
Design and Implementation of a Simulator for
Measuring the Quality of Service for
Distributed Multimedia Applications

Rolf Esbjørn Kristensen

Kongens Lyngby 2009
IMM-M.Sc.-2009-XX

Draft

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc.: ISSN XXXX-XXXX

Abstract

Multimedia applications have become widespread today, from streaming over the
Internet to portable music and video players. Increasingly multimedia applications
are implemented using embedded architectures, which have very tight constraints in
terms of cost, performance, power consumption, size, etc. Examples of such systems
are smart-phones, an iPod or a TV set-top-box.

Designing embedded systems implementing multimedia applications is difficult be-
cause of the inherent variability of functionality execution times (which depend on
the video or audio streams processed, their resolution, frame rate, etc.) and stringent
Quality-of-Service (QoS) requirements on their performance (e.g., a playback of 25
frames per second for a video device).

Real-time systems theory provides analysis methods that can determine if an appli-
cation implemented on an embedded architecture meets its timing constraints. There
are a lot of results for hard real-time systems, which have to meet their deadlines
even in the worst-case, otherwise something catastrophic can happen. In contrast,
a multimedia application is a soft real-time system, where certain degradation of
performance can be accepted, provided it is not below a given level of QoS.

Multimedia systems are difficult to analyse using existing schedulability analysis
theory. Designing an architecture based on the worst-case leads to over design: too
much computing power, which is seldom used. Hence, the focus of this thesis is to
implement a simulator that can support the designer in evaluating very early in the
development process several embedded architecture implementations, and deciding
which one meets the QoS requirements for a given multimedia application. This can
reduce the time-to-market and development costs by avoiding building a physical
prototype, which is costly and time-consuming.

Besides evaluating hardware architectures (CPUs, dedicated hardware, buses), we are
also interested in using the simulator to evaluate several scheduling policies, which
have a strong impact on the behaviour of the application. Our simulator, which
is based on the SystemC library, can take into account Fixed-Priority preemptive
scheduling (FP), Earliest Deadline First scheduling (EDF), the Linux 2.6 scheduler
and Constant-Bandwidth Server scheduling (CBS). The idea of the CBS is to divide
a resource (CPU or bus) into virtual resources, which are given a certain budget.
This is especially useful if several applications (both hard and soft real-time) have
to share the same architecture.

The simulator has been used to evaluate several architecture alternatives for a set-
top-box application, using different hardware components and scheduling policies.

iii

Chapter 0. Abstract

As the experiments show, using the simulator we can chose very quickly the right
architecture and scheduling policy. The simulator can also help in deciding the
scheduling parameters, such as the bandwidth for the CBS servers.

iv

Resumé

!!! Danish abstract !!!

v

Chapter 0. Resumé

vi

Preface

This master thesis was written at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark DTU. The project was completed
in the period September 2008 to March 2009, under the supervision of associate
professor Paul Pop. The thesis is a 30 ECTS point course.

I would like to thank Paul Pop, and Ph.d. Prabhat Kumar Saraswat for guidance
and support throughout the project. I would also like to thank my father and Sune
Jakobsen for proofreading the thesis.

Rolf Esbjørn Kristensen
rolf@lightsaber.dk

Kongens Lyngby, March 2009

vii

Chapter 0. Preface

viii

Contents

Abstract iii

Resumé v

Preface vii

Abbreviations xiii

1 Introduction 1
1.1 Variability in Multimedia . 2
1.2 Motivation . 3
1.3 Related work . 3
1.4 My work throughout the thesis . 4
1.5 Structure of the thesis . 5

2 Multimedia 7
2.1 Types of Multimedia . 7

2.1.1 MPEG . 7
2.1.2 MP3 . 11

2.2 Metrics . 13
2.3 Variability in multimedia . 15

2.3.1 Modelling the variability . 17
2.4 Distributed Multimedia . 18
2.5 Scheduling . 19

2.5.1 Fixed priority scheduling . 19
2.5.2 Earliest Deadline First . 20
2.5.3 Constant bandwidth server scheduling 20
2.5.4 Linux scheduler . 22
2.5.5 Hypothesis . 23

3 Simulators 25
3.1 Levels of Abstraction . 26
3.2 Design-Level Simulator . 27
3.3 Existing Simulators . 28

3.3.1 SimpleScalar . 28
3.3.2 Simics . 29

ix

Contents

3.3.3 PTLsim . 30
3.3.4 SystemC . 30
3.3.5 Pesimdes . 31
3.3.6 ARTS . 31
3.3.7 Summary . 32

4 Design of the Simulator 33
4.1 What needs to be simulated . 33
4.2 Requirements . 34
4.3 PESIMDES . 35
4.4 Structure of the simulator . 36

4.4.1 Scheduling . 37
4.4.1.1 Fixed priority scheduling 39
4.4.1.2 Earliest Deadline First scheduling 40
4.4.1.3 Constant bandwidth server scheduling 40
4.4.1.4 Linux scheduler . 41

4.4.2 Input and output . 42

5 Implementation of the Simulator 43
5.1 Communication . 43
5.2 Scheduling . 46

5.2.1 Fixed-Priority . 48
5.2.2 Earliest Deadline First . 49
5.2.3 Constant Bandwidth Server 51
5.2.4 Linux O(1) . 54

5.3 Output devices . 55
5.3.1 Consumer . 56
5.3.2 Output display . 57

5.4 Extending DiMAS . 57

6 Generating traces for the simulator 59
6.1 Resulting trace files . 61

7 Case studies 63
7.1 Evaluation criteria . 63
7.2 Reading this chapter . 64
7.3 General set-up . 64
7.4 Two processing elements . 66

7.4.1 Case study 1 - Periodic input 66
7.4.1.1 Test bench . 67
7.4.1.2 TC 1.0 - FP . 67
7.4.1.3 TC 1.1 - EDF . 68
7.4.1.4 TC 1.2 - EDF+CBS 69
7.4.1.5 TC 1.3 - Linux . 70
7.4.1.6 Summary . 70

7.4.2 Case study 2 - GUI task . 73

x

Contents

7.4.2.1 Test bench . 73
7.4.2.2 TC 2.0 - FP . 74
7.4.2.3 TC 2.1 - EDF . 75
7.4.2.4 TC 2.2 - EDF+CBS 75
7.4.2.5 TC 2.3 - Linux . 76
7.4.2.6 Summary . 77

7.4.3 Case study 3 - Input with jitter 80
7.4.3.1 Test bench . 80
7.4.3.2 TC 3.0 - FP . 80
7.4.3.3 TC 3.1 - EDF . 80
7.4.3.4 TC 3.2 - EDF+CBS 81
7.4.3.5 TC 3.3 - Linux . 81
7.4.3.6 Summary . 82

7.4.4 Case study 4 - Varying CBS parameters 84
7.4.4.1 TC4.0 . 85
7.4.4.2 TC4.1 . 85
7.4.4.3 TC4.2 . 85
7.4.4.4 TC4.3 . 86
7.4.4.5 TC4.4 . 86
7.4.4.6 Summary . 86

7.5 One processing element . 88
7.5.1 Case study 5 - Periodic input 89

7.5.1.1 Test bench . 89
7.5.1.2 TC5.0 - FP . 89
7.5.1.3 TC5.1 - EDF . 90
7.5.1.4 TC5.2 - EDF+CBS 90
7.5.1.5 TC5.3 - Linux . 91
7.5.1.6 Summary . 92

7.5.2 Case study 6 - GUI task . 94
7.5.2.1 Test bench . 94
7.5.2.2 TC6.0 - FP . 94
7.5.2.3 TC6.1 - EDF . 95
7.5.2.4 TC6.2 - EDF+CBS 96
7.5.2.5 TC6.3 - Linux . 96
7.5.2.6 Summary . 97

7.5.3 Case study 7 - Input with jitter 99
7.5.3.1 TC7.0 - FP . 99
7.5.3.2 TC7.1 - EDF . 99
7.5.3.3 TC7.2 - EDF+CBS 100
7.5.3.4 TC7.3 - Linux . 100
7.5.3.5 Summary . 101

7.5.4 Case study 8 - Varying CBS parameters 103
7.5.4.1 TC8.0 . 103
7.5.4.2 TC8.1 . 104
7.5.4.3 TC8.2 . 104

xi

Contents

7.5.4.4 TC8.3 . 104
7.5.4.5 TC8.4 . 105
7.5.4.6 TC8.5 . 105
7.5.4.7 Summary . 105

7.6 Conclusion . 106

8 Conclusion 109
8.1 Future work . 110

Bibliography 111

A Developed utilities 113
A.1 BreakDiff . 113
A.2 mpeg2stat . 113
A.3 VCD Parser . 114

B Input generator class diagram 115

C Users guide 117

D Multimedia data files 123
D.1 MPEG-2 files . 123

E Commands for generating traces 127

F Profiling two MPEG video files 129
F.1 flwr_080 . 129
F.2 high_25fps_320x240 . 130

G CD-rom contents 133

H Case Study plots 135
H.1 Variability in the MPEG video files 135
H.2 Case study 1 . 138
H.3 Case study 2 . 146
H.4 Case study 3 . 154
H.5 Case study 4 . 162
H.6 Case study 5 . 167
H.7 Case study 6 . 175
H.8 Case study 7 . 183
H.9 Case study 8 . 191
H.10 APE3 histogram . 197

xii

Abbreviations

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CAS Cycle-Accurate Simulator

DCT Discrete Cosine Transformation

DiMAS Distributed Multimedia Application Simulation API

FIFO First In First Out

IDCT Inverse Discrete Cosine Transformation

ISA Instruction Set Architecture

ISS Instruction Set Simulator

MP Motion compensation Prediction

MPSoC Multi Processor System-on-Chip

Pe Processing Element

RTL Register Transfer Level

SAM System Architectural Model

TLM Transaction Level Modelling

VCD Value Change Dump

vLan Virtual Local Area Network

VLC Variable Length Coding

VLD Variable Length Decoding

VoIP Voice over Internet Protocol

WiFi Wireless Fidelity

xiii

Chapter 0. Abbreviations

xiv

Chapter 1

Introduction

Distributed multimedia applications are more and more common nowadays. Dis-
tributed multimedia can be many things from streaming over the Internet to a home
entertainment system and portable MP3 players.

Internet TV and radio are widely used today, multimedia is however much more
demanding in terms of service compared to ordinary Internet surfing and e-mailing.
The Internet is based on a best effort service, which is not able to make any guar-
antees, as to when the network packets will arrive at the destination. Therefore the
Internet is far from optimal for streaming multimedia, but this is mostly a problem,
when the route from source to destination is saturated, or even resource limited.

The new thing in home entertainment is that all the devices are interconnected using
a wireless network, thereby reducing all the cabling. WiFi is however far from an
optimal solution for multimedia, since the quality of the links is even worse than a
wired Internet. Many solutions are however built in such a way that the multimedia
devices have a dedicated network, where no other devices are connected1. But this
does not remove interference from other wireless networks in the vicinity.

Multimedia applications consist of various tasks that are mapped onto different pro-
cessing elements. The purpose of partitioning the functionality is that dedicated
decoding hardware devices can be used for doing some specific tasks in order to op-
timize performance. A further advantage of this distribution is that multi purpose
processors also can be used to reduce cost. In this thesis we look into how different
scheduling algorithms affect the Quality of Service (QoS) of multimedia. Possible
QoS metrics for video streams are for example frame rate and resolution. Section
2.2 will elaborate on the various metrics, which define the QoS for multimedia ap-
plications.

Multimedia covers both video, audio and a combination of the two. This can be DVD
film, Internet radio or TV. Conferencing systems and other types of communication
like Internet phones are also defined as being multimedia applications. Generally
multimedia is Continuous Media (CM), which differs from ordinary files, in the

1For example using a vLan for the home entertainment centre and a vLan for the rest.

1

Chapter 1. Introduction

sense that multimedia files are accessed at a specific rate throughout the playback.
Multimedia therefore requires that the multimedia data is ready at the output device
at a certain rate, in order ensure satisfactory playback.

The requirement of delivering data at a certain rate is the reason for multimedia
applications being defined as real-time systems. Real-time systems can however be
divided into two classes, there are hard real-time and soft real-time systems, where
multimedia falls within the soft real-time systems class.

Hard real-time systems are time critical systems, where missing deadlines can have
catastrophic consequences. A typical example is the Anti-lock Braking System (ABS)
in the car industry, where the breaking distance can be considerably greater if the
ABS tasks is not completed within the required deadlines.

Soft real-time systems are time sensitive systems, where missing deadlines do not
have catastrophic consequences, but will have a negative effect on the performance of
the task. Clearly multimedia tasks fall into the soft real-time class, since degradation
of the playback is not a catastrophe, but simply an annoyance for the end user.

1.1 Variability in Multimedia

Figure 1.1: Plot of the instruction count for decoding a film over time. Both the intra-
and the inter variability is clearly seen.

The problem with multimedia is the variability in the resource demand in terms
of execution times. This thesis has identified two different types of variability, one
is intra variability and the other inter variability. The intra variability is within
the same multimedia stream, and inter variability is across different multimedia
streams. Figure 1.1 shows the variability in terms of number of instructions required

2

1.2. Motivation

for decoding frames for four different MPEG2 streams. It is clear that each of the
four streams have intra variability, since they each have high peaks once in a while
during the 100 frames. Further the inter variability is obvious since two streams
require less instruction counts for processing the frames. The streams that require
the most instruction counts have motion in the video, while the other two videos
simply show a still image.

Designing the system based on the worst case execution time will lead to a system
where the QoS is ensured. If the system on the other hand is designed based on the
average execution times for all four streams in figure 1.1, then the performance for
the processor heavy streams will be very bad, and many frames will probably be lost.

1.2 Motivation

The variability mentioned in the previous section is the main motivator for imple-
menting this simulator. Systems designers might have an idea of what the resource
requirements are for a specific appliance, but this is often only qualified guesses. For
example there are many factors which are in play when creating a portable MP3
player. The player must not be over- or under designed in terms of resources such
as memory and processor speed. If the player is under designed the player is useless,
while if the player is over designed it costs more and will consume more power. Gen-
erally all portable devices must be as power efficient as possible, thereby making it
possible to either reducing the battery size or lengthening the play time. A reduction
in the battery size will further reduce the weight and size of the device.

Prototyping is a way of creating the next portable MP3 player, but this is an ex-
pensive process, where many prototypes might be built before the optimal device is
created. It is further a time consuming process since it may take some time before a
working prototype is built.

Simulating a device is therefore a very efficient way of estimating the resource re-
quirements needed for a specific device. This is exactly the purpose of the simulator
that has been developed during this thesis. The simulator is able to simulate a given
set-up, with multiple tasks and multiple processing elements. The simulator can
further simulate the processing elements using four different scheduling algorithms,
being Fixed-Priority, Earliest Deadline First, Constant Bandwidth Server and the
Linux O(1) scheduler.

1.3 Related work

Much work has already been done relating to defining QoS for multimedia. The
main area of interest has been in identifying the relevant metrics and how the QoS
formally can be expressed. The paper [JN04] by Jin and Nahrstedt looks into various
QoS classification languages and their properties. They propose a three layer model,
which also is discussed at the end of section 2.2 in this thesis.

3

Chapter 1. Introduction

A further research area related to QoS for distributed multimedia is creating a frame-
work which can be used for guarantying some kind of QoS. The paper [ACH98] by
Aurrecoechea et al. presents a survey of some of these frameworks, that have been
developed in order to ensure a certain QoS for multimedia applications.

The Phd. thesis [AM05] Modeling Multimedia Workloads for Embedded System De-
sign by Alexander Maksyagin looks into the variability of multimedia, and how this
variability can be modelled using Variability Characteristics Curves (VCC). These
curves are created for various metrics related to a multimedia stream, which for ex-
ample are production curves, execution curves and arrival curves. The production
and arrival curves relate to the token reception and dispatch at the task level, while
the execution curves correspond to the execution time of a task. The curves basically
represent best case timing and worst case timing, and are used in real-time calculus
to analyse the workload of the multimedia.

Simon Perathoner developed a System level simulator Application Programming
Interface (API) named PErformance SIMulation of Distributed Embedded Systems
(Pesimdes). This simulator API is presented in his master thesis [SP06]. Pesimdes is
used for constructing a model of a multi processor embedded system at the system
level, using the modelling library SystemC. Pesimdes is however designed for mod-
elling hard real-time systems, and not soft real-time systems. Pesimdes and other
simulators are further introduced in section 3.3.

1.4 My work throughout the thesis

This section presents some of the areas I have been working on during this thesis.

DiMAS The Distributed Multimedia Application Simulator is capable of simulat-
ing various combinations of multimedia applications. The focus of this thesis
is on the DiMAS. Latter sections will present more details on the design, im-
plementation of this simulator.

Modified SimpleScalar The debugger which is part of the SimpleScalar tool set
was modified in order to make traces of execution times for various multimedia
applications. The debugger will halt at some user specified breakpoints, and
will at that time also write the breakpoint identifier and the execution time
counter to a user specified file. More details of the modifications is given in
chapter 6.

BreakDiff A utility which reads a trace file generated by the modified SimpleScalar
simulator and takes a certain amount of arguments, depending on the number of
breakpoints the user wishes the extract from the trace file. Using the arguments
the user can specify sets of breakpoints and chain them to a block, the execution
times of these blocks are then written to separate files. More details on this
utility are given in chapter 6 and the appendix A.1.

MPEG stat This application is a slight modification of the free MPEG decoder
software which can be downloaded from the MPEG organization [MPEGOrg].

4

1.5. Structure of the thesis

The purpose of this application is to extract the most relevant attributes of
MPEG videos, which are used for the simulator. The attributes are all stored
in the various headers of the MPEG video files, so the utility simply extracts
the information and prints it to a file. The application is able to extract
various types of details, ranging from a simple summary of the most common
attributes to more detailed traces. The details of this application are elaborated
in appendix A.2.

VCDParser A small utility which parses a VCD (Value Change Dump) file and
exports the data into a more readable format, which easily can be plotted
using gplot. Appendix A.3 gives a description of this utility.

1.5 Structure of the thesis

Chapter 3 starts off by introducing various classes of simulators and different types
of abstraction levels a simulator can work at. The last part of the chapter introduces
some existing simulators.

Multimedia is the main topic in chapter 2, where the MPEG and MP3 coding and
decoding algorithms are introduced. This chapter further looks into the variability in
multimedia and how this can be modelled. Four scheduling techniques are introduced
in the last part of the chapter, where there also is a discussion on whether or not
they are suited for scheduling multimedia applications.

Chapter 4 contains the design of the DiMAS API. The chapter starts with identifying
what needs to be simulated. The design of the Pesimdes simulation API, which
DiMAS is based on, is further mentioned.

The implementation is contained in chapter 5, where the main focus is on the four
different scheduling techniques.

Chapter 6 describes how the variability in multimedia files is captured and stored in
trace files.

Chapter 7 contains the case studies, where 8 different case studies are identified and
analysed using the DiMAS API.

Chapter 8 concludes the thesis and discusses future work.

5

Chapter 1. Introduction

6

Chapter 2

Multimedia

This chapter discusses some different types of multimedia, and especially looks into
the variability in execution time for multimedia applications, which was mentioned
in the introductory part of this thesis.

2.1 Types of Multimedia

For this thesis the focus has been on the MPEG and MP3 codecs, which respectively
are used for video and audio encoding/decoding. The following subsections will
introduce the MPEG and the MP3 codecs in more details.

2.1.1 MPEG

The Moving Picture Experts Group (MPEG) is a standard for multimedia files con-
taining both audio and video. There are multiple versions of the MPEG standard,
where one is widely in use today, namely MPEG-2. The MPEG-4 is a further ex-
tension, which makes it possible to have 3D videos, but is not as widely in use as
MPEG-2. The MPEG-2 standard is a extension of MPEG-1 where the resolution of
the picture is higher and the audio experience is extended from stereo to 6 channels
surround sound. The MPEG-2 standard is used in digital television broadcasting
and in DVDs. For the remainder of this thesis MPEG will be used interchangeably
with MPEG-2.

Typically the audio in a MPEG-1 file is MP3 format, while it for a MPEG-2 is
the Advanced Audio Coding (AAC) format, that supports up to 6 audio channels.
Therefore when playing a MPEG file the player needs to demultiplex the MPEG file
into a video and an audio part, where each part is decoded using its respective de-
coding software. During playback the audio and video is then regularly synchronized
to ensure correct playback experience.

A MPEG video basically consist of a sequence of images or frames, which again are
split into smaller parts called macroblock, that each are 16x16 pixels in size. The

7

Chapter 2. Multimedia

pictures are typically grouped into a Group of Pictures (GOP), which are grouped
together due to similarities, this could for example be that they are all part of a
scene in a film.

The macroblocks in a MPEG video are composed by luminance (Y) and chromi-
nance (U,V) instead of RGB1 in a standard colour television. Luminance defines
the brightness, while the two chrominance components define the colour part of
a macroblock. The human eye is mostly sensitive to luminance, while less to the
chrominance, therefore the chrominance is often subsampled, thereby reducing the
bit rate of the video [TN95]. A three digit notation specifies how the subsampling of
the chrominance is relative to the luminance. Examples of this form of notation are:

4:4:4 No subsampling is performed, each pixel has both a Y, U and V value.

4:2:2 Chrominance is horizontally subsampled by a factor of two relative to the
luminance.

4:2:0 Chrominance is both horizontally and vertically subsampled by a factor of two,
relative to the luminance.

The two latter are typically used in the MPEG encoding/decoding. The top format
does not perform any reduction of the bit rate, while the lowest performs the highest
reduction of the three.

Figure 2.1 shows how the MPEG video stream is organized in the various layers
according to the MPEG standard. Where the sequence layer contains all the pictures,
and the slice layer contains a set of slices where each slice corresponds to a set of
horizontal macroblocks. The macroblock layer contains the 8x8 pixel blocks for
luminance and chrominance. The MPEG video stream in the figure uses the 4:2:0
subsampling. Figure 2.2 shows how the picture, slice, macroblock and block layers
are related.

The MPEG standard uses complex and computational demanding algorithms for
compressing the raw video, where the compression ratio typically is in the order of
10. An example is that a video with a resolution of 720x576 and 25 fps has a raw
bit rate of 166 Mbps, while the compressed MPEG will be approximate 15 Mbps
[TN95]. Obviously the compression and decompression will result in a minor loss of
picture quality, but this is often negligible.

The reduction of the bit rate can be obtained by taking advantage of the redundancy
often found in video files. There is basically two types of redundancy:

Psycho visual redundancy Details near object edges or around shot changes are
less visible for the human eye, this can therefore be exploited in the reduction
of the bit rate [TN95].

Spatial and temporal redundancy Most often the value of neighbouring pixels
in a frame are closely related, both within the same picture as well as across
frames [TN95].

1Red Green Blue

8

2.1. Types of Multimedia

Figure 2.1: The various layers in the MPEG video stream and how they are organized

Figure 2.2: Relation between a picture, slice, macroblock and block

9

Chapter 2. Multimedia

In the MPEG coding algorithm the two techniques used for utilizing the redundan-
cies described above are inter-frame 2-dimensional Discrete Cosine Transformation
(DCT) and Motion compensation Prediction (MP).

The coding process of a raw picture in a video starts off by a 2-dimensional DCT,
which produces a data set that is larger than the original image, since each pixel
now needs 11 bit, opposed to 8 bits at the raw image. Quantization is then used
to reduce the amount of bits for each pixel. The quantization process degrades the
image quality, and the degradation cannot be reversed by the decoder. Next the
quantized values are coded using a variable length coding (VLC) process, where the
image block is scanned in a diagonal zigzag pattern. The resulting VLC denote a
run of zeros and a non-zero coefficient. The VLC are predetermined values found by
looking up the value, and are based on the probability of certain values to appear.
The last part of the MPEG coding process is motion compensation prediction, which
utilizes the temporal redundancy. The MP needs to be performed on the decoded
picture and not on the original picture, since the compression process will result in
some loss of details, which the decoder will not have available. Therefore the coder
needs also to have an local decoder in order to make the MP. The MP is performed by
scanning the neighbouring pictures for similar blocks, and then generating motion
vectors [TN95]. The MP process is what makes the encoding process much more
resource demanding than the decoding process since this is a exhaustive search for
similarities. Figure 2.3 shows how the various tasks of encoding from raw image to
a MPEG stream are connected.

Figure 2.3: Stages in the basic MPEG encoder

The decoding process of a MPEG frame to a raw image is first doing a Variable
Length Decoding (VLD) followed by an Inverse Quantization (IQ), an Inverse Dis-
crete Cosine Transformation (IDCT) and then a Motion compensation Prediction.
Just as the VLC the VLD is simply a lookup in a table for finding the correct val-
ues corresponding to the code. Figure 2.4 shows how the various tasks of decoding
between from MPEG frame to raw image is performed.

10

2.1. Types of Multimedia

Figure 2.4: Stages in the basic MPEG decoder

The MPEG encoding and decoding processes described above are only the basic part
of the MPEG standard. There are also more elaborate coding techniques which are
used for enhancing the quality of the stream. These are however outside the scope
of this thesis, and the reader is referred to the official MPEG website for further
reading [MPEGOrg]. Both the MPEG encoder and decoder are available as a simple
C implementation and can be downloaded from the MPEG homepage [MPEGOrg].
It is this implementation that has been used for generating the required traces for
the DiMAS simulator.

2.1.2 MP3

The audio part of the MPEG-1 standard defines three layers of audio coding/decod-
ing techniques, being MPEG layer I, II and III. The techniques rise in complexity
from layer I to layer III, and the required bit rate for streaming audio is reduced.
The MPEG layer III is typically abbreviated MP3 [RR02].

The MP3 compression algorithm utilizes a number of tricks making it possible to
have compression ratios of up to 1:12 between MP3 bit stream and Pulse Code
Modulation (PCM). The human ear is not able register sounds below 20 Hz and
above 20 kHz, the top level is even reduced with the age, and most people are not
able to register sounds above 16 kHz [BP00]. Therefore the audio sampling needs
only be performed within this interval. Further the human ear has 24 frequency
bands, therefore masking can occur when tones within the same band are played.
This can be used to reduce the bit rate, since there is no need to play the tones which
are non perceivable by the human ear.

The PCM signal is used for storing audio, and has two parameters, being sampling
rate and bit rate. The sampling rate is given in Hz and and the bit rate is given as
bit per second similar to the bit rate in MPEG videos. The size of the sampling rate
determines the range of the frequencies, increasing the sampling rate will therefore
present more tones. The bit rate determines the resolution of the sound, increasing
the bit rate will reduce the noise introduced by the MP3 coding algorithm.

The MP3 stream structure is shown in figure 2.5. A MP3 file consists of a series of
frames, which each correspond to 26 ms of audio, where each frame contains 1152
samples2. A frame is divided into two granules that each contain half of the samples

2Only the MPEG-1 layer 3, the layer 1 and 2 have less samples

11

Chapter 2. Multimedia

Figure 2.5: Stream structure of a MP3 file

Figure 2.6: Encoding process of a MP3 file

in a frame. For stereo audio each granule contain samples for a left and a right
channel. The last level in the MP3 stream contains the Huffman coded bits and
the scale factors. The Huffman coded bits contain the actual data, while the scale
factors are used for reducing the quantization noise.

The MP3 encoding process is shown in figure 2.6. The filter bank samples 1152
PCM signal and filters them into 32 frequency bands, that are equally spaced. In
parallel a Fast Fourier Transform module converts the PCM signals from the time
domain to the frequency domain. The psycho-acoustic module analyses the signal
from the FFT module. Based on the human audio perception, as described earlier
the psycho-acoustic module selects a window type the MDCT should use for process-
ing the incoming signals. The window type is based on the difference between the
succeeding and the proceeding frames. The quantization and scaler module is an
iterative module where the sampled values are quantized and scaler values are used
for minimizing the noise induced by the quantization. Finally the values are Huffman
encoded and the bit stream is created with side information that the decoder uses
to identify the stream parameters.

Figure 2.7 shows the MP3 decoding process from MP3 bit stream to a PCM stereo
signal. The decoder starts off by parsing the bit stream into header information

12

2.2. Metrics

and the actual data. The data is then decoded using the Huffman algorithm. Next
the data is rescaled using the scaling information parsed in the bit stream, and an
inverse quantization is performed. The data is split into two channels if the incoming
audio data is a stereo signal. Afterwards the IMDCT and filter bank conversion is
performed on each of the signals, which then results in the decoded PCM signals.

