us consider the application graph in Figure 2(a), Figure 2(c), Wh_ere_we can notice that modules occupy a space
where we have ten operation®; to Oy. We would like larger than t_he_lr size (t.he hashed area correspondlng tm_eac
to implement this application on the 10x10 biochip fronnodule). This is to avoid droplet-merging and contaminatio
Figure 1(b). The input and detection operations are alrealyfwo droplets are next to each other on two adjacent cells,
assigned to the corresponding input ports and detection m&dey Will tend to merge to form one single droplet. Therefore
ule, respectively. ThusO; is assigned to the input poB;, We c0n5|d§r for ea<_:h module a border of o_ne-cell size. For
0, to Ry, Os to B, Og to S, and Og to R,. The detection example,Mixer; which has a size of 2x4 will occupy 4x6
operationO, will be performed by the on-chip detector, andgells. The borders also guarantee that the dr_oplets arableut
then the droplet will be moved to the waste reservoir throudh ddition, to allow routing from and to the input and output
the output port. However, for the mixing operation©§, Oq ports, we also reserve cells fo_r routing an_ng the chip barde
andO10) and the dilution operatio®; our synthesis approachHeénce, the usable chip area in our case is 8x8.
will have to allocate the appropriate modules. The main difference between our placement problem and

Let us assume that the available module library is the ottee placement for microelectronic chips [16] is that, in our
captured by the table in Figure 1(c). We have to select thosase, modules can physically overlap on-chip as long as they
modules that will lead to the minimum application complatiodo not overlap in time, i.e., they are used during differemet
time and place them on the 10x10 chip. Figure 2(c) preseimservals. This property is due to the reconfigurability bét



digital microfluidic biochip. After an operation has finighe constraints. In order to be able to express them, a binary
executing on a module, we can reuse the same cells as panafable is defined as follows:

another module. 1, if operationO; starts executing at
o _ 2 = time-stepj on moduleMy placed
B. Binding and Scheduling ikl = with its top-left corner over cel;

Once the modules have been allocated and placed on the 0, otherwise

cell array, we have to decide where to execute the operati@ch a variable captures the allocation and binding (ojperat
(binding) and in which order (scheduling), such that th@; is executing on modul/y), the scheduling@; starts to
application completion time is minimized. execute at time-step with a duration ofCiMk) and the place-
Considering the graph in Figure 2(a), Figure 2(c) presentsent (the top-left corner of moduMy is placed over celt).
the optimal schedule. The schedule is depicted as a Gdrdr example, considering the dilution operation impleradnt
chart, where, for each module, we represent the operati@ssin Figure 2(c), the binary variable will be expressed as:
as rectangles_wnh their length corresponding to the doumati {17 if i=7, j=1, k=Diluter, =46
of that operation on the module. For example, operafign ZjKl = _
is bound to moduléMixer; (i.e., B(Og) = Mixer;). Og starts 0,  otherwise
immediately after the dilution operatiddy (i.e, tstat = 4) and By using the defined variable, the start time of an operation
takes 4 s, finishing at time] ™" — 8s. The total schedule O € ¥ becomes:
!ength will be 12 s. We consider that the schedule is d|V|c_JIed getart — Z Z Zj <z ki, VO €V, @)
in time-steps of one second, and we capture the set of time- I
steps withT'. Note that a new operation has been introducegyqre j represents the time-step when the operation starts
011, which corresponds to the storing of the second dmpI@)t(ecuting.
before undergoing detection. ) _
The examples so far have illustrated the optimal solution f§+ Scheduling and precedence constraints
the unified architectural synthesis and placement problem. The scheduling constraint requires that every operafipn
the architectural synthesis phase is considered sepafeiei be scheduled only once:
the placement, we get the allocation as in Figure 2(b), where
three modules are used: a 2x2 mixer (4x4 with border), a 2x4 Z Z Zzi,j,k,l =1 VO e?. 3)
mixer (4x6 with border) and a 2x4 diluter (4x6 with border). !
Since 4x4 + 4x6 + 4x6 = 64, the architectural synthesis will For each edge in the application graph we have to introduce
wrongly assume that the modules can be placed concurrerlprecedence constraint. Consider the operat@nand Oy,
on the array (which has a usable area of 8x8 = 64). This” for which there exists a dependeney, € £ in the
would parallelize operation®3 (on Mixer,), O; (on Diluter) sequencing grapff. ThenOn must be scheduled for execution
and Og (on Mixer;) and lead to the best schedule. Howeve@nly after the completion 0®;:

the modules cannot be placed on the chip without overlapping tstart My 7 < tStart
unless they are separated in time. This will lead to the sdeed o 2 Z Z ( i Z"J’k’l) -n (4)
in Figure 2(b), wherédg on Mixer; has to be delayed to not VO, and O, such thatde , € £

