
Modeling and Simulating Time-
Sensitive Networking 
 
 
Harri Laine 



2 

Overview 
•  Introduction 
•  Time-Sensitive Networking 

– Background 
– Goals 
– Architecture 

•  Simulator 
– Design 
–  Implementation 

•  Evaluation 
•  Conclusion 



3 

Introduction – Devices that use network 



4 

Introduction – Consumer electronics 

No need for 
determinism: Ethernet 
fulfills requirements 



5 

Introduction – Real-time systems 

Real-time systems, such 
as automotive and 
industrial applications, 
need determinism: 
Ethernet does not fulfill 
requirements 



6 

Introduction – Problem 

The requirements lead to 
having two networks in 
industrial applications! 

•  one for connecting PCs 

•  one for controlling machinery 



7 

Time-Sensitive Networking – Background 
•  Prioritization 

– Allows important data to take preference on transmission 
–  Priority tag included in each frame 
– Audio/video (AV) transmission and other real-time traffic gets lower 

latencies 
•  Credit-based shaper 

– Aimed for AV-streaming 
–  Prevents high priority data to block low priority data 
–  Prevents “bursts” of data in the network 



8 

Time-Sensitive Networking – Prioritization 



9 

Time-Sensitive Networking – Prioritization 



10 

Time-Sensitive Networking – Prioritization 

Prioritization alone is not 
enough to provide guarantees 
for hard real-time systems! 



11 

Time-Sensitive Networking – Goals 
•  Provide determinism in Ethernet networks 

–  Protected windows using Gate Control Lists 
– Cut costs of having two networks 
– Cut costs of specialized networks 

•  Increase efficiency in Ethernet networks 
–  Preemption 
– Credit-based shaper 



12 

Time-Sensitive Networking – Architecture 
•  Gates are used in 

outbound port to block 
and allow data to flow 

•  Gate Control List is used 
to manage gate states 
(open/closed) 



13 

Time-Sensitive Networking – Architecture 
•  Architecturally simple 
• Wires, clocks, queues 

– Clocks are synchronized in the network 



14 

Time-Sensitive Networking – Protected 
windows 
•  Synchronized GCLs can be used to create protected windows 
•  Protected windows create clear communication channel for time-critical 

data 
• Makes the network predictable 

– Suitable for hard real-time systems 



15 

Time-Sensitive Networking – Credit-based 
shaper 
•  Restricts high priority data getting all the bandwidth 
•  Prevents “bursts” in network 



16 

Time-Sensitive Networking – Preemption 
•  Allows frames to be stopped and continued later 

–  Favors high priority data, but utilizes network more efficiently 
–  Low priority data can be send even just before a protected window 



17 

Simulator – Design 
•  Objectives 

–  Implement TSN features 
•  Protected windows 
•  Credit-based shaper 
•  Preemption 

– Use input files to generate 
•  Messages 
•  Network 
•  Virtual links (routes) 
•  GCLs 

–  Produce output data for further analysis 
•  Event-based 
•  Randomness for non-time-critical data 



18 

Simulator – Implementation 
•  Java was chosen to create classes for entities (queues, ports, etc.) 

– Based on given simulator 
•  5 different main parts 

– Scheduler 
–  Port 
– Network 
– Virtual Network 
– Message 

•  Possibility to run until a stable state 
•  Possibility to define 

–  Input parameters 
– Maximum difference for stable state 
– Credit-based shaper bandwidth reservation 



19 

Simulator – Implementation 
•  Network is split to the whole network and virtual links 

– Virtual link is a subset of the network 



20 

Evaluation – Validation 
•  A test run where 

– be1 – low priority BE frame 
–  tc2 – medium priority time-critical frame 
– be3 – high priority BE frame 
– Not a very likely situation but shows that protected windows work! 



21 

Evaluation – Test cases 
•  Three test cases 
•  Each test case has three variations 

– Original 
– Some BE-traffic added 
– Some more BE-traffic added 
– BE-traffic added with characteristics in real network 

•  A lot of small (under 100 bytes) and large frames (over 1400 
bytes), rest being somewhere between 

•  Test case 1 
– 20 TT-frames, 26 AV-frames 
– 12 ESs, 4 NSs 

•  Test case 2 
– 58 TT-frames, 51 AV-frames 
– 10 ESs, 5 NSs 

•  Test case 3 
– 92 TT-frames, 81 AV-frames 
– 35 ESs, 8 NSs 



22 

•  Qbv = protected windows 
•  Qbu = preemption 
•  Qav = credit-based shaper 

Evaluation – Results: WCD differences for 
AV-frames 



23 

Evaluation – Results: ACD for BE-frames 



24 

Evaluation – Results: protected windows’ 
effects 

Test case Qbv None Difference 

1 321 441 37% 

3 674 829 23% 

3c 674 916 36% 

•  Average WCD of TT-frames 

Test case Qbv None Difference 

1 588 492 16% 

3 133 125 6% 

3c 135 128 5% 

•  Average WCD of AV-frames 



25 

Evaluation – Results: findings 
•  Time-critical frames flow through the network as planned 
•  Preemption favors AV-frames 
•  Credit-based shaper favors BE-frames 
•  Preemption + credit-based tries to favor both AV and BE-frames 



26 

Evaluation – Limitations 
•  Stable state after three consecutive WCD differences stay within limits 

– Room for errors 
•  The simulator allows AV-frame to preempt BE-frame at any point, when it 

has enough credits 
•  Hardware delays are not considered 
•  Only one frame per message 
•  The network is homogeneous 
•  Time accuracy is 80 ns 



27 

Conclusion 
•  There are still things to determine 

– When frames can be preempted? 
– How CBS, protected windows and preemption works together? 

•  The simulator allows studying feature set effects on the network 
•  Protected windows provide timing guarantees 
•  The simulator is fast enough to study small to medium sized networks 

– Still room to improve its performance 



Thank you! 