Figure 2.7: Decoding process of a MP3 file

The reader is referred to [RR02] for a more elaborate explanation of the MP3 encod-
ing and decoding techniques.

2.2 Metrics

This section will present the general metrics that define multimedia files. These
metrics can be used for estimating how the quality of service for a given multimedia
application will be. There is much literature already addressing this subject, of the
most interesting are [ACH98, JN04].

The following presents the metrics that were found most relevant for describing QoS
for distributed multimedia applications. The network related parameters do not only
apply to distributed multimedia applications, but also to locally run applications,
they are however often negligible since local playback is many times faster than
playback over a network.

Frame rate is an essential parameter for video. The frame rate needs to be suffi-
ciently high in order for the video to be smooth. The frame rate is a rather
subjective value, which can vary among people. The frame rate is first of all
established, when the encoding is performed. But some of the later parame-
ters can also influence the rate while playing the video due to loss of frames.
There exists standards where the frame rate is defined. The PAL format used
in Europe is 25 fps, while the NTSC format used in USA is 30 fps. Frames are
also defined for MP3 streams, here the frame rate is a static and each frame
contains 26 ms of audio [RR02].

Resolution is again a very important factor for video quality, the higher the reso-
lution the better quality of the video is. This is typically a static value and will
not change during playback. There could however be software that changes
the resolution, based on the performance of the network connection. Often the
user will before hand choose the resolution of the video being streamed.

13

Chapter 2. Multimedia

Sampling rate is defined for audio, and determines the span of the frequencies.
More tones are available as the sampling rate is increased. The sampling rate
is defined when the audio is encoded, and is typically set to 44.1 kHz, since
this is what is used for CD audio [RR02].

Bit rate is defined for both video and audio. The bit rate is based on the frame rate,
resolution and how effective the compression algorithm is. Further a video can
both be encoded using Variable Bit Rate (VBR) or Constant Bit Rate (CBR).
For distributed multimedia applications it is imperative that the bandwidth of
the network is larger than the bit rate of the file in order to ensure that frames
are not lost.

Delay or response time can be interesting for distributed multimedia applications.
It is however more for real-time communication like Voice of Internet Protocol
(VoIP) and other phone services like Skype, Ventrilo and Teamspeak, where
the delay must be minimal. It is crucial that the delay is low since the delay
from one person starts talking to the other people hears him talking must be
low in order not to talk all at once. If the delay is more or less constant this
problem can be overcome for ordinary multimedia applications, like video or
audio playback, by using a sufficiently large buffer.

Response time delay is similar to the delay mentioned above, but only includes
the time a stream token has spent either during transmission and the time it
has spent waiting in buffers. This is one of the metrics which are used for
evaluating the performance in the case studies later in this thesis. This metric
is useful due to the inter variability in multimedia, such that the performance
of two streams can be compared, regardless of the execution time needed for
processing each of them.

Jitter is like delay a timing related parameter, which must be low for both VoIP and
more ordinary distributed multimedia applications. If the jitter is too high the
quality of the sound or video may be greatly degraded due to discontinuities
in the stream. And in worst case the application may even terminate the
connection if the jitter is too high. Again this can be overcome by using
sufficiently large buffers for ordinary multimedia applications, but it might not
be a trivial task to find this size.

Loss rate is also a central parameter that should be minimized since it greatly
degrades the quality of the stream, when packets are lost, thereby losing some
of the audio or video experience. The loss of packets is most often caused by
packets not meeting the deadlines, due to congestion on the network. Loss rate
can also be seen as how many frames in a video is lost during playback.

Synchronization is also relevant for multimedia applications. For combined video
and audio applications a common synchronization is where the sound and the
video must be synchronized correctly, this is called lip-sync. But you could also
imagine synchronization in a distributed system, where two or more speakers
need to be synchronized in order the avoid an echo effect.

Availability is of course also an important parameter, since the media must be
available for streaming. The media is either available or not available, so this
is not a gradient value opposed to many of the other parameters defined above.

14

2.3. Variability in multimedia

In [JN04] they propose a three layer QoS mapping, where the top layer is the User
layer, followed by the Application layer and at the bottom the Resource layer. The
user layer contains the subjective metrics, which are not directly measurable. The
application layer is said to be platform independent and contains measurable met-
rics. The selected qualities selected from the user layer can be translated into some
overall metrics in the application layer. The resource layer is platform dependent
and contains metrics at the hardware level. These metrics are also as the application
layer measurable. Figure 2.8 show how the above mentioned metrics are mapped
into this three-layer QoS model.

Figure 2.8: 3-layer model for QoS metrics

2.3 Variability in multimedia

As mentioned in the introduction, multimedia applications are examples of soft real-
time tasks, which have a great variability in terms of execution time. The discussion
on variability for multimedia applications is based on MPEG video since this has
been the main focus during this thesis.

The variability in execution time for MPEG video media sources is primarily based
on five metrics, namely frame rate, resolution, bit rate, frame type and the amount
of motion. The frame rate and resolution metrics are the main contributors, and
influences the base of execution times, while bit rate, frame type and the amount of
motion contribute somewhat less. In general there are two types of variability, the
intra variability and the inter variability.

Intra Variability is the variability within the same multimedia source. The MPEG
compression algorithm is a perfect example of this type of variability, where
execution time depends on the type of frame that is being decoded and the
amount of motion3 there is at that time.

3For MPEG video this only applies for P and B frames, not for I frames as they do not use MP

15

Chapter 2. Multimedia

Inter Variability is the variability across different multimedia sources. For the
inter variability there are basically two cases. The first case is where the media
sources have the same characteristics, in terms of frame rate, resolution and bit
rate, and the second where the characteristics are different. For video media
with similar characteristics the main contributors are as in the intra variability,
the frame type and the amount of motion in the video. While for video media
with different characteristics the main contributors are resolution and frame
rate.

For many applications the most relevant types of variability are intra and the first
type of inter variability. This is caused by the characteristics are often already
predetermined for many appliances.

The various types of variability discussed above are shown in three figures. Figure
2.9 shows the intra variability in terms of execution time for a MPEG video with
motion. The top plot of the figure represents the three different types of frames in
the MPEG standard. The I-frames correspond to the value 1, P-frames correspond
to 2 and the B-frames correspond to 3. It is clear from the bottom plot of figure
2.9 that there is a variability in the number of instructions required for decoding a
MPEG video. Further it is clear that the type of frame has a significant impact on
the variability from a intra variability point of view.

Figure 2.9: Intra variability. The top plot shows the frame type for each frame in the
video, these are either I, P og B frames. The bottom plot show the instruction count
needed for decoding each frame.

Figure 2.10 shows the inter variability for similar MPEG videos in terms of frame
rate, resolution and bit rate, further the sequence of frame types is the same. The
figure contains instruction counts per frame decoding, for four MPEG videos, where
two are with motion, one contains a static image and a digital watch that is counting
up, and the last video is simply a static image. Again it is clear how the type of

16

2.3. Variability in multimedia

frame has an impact in terms of intra variability, but the motion in the video has an
even greater impact on the execution time in terms of inter variability.

Figure 2.10: Inter variability with similar characteristics. Number of instructions
for four different MPEG video files. The first two data set (red and green) are MPEG
videos with motion, while the next two (blue and purple) are MPEG videos with no and
minimal motion respectively.

Figure 2.11 shows the inter variability for MPEG videos with different characteristics.
The characteristics that vary are bit rate, resolution and frame rate. The videos are
clearly separated into three groups in terms of variability. The variability is mainly
caused by the resolution, and next the frame rate. The bit rate is the cause of the
variability within each of the three groups, and is basically and indicator of how
noisy the frames are.

2.3.1 Modelling the variability

We need a way of modelling the variability of multimedia discussed in the previous
section. The variability can be modelled using traces, these traces can either be
simple ASCII files containing a list of execution times for a task or a probability
distribution of execution times for each task.

Retrieving the execution times from a list, is a very detailed way of simulating. The
simulation will be performed for a very specific media file, while we often would be
interested in simulating for a broad range of media files. In order to use the simple
trace files for simulation you need to generate them, which is a time consuming
process and the resulting trace files can be huge for long media files4. Section 6
describes how the traces were generated in this thesis.

4The trace files generated for the MPEG videos, which are 15 seconds in length and have a
resolution of 720x480 and 30 fps are each 30 MB in size

17

Chapter 2. Multimedia

Figure 2.11: Inter variability with different characteristics. The characteristics are
bit rate (high/medium/low), fps and resolution.

The distribution describing the variability in execution times for multimedia is a nice
way of providing the necessary input data for a simulation. The distributions are of
course based on measured execution times as the traces described above, but they
are smaller in size and can easily be altered by hand to represent a broader range of
multimedia files. During the simulation the execution time is obtained by using the
distribution in conjunction with a random number generator.

The large variability in multimedia files is unavoidable, therefore special consider-
ation must be taken, as to what the characteristics are of the target media, when
running the simulations. Both forms of traces discussed above can be used during
simulation, but the distribution is the most dynamic, and can give a broader range
of execution times. The DiMAS API does however only provide tracing functionality
using a list of values.

2.4 Distributed Multimedia

The variability discussed in the previous section was towards multimedia run both
locally and in a distributed manner. There is additional variability for distributed
multimedia, which is caused by the communication. The communication can both be
in terms of networked applications over traditional Ethernet and in Multi Processor
System-on-Chip (MPSoC) devices where the communication is performed over a bus.
For distributed multimedia the variability is mainly caused by limited bandwidth,
too high latency and jitter on the channel.

Ethernet is a best effort service, and it is not possible to provide any guaranties that
the network packets will arrive at a certain time. So the arrival time of multimedia
being streamed over a network is likely to have a very high variability, depending on
the distance and the load of the channels from sender to receiver.

18

2.5. Scheduling

Modelling the variability in distributed multimedia is done in the same way as dis-
cussed in section 2.3.1. Again there are the two possible ways of using traces, either
a full trace of when each packet will arrive, or using a random number generator
together with a probability distribution.

2.5 Scheduling

Many multimedia systems have multiple tasks to perform. For example a set-top box
needs to decode both the video and the audio of a film. At the same time it must
be able to handle input from the user and display a Graphical User Interface (GUI)
on the TV. In order to keep the expenses low, the set-top box will have a general
purpose processor and dedicated ASICs for some of the more demanding functions.
These tasks need to be performed concurrently, therefore we need a scheduler, which
can schedule the various tasks onto the processor.

Some of the most common scheduling policies for embedded systems with hard real-
time tasks are Fixed-Priority (FP) and Earliest Deadline First (EDF). These schedul-
ing policies do however require that the WCET of the tasks are known. Schedulability
analysis techniques can then be used to guarantee that the timing constraints are
respected. As we have already seen in the previous section the execution times vary
a great deal depending on the multimedia file being processed, and using the WCET
will lead to over designing the system, so that it is idle most of the time.

The following sections introduce four different scheduling schemes and looks into how
they perform for multimedia applications. These schemes have all been implemented
in the simulator, and will be the base of the case stories presented in section 7. FP
and EDF are only lightly introduced as these are simple and well know scheduling
algorithms.

2.5.1 Fixed priority scheduling

Fixed Priority scheduling is widely used in real-time operating systems. It is one of
the simplest scheduling techniques, where each task is given a unique priority. The
task with the highest priority is scheduled onto the processor. FP scheduling can
be either preemptive or non-preemptive. The preemptive scheduling is based on the
priority, so a higher priority task can always preempt a lower priority task running
on the processor, and thereby gain access to the processor.

Equation 2.1 is used for making a schedulability analysis for a number of tasks being
scheduled using the FP algorithm. The symbols in the equation are given as: ci :
WCET and ti : period of task i.

N∑
i

ci
ti
≤ 2 · (2

1
n − 1) (2.1)

This type of scheduling is probably not very suited for multimedia where tasks are
computational heavy. Further there will always be one process which has precedence
over another, which can leave to starvation if the system is under designed.

19

Chapter 2. Multimedia

2.5.2 Earliest Deadline First

The Earliest Deadline First (EDF) scheduling algorithm is a dynamic algorithm,
which also is used in embedded real-time systems. The EDF is typically used as a
preemptive algorithm where the priorities are based on the deadlines of the active
tasks. The task with the earliest deadline is assigned the highest priority and is
scheduled onto the processor. For periodic tasks the scheduling analysis is done
using equation 2.2, where Ci is the WCET and ti is the period of the task i.

N∑
i

ci
ti
≤ 1 (2.2)

Multimedia applications are basically periodic tasks with jitter and scheduling this
kind of tasks using EDF will probably be slightly better than for FP, since the priority
of the tasks are assigned dynamically.

2.5.3 Constant bandwidth server scheduling

The Constant Bandwidth Server (CBS) is a resource reservation algorithm, which
ensures that aperiodic soft real-time tasks can be scheduled together with hard real-
time tasks, without jeopardizing the deadlines of the hard real-time tasks. Resource
reservation servers both exist for fixed priority and dynamic priority schedulers. The
CBS is used in conjunction with a dynamic priority scheduler as EDF.

Resource reservation algorithms are generally characterized by having a budget Q,
and a period P, much like hard real-time tasks having an WCET C and a period
T. The budget specifies how much time the resource reservation server at most can
assign to aperiodic tasks, within the period P. There exist both soft and hard resource
reservation techniques, [BLAC05] presents the definitions of these two types.

Definition 2.5.1. A hard reservation is an abstraction that guarantees the reserved
amount of time to the served task, but allows such task to execute at most for Qi

units of time every Pi.

Definition 2.5.2. A soft reservation is a reservation guaranteeing that the task
executes at least for Qi time units every Pi, allowing it to execute more if there is
some idle time available.

The CBS implements soft reservation, that uses tasks deadlines to optimize processor
utilization, while providing temporal protection, so hard real-time tasks do not miss
deadlines. The CBS controls the deadlines of soft real-time tasks, which the EDF
scheduler then uses to find the next task to execute. A CBS server has a bandwidth
Us = Qs

Ps
that can be used for traditional scheduling analysis using equation 2.2.

When a soft real-time task goes to a running state, then it is queued into a FIFO
queue on the CBS. The tasks will be assigned a deadline if the queue is empty, or
it will wait until the previous tasks have been served. The server keeps track of the
server deadline dk, which also is assigned as the deadline of the currently running
soft real-time task.

The CBS algorithm is defined in the following

20

2.5. Scheduling

• The server bandwidth is defined as Us = Qs

Ps
, which is used in scheduling

analysis.

• The server has a deadline ds, which the active CBS task is assigned.

• The server budget is decreased by the same amount of time a CBS task is
running.

• When the server budget is depleted it is replenished, and the server deadline
is incremented as: ds = ds + Ps. The budget will never be zero for a finite
interval in time.

• The server is said to be active if there are pending jobs.

• A job is enqueued in the server queue as it arrives at time ri. The queue is
implemented as a FIFO queue.

• If the server is idle as a job arrives, then the deadline is updated if
ds ≤ ri + (ci

Qs
) ∗ Ps the new deadline is ds = ri + Ps and the budget qs is

replenished to Qs. If not then the arriving job is served with the current server
deadline and budget.

• When a job terminates then the next in queue is served using the current server
deadline and budget. The server becomes idle if the queue is empty.

Listing 2.1: CBS pseudo code
1 When job t_j arrives at time r_j
2 enqueue the request in the server queue
3 n = n + 1
4 if(n == 1) // the server is idle
5 if(r_j + (q_s / Q_s) * T_s >= d_s)
6 d_s = r_j + P_s
7 q_s = Q_s
8 else // nothing else is done if the server is active
9 When job t_j terminates

10 dequeue t_j from server queue
11 n = n - 1
12 if(n != 0)
13 serve the next job with current server deadline and budget
14 When job t_j executes for a time unit
15 q = q - 1
16 When (q == 0)
17 // server bandwidth exhausted
18 d_s = d_s + P_s
19 q = Q_s

The purpose of the CBS is to provide temporal protection for hard real-time tasks
not to miss their deadlines, while still serving soft real-time tasks as much as pos-
sible. The strength of the CBS is that it can ensure that a task is not hugging the
processor thereby starving other tasks. This type of scheduling is specifically aimed
at continuous media tasks, and will therefore probably be an effective scheduling
algorithm.

The CBS algorithm can be used in a couple of different ways for systems where
multiple soft real-time tasks need to be scheduled onto a processor:

• One CBS can schedule all soft real-time tasks

21

Chapter 2. Multimedia

• One CBS for each soft real-time task can be used

If the first approach is used then the scheduling will more or less be done as plain
FP scheduling for the soft real-time tasks, since the CBS unit provides a dynamic
deadline for the first task in the queue. Only when the first task in the queue
terminates, will the next task in the queue gain access to the processor.

The second approach is much more suited for soft real-time tasks, since this provides
a degree of fairness, where all tasks are given processor time. The scheduling will
probably look much like a time division multiple access algorithm, since the server
bandwidth basically corresponds to a time quantum.

For more details on the CBS the reader is referred to the Soft Real-Time systems
book [BLAC05].

2.5.4 Linux scheduler

Two different scheduling algorithms are used in the Linux 2.6 kernel. In this thesis
we will look at the scheduling algorithm used in the kernels up to 2.6.23, since this is
what the Windriver linux 5 kernel uses. The scheduler used in the 2.6.23 and upwards
is the Completely Fair Scheduler (CFS), more information can be found at [MH07].
For the remainder of this section the 2.6 kernel will refer to kernels below 2.6.23. The
scheduler for this kernel is is named O(1), since it runs in constant time regardless
of the number of tasks.

The Linux kernel 2.6 works with two classes of tasks, real-time tasks and normal
tasks. Every task is given a priority, in the range of 0 to 140, where 0 to 99 are
assigned to real-time tasks, while 100 to 140 (the nice range) are assigned to normal
tasks. The scheduler uses a preemptive, priority based time-sharing algorithm. The
tasks are assigned time quanta according to their priority, the high priority tasks
have the largest time slice [SGG09].

The scheduler works with two queues, one for tasks which are runnable and one for
tasks that have spent their time quantum. Normal tasks are only considered runnable
in the case that they have not already spent their time slice, whereas real-time tasks
are runnable until they are done. When all the tasks in the runnable queue have
been moved to the expired queue the counters are reset and execution starts over. At
the reset the priorities are further dynamically incremented or decremented with a
maximum value of 5, depending on how much time each task has spent sleeping. This
is however not performed for the real-time tasks [SGG09]. The reason for assigning
tasks with high idle time higher priorities is that they often are interactive tasks, and
they should therefore have a high priority, so the user has a good experience using
the system.

The real-time tasks are not influenced by the time sharing and will run to completion
before any of the normal tasks will have a chance to acquire the processor. The real-
time tasks are scheduled with preemptive fixed-priority, where the highest priority

5The Windriver linux is widely used in embedded systems.

22

2.5. Scheduling

Figure 2.12: Linux scheduling queue for active and expired tasks within the same
epoch. The scheduler in this example is assigned 4 real-time tasks and 9 non real-time
tasks.

task is scheduled onto the processor. For real-time tasks with the same priority, the
scheduling is performed either using a First-Come-First-Served (FCFS) or a Round-
Robin (RR) algorithm. FCFS is a FIFO style algorithm, were the active task keeps
the processor until it is done. RR is a time sharing algorithm, where each task is
assigned a time quantum, and when it is expired, the task is put at the end for the
queue and the time quantum is replenished. Real-time tasks are only moved from
the active queue to the expired queue once they have completed [SGG09].

Multimedia applications are defined as soft real-time tasks and can therefore be
assigned as real-time tasks in the Linux operating system and have the highest pri-
orities. Assuming the system is not under designed, then the large variability in the
multimedia tasks will make it possible for the normal tasks also getting some proces-
sor time. The multimedia tasks are however probably the most processing intensive
tasks in the system, while some of the normal tasks might be shorter. With the
Linux scheduling the short normal task will have to wait for the long real-time tasks
to finish, before it can be scheduled.

Next there is the FCFS and RR scheduling algorithms which are used for real-
time tasks that have the same priority. Both algorithms serve the task, which has
been waiting the longest time in the queue. This kind of scheduling seems to be a
good choice for soft real-time tasks like multimedia, since some deadline misses are
acceptable.

2.5.5 Hypothesis

The Fixed-Priority and the Earliest Deadline First scheduling algorithms are both
hard real-time scheduling algorithms, and are not well suited for soft real-time sys-
tems where the resources are scarce. The FP is probably the worst, since systems
with limited resources can end with starvation of the lower priority tasks.

Scheduling using the Linux O(1) scheduler will be similar to the FP scheduler for
multimedia tasks that are scheduled as real-time tasks. As already mentioned this
can lead to very poor performance for other applications that for example provide
a user interface. Therefore it is more interesting to look at how the multimedia
performs when assigned as user tasks, and have a lower priority than the user in-
terface application. This makes sense under the assumption that the user interface
application is only seldom active.

23

Chapter 2. Multimedia

The Constant Bandwidth Sever is a resource reservation service, which ensures that
hard real-time tasks can operate on the same processor as soft real-time tasks, while
not jeopardizing the deadlines of the hard real-time tasks. The CBS is however not
a scheduling algorithm in itself, the CBS works on top of another deadline oriented
scheduler like EDF. Having one or more CBSs controlling the deadlines of soft real-
time tasks on a processor, where no hard real-time tasks are running, might not turn
out to be much different from an ordinary EDF. It should however ensure that only
the tasks which have very high variability suffer for this, while the rest are unaffected.

24

Chapter 3

Simulators

Figure 3.1: Classification of simulators

Generally simulators can be classified into two groups, one being architectural and
another being micro-architectural, these are respectively concerned with functional
and performance simulation. A micro-architectural simulator is more or less a soft-
ware implementation of a microprocessor with instruction set, cache and pipeline
emulation.

The micro-architectural simulators can further be classified into scheduler and cycle
time simulators. The scheduler simulators are the simplest of the two, in the sense
that the instructions are executed in-order according to resource availability. This
type is called an Instruction Set Simulator (ISS). The cycle time simulators are cycle
accurate and emulates the processor into details with cache hits and misses and
pipeline stages. This type of simulator is also called a Cycle Accurate Simulator
(CAS).

In addition to the ISS and CAS we also have Full System Simulators (FSS), the three
types are elaborated below [MY07, ALE02]:

ISS An Instruction Set Simulator (ISS) is a simulator which emulates a processor
at the micro architectural level. An application is run on the simulator where

25

Chapter 3. Simulators

each instruction is executed in-order and the simulator can thereby simulate
the functionality of the applications. This leads to fairly accurate simulations,
but performance measurements are however not that reliable.

CAS A cycle-accurate simulator is a software implementation of a hardware device,
typically a processor. Here cache hit and misses, branch predictions and the
flow of every instruction through the various pipeline stages is simulated. A
cycle-accurate simulator basically simulates all the internal states of the micro-
architecture. Therefore it is even able to simulate out-of-order instructions,
where instructions can be delayed for several machine cycles for example due
to floating point operations. This kind of simulator is able to make very detailed
performance measurements of the processor, but it has a cost in terms of the
time required for running simulations.

FSS Full System Simulators typically include an ISS or preferably a CAS, and com-
bines it with peripheral entities like memory and disc I/O. Typically a FSS is
built as a virtual machine, which makes it possible also to run the applications
on top of a real operating system. Obviously a FSS is a very resource demand-
ing simulator, and it is able to present very detailed performance metrics.

As seen in figure 3.1 the architectural simulators can also be classified into various
groups and subgroups. At the first level we have trace driven opposed to the ex-
ecution driven simulators. The trace driven simulators uses traces recorded from
previous program execution for measuring performance of an application. This way
all functionality of the application has been saved and the simulator need not worry
about the functional execution or the I/O devices. Therefore similar simulations us-
ing a trace driven simulator will always end up with the same performance measure-
ments. The execution driven simulation is more complex than the trace driven since
the functionality of the application is simulated as it is executed. Further the simu-
lator needs to supply the various I/O devices that the simulated application might
need. Specially execution driven simulators using networked devices can have vary-
ing performance measurements, since the performance of the network can vary from
simulation to simulation. This variation can however be dealt with using traces for
the I/O devices while running the execution driven simulation [ALE02, SSTutorV4].

Finally an execution driven simulator can either be performed using emulation or
direct execution. Simulators which use emulation for simulating an application typ-
ically requires some kind of ISS. While a direct execution simulator utilizes the host
architecture for executing the application, this is often referred to as co-simulation.
Obviously direct execution requires that the host architecture is similar to the target
architecture of the application which is simulated [MY07].

3.1 Levels of Abstraction

As seen in the previous section simulators vary a great deal in levels of abstraction.
The abstraction pyramid in figure 3.2 shows the connection between accuracy, cost
and abstraction of a model. The accuracy and cost of the simulation is low at the high
abstraction levels, while it is high at the low levels of abstraction. Accuracy is meant

26

3.2. Design-Level Simulator

as the level of details in the model which is simulated, meaning how accurate the
model is compared to the architecture. Cost covers how much resources are needed
for the simulation both in terms of the simulation time and amount of memory usage.
Further the abstraction pyramid shows how the design space for very abstract models
is large, whereas the design space is narrowed as the abstraction of the model is
lowered [ZL02].

Figure 3.2: The Abstraction Pyramid [ZL02]

The micro-architectural simulators which were mentioned in the previous section are
at the low level of abstraction and therefore reside in the area around approximate
models and cycle-accurate models. The architectural simulators are at a somewhat
more abstract level and reside around executable behavioural models and approximate
models. As we will see in section 3.2 the architectural simulators can also reside at
the top level of the abstraction pyramid namely back-of-the-envelope.

For prototyping it is preferable to have a model of high abstraction, since the model
must be fairly simple and quick to create, further the simulation must be done within
a reasonable time. Once the target architecture and the application code is written it
is interesting to have a more detailed model, which can be used for extracting various
forms of performance metrics like WCET, power consumption or code verification.

3.2 Design-Level Simulator

The previous section presented the various forms of simulators shown in figure 3.1
and the abstraction pyramid in figure 3.2. However there is still one missing piece
namely the top level of the abstraction pyramid the back-of-the-envelope model. This
kind of simulator is an architectural model, but does not use executable code for the
target architecture during simulation. Instead the emulator can be seen as a high
level description of how the architecture works and the user application as code

27

Chapter 3. Simulators

describing what needs to be done. This type of simulation is referred to as Design-
Level Simulation.

As mentioned in section 3.1 the resulting design space for models of high levels of
abstraction is large, this is what is needed at the design-level simulation. Since the
simulations are merely conceptual to see how it would be possible to construct a
given system. Later on in the design and implementation process it will be inter-
esting to create more accurate models, in order to get more reliable performance
measurements.

The DiMAS API that is developed in this thesis is used for creating design-level
simulators, which are trace driven. The traces are used both for generating tokens
from input devices, while other traces are used for reading the execution times for
each request.

3.3 Existing Simulators

This section will present some of the existing simulators, which are able to simulate
both at the architectural and the micro architectures level. These simulators are
well known and are used both commercially and academically. Likewise some are
commercial while others are open source projects. Many of the simulators can be
configured to simulate applications at various levels of abstraction, and thus not
bound to one area of the abstraction pyramid in figure 3.2.

3.3.1 SimpleScalar

SimpleScalar from SimpleScalar LLC is an open source project, which dates back to
1994 and is still under development. The simulator is highly used in the academic
world and is often used in research papers for performance evaluation.

The SimpleScalar is a complete tool set with a series of different simulators which
vary in the level of details. The simulators range from very simple ISS, which only
emulates the instructions to simulators which take cache hit and misses, pipeline
stages and even branch prediction into account. Figure 3.3 summarizes the various
simulators which are part of the SimpleScalar tool chain.

Only the sim-outorder simulator is a CAS, which therefore can simulate a processor
with relative high accuracy. The simulation is however very time consuming and a
simulation, which takes a couple of hours using a simpler simulator like sim-profile
can take a day with the sim-outorder simulator.

As part of the tool chain is a simple text driven debugger dlite!. Only the sim-safe
simulator is not able to use the debugger. Simulation is done interactively when
using the debugger, where the user can specify breakpoints for either instructions or
for global variables. The simulation is then performed either by stepping over each
instruction or by running until a breakpoint is hit.