, , .

to overlap withMixer, andDiluter. L . -

For example, considering operatio®y and O1g in Fig-
ure 2(a), withOyo depending orOg, we havetd"s" < tstar,

If O is not scheduled immediately after the completiorOpf

The problem presented in the previous section is NFhren a storage module is required. The number of such storage
complete (scheduling in even simpler contexts is NRmodules during a time-step is important in defining the
complete [17]). We have developed an ILP model, and we ugkicement constraints for the model, since the storage leedu
an ILP solver to obtain those implementations that minimizgéiso occupy chip area. Using a binary variairig defined as:

the schedule length under the imposed constraints. {

IV. ILP-BASED SYNTHESIS

In an ILP model a system is described by a minimization mj = 1, ifa sto.rage unit is needed f@; in step
objective and a set of constraints which define valid coadsti ' 0, otherwise
for the system variables. A solution to the modeled problefile can capture the number of storage units required during a
is an enumeration of all system variables, such that tfighe-stepj. Thus, at time-step, the binary variable associated

constraints are satisfied. The Optimization ObjeCtive Egmd with the edge between Operatiom and On is expressed as:
as minimizing the completion time of the application,

j—c' j
minimize t/n", (1) hzl Z Za,h,k,l - hzlg Zzn,h.,k,l =M, )

3

where /" is the finishing time of the sink node of the Vj € T,Y0;,0n € V such thatle n € £
application. Variable m; j will have the value 1 at that time-stepwhen

The constraints fall under the following categories: (iD; has finished executing (first sum of the equation equals 1),
scheduling and precedence, (i) resource and (iii) placemdut O; has not started yet (second term of the equation is 0).



B. Resource constraints

Considering the fact that two operations of the same type
can be bound to the same resource, a constraint must be
expressed to prevent the overlapping of these operatiangdu
their execution. An operatio®; is executing at time-stepif:

hard diversification

k—OPT neighborhood (worse solutions accepted )

Pm TN, Alx, %)<k
“

.
-t

4
J_ .
Zm ZZZ@,h,kJ =1 VGe?. U Nr 4, N
h=j-C" 41 ’

Thus, at any time-step € 7 and for any moduléMy € £
there must be at most one operation that is executing:

J'
Z Zthl<1 VMKELJE‘T (6)
' h=j-g
, Fig. 3: Exploring the design space using Local Branching
C. Placement constraints

The allocated modules have to be placed on-chip such that
they do notphysically overlap. However, since a biochip isthe neighborhood size. Those solutionare included inA/,
reconfigurable, the same cell area can be used by two differamich satisfy the following constraint:
modules as long as they do not overlaptime Hence, the N
placement constraints will be expressed as a function c,tim Ax,X) = Z (1=xj)+ Z X<k ©)
considering each time-stejpin the schedule. Ies JEB\S

The first constraint to be considered is the size of thehereB is the set of binary variables that define the solution,
microfluidic array of the biochip. At each time stgp the Xj € B is a binary variable, an8is the subset of3 for which
sum of the modules that are placed on the array should ngt= 1. Thus,A will count the number of binary variables i

exceed the total area size,x n: that change their value (from 1 to O or viceversa), with respe
to X.
J
Z ZZZ‘ hk) X Lk xWe <mxnVjeT @) By varying k, we can control the size of\l. We would
T he k+1 like a size that is much easier to solve than the entire design

space, but still large enough to contain better solutioms th

where Ly andV\/L are the length and width of modul, x To speed up the search, LB can apply time limits to the
respectively, measured in number of cells. C[)Ioration of any local neighborhood. Once a better sofuti