28

3.3. Existing Simulators

Figure 3.3: The Various Simulators within the SimpleScalar Tool chain [SSTutorV4]

The simulator source code is very modular and can therefore easily be customized to
support specific features like tracing. During the work on this thesis the debugger was
extended to implement a tracing feature based on breakpoints, section 6 elaborates
how this extension is implemented.

The reader is referred to [SShome, SSTutorV4] for more details on the SimpleScalar
tool chain.

3.3.2 Simics

Simics from Virtutech is a commercial simulator, which supports PowerPC, x86,
ARM and MIPS architectures. The Simics simulator is a FSS, which emulates a
chosen hardware device, both with the processor as well as various types of I/O
devices. Basically the simulator is a virtual machine. The virtualization makes it
possible to execute the same binaries in the simulator as on the physical hardware.
A further advantage of the virtualization is that the simulation can be run with an
operating system and multiple applications [SimicsDS].

Simics is an execution-driven simulator that even is able to emulate multi core pro-
cessors and other types of System on Chip (SoC) hardware. The simulator is de-
terministic in the sense that the same execution can be performed multiple times
with the same timing parameters, thereby making it easier to debug timing related
bugs. When using breakpoints during simulation the whole system is halted, in-
cluding timers and interrupts. The user is then able to extract debug information
of the system, and continue the simulation without the simulated applications and
operating system noticing the delay [SimicsWP].

Simics can capture detailed information regarding the target hardware architecture
for making cache analysis or general performance analysis. It is also possible to
perform network simulations using Simics.

29

Chapter 3. Simulators

3.3.3 PTLsim

PTLsim is a cycle accurate simulator, the PTLsim/X is an extension making it a
full system simulator, which incorporates a virtual machine environment like Simics.
The details of the simulator range from Register Transfer Level (RTL) up to full
speed execution on the host architecture, which is done through co-simulation. A
great advantage of PTLsim over Simics is that the simulator source code is publicly
available, and can therefore be altered to suit the users needs.

The PTLsim simulator is restricted to 32/64-bit x86 Instruction Set Architectures,
but with PTLsim/X the simulator can simulate 64-bit multiprocessor architectures
with up to 32 processors [MY07].

3.3.4 SystemC

SystemC is an API for C++ which features classes that can be used for modelling
both software and hardware. It can therefore also be used for modelling systems as
a combination of software and hardware. SystemC is capable of modelling systems
at multiple abstraction levels and can even model complete systems, where various
components within the same system are modelled at different levels of abstraction.

Figure 3.4 show various modelling languages and what they can model ranging from
transistor level to system requirements. SystemC is both capable of modelling as low
as the Register Transfer Level (RTL) like VHDL and Verilog and through functional
and up to architectural level. This makes SystemC a very attractive language, and
seeing that the language simply is a set of C++ classes most C++ programmers will
be able to learn the language fairly easily.

Figure 3.4: Comparison of SystemC and other design languages [BD04]

SystemC includes a simulation engine, which is capable of running a simulation of the
model. The engine is able to simulate timing constraints if the various modules in the
model are augmented. A specialized class sc_time is used for representing time in

30

3.3. Existing Simulators

the models. Logic in the modules are performed in zero time1, unless augmentation is
inserted to give a notion of time. The engine can use delta cycles2 in the case, where
modules are performing logic operations within the same time window. This can be
used by the user for making sure that the simulation of the model is deterministic.

Since SystemC is written in C++ it is possible to incorporate application code writ-
ten in C/C++ into the simulator and run it as part of the simulation. This makes
it a very flexible tool for implementing simulators.

SystemC is however simply an API, so building a simulator requires some more
elaborate programming compared to some of the other simulators presented in this
section.

The basic idea of SystemC is to create various modules, the modules communicate
using channels which typically are signals or FIFO buffers. Customized channels can
also be created, where specific behaviour is required. This could for example be a
specific communication bus, like the CAN bus. The modules can have a notion of
time, which can be implemented either as a global clock signal or simply using wait
statements.

There are many books about SystemC and how it can be used for creating simulators,
for more elaborate description of SystemC the reader is referred to [BD04, GLMS02].

3.3.5 Pesimdes

Pesimdes is a simulation library, which is an extension of SystemC. Pesimdes is de-
signed for creating simulators that can simulate distributed hard real-time embedded
systems. The maximum backlog3 in buffers is analysed after a simulation and used
for evaluating if deadlines were missed. Further the response time4 for task communi-
cation can be analysed. Multiple tasks can be mapped onto one processing element,
and the user can choose which scheduling policy the processing element should use.

Pesimdes does not use an ISS as part of the simulation, but uses WCET, which
typically is obtained using static analysis techniques with programs like aiT from
AbsInt. The simulation is therefore performed at a higher level of abstraction, and
no functional user code is required for the simulation.

Pesimdes is implemented in SystemC and will be the base of implementation for the
simulator in this thesis. Section 4.3 will elaborate further on specific details of the
simulator.

3.3.6 ARTS

ARTS is a system level simulation framework, which has been developed at the
Technical University of Denmark (DTU). The framework is implemented in SystemC

1No time is passed in the simulation environment. This is not the actual time it takes to perform
a simulation.

2There can be multiple delta cycles within the same simulation time window.
3Backlog defines how much space is occupied in a buffer
4Time from the token is generated until it arrives at the final destination

31

Chapter 3. Simulators

and is used for both modelling and simulation of Multi Processor System-on-Chip
(MPSoC). The framework makes it possible to analyse different layers and their
interaction in a system. This could for example be the application, middleware and
architectural layer.

The framework uses a set of input files containing the application models and the
platform models, which are expressed in the ARTS scripting language. The appli-
cation model file describe the various tasks in each application and how they are
connected using task graphs. The platform model file describes processing elements
and network components. For simulation another file is used for making the mapping
between applications and platform.

ARTS is very complex and is capable of collecting a large amount of statistics,
examples of these are peak memory usage, average and maximum utilization of
processing elements and deadline misses. For a more in-depth explanation of ARTS
the reader is referred to [MVM07].

3.3.7 Summary

The six simulators presented in this chapter, range from cycle accurate simulators to
system-level simulators, equivalent to the bottom and top of the abstraction pyramid,
seen in figure 3.2. The simulators have been summarized in table 3.1, where the two
main categories micro-architectural and architectural from the classification tree in
figure 3.1 are included. The table has been divided into two parts, a lower part
with simulators for doing performance analysis at a low level of abstraction, and the
upper part for system-level simulators, which are located in the top of the abstraction
pyramid.

The SystemC simulator is a special case, in the sense that it is not a pre-built simu-
lator, but rather an API for modelling both hardware and software. But SystemC is
typically used for modelling systems at the architectural level, and often as system-
level simulators, therefore it has been included in the upper part of the table. But
SystemC could just as well be implemented using an instruction set simulator, or
even modelling a microprocessor at the register transfer level.

Name Micro- Architectural Type License
Architectural

Pesimdes No Yes System-level Open Source
SystemC (Yes) (Yes) All Open Source
ARTS No Yes System-level Open Source

SimpleScalar Yes Yes ISS/CAS Open Source
Simics Yes Yes ISS/CAS/FSS Commercial
PTLsim Yes Yes ISS/CAS/FSS Open Source

Table 3.1: Short summary of the simulators from this chapter

Pesimdes was chosen to be the base of the DiMAS simulation API, due to the modular
and simplistic design. Pesimdes can therefore easily be extended to support soft real-
time tasks, instead of only supporting hard real-time tasks.

32

Chapter 4

Design of the Simulator

This chapter presents the design of the DiMAS simulation API. The first section
presents a overview of what should be simulated. Next the requirements for the sim-
ulator are presented in section 4.2. Section 4.3 elaborates on the design of Pesimdes,
while section 4.4 contains the actual design of the DiMAS API, where the main focus
is on the scheduling techniques.

4.1 What needs to be simulated

It was made clear in chapter 2 that multimedia is highly variable in terms of execution
times. Multimedia is a continuous media, which due to its variability is characterized
as aperiodic. The purpose of the simulator is to simulate multimedia and other
minor tasks for example user interface applications, which are highly aperiodic. The
simulator therefore needs to simulate aperiodic tasks, which vary in execution times.

The multimedia that needs to be simulated is both video, audio and other general
applications. Basically the simulator must be able to simulate both soft and non
real-time tasks. It might however be valuable if hard real-time tasks also can be a
part of the simulation.

A key objective for the simulator is the ability to simulate distributed multimedia
applications. Therefore the simulator must be able to model a system with multiple
processing elements and multiple tasks running on each processing element. Further
it must be possible to model the variability on the input side for example from a
network connection, where jitter and burst of data can occur.

The purpose is to create a model of a given multimedia system, and check how
powerful the processing elements needs to be in order for the system to obtain a
sufficient QoS. Task mappings, processor scheduling algorithms, processor speeds
and buffer sizes can be customized in order to obtain the best result.

The end result is a system-level simulator, that presents a good estimate of how well
the system will perform. The performance details are narrowed into only the most

33

Chapter 4. Design of the Simulator

vital metrics, and the input data can be qualified guesses of the resource require-
ments for the various tasks. This high abstraction level is desired both in order for
simulation speeds to be kept low, but also due to the high variability in the multi-
media. The high variability is the source of why the simulation must be done at a
high level of abstraction, since lowering the abstraction level only will result in more
detail performance estimates for a specific set-up with a specific set of input.

The metrics that are used for evaluating the QoS for a system model are given in
the following.

Lost frames This is probably the most obvious metric of them all. Frame loss
both for video and audio is a central part of the QoS metrics. It is crucial
that the loss of frames is kept at a minimum, in order to deliver a good user
experience. Recall that this metric is at the user layer in the three-layer QoS
model presented in section 2.2.

Response time is a measure of how much time the token has spent waiting from it
was generated until it arrived at the output. The response time is a very good
measure for comparing the schedulers on similar set-ups, where parameters
have been customized.

Buffer backlog is the third metric, and it gives an idea of whether there are any
serious bottlenecks in the model. If this is the case, then the parameters need
to be changed in order to have a satisfactory system.

4.2 Requirements

A fully functional simulator requires a number of different modules, namely input
devices, processing elements, tasks and output devices. All but the processing ele-
ment modules need a notion of time in order to function during a simulation. This
notion is given as input data and summarized in the following.

Input rate determines how often a token should be generated in the test bench.
For MPEG video files, a token corresponds to a macroblock. The input rate is
related to the input devices for a simulation test bench.

Consumption rate is similar to the input rate, but this is however the rate at which
the tokens should be consumed at the output end of the test bench. This rate
can however in some situation be unnecessary if there are not constraints as to
the consumption.

Execution times is a central parameter for this simulator, since the focus is on
scheduling techniques and how they perform. The execution time can both be
specified in time units or in cycle counts, the latter requires a processor speed
for the processing element.

The input rate can both be strictly periodic, periodic with jitter, or aperiodic using
traces from a text file. It is assumed that the consumption is constant both in terms

34

4.3. PESIMDES

of period and amount. Further if there is no interest in comparing the performance
of the system relative to a specific consumption, then this part can be disregarded.

The various tasks that are running in the system must be assigned an execution
time. This can either be a static execution time as in hard real-time systems, where
the WCET typically is used, or it might be some kind of trace. When running a
simulation care must be taken as to the timing specified in all three types of input
in order to avoid either buffer over- or underflow.

Processing elements are in this simulator referred to as resources. All resources in
a simulator test bench are associated with a scheduling technique of some kind.
The scheduling techniques that are part of the DiMAS framework have already been
introduced section 2.5, being Fixed-Priority, Earliest Deadline First, Linux O(1) and
Constant Bandwidth Scheduler.

The output files which the simulator can generate are buffer backlog for specific
buffers in the system, response time for the various input tokens and logging of
lost frames. Performance analysis of the simulated set-up can then be based on
these three output, where graphs can be generated, but the minimum, average and
maximum values are also useful for a quick overview of the performance.

The DiMAS simulator is basically an extension to the Pesimdes simulation API, and
is like wise an API. Therefore a simulation requires a test bench, which is created
using the various modules supplied in the API, and a C++ compiler is used in order
to create the final simulator.

4.3 PESIMDES

PErformace SIMulator for Distributed Embedded Systems is a simulator written by
Simon Perathoner in 2006 at the Swiss Federal Institute of Technology. The simulator
is able to simulate hard real-time distributed embedded systems, and can be used
for analysing the maximum backlog in buffers and the response times for tokens sent
through the system. The Pesimdes simulator is basically an API, and the user uses
various components to construct a test bench. The API is based on the SystemC
library, which was introduced in section 3.3.4. Therefore the simulator requires that
the SystemC library has been compiled successfully. The SystemC library is then
linked into the users simulator at compile time. The basic components of Pesimdes
are described below.

Input stream generators The purpose of these modules are to generate tokens,
which simulate communication between two tasks. Pesimdes include four types
of input generators, these are periodic, periodic with jitter, periodic burst with
jitter, and using a trace file. All generators generate a token with a time stamp.

Resources These are the actual processing elements. The resources have embedded
a scheduler, which either can be, Fixed-Priority (FP), Earliest Deadline First
(EDF), or Time Division Multiple Access (TDMA), which are typical hard real-
time scheduling algorithms. The scheduling algorithms are both implemented
as preemptive and non-preemptive.

35

Chapter 4. Design of the Simulator

Tasks can be run on a resource, and are mapped onto this resource at compile time.
A task is only assigned to one resource. The tasks can have multiple input
dependencies and can send multiple tokens each time they are executed.

Buffers An extension to the standard sc_fifo channel has been implemented in
order to register the maximum backlog that was registered in the buffer.

Display A class which consumes the tokens and is used for calculating the response
times of the tokens, that is the time from the token was generated until it was
consumed by the output_display object.

A test bench is constructed in a C++ file, where the Pesimdes header file is included.
A tasks object needs be be created for each task in the system. Further the various
resources are initialized, where the number of tasks each resource needs to serve is
part of the parameters. WCET, period, deadline and priority of a task is assigned
when the tasks is mapped onto a resource. The parameters depend on which type
of scheduling algorithm a resource use, for example the FP needs WCET, period
and priority, while the EDF needs WCET and dead line. The communication be-
tween tasks are performed using FIFO buffers, which have been extended to create
statistical information as mentioned earlier.

Pesimdes is an API for creating system-level simulators, where no functional code
is needed. The resulting simulators can be used for analysing the memory and
timing requirements of a distributed system. The tokens that the tasks in the system
communicate with use a data structure for storing the generation time of a token,
and the last time a token was processed. These data are used for the timing analysis
and for the EDF scheduler.

For further details on the Pesimdes API the reader is referred to the master thesis
[SP06] by Simon Perathoner.

The previous sections have already discussed what the purpose of the DiMAS simu-
lator is, and specifically what the requirements are, the next section will clarify what
additional functionality is added and outlines how this is designed.

4.4 Structure of the simulator

The general modules, which are part of the DiMAS simulator API are show in figure
4.1. The modules which are encapsulated in a green box are modules from the
Pesimdes API, which have been altered in the DiMAS API. The modules, which are
encapsulated in a red box are new modules, which were implemented for the DiMAS
API.

The Resources in figure 4.1 correspond to processing elements with different schedul-
ing techniques. All resources can be assigned a finite number of tasks which they
need to schedule according to their scheduling algorithm. The whole resource group
has also been encapsulated in a red box, since all of the resources inherit from a

36

4.4. Structure of the simulator

new abstract class, which has tracing functionality. The design of each resource is
elaborated further in section 4.4.1.

The input stream devices include periodic, periodic with jitter, periodic with burst
and input from a trace file. These are the same input types that are used in the
pesimdes simulation API and no additional input devices are required for the DiMAS
API.

The output devices are generally devices which consume tokens, and record statistical
information from a simulation, which can be logged to output files. The Display
and Display and write modules calculate the response time information for each
token, further the display and write module writes the tokens to a buffer for further
processing. The Consumer module is a module, which consumes a given amount of
tokens at a given rate. The module logs an error if the input buffer did not contain
sufficient tokens, and then flushes the buffer.

The various group contains modules which have no other related modules, but are
just as important. The Pesimdes simulation API introduced an extension to the
standard FIFO buffers in SystemC. These buffers record the maximum backlog the
buffer has experienced. These buffers are further extended in the DiMAS API with
the ability to trace the backlog into a trace file. A crucial part of the API is the
task module, which corresponds to a single task. The task module can have multiple
inputs and outputs for communicating. The Time status module is module that
can be used for printing the simulation time progress to standard output during
simulation. This is useful when running long simulations, where no other output is
presented. The last module in the various group is the Constant Bandwidth Server
which is a module that can be used in unison with the EDF scheduler to schedule
both hard and soft real-time tasks on the same processing element. The CBS has
not been included in the resources group since it is not a scheduler in it self. The
CBS module is designed such that it also can be used with other deadline oriented
scheduling techniques.

The simulators which are created using the DiMAS API are very modular, and as
seen in the previous consist of only a few different types of modules. The general idea
is that each task is mapped onto a single resource, and buffers are used in between
tasks to model the communication flow. Figure 4.2 shows the general idea of how
a test bench can be constructed with multiple tasks mapped onto a resource, and
where buffers are put in between the communicating tasks. Further one of the tasks
in the test bench requires two inputs before this task is ready for execution.

The communication between input, task and output devices is done using the same
token structure as in Pesimdes, this token contains a sequence number, ID for which
input generated it, time of generation and the time of when it last was processed.
Specifically the generation time, and last processed time in the tokens are used by
the various output devices to generate the statistical information.

4.4.1 Scheduling

This section continues the discussion in section 2.5, and describes how the scheduling
algorithms are designed. The resources are similarly structured, but with some vari-
ations which are required for their specific functionality. The following describes the

37

Chapter 4. Design of the Simulator

Figure 4.1: The general modules which are part of the DiMAS API. The modules
which are encapsulated in a green box are classes from the Pesimdes library, which have
been altered in the DiMAS library. The modules that are encapsulated in a red box are
new classes in the DiMAS library.

Figure 4.2: Example of connections between the various modules in the DiMAS API.

38

4.4. Structure of the simulator

Figure 4.3: Resources contain one thread for the scheduler and one thread for each
task. Each task thread is connected to the corresponding task module.

basic design, which is the same for all resources, and each subsection will elaborate
on how each of the scheduling algorithms are structured.

All resources relies on a set of threads, one thread for the scheduling algorithm and
one thread for each of the tasks that are assigned to the resource. The task threads
are connected with the task modules as shown in figure 4.3, where each task thread
has both an input and an output. When a task module detects a token on the input
port, a request is sent to the task thread, which then signals the scheduler. This is
however only performed if the task thread is idle. If the task is active the task module
will wait until the task thread is done before signalling the new request. The task
modules and task threads communicate using channels, where the token structure is
sent back and forth, while the task threads and scheduler thread communicate using
signalling in terms of global variables.

The design of the EDF and the FP resources have not changed significantly in terms
of the scheduling algorithm. There is however a need for modelling the variability
in execution time, and therefore the assignment of execution time for each task has
been extended so that it can be based on an input trace file as well as a constant
value.

4.4.1.1 Fixed priority scheduling

The scheduler uses a global list containing the remaining execution times for all the
tasks assigned the resource, and selects the next task to be run by looping through
the list in priority order and selecting the first task that has not finished execution.
The task is signalled to start, and the scheduler will wait for a new event from the
tasks. This event is either due to the running task finishing the execution, or another
task trying to pre-empt the running task, due to it getting a new request from the
task module. The task threads are each responsible for updating the remaining
execution time in the list before the scheduler is activated. The design of the FP
scheduler has not changed significantly from Pesimdes.

39

Chapter 4. Design of the Simulator

4.4.1.2 Earliest Deadline First scheduling

Similarly to the FP scheduler there is also a list containing the remaining execution
time for each task assigned the resource. An additional list is used for the EDF
scheduler, which contains the relative deadlines of each task. Every time the sched-
uler is woken up, either by the running task completing, or another task receiving a
request, the scheduler starts by updating the relative deadlines for each task. The
task with the smallest relative deadline is then signalled to run by the scheduler.

The EDF scheduling algorithm is typically used for hard real-time applications,
where deadline misses are not tolerated. The DiMAS simulation API is however
also concerned with simulating soft real-time applications where deadline misses are
acceptable. Therefore all tasks assigned to an EDF resource must specify if it is a
hard or soft real-time task. For hard real-time tasks the simulation will terminate if
deadlines are missed, while for soft real-time tasks the deadline will be set to zero,
and simulation will continue.

4.4.1.3 Constant bandwidth server scheduling

The CBS requires a EDF scheduler to do the actual scheduling. A processing element
can have some tasks which are scheduled only using the EDF, but also some tasks
which are scheduled by a CBS. Often there will be multiple CBSs, which have one
or more tasks assigned. The basic idea is that each time the EDF scheduler needs to
update the relative deadlines for the tasks, the CBS is used for assigning the deadlines
of each task that is assigned the CBS. Figure 4.4 shows how the EDF scheduler can be
combined with CBSs for scheduling four tasks. The figure is slightly misleading since
it does not show that the task threads and the scheduler thread also communicate
as is the case.

The EDF scheduling resource is modified in such a way that it can communicate
with one or more CBS modules, thereby realizing the CBS scheduling algorithm.

The only addition to the scheduler thread is that the CBS modules must all update
the relative deadlines for the tasks that they are assigned to, when the EDF sched-
uler updates the relative deadlines of ordinary tasks. The modifications in the task
threads are some what more elaborate. Each time a request from the task module is
received, the task thread adds a request to the CBS queue if the task is a CBS task.
Every time the task thread receives a notification from the scheduler thread to start
execution the task thread notifies the correct CBS that execution has started. And
once the task execution is halted, the task thread notifies the CBS of this. Once a
task is terminated the task thread removes the task from the CBS queue.

The CBS modules contain a list containing tokens that corresponds to task request.
This list is utilized as a First Come First Served (FCFS) list, where a task token
is not removed from the list until it has terminated its execution. The CBS thread
waits for a task thread to signal that it has begone execution. Once started the CBS
server waits either for the task thread to notify that the task has stopped execution
or until the server bandwidth has exhausted. If the bandwidth was exhausted, the
CBS notifies both the running task and the scheduler thread and updates the CBS
deadline accordingly. The CBS thread now waits for a notification from one of the
assigned tasks, that it is starting execution.

40

4.4. Structure of the simulator

Figure 4.4: Example of a processing element with two CBSs and four tasks.

4.4.1.4 Linux scheduler

Only the non real-time scheduling part of the Linux O(1) scheduler is part of the
DiMAS simulation API. The scheduler uses a time sharing algorithm, where the size
of the time slots vary depending on priorities. The scheduler uses two queues for
separating tasks depending on whether they have spent their assigned time quantum
or not. These queues are called active and expired.

A structure for containing the ID, and the remaining time quantum for a task is used
as member in the active and expired queues. It is these tokens that the scheduler
uses every time it is activated. Each of the two queues are structured as an array of
queues, since each part of the array characterizes the priority that all tasks at that
index has. This structure is what is shown in figure 2.12 on page 23.

The tasks with the highest priority in the active queue is always scheduled onto
the processing element, and scheduler removes the task token from the active queue
temporarily. The running task is pre-empted either if the time quantum is expired,
if the task terminates or if another task receives a request from the task module. If
the time quantum of the running task has depleted, the remaining time quantum is
updated and the task token is put in the expired queue. If the time quantum is not
spent the remaining time quantum is updated and the token in reinserted into the
active queue. If the active task terminates, the scheduler signals the task with the
highest priority in the active queue. Once the active queue contains no more task
tokens, the active and the expired queues are switched.

In this resource the scheduler thread does not know the remaining execution times
for the tasks, only the individual task threads knows this. Once a task terminates
a global variable is set by the task and the scheduler is notified. The task threads
insert the task token into the active queue every time there is a request from the task
module. The task thread will only receive a new task request from the task modules
if the task thread is idle, which is similar to the FP and EDF algorithms.

41

Chapter 4. Design of the Simulator

4.4.2 Input and output

This section will present details on the information contained in the input and output
files and how these files are to be structured.

All input and output files are simple text based ASCII files. The files follow the
usual rule, that lines beginning with a # are assumed to be comments and will not
be read. The # must however be put as the first character in the line.

As stated in section 4.2 the simulation API can use input trace files for token gen-
eration and for retrieving the execution time of a task. The trace files are of course
only interesting when variability needs to be modelled. The token generators can
only work with files where the first column contains the delta value for when the next
token should be generated. The value is an integer and the time base is specified
when the input generator module is initialized.

The various resource modules have three different ways of retrieving the execution
time. The first is a static value that is set when the task is assigned the resource,
another option is using a trace file containing the execution time, and the third
option is a trace file containing the processor cycle count. The two latter, which
use a trace file are able to read a predefined column in a trace file, and use this for
simulation. Retrieving the execution time from a trace file requires that the time
base is specified before the simulation is begun. Likewise if the cycle count from a
trace file is used, the processor speed must be specified before simulation is begun.

Section 4.1 stated that the three output that the DiMAS simulation API can provide
are buffer backlog, response times and lost frames. The buffer backlog is output into
a Value Change Dump (VCD) file, which can be read either using a wave viewer
like GTKwave for Linux, or using the VCDParser1 application developed during this
thesis. One vcd file is created, where all the traces are stored in.

The response times can be logged using the two output modules display and display
and write, the file contains four columns being a sequence number, the total latency
through the system, the time of arrival and the total execution time spent on the
token. One file is created for each input generator in the system.

The last output file is used for logging the frame loss, this is done by the output
module Consumer. The file contains three columns, where the first is a counter
corresponding to the frame number, the second column contains the number of tokens
in the buffer, and the last column contains the time at which the frame loss was
registered. Notice that the file only contains entries for lost frames, so if no frames
are lost, the file will be empty. The Consumer module can further print a summary at
the end of the simulation, where the total frames lost and frames not lost is written.

1See appendix A.3 for more information

42

Chapter 5

Implementation of the Simulator

This section presents the implementation of the DiMAS simulation API, primarily
based on class diagrams. Some parts of the DiMAS API are unmodified modules
from the Pesimdes API. The unmodified modules from the Pesimdes are only lightly
described, and the reader is referred to the master thesis [SP06] by Simon Perathoner
for more details.

5.1 Communication

Each Task module has one or more input ports and one or more output ports. The
ports are each connected to a buffer, either being of the type sc_fifo or my_sc_fifo.
The latter is the buffer that was introduced in Pesimes, which has additional sta-
tistical features. The task class is the original from the Pesimdes API and has not
been changes. The task class contains three constructors, where one is used for one
input and one input port. The second constructor is used if the task should send
the tokens to more than one receiver. The third constructor is used for task objects,
which has multiple input- and multiple output ports.

The task modules wait for an input token from the input port and forwards the
token to the resource that it is assigned, once it receives a token. Tasks which have
multiple input ports either use a join operation where they wait for tokens on all
the input ports before forwarding the tokens, or just forward the tokens as they are
received. The resource returns a token to the task module once it has completed the
execution. The task module then writes the token to the output port and is ready
for reading a new token from the input port. These operations are handled by the
activation functions, which are implemented as threads. The threads do blocking
reads from the in port and writes the token to the internal buffer, which then sends
the token to the resource. The class diagram for the task module is shown in figure
5.1.

The my_sc_fifo class from the Pesimdes API has further been extended in the Di-
MAS API to support tracing using the tracing functionality in SystemC. The object

43

Chapter 5. Implementation of the Simulator

Figure 5.1: Class diagram of the task class from Pesimdes, which is used unmodified
in the DiMAS API.

is capable of tracing the buffer backlog, the amount of free space and an overflow flag.
The variables free, usage and overflow were added to the class. These variables are
updated in the protected function update, which is a special function which is part of
the primitive channel object, that the sc_fifo and my_sc_fifo classes inherits from.
This function is executed at the end of each time step during simulation.

The function logger_trace has also been added and is used for adding the buffer
variables to a trace file. The function takes three arguments. The first argument is a
pointer to an open sc_trace_file object. The second argument is a string containing
the name that should identify the variable in the trace file. The third argument is
a string representing 3 bits, where each of the three variables from the buffer can
be added to the trace file by setting the character to 1. The bit order is as given below:

"<free><usage><overflow>"

The bit string "111" will add all three variables, while the string "100" only adds the
free variable to the trace file. Figure 5.2 contains the class diagram of the my_sc_fifo
module.

A set of structures are used as tokens in the communication. The structure event_token
is the main token, which the task and the resource modules communicate with.

44

5.1. Communication

Figure 5.2: Class diagram of the modified my_sc_fifo class, which is used instead of
the standard SystemC FIFO buffer.

All the buffers in the test bench that are used for connecting the various input
generators, tasks and output devices need to be of the type event_token. The
event_token structure contains three elements being generation_info, last_processed
and task_list_element. The generation_info is an additional structure, that the in-
put generator creates. The structure is a linked list, where additional generating in-
formation is appended if there are joins in the test bench. The event_generation_info
structure contains the name of the input generator, the generation time and a se-
quence number. The structure further contains the variable total_execution_time,
which contains the total amount of time the tasks have spent executing the token.
The task_list_element is simply a linked list containing the names of the tasks,
which have processed the token. Figure 5.3 contains the class diagram of the three
structures.

Figure 5.3: Class diagram of the three structures which are a central part of the
communication between the various modules in a test bench.

The input generators from the Pesimdes API are used in the DiMAS API and have
not been modified. The class diagram for the seven types of generators are in the
appendices B on page 115. The classes are implemented as SystemC modules that
all have a function main. This function is a thread, and simply calls the SystemC
function wait with the time that the tread should wait as parameter. Once the
period has passed the module creates a new even_token with the name of the input
generator, a sequence number and the time the token is generated.

All seven input modules takes a string representing a file name. The input_from_trace

45

Chapter 5. Implementation of the Simulator

uses this to read the delays that it should wait before generating a new event. The
rest of the input modules on the other hand prints the time that they wait every
time to the file. This is useful when running tests with random periods, if two or
more scheduling algorithms need to be compared. The first test is used for generat-
ing the delays in a trace file, and the remaining of the tests are performed using the
input_from_trace module, in order to ensure that the resources are presented with
the same input data.

5.2 Scheduling

The greatest difference between Pesimdes and DiMAS are the schedulers, where the
algorithms have been modified in order to support soft real-time tasks as well as hard
real-time tasks. Further the resources are able to extract varying execution times
from a trace file, and thereby not restricting simulation to a static execution time1 as
in Pesimdes. The feature of extracting the execution time is performed in the same
manner for all the resources. Therefore polymorphism has been implemented where a
base class resource_n_tasks has included the common variables and methods. This
class can however not function as a regular resource, since the core functionality
has been excluded. Figure 5.4 is the class diagram for the resource_n_tasks class.
The object uses various arrays as data structure, where the indices in these arrays
determine which task the data is related to.

Figure 5.4: Class diagram for the resource class all the scheduling class inherit from
in the DiMAS simulation API.

Since the resource_n_tasks class is used as an abstract class all variables are defined
with the protected keyword in order for the inheriting classes to gain access to them.
Each resource contains an array of input ports and an array of output ports. These

1This is typically the WCET for hard real-time applications.

46

5.2. Scheduling

ports are mapped onto the individual tasks that are assigned the resource. This
assignment is performed with the assign function in the individual scheduling classes.
The variable n defines the number of tasks that are assigned to the resource, and is
assigned once the object is initialized. The tasks_wcet array is only used for tasks
which use a static execution time during simulation.

Three sc_event variables are used in all of the resources namely sched, interrupt and
run. The sched variable is used by the running task to signal the scheduler that an
event has occurred. This is either caused by the task terminating or by another task
requesting access to the resource. The interrupt variable is used by tasks that are
woken up to preempt the running task. The run variable is an array, and is used by
the scheduler to signal a task, that it is scheduled onto the processing element and
can start executing. The communication between the various threads is shown in
figure 5.5.

Figure 5.5: Synchronization mechanisms between the scheduler and the tasks using
the three sc_event variables sched, interrupt and run.

The main functionality in the resource_n_tasks class is the ability to retrieve execu-
tion times from trace files, either being a trace file containing time values or a trace
file containing processor cycle counts. This can be chosen individually for each task
assigned the resource. The setRunMode function is used for specifying for each task
which way the execution times should be obtained. Table 5.1 shows the possible run
modes that can be used during simulation. The setTraceTimeUnit function must be
called for tasks using the execution time trace in order to specify which time unit the
values in the trace files are stored as. For tasks using processor cycle count traces
the function setProcessorSpeed and optionally setCycleMultiplier must be used, in
order for the resource to be able to calculate the correct execution times. The func-
tion setInputTraceFile is used for specifying the name of the trace file, and in which

47

Chapter 5. Implementation of the Simulator

column the trace data is located. This function must be called for each of the tasks
that retrieves the execution time information from a trace file. When this function
is called the corresponding ifstream pointer in the traceFile array is opened.

Value Description
0 Static execution time, based on the WCET specified when

the task is assigned a resource.
1 Execution time is based on a trace file, where the values are

given as time. The default time unit is NS.
2 Execution time is based on a trace file, where the values are

given as processor cycles.

Table 5.1: Possible run modes for the resources, which are specified using the setRun-
Mode function.

The resource_n_tasks uses the FileAccess class which given a pointer to an open
file and a column number, can extract the next number from the file. The number
in the file must be a valid integer.

The resource_n_tasks class contains three additional functions, main, task_ and
scheduler. These are just empty functions, which each of the resources inheriting
from this class must implement. The scheduler function is a thread and contains the
scheduling algorithm. The task_ represents a task, and basically reads a token from
the in port, and once it is scheduled by the scheduler it runs until it is preempted
or until the task terminates. When the task terminates the token is written to the
out port, and the thread is suspended waiting for a new input request on the in
port. The main function is a thread which only is run at the start of the simulation,
where there is generated a task thread for each task, that is assigned the simulator.
This is done in a dynamic way using the sc_spawn function call, which is part of
the SystemC library.

5.2.1 Fixed-Priority

Figure 5.6 shows the class diagram for the Fixed-Priority preemptive resource. The
resource inherits from the resource_n_tasks class as all the other resources in Di-
MAS. The resource_n_tasks_fixed_priority_preemptive class adds an array con-
taining the remaining execution times and an array containing the priority order of
the tasks assigned the resource. Each array element corresponds to a task, where
the index is determined at the elaboration phase2 using the assign_task function.

The assign_task function sets the WCET and the priority of a given task, where the
pos field is used for identifying which index in the various arrays3 the task is located
at. The highest priority starts at 1 and upwards, while the pos field starts at 0. The
wcet field can simply be set to SC_ZERO_TIME, if the task is to retrieve execution
times from a trace file.

2SystemC defines the elaboration phase as the time where the test bench is constructed, before
any simulation is commenced.

3These are: executing_times_left, run, in, out, task_wcet, task_names, cycleMultipliers, mode,
traceFile, column, input_count and output_count.

48

5.2. Scheduling

Figure 5.6: Class diagram for the Fixed-Priority Scheduling scheme in the DiMAS
simulation API

The scheduler thread is activated every time a task either receives a request on the
in port or when a task terminates. The scheduler decides which task that should be
assigned the processing elements by starting with the top priority task and checking
whether it has any remaining execution time and working downwards until there
is a task, that can be scheduled. This operation is performed using the execut-
ing_times_left array in conjunction with the task_priorities array.

The main and the task_ threads both perform as described earlier. Every time
the task receives a request on the in port, the task_ thread updates the execut-
ing_times_left array. The new execution time is found using the getRunTime func-
tion inherited from the parent object resource_n_tasks. It is the task_ thread that
updates the executing_times_left every time the task has been scheduled onto the
processor.

5.2.2 Earliest Deadline First

Figure 5.7 shows the class diagram for the EDF preemptive scheduling resource.
The resource is constructed such that it can be used in conjunction with one or more
CBSs as is described in section 5.2.3. This section will only describe the EDF related
variables and functions.

The variables which are related to the EDF scheduling resource are task_rel_deadlines,
executing_times_left, remaining_times, update_remaining_times and real_time_type.

49

Chapter 5. Implementation of the Simulator

Figure 5.7: Class diagram for the Earliest Deadline First scheduling scheme in the
DiMAS simulation API

All of the mentioned variables are arrays, where each array index corresponds to a
task assigned the resource. The task_rel_deadlines contains the period for each
task, which is specified in the elaboration phase using the assign_task function.
The executing_times_left contains the remaining execution time for each task, sim-
ilarly to that in the FP resource. If a task is not active or have any pending re-
quests the time will simply be SC_ZERO_TIME. The remaining_times and up-
date_remaining_times are related to the deadlines, where the remaining_times ar-
ray contains the relative deadline for each task. The update_remaining_times array
is used for ensuring that the deadline is not updated the for the task which is pre-
empting the running task.

When tasks are assigned the resource using the assign_task the WCET and relative
deadlines are specified for each task. TheWCET can simply be set to SC_ZERO_TIME
if the execution times are retrieved using a trace file. Further the task is either defined
as a soft or a hard real-time task.

Every time the scheduler thread is activated it updates the remaining time of the
relative deadlines for all tasks, except those that have been flagged4 not to be up-
dated. In addition the scheduler checks for all tasks if there are deadline misses. The

4This is relating to the update_remaining_times array.

50

5.2. Scheduling

scheduler writes an error message to the terminal, and terminates the simulation for
hard real-time tasks, while it only prints the error message for soft real-time tasks.
Once the deadlines have been updated, the scheduler searches for the task with the
earliest deadline and signals this using the run variable with the corresponding task
index.

5.2.3 Constant Bandwidth Server

The Constant Bandwidth Server (CBS) scheduling algorithm uses an additional mod-
ule, which is used in conjunction with a deadline oriented scheduling scheme as EDF.
The EDF resource has been extended to support the CBS scheduling module. Figure
5.8 contains the class diagram for the CBS module and the EDF resource.

A CSB module is initialized for each CBS that needs to be scheduled. The CBS
module uses a cbs_queue, which is a linked list where requests from tasks that are
assigned the CBS are queued.

The cbs_queue is sorted according to the time a task has been waiting5, therefore
when a task is added to the queue, the task ID and the time is was last processed must
be given as arguments to the function queue_new_task. The remove_from_queue
function in the queue data structure, takes the task ID as argument and removes the
first item in the queue if the ID of the task in the queue is equal to the argument.
The peek function returns the tasks ID of the first element in the queue.

The CBS class contains a series of pointers which are used to reference some of the
data structures in the EDF resource. The cbs_tasks points to the cbs_task array
in the EDF resource, which contain boolean elements defining whether or not a task
is a CBS task. The cbs_task_ids points to the cbs_mappings array, that defines
which CBS server a given task is assigned to. The task_deadlines points to the
remaining_times array, which contain the relative deadlines of the tasks that are
assigned the EDF/CBS resource. The CBS updates the deadlines of the tasks that
have been assigned to it using the task_deadlines pointer, where the cbs_mappings
array is used by each CBS for identifying which task deadlines to update.

The last three pointers are used for synchronizing the CBS, EDF scheduler thread
and all of the task threads assigned the resource. These are cbs_sched, sched and
task_interrupt. The sched and the task_interrupt respectively point to the sched
and interrupt variables in the resource_n_tasks class. The cbs_sched is also of type
sc_event and is used for synchronizing the CBS and its corresponding task_ threads.

The variable n specifies the number of tasks queued in the CBS queue. The cbs_id
is the ID of the CBS, and the variables Q and T respectively correspond to the
server bandwidth and period. The variable bandwidth_left is the remaining server
bandwidth and the server_deadline is the absolute deadline of the CBS. Note that
the CBS itself uses absolute deadlines, where the scheduler threads in the EDF
resource use relative deadlines.

5The first element in the list is the task that has been waiting for the longest time.

51

Chapter 5. Implementation of the Simulator

Figure 5.8: Class diagram for the Constant Bandwidth Server scheduling scheme in
the DiMAS simulation API.

The function main in the CBS module is a thread, and simply waits for an event
on the cbs_sched variable from one of the tasks assigned the CBS. The thread
then waits until the server bandwidth is depleted or that the running thread stops
executing. This can either be caused by the task terminating or by another task
preempting it. When the running task stops execution it signals the main thread
using the cbs_sched variable. Once the server bandwidth is exhausted the main
thread signals the running task to stop execution using the task_interrupt variable.

52

5.2. Scheduling

It then replenishes the server bandwidth and updates the server deadline by adding
the server period to the current server deadline. Finally it signals the scheduler
thread using the cbs_sched variable, which then determines which task should be
run next.

The function queue_new_task adds a task to the CBS queue. The execution time
and the request time of the task is passed as arguments in order to calculate whether
or not the server deadline needs to be updated. This is done as described in section
2.5.3. The update_task_remaining_time is the function that updates the deadlines
of the tasks that are assigned the CBS server. The EDF scheduler calls this function
when the deadlines for all the tasks assigned the resource are updated. The function
takes a parameter of type sc_time and this time is assigned to all the tasks which
are assigned the CBS server, except for the first task in the CBS queue, which is
assigned the server deadline. This ensures that only the task that is the first element
in the queue is served with the server deadline, while the rest must have a higher
deadline in order not to be scheduled.

The six additional variables that have been added to the EDF resource are cbs,
cbs_no, active_cbs, cbs_task, cbs_mapping and cbs_sched. The cbs variable is an
array of pointers to the CBS modules which are assigned the resource. The number
of CBSs is given when the resource is initialized, this is stored in the variable cbs_no.
The active_cbs variable is an array of boolean elements, which specify whether or
not any tasks have been assigned to the corresponding CBS. The cbs_sched is at the
EDF resource class an array of sc_event elements, where each element corresponds
to the cbs_sched variable the CBS module.

Two functions have been added to the EDF resource in order for it to support
the CBS, these are add_cbs and assign_cbs_task. The add_cbs function is used
for adding a CBS to the EDF resource. The function takes the server bandwidth
and period as arguments. Further the position in the CBS related arrays must
be specified as argument. The function will initialize the CBS module, where the
addresses of the relevant data structures in the EDF resource are given as arguments.
Further the ID, name, server deadline and period of the CBS is parsed on to the CBS
module. A CBS task must first be assigned the EDF resource using the function
assign_task and afterwards assigned a CBS using the assign_cbs_task function. The
assign_cbs_task takes two arguments being the array positions of the task in the
task related arrays, and the array position in the CBS related arrays6 corresponding
to the CBS that the task is assigned.

The scheduler thread is extended with a few features in order to support one or
more CBSs. First of all the scheduler does not update the relative deadlines of the
tasks which are assigned a CBS. This is avoided using the boolean array cbs_tasks.
Further once the deadlines have been updated for the tasks not assigned a CBS,
the scheduler calls the update_task_remaining_time function for each of the CBSs
assigned the EDF resource.

CBS specific functionality has also been added to the task_ threads. Once a task_
thread receives a request on the in port, the event token is read. The field last_processed

6These are: cbs, active_cbs and cbs_sched.

53

Chapter 5. Implementation of the Simulator

in the event token is used as the request time, when the task is added to the corre-
sponding CBS queue, using the function call queue_new_task.

The task_ thread signals the CBS that it is assigned, once the scheduler signals
the thread to start execution. The cbs_sched pointer array is used in conjunction
with the cbs_mapping in order for the task_ thread to signal the correct CBS.
The remove_task function is called on the CBS object when a task has terminated,
thereby removing the task from the CBS queue.

Note that the CBS scheduling implementation is not exactly as seen in figure 4.4 from
the design section, where the tasks only seem be to registered at the CBS module.
Tasks which are scheduled using a CBS is registered both at the EDF resource and
at one CBS module. The EDF resource thereby know all tasks which are assigned
the resource, and not only one task per CBS module, as you might interpret from
the figure.

5.2.4 Linux O(1)

As seen in the class diagram in figure 5.9 the Linux resource has an additional data
structure which is a linked list. This data structure is used for the task queues, where
each priority level from 0 to 139 has a queue containing tokens representing a task
request.

The variables which are used in the resources are queue_1, queue_2 that represent
the actual priority queues. The active and expired variables are the pointers to the
two queues that switch each time all tasks in the active queue have exhausted their
time quantum or have terminated. The variable _slots is an array containing the
time quanta for each priority queue.

The scheduler thread implements the priority oriented time sharing algorithm that
the Linux O(1) scheduler uses. This scheduling technique is based on the active
pointer, where the task with the highest priority7 is scheduled onto the processing
element. Once the scheduler has signalled the task to run, it waits for either the
time quantum to deplete, another task making a request or for the running task
to terminate. When there are no more task request in the active queue array, the
active and the expired pointers are switched. The time quantum of a task token
is replenished and the token put into the expired queue, if a task is not completed
within the given time quantum.

The task_ thread has an internal variable defining the remaining execution time.
This is updated every time the task receives a new request on the in port, or when
the task stops execution either due to task termination or another task preempting it.
When a request is received the task_ thread further adds a token to the active queue,
using the add_to_queue function in the linux_queue object. The task_mappings
array is used to find the correct index in the active array where the function should
be called.

7lowest value in the range [0:139]

54

5.3. Output devices

Figure 5.9: Class diagram for the Linux O(1) scheduling scheme in the DiMAS sim-
ulation API.

The priority of the task is specified in the assign_task function. This value is in the
range [0:139]. As for the two previous resources, the WCET can also be given, in
the case that a task is using a static execution time during simulation.

The function set_slot_time_distribution must be called during the elaboration phase
in order for the resource to assign the correct time quanta to each priority queue.
This function takes the max, mean and min time quanta the resource should use,
which respectively corresponds to priority 0, 99 and 139 8.

5.3 Output devices

Figure 5.10 shows the class diagram for the three classes which are the sinks that can
be used in the DiMAS test benches. The Consumer class is used for emulating an

8Priority 0 is the highest priority, and has the largest time quantum.

55

Chapter 5. Implementation of the Simulator

output device such as a screen, which reads a certain amount of tokens from the buffer
at a specific rate. The output_display class is modified version from the Pesimdes
API. The output_display class is used for collecting statistical information regarding
response times. The output_display_write class has the same functionality as the
output_display class, but further writes the tokens to an output port for further
processing.

Figure 5.10: Class diagram for the output devices which are part of the DiMAS sim-
ulation API.

5.3.1 Consumer

The Consumer class reads a fixed amount of tokens from the input port at a fixed
rate, both of which are specified once the object is initialized. The Consumer module
uses themain thread, where the tokens are read. The period is implemented using the
wait function that is part of SystemC, where the parameter is the period of the reads.

56

5.4. Extending DiMAS

Initially the thread suspends waiting for the first token to arrive on the input port.
Once this is received, the thread starts an initial buffering by waiting for the time
equal to two times the period before reading any tokens. If there are not sufficient
tokens in the buffer connected to the input port, the object will log an error to the
terminal. The object will further log the error to a file if the function setTraceFile
has been called. Every time the object tries to read the specified amount of tokens
from the buffer, one of the two counter variables success or fail are incremented,
depending on whether or not there are sufficient tokens in the buffer.

The traceSummary function is used at the end of simulation and will print a summary
of the values of the success and fail variables to the trace file. The function getSuccess
and getFails are respectively used for retrieving the number of successful frame reads
and the number of failed frame reads. Note that the total number of frames which
the Consumer has attempted to read during the simulation is the sum of the two
variables.

5.3.2 Output display

The two classes output_display and output_display_write are almost identical, save
the out port in output_display_write.

The objects each contain a linked list max_latency_element which contains sta-
tistical information, where each element in the list is identified by the name of
the input generator which generated the token. The output_display and the out-
put_display_write uses the main thread, which waits for a token on the input port.
When a token is received, the thread searches through the max_latency_element
list for the element corresponding to the generator which generated the token. The
maximum, minimum and total latency information from the token is recorded into
the corresponding max_latency_element. Further the total execution time is stored
in the max_latency_element corresponding to the input generator, which generated
the token. The output_display_write object then further writes the token from the
in to the out port and then suspends waiting for a new input token similar to the
output_display object.

Getter functions are available for retrieving the maximum, average and minimum
latencies. Further there are getter functions for retrieving the sequence number of
the tokens which had the maximum and minimum latencies. All the getter functions
take one parameter, being the name of the input generator of the stream. The reason
for using the name of the input generator to track the statistical information, is that
there can be joins in a test bench, thereby have input tokens from two or more
different input generators.

The output_display class in Pesimdes was only able to record maximum latencies.
The minimum and average values are added in the DiMAS API. Further the sum of
the execution times for all the tokens belonging to a stream are recorded.

5.4 Extending DiMAS

Other types of scheduling techniques can be implemented in the DiMAS API, this
is done by implementing a new resource. The new resource should inherit from the

57

Chapter 5. Implementation of the Simulator

resource_n_tasks class, and must implement the functions scheduler, tasks_ and
main. Where the main function simply provides a dynamic way of creating a task_
thread for each task that is assigned the resource. The scheduler thread contains
the logic for invoking one task_ thread into the running mode. The task_ thread
waits for an input token from the in port, and once it receives a token it gets the
execution time for that specific token, using the getRunTime function. The task_
thread can now start the cycle where it waits for the scheduler thread to signal it to
start executing and either stop due to termination or to another task_ preempting
it.

The variables run*, sched and interrupt are used for synchronizing the various
threads in the resource as show in figure 5.5 on page 47. The new resource will
then be able use the trace files in order to determine the execution time of each task
request, as the four resources which have already been implemented.

The resources typically also implement a function assign_task, which is used for
adding a task to the resource. The function typically takes a pointer to the task
module, and an array index which is used for internal mappings in the resource.
Parameters like deadline, priority and others are typically also assigned the task as
arguments in this function.

58

Chapter 6

Generating traces for the
simulator

The traces play a central role in the simulator since we need some good traces to base
the analysis on. For the simulator we need traces for the execution time of various
multimedia tasks. These traces have been created using the SimpleScalar simulator.
This chapter will present how the traces are generated, and what modifications in
the SimpleScalar toolset are needed.

Basically the traces are generated using breakpoint sets and logging the number of
cycles or instructions at each breakpoint. The log file is further processed where the
breakpoints are paired and the difference is calculated and logged to the final trace
file. Generation of traces requires four things:

• Global variables inserted into the code that needs augmenting

• Address of the breakpoints in the object file

• Modifying the SimpleScalar to log breakpoint data into text files

• Post processing of the log file to generate the final trace files

The SimpleScalar debugger provides breakpoint functionality for either instructions
or for data. In this thesis data breakpoint was found as an optimal solution. The code
segments that we are interested in measuring the execution time of, is surrounded by
two global variables which are incremented. It is imperative that the global variables
are put in such a way that there will always be a start followed by an end breakpoint.
This is a manual task and will need some code analysis from the users side in order
to place the variables the correct places.

As mentioned in section 3.3.1 the SimpleScalar tool set contains a very simple interac-
tive text based debugger. The debugger already implements breakpoint functionality,
but there is however currently no tracing support. The whole SimpleScalar tool set
is however very modular, and adding new features is rather easy. The debugger can
detect both read, write and executions of data breakpoints.

Three new commands have been added to the debugger:

59

Chapter 6. Generating traces for the simulator

tracefile This command is followed by the name of the trace file. The file name
must not contain any spaces, other characters must be used if word separations
are required.

tracecomm This command is used for adding comments the the trace file. This
command suffers the same problem of the comments not being able to contain
spaces. This command can only be used at the beginning before the actual
simulation has begun, and requires that the tracefile command has been called.

quietTrace This command is used for enabling and disabling the breakpoint data
being written to the terminal1. It is nice to have it enabled for debugging
purposes, but is too resource demanding when long simulations are performed.
The parameters are either on, off or show where the last displays the current
state.

The commands are added to the debugger in a command data structure found in the
dlite.c file. Here the command name, type of arguments and a short description for
the help option are added for each command. Further a handle is provided to the
function which should be called when the command is executed.

Listing 6.1: Part of the command array in the dlite! debugger.
1 static struct dlite_cmd_t cmd_db [] =
2 {
3 ...
4 { "tracefile", { "s", NULL }, dlite_traceFile ,
5 "Specify the name of the tracefile" },
6 { "tracecomm", { "s", NULL }, dlite_traceComment ,
7 "Write a comment in the trace file. Use ’_’ instead of spaces" },
8 { "quietTrace", { "s", NULL }, dlite_quiteTraceToggle ,
9 "Toggle on or off is debug output should be printed to the console.

Parameters are on/off/show" },
10 }

For logging the actual breakpoint data, an additional main function was implemented
for the debugger, where the only difference is that it is not interactive and therefore
does not wait for a command. The original main function is accessed at the start of
the simulation, but once the simulation is initiated the new main function is called
instead of the original. The new main function is then accessed every time a break
point is encountered, at which point the break point number and number of cycles
are logged to the trace file. The new main function requires that the simulator2

which is used for creating the traces must be altered slightly in the sense that the
debugger main function is called twice, once during initialization and once through
each iteration of the simulation loop. It is the call in the main simulation loop, where
the new main function is called instead of the original.

Before the simulation can commence, the addresses of the global variables need to
be identified since the breakpoints are added based on the address. These addresses
are found using the objdump command and grep for quickly finding the address.
The global variables are located in the symbols table, which is accessed using the -t
parameter for the objdump utility. The following command is used for extracting
the addresses3:

1stdout.
2being sim-outorder, sim-profile, sim-cache, sim-cheetah or sim-fast.
3This is a Linux command.

60

6.1. Resulting trace files

objdump -t <executable> | grep global_

In this example all the global variable names have been prefixed with global_. Note
that the variables might be assigned new addresses if the source code has been
modified and recompiled.

Once the trace files with all the breakpoint data have been generated it is time for
post processing where the absolute cycle counts for the breakpoints are turned into
cycle counts from the start to the end breakpoint of each breakpoint set. For this the
simple breakDiff application has been implemented, which can parse a file with up
to 10 breakpoint sets. A new trace file is generated for each breakpoint set, where
the name of the breakpoint set is used as extension. Section A.1 presents more
information about the breakDiff application.

The commands that were used in the SimpleScalar debugger, when measuring the
execution time of MPEG video files are listed in Appendix E.

6.1 Resulting trace files

The trace files which were created for the DiMAS simulator are all based on the
sim-profile simulator. Therefore the values are given as instruction counts and not
processor cycles, as we would like to have. Two additional simulations were therefore
performed using the sim-outorder on a file with motion and one without motion. As
already mentioned in section 3.3.1, the sim-outorder simulator present much more
accurate result since it is able to simulate pipelines and caches. The results showed
that there is a more or less constant ratio of about 1:0.7 meaning 1 instruction
is processed in 0.7 processor cycles. This obviously shows how the pipeline has a
positive effect on the decoder.

The processor cycle counts obtained are rather large, since it seems some what un-
likely that there is need for a 3 GHz processor for decoding a film with a resolution of
720x480. The traces in this thesis was performed using the SimpleScalar simulator
where the ARM architecture was given as the target architecture. Therefore the
cycle counts can not be compared with a normal processor, which has many times
more pipeline stages and on chip support for multimedia decoding.

In order to have test benches where the processor requirements are not well out of
the current processor speeds a simple profiling was performed using gprof on the
MPEG decoder. The profiling was performed on each of the multimedia files used
in the test benches4. The accuracy of the profiler is however very limited since
the measurements are given as seconds with two decimals. The purpose is however
simply to get an estimate of a ratio in order to get more reliable results, therefore
this is accepted since the variability still will be intact.

The profiling is again split into the VLD/IQ and the IDCT/MP tasks for decoding.
The results are summarized in table 6.1.

4The two files are: flwr_080.m2v and high_25fps_320x240.m2v

61

Chapter 6. Generating traces for the simulator

Video VLD/IQ IDCT/MP
flwr_080 0.557 0.139
high_25fps_320x240 0.891 0.244

Table 6.1: Resulting ratios from profiling between instruction counts from trace files
and actual processor cycle counts. The values in the table are multiplied with the values
from the trace files in order to obtain more accurate processor cycle counts.

The table shows that the VLD/IQ tasks result in more or less the same multiplier
factor as was found using the sim-outorder simulator. This makes sense since the
VLD/IQ basically are table lookups and multiplications. The profiling information
reveal that the IDCT/MP has a much smaller multiplier than found with the sim-
outorder. It is the IDCT/MP that is the resource demanding process, it therefore
seems likely that on chip support and advanced pipelining has increased the per-
formance for these operations. Appendix F contains the profiling information and
calculations on how the multipliers were obtained.