The second constraint captures that no modules showdhas been found, the search continues in a similar manner,
overlap, i.e., a celc, on the array can be occupied by ahy defining a neighborhoof( (X1, k), such thatA(x,%;) < k,
most one module during time step see Figure 3. If we are not able to find a better solution sigrti

Let us consider a cetly (with coordinates¢ andy;) which  from anx, LB usesdiversification
is the top-left corner of modul®/y. If cell ¢ is within the  soft diversification enlarges the local neighborhood by
rectangle formed by, i.e., X —Lk+1<x <X andy — glightly increasing the value o, in the hope of finding a
Wk+1<y <y, then we have to impose the restriction thaetter solution. In case such a solution is not found, LB can

no other module is active during this time interval: employstrong diversification, where not only thatis further
enlarged, but worse solutions than the current one are taxtep
Zzz hkr < 1. (8) to guide the search into unexplored areas. LB stops when an
I

h=j—C k+1 imposed time limit has been reached, or when the number
of allowed diversifications has been exceeded. The returned

result is the best solutior,est found so far.
Given the ILP model defined above, an ILP solver will

search the design space extensively to produqeoaable V. EXPERIMENTAL EVALUATION
optimal solution. However, for practical applications, aee We were interested to evaluate the ILP-based approach
often interested to produce good quality solutions in ageas proposed in the previous section. For this purpose, we have
able time. Local Branching (LB) [14] is a meta-heuristic foused two real-life examples: (1)-vitro diagnostics on human
design space exploration that controls the behavior of ltiee | physiological fluids (IVD) [8]. IVD has 15 operations. (2) &h
solver, by directing it to quickly explore well-defined ldcamixing stage of a polymerase chain reaction application
neighborhoods. LB is applied within the framework of ILP(PCR/M) [7], which is one of the most common techniques for
by automatically introducing search-limiting constrainihto DNA analysis. PCR/M has 5 operations. We have solved the
the ILP model, and interacting with the ILP solver. ILP model with GAMS 21.5 using the CPLEX 9.130 solver,
Figure 3 illustrates how LB works. The search starts fromunning on Sun Fire v440 computers with 4 UltraSPARC Illi
an initial feasible solutio. Next, we define th&OPT neigh- CPUs at 1,062 MHz and 8 GB of RAM. The results are
borhoodA((%,k) of X, wherek is a parameter that determinepresented in Table I.

D. Local Branchlng



TABLE |: Comparison of SF, OS and LB approaches VI. CONCLUSION

App. | Area | SFE | OS | Exec. Time| [B | Exec. Time In this paper we have addressed the synthesis of

VD | 10x10 | 14s | 14s| 70min | 14s 6 min microfluidic-based biochips, which are based on the manip-

:xg ng 4213 s ég s gg min gé s ig min ulation of liquids not as a continuous flow, but as discrete
X S S min S min . -

peR T ioxio T T7s T 13sT 37 mn | 13s Tmin droplets, and hence are hlgh_ly recon_ﬂgu_rable _and scalab_le.

PCR| 8x8 | 19s| 15s| 19min | 15s 6 min We have modeled a biochemical application using a acyclic

PCR| 6x6 | 38s|28s| 15min | 34s| 10min polar graph, where each node is an operation and the edges

represent dependencies between the operations.
We have considered architectural synthesis at the same
L ) _ time with physical synthesis: we have proposed an ILP-based
_For each application, we haV(_e considered the I|bra_1ry fmg)'/nthesis methodology for the unified allocation, placetmen
Figure 1(c) and three, progressively smaller, area conmrg binding and scheduling of operations on the biochip. The ILP
(second column of Table I). We have performed the allocation,, je| has been complemented with a search heuristic that can
binding, scheduling and placement such that the applmauauickly guide the solver to good quality solutions.
completion time is minimized We used three approaches to Using two real-life examples, we have shown that our ILP-

derive the implementations: based approach can successfully synthesize the appfiGatib
1) The straight-forward approach (SF) does architecturafind the optimal completion time, under given area constsain
synthesis (allocation, binding and scheduling) separateéhs the experimental section shows, considering the planeme
from placement. First, an implementatig# is derived during architectural synthesis leads to significantlyéregual-
using our ILP model, limited by the total chip area, buity solutions.
without the placement constraints. Next, we attempt the
placement of¥° on the available area, modifying the
scheduling if required to fit the modules, thus obtainindll T Thorsgn, S. Maerkl, and S. Quake, “Microfluidic largake integra-
the final i | tatioéV. For both of th t tion,” Sci, vol. 298, pp. 580-584, 2002.
€ hina Imp ementa I.O - For _0 orinese steps we [|'2]] E. Verpoorte and N. F. D. Rooij, “Microfluidics meets mem®roc.