When applying the multipliers specified in table 6.1 the required processors speeds for
decoding the flwr_080 video file is reduced from approximately 3 GHz to 800 MHz,
and for the high_25fps_320x240 video file the requirements go from approximately
900MHz to 300 MHz, which for both cases seems more reasonable.

62

Chapter 7

Case studies

There are 8 case studies in this chapter. These are divided into two groups. The
first four cases use a test bench with two processing elements, while the next four
use a test bench with only one processing element. The four cases studies, which are
present in each of the two groups examine the performance of the simulator under
different scenarios which are summarized in the following.

TC1 The input streams are periodic, where the period is based on the parameters
of the video being simulated.

TC2 There are two periodic input streams and one highly aperiodic stream, which
corresponds to a GUI task, which for example is activated when the user needs
to access the menu on the device being simulated.

TC3 Jitter is now applied to the two input streams. The jitter is in the area of
±40%.

TC4 This test bench is similar to TC2. The focus in this test is to optimize the per-
formance of the CBS scheduling algorithm. Five sub tests have been created,
where different values are applied to the CBS parameters.

TC5 This is the same test as TC1, with two periodic input streams. All four tasks
are however scheduled onto a single processing element.

TC6 This is the same test as TC2, with the fifth task corresponding to a GUI task.
All five tasks are however scheduled onto a single processing element.

TC7 This is the same test as TC3, where jitter is applied to the two periodic inputs.
All four tasks are however scheduled onto a single processing element.

TC8 This is a similar test to TC4, six different set-ups for the CBS parameters are
simulated. All five tasks are however scheduled on one processing element.

7.1 Evaluation criteria

The test cases in this chapter are evaluated based on frame losses, response time,
buffer backlog and response time delays. Graphs of the buffer backlog and response

63

Chapter 7. Case studies

times delays have been created for each case study and are included in the appendices.
There is a summary section for each case study, where the results are summarized
and briefly discussed.

7.2 Reading this chapter

This chapter is a rather large part of the report, and many of the test cases only show
redundant information. All case studies but TC4 and TC8, have been performed both
using a system which meets the average resource requirements, and an over designed
system. The sections for the subtests are respectively called the slow processing
element(s) and the fast processing element(s). All of the test cases with the fast
processing element(s) show more or less the same pattern, where there are neither
buffer over- or underflow, and the response times are also more or less the same no
matter which scheduling policy was used.

The summary sections for each of the case studies presents the most interesting
results from the various test cases within the case study. The summary sections are
therefore good for getting an overview of the results from each of the case studies
without reading every test case.

Section 7.6 concludes the results found in the eight case studies.

7.3 General set-up

This section contains common information relating to the case studies that are pre-
sented in this chapter. All case studies use the same two stream for modelling the
continuous media. The files which have been selected are chosen due to their high
variability, where both inter- and intra variability are present. The files are summa-
rized in table 7.1. Plots of the variability for the two streams are included in the
appendices H.1 and H.2.

Stream File name Frame rate Resolution
APE1 flwr_080.m2v 30 720x480
APE2 high_25fps_320x480.m2v 25 320x480

Table 7.1: Summary of the MPEG video files, which the inputs to the simulator are
based on.

The initial inputs are periodic streams for all the test cases except for test case 3 and
7, where jitter is added on the inputs. For APE1 the period is 1

30x1320 = 25.252µs,
while the period for APE2 is 1

25x300 = 133.332µs, these periods are based on the
frames per second and the amount of macroblocks in each file.

The Consumers are set-up to consume tokens corresponding to the fps and resolution
of the video streams they are consuming tokens from.
APE1: 1320 tokens every 1

30s = 33.332 ms.
APE2: 300 tokens every 1

25s = 40 ms.

64

7.3. General set-up

Task# min avg max
1 2,115 7,618 46,255
2 2,699 14,957 46,205
3 109,250 116,875 118,649
4 109,381 114,860 128,158

Table 7.2: Instruction count for the various tasks, which are found using the technique
described in chapter 6.

Table 7.2 contains the min, avg, and max instruction counts, which were found using
the technique described in chapter 6.

The cycle multipliers are those specified in section 6.1. Table 7.3 is similar to the
one found in the generating traces chapter.

Stream VLD/IQ IDCT/MP
APE1 0.557 0.139
APE2 0.891 0.244

Table 7.3: Resulting ratios from profiling between instruction counts from trace files
and actual processor cycle counts. The values in the table are multiplied with the values
from the trace files in order to obtain more accurate processor cycle counts.

The minimum resource requirements for each task are given in table 7.4. These
values are based on the average execution times for each task in table 7.2 and the
multipliers given in table 7.3.

Task Processor speed
1 168 MHz
2 100 MHz
3 635 MHz
4 210 MHz

Table 7.4: Minimum processor speed requirements for the four tasks based on the
average cycle count, and the corresponding cycle multipliers.

65

Chapter 7. Case studies

7.4 Two processing elements

Processor speed Pe1 Pe2
Slow 270 MHz 860 MHz
Fast 860 MHz 1.5 GHz

Table 7.5: Processor speeds used in the following cases stories, unless otherwise spec-
ified.

Task Stream Processing Description
Element

1 Pe1 APE1 flwr VLD/IQ
2 Pe1 APE2 high VLD/IQ
3 Pe2 APE1 flrw IDCT/MP
4 Pe2 APE2 high IDCT/MP

Table 7.6: Mapping of the various task onto the two processing elements.

Table 7.7 shows the actual min, avg and max execution times in µs. These times are
based on the cycle counts given in table 7.2, the cycle multipliers given in table 7.3
and the processor speeds given in table 7.5.

Task Slow processors Fast processors Period
min avg max min avg max

1 4.4 µs 15.7 µs 95.4 µs 1.4 µs 4.9 µs 30.0 µs 25.3 µs
2 8.9 µs 49.4 µs 152.5 µs 2.8 µs 15.5 µs 47.9 µs 133.3 µs
3 17.7 µs 18.9 µs 19.2 µs 10.1 µs 10.8 µs 11.0 µs 25.3 µs
4 31.0 µs 32.6 µs 36.4 µs 17.8 µs 18.7 µs 20.8 µs 133.3 µs

Table 7.7: Actual execution times given as min, avg and max for both the slow and
the fast processor. Note that the period column specifies how often a token is generated,
and it is this time that the task should complete within.

7.4.1 Case study 1 - Periodic input

This test case has four sub tests, which each are run with a set of slow processing
elements and a set of fast processing elements. There is a test for each of the
scheduling schemes implemented in the DiMAS API, being FP, EDF, EDF+CBS
and Linux O(1). These four scheduling schemes are tested where the two processing
elements just have sufficient processing power, and another test where the processing
elements are over powered. There are no tests where the processing elements are
underpowered, since this only leads to the buffers overflowing. Table 7.5 contains
the processor speeds that are used in the following test cases.

The table 7.12 in section 7.4.1.6 summarizes the results, where frame loss and average
response times are listed.

66

7.4. Two processing elements

All the figures which are referred to in the section are located in the appendices
section H.2, which starts on page 138.

7.4.1.1 Test bench

The token generator trace files are:
APE1: TC1_ape1_input.tra
APE2: TC1_ape2_input.tra
Where the values are stored in picoseconds.

The execution times for each task are stored in the traces as specified in table 7.8. The
trace information specifies the instruction counts that was logged using SimpleScalar
as described in chapter 6.

Task File name column
1 TC1_ape1_0_exect.tra 2
2 TC1_ape2_0_exect.tra 2
3 TC1_ape1_1_exect.tra 2
4 TC1_ape2_1_exect.tra 2

Table 7.8: Traces specifying the instruction counts for each of the four tasks.

Figure 7.1: Test bench for Test case 1 - Periodic input

All the tests simulate 15 seconds of processing, which is equivalent to the length of
the videos the execution time traces are based on. This leads to the APE1 outputting
449 frames and APE2 outputting 373 frames.

7.4.1.2 TC 1.0 - FP

The priorities are given such that the tasks that process the APE1 stream are given
the highest priority in each of the resources.

67

Chapter 7. Case studies

Slow processing elements Both figures H.3 and H.4 show the impact of the tasks
processing the APE1 stream having the highest priority. The APE1 display buffer
is seldom beneath the initial buffering level. The reason for the display buffer going
beneath the initial buffering is that the system is designed based on the average
execution times, and will therefore at times be too slow due to the intra variability.
The APE2 buffer is however often below the initial buffering, and frame losses are
also seen once in a while. Figure H.4 shows the time the tokens for each of the
streams have spent waiting in the buffers or on gaining access to the processing
element. Again it clearly shows the impact of the priority scheduling where tokens
for the APE2 stream wait much longer that the APE1 stream tokens.

TheAPE1 stream lost 0 frames, while theAPE2 lost 17 frames during the simulation.

Fast processing elements This test shows that the priority does not have any
impact on the buffer backlog once the processing elements are fast enough, since the
processing elements are idle much of the time. Both display buffers are constantly
above the initial buffering level as seen in figure H.5. The delays for the stream tokens
are considerably smaller compared to the test with the slow processing elements. The
delay of the tokens for the APE2 stream are however still greater than for APE1,
which is as expected. The delays for this test are plotted in figure H.6.

No frame losses was detected during the simulation.

7.4.1.3 TC 1.1 - EDF

The deadlines which are used for the tasks in the EDF resource are equal to the
period of the input tokens. The deadlines are given in table 7.9.

Task Deadline
1 25 µs
2 132 µs
3 25 µs
4 132 µs

Table 7.9: Deadlines for the tasks in TC1.1 that uses the EDF scheduling scheme.

Slow processing elements The simulation results are similar to those found using
the FP scheduling, where the APE1 stream is more or less optimal, at the expense
of the APE2 stream. This is caused by the two streams having different periods,
where APE1 has a much smaller period than APE2. Therefore the initial deadlines
are most of the time smaller for APE1, which leads to APE1 having the highest
priority. Figure H.7 shows the buffer backlog, while figure H.8 shows the delay of
the tokens for each of the streams.

The APE1 stream has no frame losses, while APE2 has 18 frame losses.

68

7.4. Two processing elements

Fast processing elements Again both the buffer backlog and the token delays
are very similar to those found for the FP scheduling.

Both of the streams have no frame losses.

7.4.1.4 TC 1.2 - EDF+CBS

The typical parameters for continuous media running on a CBS serving only a single
task are respectively setting the bandwidth and period equal to the average execution
time and period. The CBS parameters for this test are given in table 7.10. Note
that the parameters are the same for both the slow and the fast processing elements,
where the average values are based on those from the slow processing elements.

Task Bandwidth Period Utilization
1 15 µs 25 µs 0.60
2 50 µs 133 µs 0.38
3 15 µs 25 µs 0.60
4 50 µs 133 µs 0.38

Table 7.10: CBS parameters for the CBSs running on the two processing elements.
Note that tasks 1 and 2 are assigned Pe1 and tasks 3 and 4 are assigned Pe2. Therefore
the total CBS utilization is 0.98 for both the processors.

Slow processing elements The buffer backlog seen in figure H.11 is somewhat
different than for the two previous tests with FP and EDF. The display buffer for
the APE1 stream is not favoured over the APE2. This is exactly what the property
of the CBS scheduling algorithm should do, by providing temporal protection. This
is used in order to provide a more fair scheduling, where the tasks only suffer them
selves, when they have a high intra variability. The response times shown in figure
H.12 are also somewhat different, where we now see how the tokens for the two
streams are more or less equal in terms of the delays. The APE2 stream tokens do
however still have a tendency to have a slightly greater delay, but the server periods
for this stream are also greater than those for the APE1 stream.

The frame loss for the APE1 stream is 8, while it for APE2 is 15. We see an increase
in the total number of frame losses, but this time the losses are shared among the
two streams, which is caused by the temporal protection, that the CBS scheduling
algorithm provides.

Fast processing elements For the test with the fast processing elements, the
buffer backlog and the response time delays are very similar to the two previous
tests. This is caused by the tasks completing within the boundaries of the CBS
parameters.

Both APE1 and APE2 have 0 frame losses.

69

Chapter 7. Case studies

7.4.1.5 TC 1.3 - Linux

The Linux resources have been initialized with time quanta for the nice level 0 of 1
ms, nice level 99 of 200 µs and the nice level 139 of 5 µs. This leads to the four
tasks being assigned the time slots given in table 7.11.

Task Nice level Time quantum
1 120 102.5 µs
2 130 53.8 µs
3 120 102.5 µs
4 130 53.8 µs

Table 7.11: The nice level and the time quanta that are assigned the tasks in the Linux
scheduler.

Slow processing elements Both the buffer backlog and the response time delays
plots are very similar to those for the FP scheduling resources. This is caused by the
APE1 stream still having the highest priority, and the time quanta being sufficiently
large for most of the tokens to be processed within the given time frame. The backlog
is shown in figure H.15, and the response time delays are given in figure H.16.

The APE1 stream had 0 frame losses, while the APE2 had 18 frame losses.

Fast processing elements Again the over powered system shows that the schedul-
ing has no problems servicing all the tokens, since the buffer backlog is above the
initial buffering level. The backlog is shown in figure H.17, and the response time
delays are given in figure H.18.

None of the streams have any frame losses.

7.4.1.6 Summary

Table 7.12 summarizes the results from case study 1. Two tests were performed for
each of the scheduling policies. The first system was designed to service the average
load of the two continuous media streams. The second test was an over designed
system, which simply showed for all the scheduling schemes that the streams were
serviced without any frame losses, and with more or less the same response times on
each of the processing elements.

The results from the scheduling algorithms FP, EDF and Linux were very similar,
both in terms of frame losses and in terms of the tendencies of the buffer backlog
and the response time delays. The CBS scheduling algorithm did however show how
the temporal protection ensured that streams that have high intra variability did not
necessarily steal the processor time from other tasks, which for some reason had a
lower priority. This can be seen since the the APE1 stream also had frame losses.

70

7.4. Two processing elements

TC Speed Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2

1.0 Slow 0 4.6 2,478 µs 114,051 µs
FP Fast 0 0 16 µs 52 µs
1.1 Slow 0 4.8 2,733 µs 131,282 µs
EDF Fast 0 0 16 µs 53 µs
1.2 Slow 1.8 4 19,130 µs 82,125 µs
CBS Fast 0 0 16 µs 53 µs
1.3 Slow 0 4.8 2,634 µs 131,585 µs

Linux Fast 0 0 16 µs 53 µs

Table 7.12: Summary of the various sub test cases for TC1. APE1 sends a total of
449 frames, while APE2 sends 373 frames.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 957 960 1,481 1,101

t1_t3_input 736 759 2141 868
t3_output 1 1 1 1
ape1_con 2,649 2,645 3,463 2,649

APE2 t2_input 1,394 1,392 1,394 1,394
t2_t4_input 979 1,267 1,046 1,302
t4_output 1 1 1 1
ape2_con 1,464 1,297 1,498 1,335

Table 7.13: Buffer backlog for case study 1 with the slow processors.

The CBS algorithm did however result in an overall larger number of total frame
losses for the system that was designed based on the average resource requirements.

From table 7.13 it is seen how the temporal protection influences the maximum buffer
backlog for the APE1 stream, which in all of the test cases has a tendency to have
the highest priority, and therefore lower buffer size requirements.

It is also clear from the maximum buffer backlog in ape1_con, that the tasks process-
ing the APE1 stream have the highest priority in FP, EDF and the Linux schedulers,
since the backlog is close to the initial buffering of approximate 2,640 tokens. While
the backlog in the ape2_con is much higher than the initial buffering of approximate
600 tokens.

Table 7.14 shows how the system with the fast processing elements is over designed,
since there the buffer backlog is very low. Further the backlog in the two consumer
buffers are very close to the initial buffering.

71

Chapter 7. Case studies

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 2 2 2 2

t1_t3_input 2 2 2 2
t3_output 1 1 1 1
ape1_con 2,648 2,648 2,648 2,648

APE2 t2_input 2 2 2 2
t2_t4_input 2 2 2 2
t4_output 1 1 1 1
ape2_con 603 603 603 603

Table 7.14: Buffer backlog for case study 1 with the fast processing elements.

72

7.4. Two processing elements

7.4.2 Case study 2 - GUI task

This test bench has four semi periodic tasks and one aperiodic task distributed over
two processing elements. The five tasks corresponds to two MPEG decoders and
one GUI task. This test case uses the same two semi periodic tasks as described
in section 7.3. A fifth task is added to the test bench which processes an aperiodic
stream APE3. The APE3 stream is not a continuous media stream as opposed to
APE1 and APE2. The fifth task is assigned to Pe1.

The execution times for each of the aperiodic tasks are based on the following:

APE1 flwr_080.m2v

APE2 high_25fps_320x480.m2v

APE3 GUI (Random periods manually generated)

7.4.2.1 Test bench

Figure 7.2: Test bench for Test case 2 - GUI task.

The token generator trace files are:
APE1: TC2_ape1_input.tra
APE2: TC2_ape2_input.tra
APE3: TC2_ape3_input.tra
The values for APE1 and APE2 are stored in picoseconds, while the values for APE3

are stored in µs.

The execution times for each task are stored in the traces as specified in table 7.15.
The trace information specifies the instruction counts measured using SimpleScalar
as described in chapter 6.

The instruction counts for tasks 1-4 use the multiplier factors given in table 7.3,
while task 5 uses the default multiplier of 1, leading to no scaling.

73

Chapter 7. Case studies

Task File name column
1 TC2_ape1_0_exect.tra 2
2 TC2_ape2_0_exect.tra 2
3 TC2_ape1_1_exect.tra 2
4 TC2_ape2_1_exect.tra 2
5 TC2_ape3_exect.tra 1

Table 7.15: Traces specifying the instruction counts for each of the five tasks in TC2.

The APE3 stream contains bursts of data with high processor cycle counts. The total
processor cycle count for APE3 during the 15 seconds is 216,164,500. On average
the processor must be at least 14.4 MHz in order to service the stream within the 15
seconds. Figure H.121 in the appendices shows a histogram of the processor cycles
required for each task request. It is apparent that most of the request only require
few cycles, while there are some which require up to 40M cycles.

The APE3 streams performs 58 request during the 15 seconds, which results in an
average processor cycle count of 3,726,974. The average execution time of APE3

within the 15 seconds is then 12,851 µs and the average period is 214,874 µs.

The processor speed of Pe1 is increased from 270 MHz to 290 MHz in order to
accommodate task 5, without having an under designed system.

All the tests simulate 15 seconds of processing, which is equivalent to the length of
the videos the execution time traces are based on. This leads to the APE1 outputting
449 frames and APE2 outputting 373 frames.

The plots of the buffer backlog and the response time delays, which are referred to
in this section are found in the appendices H.3 starting at page 146.

7.4.2.2 TC 2.0 - FP

The GUI task (APE3) is given the highest priority, followed by APE1 and APE2

with the lowest priority. The reason for this is that the task is not a continuous
media stream, and the task will therefore be idle much of the time. Further the GUI
must react instantly in order not to annoy the user, even though it has a negative
impact on the playback of the two video streams.

Slow processing elements It is clear from the plot of the buffer backlog in figure
H.19 that the high intra variability in task 5 has a negative influence on the tasks
processing the two streams APE1 and APE2, due to the large fluctuations in the
backlog.

The response time delay plot in figure H.20 further show how the task processing the
APE3 stream influence the the tasks processing the streams APE1 and APE2. The
APE3 stream does however also have a negative impact on the tokens belonging to
it self, since they also have some delays.

The APE1 stream lost 8 frames, while the APE2 lost 28 frames.

74

7.4. Two processing elements

Fast processing elements The buffer backlog in figure H.21 shows that the sys-
tem is for the most time sufficiently fast for processing the three streams, but the
two display buffers are at times below the initial buffering, which is caused by burst
from the APE3 stream.

The burstiness of APE3 is more visible in the response time delay plot in figure H.22,
where the delay for the most time is low, but there are some peaks where all three
streams experience large delays.

The APE1 stream lost 2 frames, while the APE2 stream lost 3 frames.

7.4.2.3 TC 2.1 - EDF

The deadlines for the five tasks are based on the periods of the tasks. Note that the
period for task five is in ms and not µs as for the four other tasks.

Task Deadline
1 25 µs
2 132 µs
3 25 µs
4 133 µs
5 215 ms

Table 7.16: Deadlines for various tasks in test case 2.1 that uses the EDF scheduling
scheme.

Slow processing elements The EDF scheduling algorithm does also create large
fluctuations in the buffer backlog, which are caused by the APE3 stream.

The large deadlines for the APE3 stream tasks has the impact that the response
time delay for the stream is much higher than was the case in the FP scheduling
algorithm, since the APE1 and APE2 tasks will in most cases have a higher priority.

The APE1 stream lost 4 frames, while the APE2 stream lost 16 frames.

Fast processing elements Both the buffer backlog and the response time delay
plots are very similar for the EDF and the FP.

2 frames was lost for the APE1 stream, while the APE2 stream lost 3 frames.

7.4.2.4 TC 2.2 - EDF+CBS

The total utilization factor for Pe1 is 1, while it for Pe2 is 0.99. The CBS parameters
for task 5, were found in case story 4. The CBS parameters that are used for this
test case are given in table 7.17.

75

Chapter 7. Case studies

Parameter Tasks 1 Tasks 2 Task 3 Task 4 Task 5
Budget 15 µs 49 µs 16 µs 50 µs 12 µs
Period 26 µs 134 µs 26 µs 133 µs 215 µs
Utilization 0.58 0.37 0.62 0.38 0.06

Table 7.17: This table contains the CBS parameters for each of the tasks that are in
the test bench for TC2.2. Note that the utilization factors in the table are rounded down
to two decimals and will therefore not sum as specified.

Slow processing elements The true power of CBS in terms of temporal protec-
tion is seen in the plots of the buffer backlog and the response time delays in figures
H.27 and H.28, where the backlog in the APE1 stream display buffer is most of the
time at the initial buffering level. The backlog is reduces due to the intra variability
of the APE1 stream itself. Likewise the buffer backlog of the APE2 stream is more
constant compared to the two previous test cases using FP and EDF scheduling
algorithms.

The APE1 stream lost 0 frames, while the APE2 stream lost 8 frames.

Fast processing elements The CBS algorithm ensures that the task for the
APE3 does not steal processing time from the tasks for the APE1 and APE2 streams.
This is seen in figure H.29, where the backlog in the display buffers are similar to
the initial buffering. Further figure H.30 shows that the response time delays for the
APE1 and APE2 streams are low, while they are somewhat higher for the APE3

stream. This is caused by the APE3 having some tokens that require long compu-
tation time, and therefore not able to complete within the budget of the CBS that
the APE3 task is assigned.

7.4.2.5 TC 2.3 - Linux

The Linux resources have been initialized with time quanta for the nice level 0 of 1
ms, nice level 99 of 200 µs and the nice level 139 of 5 µs. This leads to the four tasks
being assigned the time slots given in table 7.18.

Task Nice level Time quantum
1 120 102.5 µs
2 130 53.8 µs
3 120 102.5 µs
4 130 53.8 µs
5 110 151.3 µs

Table 7.18: The nice level and the time quanta that are assigned the tasks in the Linux
scheduler for case study 2.

Slow processing elements The buffer backlog in figure H.31 shows how the tasks
for the APE1 stream are serviced sufficiently often even though task 5 has a higher

76

7.4. Two processing elements

priority. This is caused by the fairness of the Linux O(1) algorithm. The time
slots assigned for the APE1 stream tasks are 102.5 µs, which is much larger than
the average execution time of each token in the stream. The tasks for the APE2

stream are however only assigned timeslots of 53.8 µs, which does cover the average
execution time, but will in many cases lead to the tasks not completing within the
time slot. This leads to the APE1 display buffer having a nice buffer backlog, which
most of the time is similar to the initial buffering. The APE2 stream does however
not get sufficient time to execute especially in the beginning and at the end of the
simulation.

The response time delay for the APE2 stream tokens are very high compared to
those for the APE1. This is caused by the time slots being too small for the APE2

stream tasks, and the assigned priorities.

No frames were lost for the APE1 stream, while the APE2 stream lost 27 frames.

Fast processing elements It is apparent from the buffer backlog in figure H.33,
that the time slots for the APE2 stream tasks are sufficiently large in this test since
the backlog is similar to the initial buffering.

The response time delays for the APE1 and APE2 streams are significantly reduced,
which again is caused by the tasks completing within the time slots that they are
assigned. The response time delay for the APE3 stream is also significantly lower, but
the time slots are not large enough to accommodate some of the resource demanding
request, which lead to high response time delays.

No frames were lost for either of the APE1 and APE2 streams.

7.4.2.6 Summary

TC Speed Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2 APE3

2.0 Slow 1.8 7.5 17,150 µs 769,788 µs 33,996 µs
FP Fast 0.4 0.7 524 µs 1,164 µs 10,797 µs
2.1 Slow 1.3 0.4 11,203 µs 339,511 µs 1,088,612 µs
EDF Fast 0.4 0.6 478 µs 1,055 µs 13,872 µs
2.2 Slow 0 2.1 2,275 µs 87,035 µs 1,212,623 µs
CBS Fast 0 0 16 µs 53 µs 15,946 µs
2.3 Slow 0 7.2 1,903 µs 381,169 µs 230,640 µs

Linux Fast 0 0 19 µs 58 µs 15,908 µs

Table 7.19: Summary of the various sub test cases for case study 2. APE1 consist of
449 frames, while APE2 consist of 373 frames.

The EDF scheduling scheme had the least frame loss, closely followed by the CBS
algorithm. The response times are however relative high for both APE2 and APE3

for the EDF, this is caused by the fact that the deadlines of the tasks processing

77

Chapter 7. Case studies

these streams are larger than for the tasks processing the APE1 stream. The re-
sponse times for both the EDF and CBS scheduling algorithms are however very
high compared to both the FP and Linux scheduling.

For the fast processors there are some few frame losses for the FP and EDF scheduling
algorithms, while the CBS and Linux scheduling algorithms have no frame losses at
all. Further the response times are lowest for the CBS and Linux scheduling, which
is caused by the fairness built into each of the two algorithms.

The average response time for theAPE3 stream of 1.2 seconds using the CBS schedul-
ing algorithm seems a bit high. This could be decreased by assigning a greater band-
width for task five on the cost of less bandwidth for the other tasks. Overall the
Linux scheduling algorithm seems to be a fairly good choice for both the slow and
the fast case, even though the frame loss is quite high using the slow processing ele-
ments. But the low over all response time is a critical factor for the APE3 stream,
and this is fairly low.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 10,318 5,211 864 809

t1_t3_input 5,833 2,890 680 652
t3_output 1 1 1 1
ape1_con 11,476 6,389 2,641 2,642

APE2 t2_input 5,234 2,439 468 3,879
t2_t4_input 6,813 3,734 875 3,245
t4_output 1 1 1 1
ape2_con 5,534 3,589 851 2,520

APE3 t5_input 5 19 20 7
t5_output 1 1 1 1

Table 7.20: Buffer backlog for case study 2 with the slow processors.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 1,842 1,841 9 21

t1_t3_input 1,441 1,438 5 17
t3_output 1 1 1 1
ape1_con 2,828 2,835 2,642 2,642

APE2 t2_input 432 432 3 6
t2_t4_input 610 610 2 5
t4_output 1 1 1 1
ape2_con 741 741 603 603

APE3 t5_input 5 5 5 5
t5_output 1 1 1 1

Table 7.21: Buffer backlog for case study 2 with the fast processors.

The buffer requirements are very high for both FP and EDF both using the slow
and the fast processing elements. The lowest buffer sizes requirements are seen for

78

7.4. Two processing elements

the CBS scheduling algorithm, especially for the slow processing elements, while the
requirements for the CBS and Linux scheduling algorithms are more or less the same
for the fast processing elements.

79

Chapter 7. Case studies

7.4.3 Case study 3 - Input with jitter

The purpose of this test case is to have jitter on the input in order to simulate the
MPEG videos streamed over a network connection as Ethernet.

The figures containing the buffer backlog and response time delays that are referred
to in this section are in the appendices section H.4 and start on page 154.

7.4.3.1 Test bench

The test bench is similar to the one in test case 1, where there are two MPEG video
streams running on two processing elements. The only difference is that there is
jitter on the input, which is set as approximate ±40% of the period. Table 7.22
summarizes the input trace files used in the following test cases.

Stream File name Period Jitter
APE1 TC3_ape1_input.tra 25.252 µs 10 µs
APE2 TC3_ape2_input.tra 133.332 µs 60 µs

Table 7.22: Input trace file and the period and jitter on the token generators.

7.4.3.2 TC 3.0 - FP

The tasks processing the APE1 stream have the highest priorities, and the tasks
processing the APE2 stream have the lowest priorities, similar to case study 1.

Slow processing elements Both the buffer backlog and the response time delay
graphs in figures H.35 and H.36 are very similar to the graphs found in TC1. The
APE1 stream is favoured over the APE2 stream, since the display buffer for the
APE1 stream is most of the time above the initial buffer. Further the response time
delays for APE1 are constantly lower than those for APE2.

No frames were lost for the APE1 stream, while the APE2 stream lost 17 frames.

Fast processing elements The buffer backlog and response time delay graphs in
the figures H.37 and H.38 show an over designed system, since the buffer backlog in
the display buffers are constantly above the initial buffering, and the backlog in the
remaining buffers are negligible. Further the response time delays are very low, and
even non existent much of the time for the APE1 stream.

There are no frame losses for any of the streams.

7.4.3.3 TC 3.1 - EDF

The deadlines used in this test are the same as for case study 1 ad are given in table
7.9.

80

7.4. Two processing elements

Slow processing elements The buffer backlog and response time delays given in
figures H.39 and H.40 are similar to those found using the FP scheduling algorithm.
Again this is caused by the APE1 tasks have the lowest deadlines, thereby getting
the highest priority.

The APE1 stream did not lose any frames, while the APE2 stream lost 18 frames.

Fast processing elements The buffer backlog and response time delays again
shows an over designed system, where the backlog is above the initial buffering, and
the response time delays are low. The buffer backlog and the response time delay
graphs are found in figure H.41 and H.42 respectively.

No frames were lost for either of the two streams.

7.4.3.4 TC 3.2 - EDF+CBS

The budget and period for each of the CBSs are the same as used in case study 1,
and are found in table 7.10.

Slow processing elements The buffer backlog has very large fluctuations similar
to those found in case study 1. These are caused by fairness of the CBS algorithm
and therefore the tasks do not always complete within their corresponding CBSs
budget. The response time delays for the APE2 stream are at times also lower than
for the APE1 stream.

The APE1 stream lost 8 frames, while the APE2 lost 10 frames, which again shows
how the fairness ensures that the streams with high intra variability are punished
instead of potentially stealing processing time from another task.

Fast processing elements Again the buffer backlog and response time delays
show an over designed system. The delays for the APE1 stream are however greater
than seen in the EDF and FP scheduling algorithms, which is caused by the APE1

tasks not always completing within the CBS budgets.

There are not frame losses for either of the streams.

7.4.3.5 TC 3.3 - Linux

The priorities and time slots are for this test similar to those in case study 1, and
can be found in table 7.11.

Slow processing elements The buffer backlog and response time delays are very
similar to those found in case study 1, where the APE1 stream is favoured over the
APE2 stream, which is caused by the tasks processing the APE1 stream having the
highest priorities.

There are no frame losses for the APE1 stream, and 17 frame losses for the APE2

stream.

81

Chapter 7. Case studies

Fast processing elements Not surprisingly the buffer backlog and the response
time delay graphs show an over designed system in figures H.49 and H.50.

No frame losses are registered for either of the streams during the simulation.

7.4.3.6 Summary

The jitter has very little effect on the system in terms of frame losses. Further the
buffer backlog and response time graphs are very similar to those found in case study
1, where there was no jitter on the input.

TC Speed Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2

2.0 Slow 0 4.6 2,479 µs 114,064 µs
FP Fast 0 0 16 µs 52 µs
2.1 Slow 0 4.8 2,713 µs 131,289 µs
EDF Fast 0 0 16 µs 52 µs
2.2 Slow 1.8 2.7 24,700 µs 67,360 µs
CBS Fast 0 0 16 µs 52 µs
2.3 Slow 0 4.6 2,881 µs 132,320 µs

Linux Fast 0 0 16 µs 52 µs

Table 7.23: Summary of the various sub test cases for case study 3. APE1 consist of
449 frames, while APE2 consist of 373 frames.

Both the frame losses registered in this test and the average response times are very
similar to those found in case study 1. This leads to the conclusion that jitter of
±40% only has a slight influence the the performance of the system.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 957 960 1,791 1,101

t1_t3_input 736 759 2,141 868
t3_output 1 1 1 1
ape1_con 2,649 2,646 3,100 2,648

APE2 t2_input 1,394 1,394 1,394 1,394
t2_t4_input 980 1,267 944 1392
t4_output 1 1 1 1
ape2_con 1,465 1,298 1,397 1,337

Table 7.24: Buffer backlog for case study 3 with the slow processors.

Even the maximum buffer backlogs are almost identical to those found in case study
1. The CBS scheduling algorithm has the biggest differences in the size of the buffer
backlog of 10% to 20%. This difference is however only for the initial input buffers
and the display buffers.

82

7.4. Two processing elements

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 2 2 2 2

t1_t3_input 2 2 2 2
t3_output 1 1 1 1
ape1_con 2,648 2,648 2,648 2648

APE2 t2_input 2 2 2 2
t2_t4_input 2 2 2 2
t4_output 1 1 1 1
ape2_con 603 603 603 603

Table 7.25: Buffer backlog for case study 3 with the fast processors.

83

Chapter 7. Case studies

7.4.4 Case study 4 - Varying CBS parameters

This test is based on the set-up from case study 2 with two periodic inputs, which
are continuous media streams. Further an aperiodic task, which represents a GUI
task. This task has been assigned to the first processing element.

The third aperiodic stream APE3 needs on average 14.4 MHz of processing power,
therefore Pe1 is upgraded to a 290 MHz processor, in order to be able to service the
tasks without encountering a buffer overflow.

TC4.0 TC4.1 TC4.2 TC4.3 TC4.4
Task Parameter

Budget 15 µs 30 µs 8 µs 15 ns 15 µs
1 Period 26 µs 51 µs 14 µs 26 ns 25 µs

Utilization 0.58 0.59 0.57 0.58 0.60
Budget 49 µs 98 µs 25 µs 49 ns 10 µs

2 Period 134 µs 269 µs 68 µs 134 ns 25 µs
Utilization 0.37 0.37 0.37 0.37 0.40
Budget 16 µs 31 µs 8 µs 16 ns 15 µs

3 Period 26 µs 50 µs 13 µs 26 ns 25 µs
Utilization 0.62 0.62 0.62 0.62 0.60
Budget 50 µs 99 µs 25 µs 50 ns 10 µs

4 Period 133 µs 267 µs 67 µs 133 ns 25 µs
Utilization 0.38 0.37 0.37 0.38 0.40
Budget 12 ms 20 ms 6.5 ms 13 µs 1.5 µs

5 Period 215 ms 432 ms 107.5 ms 215 µs 25 µs
Utilization 0.06 0.05 0.06 0.06 0.06

Table 7.26: This table contains the various parameters for budget and period, which
were tested in order to find an optimal set-up in case study 4. Note that the time units
for task 5 differ from those for tasks 1-4. Further note that the time units in TC 4.3
are in ns instead of µs for tasks 1-4, as the other tests. Not all the utilization factors
in the table adds up to the total, due to rounding of 2 decimals.

Processing Total Utilization
element TC4.0 TC4.1 TC4.2 TC4.3 TC4.4
Pe1 1.00 1.00 0.99 1.00 1.00
Pe2 0.99 0.99 0.99 0.99 1.00

Table 7.27: Total bandwidth utilization factor of the processing elements for each of
the test cases.

Table 7.26 summarizes the CBS parameters, budget and period for each of the test
cases. In order for the five tasks to be schedulable, the total utilization factor of the
tasks in each test case must be less than or equal to one. Table 7.27 contains the
summed utilization factors of the tasks.

TC4.0 In this test the budget and period are set to the average execution time and
the average period respectively, as proposed by Buttazzo et al. in [BLAC05].

84

7.4. Two processing elements

TC4.1 The budget and the period for each CBS have been doubled compared to
TC4.0.

TC4.2 The budget and the period have for each CBS been halved campared to
TC4.0.

TC4.3 The budget and the period have been divided by 1000 in each test.

TC4.4 The period for each of the CBSs has been set to 25 µs. The budget for each
of the CBSs has been updated accordingly, in order for the total utilization
factor to remain less than or equal to one, making the tasks schedulable.

All of the test cases in this section have only been performed using the slow processing
elements, since the fast processing elements have only shown a marginal difference
in the previous case studies.

7.4.4.1 TC4.0

The CBS parameters budget and server period are in this test set equal to the
average execution time and the period of each stream. For the APE3 stream which
is aperiodic the average execution time and period from section 7.4.2 is used.

The buffer backlog and the response time delay plots show that the APE1 stream
tasks have difficulties in the beginning of executing the tasks within the given budget.
The APE1 stream is however back at the initial buffering level after a quarter way
through the simulation time. The APE2 stream tasks are regularly not completing
within the deadlines throughout the whole simulation.

The APE1 stream lost 1 frame, while the APE1 stream lost 28 frames.

7.4.4.2 TC4.1

The CBS parameters, budget and period, are in this test doubled compared to the
average values used in the previous test.

Both the APE1 and the APE2 stream tasks are not completing within their dead-
lines, which leads to frame losses, and some large fluctuations in the buffers. This
is seen in figure H.53. The response time delays are however lower for the APE2

stream, which indicates that there is a greater sharing between the stream tasks.

The APE1 stream lost 16 frames, and the APE2 lost 23 frames.

7.4.4.3 TC4.2

In this test the budget and the period of each of the CBSs are halved.

This leads to high fluctuations in the buffer backlog as seen in figure H.55. The
APE1 stream tasks are do however perform better than the APE2 stream tasks.

3 frames were lost for the APE1 stream, while the APE1 stream lost 12 frames.

85

Chapter 7. Case studies

7.4.4.4 TC4.3

The budget and period have in this test been divided by 1000. This test will see how
well the scheduling performs if the CBSs forces the tasks to scheduled and unsched-
uled often. Note however that the scheduling latency is not simulated, therefore the
response times would in practice be higher.

The APE1 stream tasks are much more efficient, since the backlog for the APE1

stream is most of the time at the initial buffering level. The APE2 stream tasks also
seem to be meeting more deadlines. The buffer backlog is shown in figure H.57.

The response time delay graph in figure H.58 shows how the APE1 stream tasks are
favoured over the APE2 stream tasks. The response times for the APE3 stream are
in most cases above both the APE1 and the APE2 streams.

As indicated in the buffer backlog graph, the APE1 and APE2 streams have ex-
perienced a very large improvement, since there are no frame losses for the APE1

stream, and only 8 frame losses for the APE2 stream.

7.4.4.5 TC4.4

In this test case the periods are set to 25 µs for all the tasks, and the budgets are
updated accordingly.

In this test there are high fluctuations in all the buffers in the test bench. The backlog
in the APE1 display buffer is however much of the time at the initial buffering level.
The backlog in the APE2 display buffer is not as constant as the APE1 display
buffer, but seems to be most of the time large enough for not loosing frames.

The response time delays in figure H.60 shows that the APE1 stream tasks are still
favoured over the APE2 stream tasks.

The APE1 stream lost 5 frames, while the APE2 stream lost 9 frame.

7.4.4.6 Summary

The five tests performed in this case study show that the CBS parameters have a
large impact on the performance of the overall system, when the system is under
more or less constant load. Using the average execution time and average period of a
task respectively as the budget and period of a CBS server, does not necessarily lead
to the optimal performance. In these five tests the optimal performance in terms of
frame losses was found to be TC 4.3, where the budget and period was divided by
a factor of 1000. The frame losses and average response times of the five tasks are
given in table 7.28

The maximum buffer backlogs in the tests further showed that dividing the budget
and period by a factor also had an improvement in terms of the required buffer sizes

86

7.4. Two processing elements

TC Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2 APE3

4.0 0.2 7.5 6,451 µs 166,036 µs 1,076,465 µs
4.1 3.6 6.2 26,144 µs 106,748 µs 1,061,776 µs
4.2 0.7 3.2 12,084 µs 88,249 µs 1,231,334 µs
4.3 0 2.1 2,364 µs 87,342 µs 1,212,623 µs
4.4 1.1 2.4 12,359 µs 78,724 µs 1,211,215 µs

Table 7.28: Summary of the various sub test cases for case study 4. APE1 sends a
total of 449 frames, while APE2 sends 373 frames.

Buffer backlog
Stream Buffer name

TC4.0 TC4.1 TC4.2 TC4.3 TC4.4
APE1 t1_input 1,214 1,214 1,506 907 1,971

t1_t3_input 1,404 4,052 1,488 716 1,621
t3_output 1 1 1 1 1
ape1_con 2,726 5,260 2,836 2,649 3,081

APE2 t2_input 4,256 4,313 1,583 458 351
t2_t4_input 2,948 2,660 924 893 1,126
t4_output 1 1 1 1 1
ape2_con 996 2,545 1,107 868 1,424

APE3 t5_input 20 20 20 20 20
t5_output 1 1 1 1 1

Table 7.29: Buffer backlog for case study 4 with the slow processors.

in the system. The optimal result for the five test was once more found by dividing
the budget and period by 1000. The maximum backlog for the buffers in the five
tests are summarized in table 7.29.

The results found in this case study does point out that the optimal CBS parameters
are not necessarily the average execution time and period of a task, but rather some
smaller values. The scheduling latency has however not been simulated, therefore
there is a limit of how large a value the parameters can be divided by. Further the
parameters in these five test were based on the average execution time and period.
This might not be the optimal choice since it can lead to a task receiving a very
small utilization factor, as is the case for the APE3 stream task.

87

Chapter 7. Case studies

7.5 One processing element

The section contains similar set-ups as in case studies 1-4, except for the system only
containing one processing element, where all the tasks are scheduled onto.

The test cases are performed both with a slow and a fast processing element. The
slow processing element has sufficient processing power to accommodate the average
execution times, while the fast processing element is fast enough to process the
WCET for all the tasks at once.

Processor speed Pe1
Slow 1.12 GHz
Fast 1.5 GHz

Table 7.30: Processor speed used in the case studies with one processing element.

Table 7.31 shows the actual min, avg and max execution times in µs. These times
are based on the cycle counts given in table 7.2, the cycle multipliers given in table
7.3 and the processor speeds given in table 7.30.

Task Slow processor Fast processor Period
min avg max min avg max

1 1.0 µs 3.8 µs 23.0 µs 0.8 µs 2.8 µs 17.2 µs 25 µs
2 2.1 µs 11.9 µs 36.8 µs 1.6 µs 8.9 µs 27.4 µs 133 µs
3 13.5 µs 14.5 µs 14.7 µs 10.1 µs 10.8 µs 11.0 µs 25 µs
4 23.8 µs 25.0 µs 27.9 µs 17.8 µs 18.7 µs 20.8 µs 133 µs

Table 7.31: Actual execution times given as min, avg and max for both the slow and
the fast processor. Note that the period column specifies how often a token is generated,
and it is this time that the task should complete within.

88

7.5. One processing element

7.5.1 Case study 5 - Periodic input

This case study has four tasks which process two MPEG streams, and are scheduled
onto one processing element.

The figures containing the buffer backlog and response time delays are located in the
appendices H.6 starting at page 167.

7.5.1.1 Test bench

Figure 7.3 shows the test bench with the two input streams and four tasks, two for
each stream. The periods of the streams are the same as in case study 1, see section
7.4.1.1 for more details on the trace files.

Figure 7.3: Test bench for TC5, where all the tasks are scheduled onto one processing
element.

Both the input trace files and the execution time trace files from case study 1 are
used in this case study.

7.5.1.2 TC5.0 - FP

Table 7.32 shows the priorities, which each of the tasks in the test bench are assigned.

Task Description Priority
1 APE1 VLD/IQ 1
2 APE2 VLD/IQ 2
3 APE1 IDCT/MP 3
4 APE2 IDCT/MP 4

Table 7.32: Priorities of the four tasks for the Fixed-Priority scheduling algorithm in
TC5.0. Priority 1 corresponds to the highest priority.

Slow processing element The buffer backlog graph in figure H.61 shows that the
APE1 stream tasks are scheduled very well since the backlog in the APE1 display

89

Chapter 7. Case studies

buffer is at the initial buffering level. The APE2 stream does however not perform
optimally. It is quite clear that task 4, which has the lowest priority is the cause
of this, since the buffer backlog in the intermediate buffer between task 2 and 4 is
rather large.

The response time delays in figure H.62 clearly shows how the APE1 stream tasks
are favoured over the APE2 stream tasks.

No frames were lost for stream APE1, while stream APE2 lost 29 frames.

Fast processing element The buffer backlog in figure H.63 shows an over de-
signed system, where all the tasks complete within their deadlines. Figure H.64 does
however show that the tokens are delayed, but this is not sufficient to have an impact
on the buffer backlog in the display buffers.

No frames are lost for either stream APE1 or APE2.

7.5.1.3 TC5.1 - EDF

The deadlines for each of the tasks in this test case are the same as in case study 1,
since they are based on the period of the streams. Table 7.9 on page 68 contains the
deadlines for each of the tasks in the this test case.

Slow processing element The buffer backlog is very similar to that found using
the FP scheduling algorithm, which is caused by the APE1 stream having a smaller
period than the APE1 stream. This leads to the APE1 stream tasks having a higher
priority most of the time.

The response time delay in figure H.66 also shows how the APE1 stream is favoured
over the APE2 stream.

The APE1 stream lost no frames, while the APE2 stream lost 29 frames.

Fast processing element The buffer backlog and the response time delay graphs
show a very efficient system, where the delay for the APE1 stream is almost non
existent.

No frames are lost for either of the streams.

7.5.1.4 TC5.2 - EDF+CBS

The CBS parameters for each of the four CBSs that the tasks are assigned to are
given in table 7.33.

90

7.5. One processing element

Task Bandwidth Period Utilization
1 4 µs 25 µs 0.16
2 12 µs 133 µs 0.09
3 14 µs 25 µs 0.56
4 24 µs 133 µs 0.18

Table 7.33: CBS parameters for the CBSs running on the processing element. The
total CBS utilization factor is 0.99.

Slow processing element The buffer backlog in figure H.69 shows how the bud-
gets of the APE1 stream tasks are in many cases too low, resulting in a bad perfor-
mance. The APE2 stream tasks do however seem to complete within the deadlines
sufficiently often, in order to not suffer a degradation in the QoS for the stream. The
initial input buffer for the APE1 stream has a rather large backlog, which indicates
that the problem lies with task 1.

The response time delay graph in figure H.70 also shows how the APE2 stream is
favoured over the APE1 stream.

The APE1 stream lost 11 frames, while the APE2 did not lose any frames.

Fast processing element The buffer backlog in figure H.71 shows that the tasks
all complete fast enough for the backlog in the display buffers to stay at the initial
buffering.

The response time delay further shows how the fairness ensures that the streams are
serviced more or less equally.

No frames are lost for either of the two streams.

7.5.1.5 TC5.3 - Linux

The priorities that each of the tasks are assigned are given in table 7.34. The tasks
processing the APE1 stream are given higher priorities than the other two tasks.

Task Nice level Time quantum
1 120 102.5 µs
2 130 53.8 µs
3 121 97.6 µs
4 131 48.9 µs

Table 7.34: The nice level and the time quanta that are assigned the tasks in the Linux
scheduler.

Slow processing element The buffer backlog in figure H.73 is more or less iden-
tical to that found in the FP scheduling. This is caused by time slots being larger

91

Chapter 7. Case studies

than the actual execution times, thereby ending with a system that basically is using
a fixed-priority based approach.

The response time delay graph also shows that the APE1 stream is favoured over
the APE2 stream.

The APE1 stream did not lose any frames, while the APE2 stream lost 29 frames.

Fast processing element The buffer backlog in this test case is constantly above
the initial buffering level for both of the streams, as seen in figure H.75. The response
time delays seen in figure H.76 shows how both of the APE1 stream tasks have higher
priority than the APE2 stream tasks, since there is almost no delay for the APE1

stream.

None of the streams lost any frames.

7.5.1.6 Summary

TC Speed Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2

5.0 Slow 0 7.8 87 µs 78,108 µs
FP Fast 0 0 15 µs 62 µs
5.1 Slow 0 7.8 159 µs 77,734 µs
EDF Fast 0 0 14 µs 62 µs
5.2 Slow 2.4 0 20,311 µs 43 µs
CBS Fast 0 0 20 µs 30 µs
5.3 Slow 0 7.8 19 µs 78,108 µs

Linux Fast 0 0 14 µs 62 µs

Table 7.35: Summary of the various sub test cases for case study 5. APE1 consist of
449 frames, while APE2 consist of 373 frames.

The CBS scheduling algorithm is the most efficient algorithm in this test case, both
in terms of frame loss and the total average response time. The results from FP, EDF
and Linux are very similar due to the APE1 stream having a shorter period than
the APE2 stream, which leads to the APE1 stream tasks having shorter deadlines,
and therefore in most cases having a higher priority.

The fairness of the Linux scheduler did not show, since all the tasks were completed
well within the time slots. Only the CBS scheduler could provide the needed fairness.

The CBS parameters were not optimal for the slow processing element, since the
buffer backlog was very high in the initial input buffer of the APE1 stream. The
buffer backlogs for the slow processing element is shown in figure 7.36.

The maximum buffer backlogs for the fast processing element are shown in table
7.37. There is only a minimal difference between the four scheduling algorithms.

92

7.5. One processing element

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 1 3 2,138 1

t1_t3_input 133 135 1 7
t3_output 1 1 1 1
ape1_con 2,648 2,646 2,642 2,648

APE2 t2_input 1 2 1 184
t2_t4_input 1,537 1,533 1 1,537
t4_output 1 1 1 1
ape2_con 1,008 1,008 603 1,008

Table 7.36: Buffer backlog for case study 5 with the slow processors.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 1 1 4 1

t1_t3_input 3 1 1 2
t3_output 1 1 1 1
ape1_con 2,648 2,648 2,648 2,648

APE2 t2_input 1 2 1 2
t2_t4_input 3 2 1 3
t4_output 1 1 1 1
ape2_con 603 603 603 603

Table 7.37: Maximum buffer backlog for case study 5 with the fast processors.

93

Chapter 7. Case studies

7.5.2 Case study 6 - GUI task

7.5.2.1 Test bench

In section 7.4.2 the minimum processor speed for the APE3 stream was found to be
14.4 MHz. The processor speed, for the slow processor test is therefore increased to
1.14 GHz in order to avoid buffer overflows.

Figure 7.4: Test bench for case study 6, where the GUI task has been added. All five
tasks are scheduled onto one processing element.

The input trace files and the execution time trace files are the same as in case study
2, see section 7.4.2.1 for more details on the trace files.

The buffer backlog and response time delay graphs referred to in the section are
located in the appendices H.7 starting at page 175.

7.5.2.2 TC6.0 - FP

Table 7.38 shows the priorities, which each of the tasks in the test bench are assigned.

Task Description Priority
1 APE1 VLD/IQ 2
2 APE2 VLD/IQ 3
3 APE1 IDCT/MP 4
4 APE2 IDCT/MP 5
5 APE3 GUI 1

Table 7.38: Priorities of the five tasks for the Fixed-Priority scheduling algorithm in
TC6.0. Priority 1 corresponds to the highest priority.

Slow processing element From the buffer backlog in figure H.77 we see how
task 5 that is processing the APE3 stream is preempting the other tasks processing

94

7.5. One processing element

the streams APE1 and APE2. The APE3 stream has some very processing heavy
request once in a while, which have a clear impact on the two other stream. The
APE2 stream does however suffer the most, since the tasks processing this stream
have lower priorities.

The response time delay graph in figure H.78 shows how the APE3 stream task has
the highest priority, and therefore have fairly low delays.

The APE1 stream lost 3 frames, while the APE2 stream lost 9 frames.

Fast processing element The buffer backlog graph in figure H.79 shows a system
that is capable of servicing the APE1 and APE2 stream sufficiently even for the
WCET. The processing heavy request from the APE3 stream does however have a
negative impact on the APE1 and APE2 stream.

The response time delays in figure H.80 clearly shows how the APE3 stream has
the highest priority, followed by the APE1, while the APE2 stream has the lowest
priority.

The APE1 stream did not lose any frames, while the APE2 stream lost 3 frames.

7.5.2.3 TC6.1 - EDF

The deadlines for each of the tasks are set corresponding to their periods as in case
study 2. Table 7.16 on page 75 contains the deadlines.

Slow processing element The buffer backlog in figure H.81 shows the effect of the
fifth task not meeting the deadlines, since the display buffers for both the APE1 and
the APE2 streams at times only are read from. This is caused by the implementation
of the EDF scheduler, where the deadline of a task is set to 0 seconds, thereby giving
it exclusive rights to the processor until it terminates.

The response time delay in figure H.86 shows how the deadlines of the APE1 stream
tasks are shorter, and therefore the scheduler favours the APE1 stream tasks.

The APE1 stream lost 1 frame, while the APE2 stream lost 6 frames.

Fast processing element The buffer backlog and the response time delays in
the figures H.83 and H.84 respectively, show a system that is not fully capable of
servicing the large variability in the APE3 stream. But it does however regain fast.
The response time delays for the APE1 are very low, and mostly above 0 when the
APE3 stream sends the processing heavy tokens.

The APE1 stream did not lose any frames, while the APE2 stream lost 2 frames.

95

Chapter 7. Case studies

Parameter Tasks 1 Tasks 2 Task 3 Task 4 Task 5
Budget 4 µs 12 µs 15 µs 25 µs 33 ms
Period 26 µs 135 µs 27 µs 135 µs 215 ms
Utilization 0.15 0.09 0.56 0.19 0.02

Table 7.39: This table contains the CBS parameters for each of the tasks that are in
the test bench. Note that the utilization factors in the table are rounded down to two
decimals.

7.5.2.4 TC6.2 - EDF+CBS

The total utilization factor is 1.14 for the five tasks. The CBS parameters were found
in case study 8.

Slow processing element From the buffer backlog in figure H.85 we see that the
CBS parameters are sufficient in order to ensure that the APE2 stream tasks are
serviced perfectly. The APE1 stream tasks do however have some problems when
the APE3 has some processing intensive requests. This is both caused by the APE3

task having a rather large budget, and the APE1 having a small budget.

The response time delay graph in figure H.86 also shows how the APE2 stream tasks
are serviced quite well, while the APE1 stream tasks are delayed quite often.

The APE1 stream lost 5 frames, while the APE2 did not lose any frames.

Fast processing element The buffer backlog in figure H.87 shows how both the
APE1 and APE2 stream tasks are serviced very well. The backlog in the APE1

display buffer seldom falls below the initial buffering.

The response time delay graph in figure H.88 shows how the temporal protection
ensures that the APE1 and APE2 stream tasks are serviced more or less equally,
which is caused by the tasks completing within the given budgets.

Neither the APE1 or APE2 streams lost any frames.

7.5.2.5 TC6.3 - Linux

The task priorities and time slots are the same in this test case as in TC2.3. Table
7.18 on page 76 lists the priority and resulting time quanta for the five tasks.

Slow processing element The buffer backlog in figure H.89 shows a very nice
scheduling, where the APE1 stream tasks are favoured, but the APE2 stream tasks
are also serviced sufficiently often.

Neither stream APE1 or APE2 lost any frames.

96

7.5. One processing element

Fast processing element The buffer backlog in figure H.91 shows that the four
tasks processing the APE1 and APE2 streams are serviced perfectly. The response
time delays in figure H.92 shows that the APE1 stream tasks have the highest pri-
orities, and are in most cases serviced instantly at arrival.

7.5.2.6 Summary

TC Speed Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2 APE3

6.0 Slow 0.7 2.4 1,485 µs 142,923 µs 8,053 µs
FP Fast 0 0.8 304 µs 1,312 µs 6,030 µs
6.1 Slow 0.2 1.3 1,041 µs 46,380 µs 1,828,211 µs
EDF Fast 0 0.5 281 µs 924 µs 18,076 µs
6.2 Slow 1.1 0 37,797 µs 42 µs 15,771 µs
CBS Fast 0 0 309 µs 30 µs 12,033 µs
6.3 Slow 0 0 21 µs 8,037 µs 1,996,082 µs

Linux Fast 0 0 15 µs 70 µs 25,316 µs

Table 7.40: Summary of the various sub test cases for case study 6. APE1 consist of
449 frames, while APE2 consist of 373 frames.