have obtained the optimal solutions. The schedule length IEEE, vol. 91, pp. 930-953, 2003.

of ¥Wis presented in column 4. [3] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electratirgy-based

2) The Optimal Synthesispproach (OS) outlined in the Sg“ggf?of czj[)oopzléts for integrated microfluidics.b Chip J, vol. 2,

previous section. The schedule lengths and runtimg] T. Zhang, K. Chakrabarty, and R. B. FaMicroelectrofluidic Systems:

required by the CPLEX solver to produce the optimal Modeling and Simulatian Boca Raton, FL: CRC Press, 2002.

. . . g?] K. Chakrabarty and J. Zeng, “Design automation for milciidics-based
solutions are presented in columns 4 and 5, respectively. i nins» ACM J. on Emerging Technologies in Comput. Syal. 1,

3) The Local Branching (LB) approach, which quickly no. 3, pp. 186-223, 2005.
guides the ILP solver to gOOd quality solutions. Thel6] F. Su and K. Chakrabarty, “Architectural-level syntiseof digital

. . . . microfluidics-based biochips,” ifroc. Int. Conf. Comput. Aided Des.
schedule lengths obtained with LB and ttime limits 2004, pp. 223-228.

imposed by us on the LB algorithm are presented in thg] ——, “Module placement for fault-tolerant microfluididsased
last two columns of the table. biochips,” ACM Trans. Des. Automat. Electron. Systol. 11, no. 3,

pp. 682—710, 2006.
As we can see from Table |, considering placement a8l F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing iretsynthesis

: : ; : of digital microfluidic biochips,” inProc. Des., Automat. and Test in
the same time with architectural synthesis (OS) can lead to Europe Conf vol. 1, 2006, pp. 73-78.

significant improvements over SF, which does not take intg; M. Cho and D. Z. Pan, “A high-performance droplet router fiigital
account placement. On average, we have obtained an 18.2% microfluidic biochips,” inProc. Int. Symp. Phys. Des. (in pres&p08.

; i ot ; ; ; [10] F. Su and K. Chakrabarty, “Unified high-level syntheaisd module
|mpr0veme_nt on the bio appllcatlon complejuon_ time, Wl'ﬂn u placement for defect-tolerant microfluidic biochips,” Rtoceedings of
to 26.3% improvement for the PCR application on a 6X6 the 42nd annual conference on Design automatiomew York, NY,

array. We can see that considering the placement is eslyecial USA: ACM, 2005, pp. 825-830.

; : ; ; P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement djitil microflu-
important as the biochip area is reduced. Our OS approach H‘&& idic biochips using the t-tree formulation,” iBroc. Design Automation

been able to find the optimal solutions in a reasonable time, conference 2006, pp. 931-934.

for example, the IVD is synthesized optimally on an 8x8 arrd§2] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast lat@placement
in 43 minutes for reconfigurable computing system$ZEE Des. Testvol. 17, no. 1,
: ) o ) ) pp. 68-83, 2000.
However, biochemical applications are becoming increass] A. A. E. Farag, H. M. El-Boghdadi, and S. I. Shaheen, “toying uti-
ingly complex, and thus scalable methods will be required lization of reconfigurable resources using two-dimendieoanpaction,”
. . J. Supercomputvol. 42, no. 2, pp. 235-250, 2007.
for_thelr synthesis. Hence, We_ have p_ropo_sed the LB appf?ﬁ‘fﬁ] M. Fischetti and A. Lodi, “Local branchingMathematical Program-
which can produce good quality solutions in a reasonable.tim  ming vol. 98, no. 1-3, pp. 23-47, 2003.
For the applications in Table I, LB has been able to obtain ti®] R. B. Fair, “Digital microfluidics: is a true lab-on-éip possible?”

. | Ut f f th . f . f Microfluidics and Nanofluidigsvol. 3, no. 3, pp. 245-281, 2007.
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