The CBS and the Linux schedulers are the most promising schedulers in this test
case, when looking at the tests with the slow processing element. The CBS scheduling
has a 1.1 % loss of frames, but with very low response time for all the three streams.
The Linux scheduler had no frame losses at all, but the response time for the APE3

task i very high, at nearly 2 seconds.

Tables 7.41 and 7.42 shows that the Linux scheduling requires significantly smaller
buffers than the other three scheduling techniques. Two second response time for the
APE3 stream does however seem somewhat long compared to the 16 ms that the
CBS scheduling algorithm can deliver. So the final choice is a trade off between chip
area and responsiveness of a task. Changing the priorities in the Linux scheduler
might reduce the response time and make this even more attractive.

97

Chapter 7. Case studies

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 1,390 1,377 3,648 16

t1_t3_input 2,733 1,800 1 18
t3_output 1 1 1 1
ape1_con 3,971 3,025 4,934 2,641

APE2 t2_input 312 305 1 148
t2_t4_input 2,632 1,410 1 273
t4_output 1 1 1 1
ape2_con 2,874 1,651 603 603

APE3 t5_input 5 5 5 25
t5_output 1 1 1 1

Table 7.41: Buffer backlog for case study 6 with the slow processors.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 1,056 1,055 1,338 14

t1_t3_input 1,305 1,301 1 15
t3_output 1 1 1 1
ape1_con 2,641 2,641 2,641 2,641

APE2 t2_input 230 231 1 6
t2_t4_input 846 495 1 7
t4_output 1 1 1 1
ape2_con 973 741 603 603

APE3 t5_input 5 5 5 5
t5_output 1 1 1 1

Table 7.42: Buffer backlog for case study 6 with the fast processors.

98

7.5. One processing element

7.5.3 Case study 7 - Input with jitter

The test bench from case study 5 is reused, but in this test there is jitter on the
input token generators. Table 7.22 from case study 3 contain the parameters for the
two input generators.

7.5.3.1 TC7.0 - FP

The four tasks have the same priorities as in TC5.0, and are given in table 7.32 on
page 89.

Slow processing element The buffer backlog in figure H.93 shows how task 1,
which is processing the APE1 stream, has the highest priority since the APE1 stream
display buffer for the most time at the initial buffering level. The buffer backlog in
the APE2 stream display buffer fluctuates since the tasks processing this stream
have lower priorities.

From the response time delay graph in figure H.94 we see how the APE1 stream
tasks have higher priorities and therefore have lower response time delays.

Neither of the two streams lost any frames.

Fast processing element The buffer backlog in figure H.95 shows that the tasks
are serviced sufficiently often, since the backlog is never beneath the initial buffering
level.

The response time delay again shows that the APE1 stream tasks are favoured over
the APE2 stream tasks, since the response time delay for the APE1 stream is lowest.

No frames were lost in either of the two streams.

7.5.3.2 TC7.1 - EDF

The tasks have the same deadlines as in TC1.1 and are given in table 7.9.

Slow processing element The buffer backlog in figure H.97 shows that the APE1

stream tasks are favoured over the APE2 stream tasks. The APE2 are even serviced
worse than when using the FP scheduling algorithm. This is caused by the two
APE1 stream tasks having the highest priorities, since they have the shortest initial
deadlines, while the two tasks processing the APE2 have the lowest priorities. This
is not the case for the FP scheduling algorithm where the first tasks processing the
two streams had higher priorities than the second tasks processing the streams.

The response time delay graph in figure H.98 also shows that the APE1 stream tasks
have higher priorities than the APE2 stream tasks.

The APE1 stream did not lose any frames, while the APE2 stream lost 29 frames.

99

Chapter 7. Case studies

Fast processing element The buffer backlog in figure H.99 again simply shows
that the tasks are serviced often enough to maintain the backlog in the display buffers
at the initial buffering level.

It is clear from the response time delay graph in figure H.100 that the two tasks
processing the APE1 stream are favoured over the APE2 stream tasks, since the
delay is much lower than for the APE2 stream. There is even no delay at all for
some of the tokens in the APE1 stream.

No frames were lost for either of the streams.

7.5.3.3 TC7.2 - EDF+CBS

The CBS parameters in this test are based on the average execution time and the
period of the tasks. Table 7.33 from TC5.2 contains the parameters.

Slow processing element From the buffer backlog in figure H.101 it is clear that
the CBS parameters for the APE1 do not cover the high intra variability in the
stream, while the CBS parameters for the APE2 are sufficient to keep the backlog
in the display buffer at the initial buffering level. The graph further indicate that
the problem is concerned with task 1, since the backlog in the input buffer for the
APE1 stream fluctuates quite at bit.

The response time delay graph in figure H.102 also shows how the delay for the
APE1 stream is significantly larger than for the APE2 stream, which is caused by
the temporal protection that is provided by the CBSs.

None of the streams lost any frames, even though the APE1 stream was close.

Fast processing element The buffer backlog in figure H.103 shows how the CBS
parameters are sufficient for the four tasks to complete, since the backlog is constantly
above the initial buffering level.

The response time delay in figure H.104 shows how the temporal protection ensures
that the two tasks are more equal, since the APE1 stream also has low delays.

None of the streams lost any frames.

7.5.3.4 TC7.3 - Linux

The tasks priorities in this test case are the same as in TC5.3 and are given in table
7.34 on page 91.

100

7.5. One processing element

Slow processing element The buffer backlog in figure H.105 is very similar to
that found when using the EDF scheduling algorithm. This is caused by the time
slots being much larger than the actual processing time, therefore the fairness in the
algorithm is not seen. Further the two tasks processing the APE1 stream have the
highest priorities, as was the case in the EDF algorithm.

The response time delay graph is also very similar to the one found using the EDF
algorithm.

The APE1 stream did not lose any frames, while the APE2 stream lost 29 frames,
which is the same as for the EDF scheduling algorithm.

Fast processing element Again both the buffer backlog and the response time
delay graphs in figures H.107 and H.108 are similar to those found using the EDF
scheduling algorithm. The APE1 stream tasks are favoured over the APE2 stream
tasks, which is caused by the APE1 stream tasks having the highest priorities.

No frame were lost for either of the two streams.

7.5.3.5 Summary

TC Speed Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2

7.0 Slow 0 0 133 µs 13,487 µs
FP Fast 0 0 15 µs 62 µs
7.1 Slow 0 7.8 160 µs 77,731 µs
EDF Fast 0 0 14 µs 62 µs
7.2 Slow 2.4 0 20,311 µs 43 µs
CBS Fast 0 0 20 µs 30 µs
7.3 Slow 0 7.8 20 µs 78,104 µs

Linux Fast 0 0 14 µs 62 µs

Table 7.43: Summary of the various sub test cases for case study 7. APE1 consist of
449 frames, while APE2 consist of 373 frames.

Of the four tests the FP has actually performed best in this case study when using
the slow processing element. But the CBS might perform better if the budget and
period are altered. Further the Linux scheduling algorithm will probably also perform
equally well as the FP, if the priorities of the tasks are set in the same way as in the
FP scheduling algorithm.

It is quite clear how the EDF and Linux scheduling algorithms have very similar
results, which is caused by the deadlines in the EDF prioritising the APE1 stream
tasks higher than the APE2 stream tasks. This then results in the tasks being
prioritised in more or less the same way, except that the Linux always prioritises
task 3 over task 1, where the EDF is more random. Further the APE2 stream tasks
will also have higher priorities using the EDF, once they get near their deadlines.

101

Chapter 7. Case studies

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 2 3 2,138 2

t1_t3_input 180 135 1 7
t3_output 1 1 1 1
ape1_con 2,649 2,646 2,642 2,649

APE2 t2_input 1 2 2 184
t2_t4_input 350 1,533 1 1,537
t4_output 1 1 1 1
ape2_con 603 1,009 604 1,009

Table 7.44: Buffer backlog for case study 7 with the slow processors.

When the fast processing element is used there is no mentionable difference between
the four scheduling algorithms.

When evaluating the requirements of the buffer sizes the FP is again preferred, when
using the slow processing element, while the requirements are more or less the same
when using the fast processing element.

Buffer backlog
Stream Buffer name

FP EDF CBS Linux
APE1 t1_input 1 2 4 1

t1_t3_input 3 2 1 2
t3_output 1 1 1 1
ape1_con 2,648 2,648 2,648 2,648

APE2 t2_input 1 2 1 2
t2_t4_input 7 2 1 4
t4_output 1 1 1 1
ape2_con 603 603 603 603

Table 7.45: Buffer backlog for case study 7 with the fast processors.

102

7.5. One processing element

7.5.4 Case study 8 - Varying CBS parameters

The six tests in this case study have only been performed using the slow processing
element, since there is very little or no difference, when using the fast processing
element. This test is performed using the test bench in figure 7.4 from case study 6.
The speed of the processing element is therefore increased to 1.14 GHz, in order to
accommodate the third stream.

The average processor cycle count for the 58 task request during the 15 seconds
period is 3,726,974. With the 1.14 GHz processor this will result in an average
execution time of 3,269 µs. The CBS parameters which are tested in this case study
are based on the average execution time and the average period of the stream APE3.

TC8.0 TC8.1 TC8.2 TC8.3 TC8.4 TC8.5
Task Parameter

Budget 4 µs 8 µs 2 µs 4 ns 4 µs 4 µs
1 Period 26 µs 52 µs 13 µs 26 ns 26 µs 26 µs

Utilization 0.15 0.15 0.15 0.15 0.15 0.15
Budget 12 µs 24 µs 6 µs 12 ns 2.3 µs 12 µs

2 Period 135 µs 270 µs 67.5 µs 135 ns 26 µs 135 µs
Utilization 0.09 0.09 0.09 0.09 0.09 0.09
Budget 15 µs 30 µs 7.5 µs 15 ns 15 µs 15 µs

3 Period 27 µs 54 µs 13.5 µs 27 ns 27 µs 27 µs
Utilization 0.56 0.56 0.56 0.56 0.56 0.56
Budget 25 µs 50 µs 12.5 µs 25 ns 4.8 µs 25 µs

4 Period 135 µs 270 µs 67.5 µs 135 ns 26 µs 135 µs
Utilization 0.19 0.19 0.19 0.19 0.19 0.19
Budget 3.3 ms 6.6 ms 1.65 ms 3.3 µs 399 ns 33 ms

5 Period 215 ms 430 ms 107.5 ms 215 µs 26 µs 215 ms
Utilization 0.02 0.02 0.02 0.02 0.02 0.15

Table 7.46: This table contains the various parameters for budget and period, which
were tested in order to find an optimal set-up in case study 8. Note that the time units
for task 5 differ from those for tasks 1-4. Further note that the time units in TC 8.3
are in ns instead of µs for tasks 1-4, as the other tests. Not all the utilization factors
in the table add up to the total, due to rounding, with only 2 decimals.

The total utilization factors for all the tasks in each of the sub tests 0-4 are 1.00,
thus making the system schedulable. The utilization factor for TC8.5 is however
1.14, which technically makes the system unschedulable, but since all tasks are soft
real-time tasks and the APE3 is not a continuous media stream, this is acceptable.

7.5.4.1 TC8.0

The CBS parameters, budget and period, in this test correspond to the average
execution times and the average periods of the tasks.

The buffer backlog in figure H.109 shows how the CBS parameters are sufficient for
the APE2 stream, while the intra variability in the APE1 as usual has a negative
effect, which reduces the performance of the tasks processing the stream.

103

Chapter 7. Case studies

The response time delay in figure H.110 clearly shows how the parameters for the
APE2 stream tasks are acceptable, while the APE1 stream has large delays. The
APE3 also has some high delays, which is caused by the low utilization factor for
the task that is processing the APE3 stream.

The APE1 stream lost 9 frames, while the APE2 did not lose any frames.

7.5.4.2 TC8.1

Doubling the budget and period of the CBSs did not have any positive effect on the
buffer backlog for the APE1 display buffer. This is caused by the utilization factor
still being the same, and the increased period simply makes the APE1 stream tasks
wait for a longer time before they are granted access to the processing element again.

The response time delays are better for the APE3 stream, while they are slightly
worse for the APE1 stream, compared to TC8.0.

The frame loss for the APE1 stream is 13, while the APE2 once again did not lose
any frames.

7.5.4.3 TC8.2

Halving the budget and period of the CBSs has a positive impact on the buffer
backlog in the APE1 display buffer, while it has a negative effect on the buffer
backlog in the APE2 display buffer.

This is also seen in the response time delay in figure H.114, where the delays are low
for the APE1 stream, while they are larger for the APE2 stream.

The APE1 stream did not lose any frames, while the APE2 stream lost 29 frames.

7.5.4.4 TC8.3

In this test the budget and period of the CBSs are divided by 1000, which should
make the scheduler reschedule the tasks much more often.

The rescheduling of the task causes high fluctuations in the buffers as seen in figure
H.115. The scheduler does however have a positive effect, since it provides fairness
thereby giving all the tasks access to the processing element more often.

This is also seen in the response time delays in figure H.116. The delays are however
on average higher than before, which is caused by the fairness, where the tasks have
to wait quite often for the other tasks also gaining access to the processing element.

None of the streams lost any frames.

104

7.5. One processing element

7.5.4.5 TC8.4

All five tasks have the same period, namely 26 µs. The budgets of each of the tasks
have then been scaled in order for the utilization factors to remain the same.

As we have seen in most of the previous tests, the APE1 stream still suffers from
task 1 having too small an utilization factor, which then makes it unstable. The
APE2 has a utilisation factor which is sufficient, and therefore has a constant buffer
backlog at the initial buffering level. The buffer backlog graph is given in figure
H.117.

The response time delay graph in figure H.118 also shows how the APE2 stream is
favoured over the APE1 stream.

The APE1 stream lost 10 frames, while the APE2 stream did not lose any frames.

7.5.4.6 TC8.5

This is a special case, where the sum of the utilisation factors for the five CBSs
is 1.14 which is above 1, and the tasks will therefore not be schedulable according
to the schedulability analysis. The tasks are aperiodic soft real-time tasks and will
therefore not always spend all of the budget before terminating. With this reasoning
we accept that the summed utilization factor is above 1.

The tasks processing the APE1 and APE2 streams all use the same CBS parameters
as in TC8.0, which correspond to the average execution time and period. The fifth
task, which is processing the APE3 stream is given a bandwidth which is a factor
of 10 larger than the average execution time. The period of the CBS remains as the
average period of the APE3 stream. The purpose is to lessen the response time delay
of the APE3 stream, without lessening the budget and period of the other tasks.

The buffer backlog in figure H.119 shows how the APE1 tasks are not serviced
regularly, due to the APE3 stream. The APE2 stream is however relative unaffected,
which probably is caused by the stream having a larger period, and therefore more
tolerable to the bursts from the APE3 stream.

The higher bandwidth for the APE3 stream has further resulted in the stream having
a considerably lower response time delay than in the previous tests. The response
time delay graph is shown in figure H.120.

The APE1 stream lost 5 frames, while the APE2 did not lose any frames.

7.5.4.7 Summary

The six tests performed in this case study produce very different results. The best
result from the tests is a subjective matter, where the user either must choose to

105

Chapter 7. Case studies

prefer the least amount of frames losses or low response time of the tasks. The TC8.3
produced no frame losses, but this was at the expense of the APE3 stream, which
had an average response time of 2 seconds, which is very high.

The TC8.5 seems like the over all winner, since it has a very low amount of frame
losses, and the average response time for the APE3 is also very low. A static schedul-
ing analysis would however conclude that the system is unschedulable. But we accept
this based on the fact that the APE3 stream is highly aperiodic, and that all of the
five tasks are soft real-time tasks.

TC Frame Loss (%) Average Response time
APE1 APE2 APE1 APE2 APE3

8.0 2.0 0 19,643 µs 42 µs 1,126,809 µs
8.1 2.9 0 36,249 µs 184 µs 70,675 µs
8.2 0 7.8 35 µs 124,573 µs 230,709 µs
8.3 0 0 1,128 µs 2,905 µs 2,014,329 µs
8.4 2.2 0 16,089 µs 41 µs 1,498,562 µs
8.5 1.1 0 37,797 µs 42 µs 15,771 µs

Table 7.47: Summary of the various sub test cases for case study 8. APE1 sends a
total of 449 frames, while APE2 sends 373 frames.

In terms of the buffer requirements TC8.3 requires the least buffer sizes, while TC8.5
is among the set-ups which require the largest buffers. The TC8.5 is however seen
as the test which has the best performance.

Buffer backlog
Stream Buffer name

TC8.0 TC8.1 TC8.2 TC8.3 TC8.4 TC8.5
APE1 t1_input 3,275 3,275 228 362 2,912 3,648

t1_t3_input 1 1 5 274 1 1
t3_output 1 1 1 1 1 1
ape1_con 3,252 4,253 2,641 2,641 2,890 4,934

APE2 t2_input 1 264 972 147 1 1
t2_t4_input 1 291 2,261 227 1 1
t4_output 1 1 1 1 1 1
ape2_con 603 604 972 603 603 603

APE3 t5_input 20 5 7 25 23 5
t5_output 1 1 1 1 1 1

Table 7.48: Buffer backlog for case study 8 with the slow processor.

7.6 Conclusion

The general conclusion from the case studies is that the CBS is an efficient scheduling
algorithm for soft real-time systems, when the system just meets the average resource
requirements. This is caused by the fairness, which the CBS provides due to the

106

7.6. Conclusion

Case Study Response time Buffer
Slow Fast Slow Fast

1 CBS - FP -
2 CBS CBS CBS CBS
3 CBS - FP -
5 CBS CBS FP/EDF -
6 CBS CBS CBS Linux
7 FP CBS FP -

Table 7.49: This table shows the preferred scheduling algorithm from each of the case
studies, except for case study 4 and 8. The cases where there is no name in the cell
simply means that there is very little difference.

temporal protection characteristics. The fairness of the Linux O(1) scheduler was
not really experienced, since the task execution times in most cases, are below the
window sizes that they were assigned.

Table 7.49 shows the scheduling techniques which performed best for each of the test
cases. This is based both on the frame losses, buffer backlog and response times of
the streams. Most of the test cases with the fast processing elements did not show
any notable difference in the QoS, and either of the four scheduling schemes could be
used. The buffer size requirements did however in many cases, for the fast elements,
favour one scheduling scheme over the others.

Case studies 4 and 8 did not show any definitive answer to finding the optimal
values for the CBS parameters budget and period. Case study 4 resulted with the
best parameters in TC4.3, where the budget and period are 1000 times shorter than
the average execution time and period for each task. Case study 8 did on the other
hand show that the best values for the parameters are setting the budget 10 times
longer than the average execution time, while the period was unchanged.

The CBS parameters in case studies 1, 3, 5 and 6 all use the standard parameters,
where the budget and period are respectively assigned as the average execution time
and the average period of the tasks. The results for the CBS test cases in these
case studies are likely to be further improved with more optimal values for the CBS
parameters.

107

Chapter 7. Case studies

108

Chapter 8

Conclusion

This thesis presented two types of variability for multimedia in terms of execution
time. These are intra and inter variability, where intra variability is within each
stream, while inter variability is across different streams. The inter variability is
greatest for media streams with different characteristics in terms of resolution and
frame rate.

The DIstributed Multimedia Application Simulator (DiMAS) was implemented, which
is a C++ library. DiMAS is used for creating a design level simulator, which models
a given multimedia system. This could for example be a set-top box or a DVD player.
The simulator can be used when designing new multimedia appliances, where the
resources must be kept low, in order to limit cost or power consumption. The costly
and time consuming prototyping process can therefore be postponed or completely
removed in the design phase.

The DiMAS library is able to model processing elements with four different types of
scheduling techniques. These four techniques are Fixed-Priority, Earliest Deadline
First, Constant Bandwidth Server and the Linux O(1) schedulers. The DiMAS li-
brary is an extension of the Pesimdes library, which is a simulation framework for
hard real-time systems. The Fixed-Priority and the Earliest Deadline First schedul-
ing techniques were already part of the Pesimdes library. The Constant Bandwidth
Server and the Linux O(1) schedulers are new implementations.

The variability in terms of execution time for a multimedia stream is modelled using
a trace file, which either contains the processor cycles or the actual execution times
given in a user specified time unit.

The MPEG video stream was chosen as the main multimedia stream to be used in
the examples and discussions throughout the thesis. This was partly caused by the
obvious partitioning of tasks in the decoding algorithm, and partly by video having
a strong association towards multimedia.

Eight case studies were created to show some examples of how the DiMAS library
can be used. The examples are kept simple with two multimedia streams, and in
some cases with an additional stream, which is highly aperiodic. The case studies
either use test benches with one and two processing elements.

109

Chapter 8. Conclusion

The case studies showed a great difference between the four scheduling algorithms.
This was especially visible when the processing elements were designed based on the
average execution times of the tasks. The over designed test benches did however
result in very similar results for each of the four scheduling algorithms. In general
the Constant Bandwidth Server scheduling algorithm performed in most cases better
than the other three. The performance was evaluated based both on frame losses
and the average response times. The temporal protection in the CBS scheduling
algorithm ensured that all tasks were given a fair share of the processing element.
The Linux O(1) scheduling algorithm was in most cases not able to provide the
fairness it should, since the tasks finished within the assigned time slots.

Case studies 4 and 8 showed that the parameters budget and period of the CBSs
have a big influence on the performance. And simply using the average values of the
execution time and period for each task is not necessarily the best choice. The two
tests ended with one performing best with very low budget and period, while the
the other performed best with a high value for the budget while the value for the
period was unchanged. There is from these tests no way of saying how the optimal
parameters are determined without performing many simulations.

8.1 Future work

An obvious extension of the simulation library, would be adding new scheduling
algorithms. The modularity of the library makes this a fairly easy task.

Modelling a multimedia system can be very complicated using DiMAS, if there are
many tasks in the system. An abstraction from the C-code would therefore be
preferable, either using a graphical user interface with drag and drop functionality,
or using a description file for example in xml format.

The current version of the simulator library is able to model the variable execution
time using trace files, where each line in the file correspond to a task request. It
would however be preferable to also have the possibility of modelling the variability
based on a probability distribution.

Currently network connections are modelled at the input generators. This could
however also be modelled in the test bench, in order to be able to model a full dis-
tributed multimedia system, where amplifier, dvd, speakers, television and speakers
all communicate using a wireless connection.

110

Bibliography

[ZL02] Vladimir D. Ẑivković, Paul Lieverse: An Overview of Method-
ologies and Tools in the Field of System-Level Design, 2002.

[SSTutorV4] SimpleScalar LLC: Simple Tutorial v4, Cited: 25-6-08, http://
www.simplescalar.com/docs/simple_tutorial_v4.pdf.

[SShome] SimpleScalar LLC: SimpleScalar homepage, http://www.
simplescalar.com/

[MY07] Matt T. Yourst: PTLsim: A Cycle Accurate Full System x86-
64 Microarchitectural Simulator, 2007, http://www.ptlsim.org/
papers/PTLsim-ISPASS-2007.pdf.

[ALE02] Todd Austin, Eric Larson, Dan Ernst: SimpleScalar: An In-
frastructure for computer System Modeling, IEEE 2002.

[BD04] David c. Black, Jack Donovan: SystemC: From the Ground Up,
Springer 2004

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, Stuart Swan:
System Design with SystemCtm, Springer 2002

[ML05] Marco Lohse: Network-Integrated Multimedia Middleware, Services
and Applications, Saarbrücken University, 2005

[MPEGOrg] MPEG Organization: http://www.mpeg.org/

[TN95] Tudor P. N.: MPEG-2 VIDEO COMPRESSION, 1995, http://
www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml

[SimicsDS] Virtutech: Simics: Virtualized Software Development - Data Sheet,
http://www.virtutech.com/

[SimicsWP] Virtutech: Virtualized Software Development, http://www.
virtutech.com/files/whitepapers/wp_simics.pdf

[ACH98] Christina Aurrecoechea, Andrew T. Campbell, Linda
Hauw: A Survey of QoS Architectures, Columbi University, Springer-
Verlag, 1998.

[JN04] Jin Jingwen, Klara Nahrstedt: QoS Specification Languages for
Distributed Multimedia Applications: A Survey and Taxonomy, Uni-
versity of Illinois at Urbana-Champaign, IEEE, 2004.

111

http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/
http://www.simplescalar.com/
http://www.ptlsim.org/papers/PTLsim-ISPASS-2007.pdf
http://www.ptlsim.org/papers/PTLsim-ISPASS-2007.pdf
http://www.mpeg.org/
http://www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml
http://www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml
http://www.virtutech.com/
http://www.virtutech.com/files/whitepapers/wp_simics.pdf
http://www.virtutech.com/files/whitepapers/wp_simics.pdf

Bibliography

[MVM07] Shankar Mahadevan, Kashif Virk, Jan Madsen: ARTS: A
SystemC-based frame work for multiprocessor System-on-Chip mod-
elling, Technical University of Denmark, 2007.

[BMP98] Andy C. Bavier, A. Brady Montz, Larry L. Peterson: Pre-
dicting MPEG Execution Times, The University of Arizona, 1998.

[SGG09] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne:
Operating System Concepts, Eighth Edition, John Wiley & Sons inc.,
2009

[BLAC05] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni and Marco
Caccamo: Soft Real-Time Systems - Predictability vs. Efficiency,
Springer, 2005

[SP06] Simon Perathoner: Evaluation and Comparison of Performance
Analysis Methods for Distributed Embedded Systems, Swiss Federal In-
stitute of Technology, Zürich, 2006

[MH07] Max Hailperin: Operating Systems and Middleware: Supporting
Controlled Interaction, 2007. Online resource to update information in
the book: http://gustavus.edu/+max/os-book/updates/CFS.html

[RR02] Rassol Raissi: The Theory Behind MP3, 2002, http://www.
mp3-tech.org/programmer/docs/mp3_theory.pdf

[BP00] Karlheinz Brandenburg, Harald Popp: An Introduction to
MPEG Layer-3, Fraunhofer Instittut Für Integrierte Schaltungen
(IIS), 2000

[AM05] Alexander Maksyagin: Modeling Multimedia Workloads for Em-
bedded System Design, phd. thesis, Institut für Technishe Informatic
und Kommunikationsnetze, Eidgenössische Technische Hochschule
Zürich, 2005.

112

http://gustavus.edu/+max/os-book/updates/CFS.html
http://www.mp3-tech.org/programmer/docs/mp3_theory.pdf
http://www.mp3-tech.org/programmer/docs/mp3_theory.pdf

Appendix A

Developed utilities

A.1 BreakDiff

The breakDiff utility is used for extracting the cycle counts between up to 10 break-
point sets from the trace files generated by the modified SimpleScalar tool set pre-
sented in section 6. The purpose of the utility is to calculate the time difference
between the two breakpoints in each breakpoint set. The difference is stored in a
new file, and is a number for either the instruction count or the cycle count between
the two breakpoints. The sim-outorder simulator from SimpleScalar generates traces
with processor cycle counts, while the rest of the simulators generate the traces based
on the instruction count.

The utility takes a file name and a sequence of numbers defining the breakpoints
as parameters. The program then outputs a file for each breakpoint set and an
additional file which contains all the breakpoint data, and a summary section at the
end. The parameters are structured as follows:

breakDiff <file name> <# breakpoint sets> <start> <end> <name>
[<start> <end> <name>]

A.2 mpeg2stat

The MPEG stat application is based on the MPEG open source implementation
of the MPEG decoder at [MPEGOrg]. The open source implementation is already
able to extract the header information in the various parts of an MPEG video file.
The mpeg2stat application can either print a summary table containing the most
interesting characteristics of a file to the terminal, or create a trace file where the
type of frame each macroblock is part of. The frame type can either be I, P or B
frames as explained in section 2.1.1. The last option is to make a full trace containing
most of the header information in the MPEG video file.

The command for the mpeg2stat application is:
mpeg2stat -b <mpeg video filename> -v<level>

113

Appendix A. Developed utilities

Where

-v0 Prints a summary of the MPEG video file to the terminal

-v1 Prints the same short summary as for the -v0 option. Further the application
generates a trace file, where the type of each of frame is logged. The values
range from 1-3 corresponding to I, P and B frames. The summary table is
appended to the trace files, which is based on the input file name and suffixed
with .FrameTrace.

-v2 Prints out many details regarding a video file to the terminal. No additional
trace file is created. This is only useful if very specific information is required.

A.3 VCD Parser

The VCDParser parses a vcd (Value Change Dump) file and writes a new more
readable file, which easily can be plotted using gplot. The parser can either be used
simply with the file name as input thereby extracting all the variables in the file, or
the specific variables can be specified as parameters thereby only extracting a subset
of the variables in the file.

The first column in the output file is the time, while the consecutive columns each
represent a variable. There is a row of data for all variables each time just one of
the variables changes value. If events for the variables are important then the utility
needs to be run once for each variable, and then saving one file for each variable.
This is not a feature of the VCDParser, but can easily be done using a script.

114

Appendix B

Input generator class diagram

115

Appendix B. Input generator class diagram

F
igure

B
.1:

C
lass

diagram
of

the
various

input
token

generators
that

can
be

used
in

the
D
iM

A
S
A
P
I.

116

Appendix C

Users guide

The DiMAS API requires that the SystemC library is compiled and working correctly.
SystemC is downloaded for free at the official home page: http://www.systemc.org/
downloads/standards/.

The DiMAS API has only been tested on the Linux platform, but should also work on
Windows platforms. The DiMAS library was implemented with the KDevelopment
programming environment, using an automake project. The SystemC library must
be referenced as described in the KDevelop documentation, in order for the DiMAS
to compile correctly.

Alternative the DiMAS library can be compiled in the terminal. In order for this
to be possible the include paths in the two files /Makefile.am and /src/Makefile.am
must be updated. These lines must be either the absolute or the relative path to
the folder containing the header files for SystemC. Further the LDFLAGS must be
used in the make command, where the path to the compiled SystemC library file is
located1.

Test benches are typically created in the main.cpp file.

It can be quite complicated to create a large test bench with many tasks and pro-
cessing elements. Therefore it is advisable to make a diagram, where all the modules
in the test bench are named, and use a suitable naming convention.

A test bench typically include the following modules.

• Input generators

• Tasks

• Resources (Processing elements with a specific scheduling algorithm)

• Buffers
1There is definitely an easier way, but this is not known by the author.

117

http://www.systemc.org/downloads/standards/
http://www.systemc.org/downloads/standards/

Appendix C. Users guide

• Display devices

• Consumers

If a specific multimedia set-up is tested using different types of resources, it is advis-
able to partition the test bench into three parts.

Physical test bench Here the modules that are common for the tests are created.
These include input generators, tasks, buffers, display devices and Consumers.
Further the connections between tasks and buffers are done here.

Resource This part is created for each of the scheduling techniques which should
be tested. The resources that should be used in the test are initialized, and
the tasks in the test bench are assigned the resources. Further resource specific
operations are performed. This could for example be assigning the correct trace
files, and processor speeds. If the buffer tracing should be used the trace file is
opened and the buffers are added to the trace file. Further all the output files
for the display and consumer modules are given in this part.

Post processing This part contains all the operations, which should be performed
after simulation. These include closing the vcd file. Further calling the func-
tions write_latencies and traceSummary for the display and Consumer mod-
ules respectively.

Listings C.1 shows an example of a test bench, where the three partitions are in-
cluded. The code in the listing correspond to the test bench in figure C.1.

Figure C.1: Example of a test bench with two processing elements and two continuous
media streams.

Listing C.1: Example of a test bench
1 #define MAXBUFFER 20000
2

3 bool verbose = false;
4

5 int sc_main (int argc , char *argv []) {
6 // initialize the random number generator
7 // srand (-24);
8

9 /* ===
10 Test bench for TC1
11 ===

118

12 2 processing elements
13 2 multimedia files
14 === */
15

16 // Token generators
17 // input_periodic ape1_generator (" ape1_input", sc_time (25252 , SC_NS), "

TC1_ape1_input_tracer.tra");
18 // input_periodic ape2_generator (" ape2_input", sc_time (133332 , SC_NS), "

TC1_ape2_input_tracer.tra");
19 input_from_trace ape1_generator("ape1_input", "TC1_ape1_input_tracer.tra",

SC_PS); // ~30 fps *1320mb /second
20 input_from_trace ape2_generator("ape2_input", "TC1_ape2_input_tracer.tra",

SC_PS); // ~25 fps *300mb / second
21

22 // Processing Element 1 with two tasks
23 task t1("ape1_vldIq");
24 task t2("ape2_vldIq");
25 // Processing Element 2 with two tasks
26 task t3("ape1_idctMp");
27 task t4("ape2_idctMp");
28

29 // Buffers
30 my_sc_fifo <event_token > t1_input(MAXBUFFER);
31 my_sc_fifo <event_token > t2_input(MAXBUFFER);
32 my_sc_fifo <event_token > t1_t3_input(MAXBUFFER);
33 my_sc_fifo <event_token > t2_t4_input(MAXBUFFER);
34 my_sc_fifo <event_token > t3_output(MAXBUFFER);
35 my_sc_fifo <event_token > t4_output(MAXBUFFER);
36 my_sc_fifo <event_token > ape1_consume(MAXBUFFER);
37 my_sc_fifo <event_token > ape2_consume(MAXBUFFER);
38

39 // Statistics
40 output_display_write ape1_display("ape1_O");
41 output_display_write ape2_display("ape2_O");
42

43 // Consumers
44 Consumer ape1_con("ape1_consumer", 1320, sc_time (33332 , SC_US));
45 Consumer ape2_con("ape2_consumer", 300, sc_time (40, SC_MS));
46

47 // Buffer Mappings
48 // ape1 - Short period multimedia task
49 cout << "Connecting ape1 streams ...";
50 ape1_generator.out(t1_input);
51 t1.in[0](t1_input);
52 t1.out [0](t1_t3_input);
53 t3.in[0](t1_t3_input);
54 t3.out [0](t3_output);
55 ape1_display.in(t3_output);
56 ape1_display.out(ape1_consume);
57 ape1_con.in(ape1_consume);
58 cout << "Success" << endl;
59

60 // ape2 - Long period multimedia task
61 cout << "Connecting ape2 streams ...";
62 ape2_generator.out(t2_input);
63 t2.in[0](t2_input);
64 t2.out [0](t2_t4_input);
65 t4.in[0](t2_t4_input);
66 t4.out [0](t4_output);
67 ape2_display.in(t4_output);
68 ape2_display.out(ape2_consume);
69 ape2_con.in(ape2_consume);
70 cout << "Success" << endl;
71

72 timeStatus timer("TimeStatus", sc_time(1, SC_SEC));
73

74 time_t timeStart , timeEnd;
75 struct tm * timeInfo;
76

77 /* ===

119

Appendix C. Users guide

78 Test 10 TC1.0
79 ===
80 Fixed Priority Scheduling
81 2 multimedia files
82 === */
83

84 // IDs for Pe1
85 #define T1_ID 0
86 #define T2_ID 1
87 // IDs for Pe2
88 #define T3_ID 0
89 #define T4_ID 1
90

91 // Fixed -Priority scheduling for Pe1
92 resource_n_tasks_fixed_priority_preemptive pe_1("CPU1", 2); // Two tasks
93 pe_1.setProcessorSpeed (270000000.0); // 270 MHz / 860 MHz
94 pe_1.assign_task(t1 , T1_ID , SC_ZERO_TIME , 1);
95 pe_1.assign_task(t2 , T2_ID , SC_ZERO_TIME , 2);
96

97 pe_1.setRunMode(T1_ID , 2); // Cycle time trace
98 pe_1.setInputTraceFile(T1_ID , "TC1_ape1_0_exect.tra", 1); // Trace data in

second column
99 pe_1.setCycleMultiplier(T1_ID , 0.557); // ~inst to cycles

100 pe_1.setRunMode(T2_ID , 2); // Cycle time trace
101 pe_1.setInputTraceFile(T2_ID , "TC1_ape2_0_exect.tra", 1); // Trace data in

second column
102 pe_1.setCycleMultiplier(T2_ID , 0.891); // ~inst to cycles
103

104

105 // Fixed -Priority scheduling for Pe2
106 resource_n_tasks_fixed_priority_preemptive pe_2("CPU2", 2); // Two tasks
107 pe_2.setProcessorSpeed (860000000.0); // 860 MHz / 1.5 GHz
108 pe_2.assign_task(t3 , T3_ID , SC_ZERO_TIME , 1);
109 pe_2.assign_task(t4 , T4_ID , SC_ZERO_TIME , 2);
110

111 pe_2.setRunMode(T3_ID , 2); // Cycle time trace
112 pe_2.setInputTraceFile(T3_ID , "TC1_ape2_1_exect.tra", 1); // Trace data in

second column
113 pe_2.setCycleMultiplier(T3_ID , 0.139); // ~inst to cycles
114 pe_2.setRunMode(T4_ID , 2); // Cycle time trace
115 pe_2.setInputTraceFile(T4_ID , "TC1_ape2_1_exect.tra", 1); // Trace data in

second column
116 pe_2.setCycleMultiplier(T4_ID , 0.244); // ~inst to cycles
117

118 // Trace file
119 sc_trace_file *tracefile;
120 tracefile = sc_create_vcd_trace_file("TC1_0_buffers");
121

122 t1_input.logger_trace(tracefile , "t1_input", "010");
123 t2_input.logger_trace(tracefile , "t2_input", "010");
124 t1_t3_input.logger_trace(tracefile , "t1_t3_input", "010");
125 t2_t4_input.logger_trace(tracefile , "t2_t4_input", "010");
126 t3_output.logger_trace(tracefile , "t3_output", "010");
127 t4_output.logger_trace(tracefile , "t4_output", "010");
128 ape1_consume.logger_trace(tracefile , "ape1_con", "010");
129 ape2_consume.logger_trace(tracefile , "ape2_con", "010");
130

131 ape1_display.setOutputTraceFile("TC1_0_ape1_display.tra");
132 ape2_display.setOutputTraceFile("TC1_0_ape2_display.tra");
133

134 ape1_con.setTraceFile("TC1_0_ape1_con.tra");
135 ape2_con.setTraceFile("TC1_0_ape2_con.tra");
136

137 time(& timeStart);
138 timeInfo = localtime (& timeStart);
139

140 cout << "Starting simulation @ " << asctime(timeInfo) << endl;
141 sc_start (15, SC_SEC);
142

143 ofstream sumFile("TC1_0_sum_270M_860M.txt");

120

144 // ofstream sumFile (" TC1_0_sum_860M_1500M.txt");
145 sumFile << "Simulation summary for test case TC1_0" << endl;
146 sumFile << "Pe1: 270 MHz\t Pe2: 860 MHz" << endl << endl;
147 // sumFile << "Pe1: 860 MHz\t Pe2: 1.5 GHz" << endl << endl;
148

149

150 /* ===
151 Post processing
152 === */
153

154 time(& timeEnd);
155 timeInfo = localtime (& timeEnd);
156 cout << "Simulation ended @ " << asctime(timeInfo) << endl;
157 cout << "Simulation time was: "
158 << (difftime(timeEnd , timeStart) / 60) << " minutes" << endl;
159

160 sc_close_vcd_trace_file(tracefile);
161

162 ape1_display.write_latencies("ape1_input");
163 ape2_display.write_latencies("ape2_input");
164

165 cout << "Lost frame for ape1: " << ape1_con.getFails () << " / "
166 << ape1_con.getSuccess () + ape1_con.getFails () << endl;
167 cout << "Lost frame for ape2: " << ape2_con.getFails ()
168 << " / " << ape2_con.getSuccess () + ape2_con.getFails () << endl;
169

170 ape1_con.traceSummary ();
171 ape2_con.traceSummary ();
172

173 cout << "count from ape1: " << ape1_generator.getCount () << endl;
174 cout << "count from ape2: " << ape2_generator.getCount () << endl;
175

176 cout << "Task 1: " << t1.input_count << "/" << t1.output_count << endl;
177 cout << "Task 2: " << t2.input_count << "/" << t2.output_count << endl;
178 cout << "Task 3: " << t3.input_count << "/" << t3.output_count << endl;
179 cout << "Task 4: " << t4.input_count << "/" << t4.output_count << endl;
180

181 pe_1.printCounts ();
182 pe_2.printCounts ();
183

184 sumFile << "Lost frames" << endl;
185 sumFile << "Lost frame for ape1: " << ape1_con.getFails ()
186 << " / " << ape1_con.getSuccess () + ape1_con.getFails () << endl;
187 sumFile << "Lost frame for ape2: " << ape2_con.getFails ()
188 << " / " << ape2_con.getSuccess () + ape2_con.getFails () << endl;
189

190 sumFile << endl << "Latencies" << endl;
191 sumFile << "APE1: "
192 << "\tmin: " << ape1_display.getminlatency("ape1_input")
193 << "\tavg: " << ape1_display.getavglatency("ape1_input")
194 << "\tmax: " << ape1_display.getmaxlatency("ape1_input")
195 << endl;
196 sumFile << "APE2: "
197 << "\tmin: " << ape2_display.getminlatency("ape2_input")
198 << "\tavg: " << ape2_display.getavglatency("ape2_input")
199 << "\tmax: " << ape2_display.getmaxlatency("ape2_input")
200 << endl;
201

202 sumFile << endl << "Token counts" << endl;
203 sumFile << "Task 1: " << t1.input_count << "/" << t1.output_count << endl;
204 sumFile << "Task 2: " << t2.input_count << "/" << t2.output_count << endl;
205 sumFile << "Task 3: " << t3.input_count << "/" << t3.output_count << endl;
206 sumFile << "Task 4: " << t4.input_count << "/" << t4.output_count << endl;
207

208 sumFile << endl << "Max. buffer backlogs" << endl;
209 sumFile << "t1_input: " << t1_input.getmaxbacklog () << endl;
210 sumFile << "t1_t3_input: " << t1_t3_input.getmaxbacklog () << endl;
211 sumFile << "t3_output: " << t3_output.getmaxbacklog () << endl;
212 sumFile << "ape1_con: " << ape1_consume.getmaxbacklog () << endl;
213 sumFile << "t2_input: " << t2_input.getmaxbacklog () << endl;

121

Appendix C. Users guide

214 sumFile << "t2_t4_input: " << t2_t4_input.getmaxbacklog () << endl;
215 sumFile << "t4_output: " << t4_output.getmaxbacklog () << endl;
216 sumFile << "ape2_con: " << ape2_consume.getmaxbacklog () << endl;
217 sumFile.close();
218

219 return 0;
220 }

122

Appendix D

Multimedia data files

D.1 MPEG-2 files

Presents a table with the most interesting characteristics of the various MPEG files
used in this thesis.

123

Appendix D. Multimedia data files

N
um

ber
of

Fram
e

N
um

ber
Fram

e
T
ypes

M
otion

F
ile

N
am

e
H
-Size

V
-Size

M
acroblocks

R
ate

P
rofile

Level
Form

at
of

Fram
es

I
P

B
100b_

015
704

480
1320

29,97
4

8
4:2:0

450
38

113
229

N
o

100b_
040

704
480

1320
29,97

4
8

4:2:0
450

38
113

299
N
o

100b_
080

704
480

1320
29,97

4
8

4:2:0
450

38
113

299
N
o

100b_
400

704
480

1320
29,97

133
8

4:2:2
450

226
0

224
N
o

bbc3_
080

704
480

1320
29.97

4
8

4:2:0
450

38
113

299
N
o

cact_
080

704
480

1320
29.97

4
8

4:2:0
450

38
113

299
Y
es

flw
r_

080
704

480
1320

29.97
4

8
4:2:0

450
38

113
299

Y
es

m
obl_

080
704

480
1320

29.97
4

8
4:2:0

450
38

113
299

Y
es

m
ulb_

080
704

480
1320

29.97
4

8
4:2:0

450
38

113
299

N
o

pulb_
080

704
480

1320
29.97

4
8

4:2:0
450

38
113

299
N
o

susi_
080

704
480

1320
29.97

4
8

4:2:0
450

38
113

299
Y
es

tens_
080

704
480

1320
29.97

4
8

4:2:0
450

38
113

299
Y
es

tim
e_

080
704

480
1320

29.97
4

8
4:2:0

450
38

113
299

V
ery

little
v700_

080
704

480
1320

29.97
4

8
4:2:0

450
38

113
299

N
o

sm
oke_

low
320

240
300

25
4

8
4:2:0

399
23

376
0

Y
es

sm
oke_

low
640

480
1200

25
4

8
4:2:0

399
23

276
0

Y
es

sm
oke_

low
640

480
1200

30
4

8
4:2:0

479
27

452
0

Y
es

sm
oke_

m
edium

320
240

300
25

4
8

4:2:0
399

23
376

0
Y
es

sm
oke_

m
edium

640
480

1200
25

4
8

4:2:0
399

23
276

0
Y
es

sm
oke_

m
edium

640
480

1200
30

4
8

4:2:0
479

27
452

0
Y
es

sm
oke_

high
320

240
300

25
4

8
4:2:0

399
23

376
0

Y
es

sm
oke_

high
640

480
1200

25
4

8
4:2:0

399
23

276
0

Y
es

sm
oke_

high
640

480
1200

30
4

8
4:2:0

479
27

452
0

Y
es

T
able

D
.1:

Sym
m
ary

of
the

characteristics
of

the
M
P
E
G

video
files,

w
hich

w
ere

processed
during

the
w
riting

of
this

thesis.
T
he

file
nam

es
for

sm
oke_

low
-_

m
edium

-_
high

are
shortened

due
to

lack
of

space
on

the
page.

T
he

fram
e
rate

and
resolution

are
appended

to
the

file
nam

es.
T
he

files
flw

r_
080

and
sm

oke_
high_

25fps_
320x480

w
ere

used
in

the
case

studies.

124

D.1. MPEG-2 files

F
ile

N
am

e
D
ec
od

e
Fr
am

e
V
LD

/I
Q

ID
C
T
/M

P
M
in

M
ax

M
in

M
ax

M
in

M
ax

10
0b

_
01

5
15

0.
54

0.
16

0
15

2.
25

2.
80

9
2.
69

9
12

.0
29

10
9.
27

4
11

8.
87

2
10

0b
_
04

0
15

0.
58

9.
96

9
15

2.
81

7.
21

3
2.
69

9
12

.0
29

10
9.
27

4
12

0.
88

4
10

0b
_
08

0
15

0.
58

9.
96

9
15

2.
11

6.
25

6
2.
69

9
12

.0
29

10
9.
27

4
11

3.
22

4
10

0b
_
40

0
20

0.
23

3.
12

9
20

2.
06

3.
08

9
3.
39

7
16

.0
23

14
5.
08

2
14

8.
28

8
bb

c3
_
08

0
15

0.
62

0.
66

2
17

4.
83

0.
13

4
2.
69

9
41

.7
85

10
9.
06

9
12

4.
77

8
ca
ct
_
08

0
15

6.
41

8.
24

6
17

2.
07

8.
66

5
2.
70

0
43

.1
29

10
9.
46

4
12

8.
11

2
flw

r_
08

0
15

9.
33

1.
31

7
17

3.
08

5.
53

6
2.
69

9
46

.2
05

10
9.
38

1
12

8.
15

8
m
ob

le
_
08

0
15

1.
79

3.
18

4
17

4.
48

0.
84

5
2.
69

9
40

.5
61

10
9.
27

4
12

8.
09

5
m
ul
b_

08
0

15
0.
58

5.
28

9
16

1.
19

6.
21

9
2.
69

9
14

.1
37

10
9.
24

2
11

6.
58

9
pu

lb
_
08

0
15

0.
35

7.
31

9
15

0.
62

2.
58

0
2.
69

9
11

.8
49

10
9.
25

8
11

3.
21

6
su
si
_
08

0
16

0.
52

7.
65

0
17

7.
30

6.
07

3
2.
70

3
41

.2
92

10
9.
42

1
12

8.
11

9
te
ns
_
08

0
15

6.
83

3.
90

8
17

1.
95

3.
94

3
2.
69

9
46

.7
59

10
9.
33

8
12

8.
15

4
ti
m
e_

08
0

15
6.
83

3.
90

8
17

1.
95

3.
94

3
2.
69

9
46

.7
59

10
9.
33

8
12

8.
15

4
sm

ok
e_

lo
w
_
25

fp
s_

32
0x

24
0

35
.1
30
.9
22

38
.5
79

.8
20

2.
11

5
35

.8
80

10
8.
74

2
11

8.
69

0
sm

ok
e_

lo
w
_
25

fp
s_

64
0x

48
0

13
8.
07

0.
27

9
15

1.
19

1.
18

9
2.
11

5
30

.4
21

10
8.
39

7
11

8.
71

2
sm

ok
e_

lo
w
_
30

fp
s_

64
0x

48
0

13
7.
81

6.
20

3
15

1.
19

1.
18

9
2.
11

5
30

.4
21

10
8.
39

7
11

8.
71

2
sm

ok
e_

m
ed
iu
m
_
25

fp
s_

32
0x

24
0

36
.0
40
.7
17

38
.6
43

.0
62

2.
11

5
40

.8
13

10
9.
25

3
11

8.
65

2
sm

ok
e_

m
ed
iu
m
_
25

fp
s_

64
0x

48
0

13
9.
62

4.
37

0
15

1.
19

1.
18

9
2.
11

5
30

.3
30

10
8.
76

5
11

8.
73

6
sm

ok
e_

m
ed
iu
m
_
30

fp
s_

64
0x

48
0

13
8.
87

3.
69

8
15

1.
19

1.
18

9
2.
11

5
30

.3
30

10
8.
39

7
11

8.
74

6
sm

ok
e_

hi
gh

_
25

fp
s_

32
0x

24
0

36
.9
68
.7
20

39
.9
10

.1
60

2.
11

5
46

.2
55

10
9.
25

0
11

8.
64

9
sm

ok
e_

hi
gh

_
25

fp
s_

64
0x

48
0

14
2.
08

4.
29

2
15

2.
25

9.
56

5
2.
11

5
30

.5
79

10
8.
95

2
11

8.
71

7
sm

ok
e_

hi
gh

_
30

fp
s_

64
0x

48
0

14
1.
44

3.
69

5
15

1.
19

1.
18

9
2.
11

5
30

.3
30

10
8.
49

3
11

8.
72

3

125

Appendix D. Multimedia data files

126

Appendix E

Commands for generating traces

The commands below are used in the interactive debugger to configure the debugger
to log three breakpoint sets, as described in section 6.

1 tracefile profile_block_xxx.txt
2 dbreak 0x0204b528 w
3 dbreak 0x0204b52c w
4 dbreak 0x0204b530 w
5 dbreak 0x0204b534 w
6 dbreak 0x0204b538 w
7 dbreak 0x0204b53c w
8 tracecomm trace_performed_19 .01.09 _by_Rolf_Kristensen
9 tracecomm breakpoint1 :0 x0204b528_global_start_decodePic

10 tracecomm breakpoint2 :0 x0204b52c_global_end_decodePic
11 tracecomm breakpoint3 :0 x0204b530_global_start_vldIq
12 tracecomm breakpoint4 :0 x0204b534_global_end_vldIq
13 tracecomm breakpoint5 :0 x0204b538_global_start_idctMp
14 tracecomm breakpoint6 :0 x0204b53c_global_end_idctMp
15 tracecomm bp1_and_bp2_encapsulates_decoding_of_one_frame.
16 tracecomm bp3_and_bp4_encapsulates_the_VLD/IQ_part_of_the_decoding_process
17 tracecomm bp5_and_bp6_encapsulates_the_IDCT/MP_part_of_the_decoding_process
18 tracecomm simulation_is_performed_using_the_sim -profile_simulator
19 tracecomm simulation_is_performed_on_the_file_xxx
20 quietTrace on
21 cont

Where xxx is the name of the multimedia file.

127

Appendix E. Commands for generating traces

128

Appendix F

Profiling two MPEG video files

The profiling was performed using gprof on an Intel 2.8 GHz architecture. The PC
CPU cycle count in the tables are obtained by multiplying the execution time with
the processor rate. The ratio is calculated as the CPU cycle count divided by the
summed instruction counts.

F.1 flwr_080

1 % cumulative self self total
2 time seconds seconds calls ms/call ms/call name
3 28.68 2.38 2.38 3564000 0.00 0.00 Fast_IDCT
4 19.40 3.99 1.61 450 3.58 17.94 Decode_Picture
5 10.60 4.87 0.88 4797882 0.00 0.00

form_component_prediction
6 8.68 5.59 0.72 228096000 0.00 0.00 putbyte
7 7.47 6.21 0.62 46864367 0.00 0.00 Flush_Buffer
8 5.48 6.67 0.46 1747561 0.00 0.00

Decode_MPEG2_Non_Intra_Block
9 4.94 7.08 0.41 1350 0.30 0.84 store_yuv1

10 3.37 7.36 0.28 3564000 0.00 0.00 Clear_Block
11 2.17 7.54 0.18 conv420to422
12 1.81 7.69 0.15 303534 0.00 0.00 Decode_MPEG2_Intra_Block
13 1.57 7.82 0.13 24142950 0.00 0.00 Get_Bits
14 1.33 7.93 0.11 1599294 0.00 0.00 form_prediction
15 0.84 8.00 0.07 47483182 0.00 0.00 Show_Bits
16 0.72 8.06 0.06 543411 0.00 0.00 form_predictions
17 0.48 8.10 0.04 2111630 0.00 0.00 decode_motion_vector
18 0.36 8.13 0.03 3147849 0.00 0.00 Get_Bits1
19 0.36 8.16 0.03 Decode_MPEG1_Intra_Block
20 0.24 8.18 0.02 2111630 0.00 0.00 Get_motion_code
21 0.24 8.20 0.02 1055815 0.00 0.00 motion_vector
22 0.24 8.22 0.02 594000 0.00 0.00 macroblock_modes
23 0.24 8.24 0.02 450 0.04 2.56 Write_Frame
24 0.12 8.25 0.01 594000 0.00 0.00 Get_macroblock_type
25 0.12 8.26 0.01 455663 0.00 0.00 Get_coded_block_pattern
26 0.12 8.27 0.01 202356 0.00 0.00 Get_Luma_DC_dct_diff
27 0.12 8.28 0.01 7349 0.00 0.00 Fill_Buffer
28 0.12 8.29 0.01 Spatial_Prediction
29 0.06 8.29 0.01 799300 0.00 0.00 motion_vectors
30 0.06 8.30 0.01 101178 0.00 0.00 Get_Chroma_DC_dct_diff
31 0.06 8.30 0.01 452 0.01 0.01 Get_Hdr
32 0.00 8.30 0.00 594000 0.00 0.00

Get_macroblock_address_increment
33 0.00 8.30 0.00 14858 0.00 0.00 next_start_code

129

Appendix F. Profiling two MPEG video files

34 0.00 8.30 0.00 14405 0.00 0.00 Flush_Buffer32
35 0.00 8.30 0.00 13500 0.00 0.00 slice_header
36 0.00 8.30 0.00 454 0.00 0.00 Get_Bits32
37 0.00 8.30 0.00 452 0.00 0.01 Headers
38 0.00 8.30 0.00 452 0.00 0.00 extension_and_user_data
39 0.00 8.30 0.00 450 0.00 0.00 extra_bit_information
40 0.00 8.30 0.00 450 0.00 2.51 store_one
41 0.00 8.30 0.00 3 0.00 0.00 Initialize_Buffer
42 0.00 8.30 0.00 3 0.00 0.00 marker_bit
43 0.00 8.30 0.00 1 0.00 0.00 Initialize_Fast_IDCT
44 0.00 8.30 0.00 1 0.00 2.56

Output_Last_Frame_of_Sequence

Block Description value
VLD/IQ Sum instruction counts 4.52521e9

PC execution time 0.9s
PC CPU cycles 2.52e9

Ratio 0.557
IDCT/MP Sum instruction counts 6.94239e10

PC execution time 3.45s
PC CPU cycles 9.66e9

Ratio 0.139

Table F.1: Summary of profiling calculations for flwr_080

F.2 high_25fps_320x240

1 % cumulative self self total
2 time seconds seconds calls ms/call ms/call name
3 32.64 0.94 0.94 718200 0.00 0.00 Fast_IDCT
4 14.58 1.36 0.42 633492 0.00 0.00

Decode_MPEG2_Non_Intra_Block
5 11.11 1.68 0.32 399 0.80 6.92 Decode_Picture
6 10.77 1.99 0.31 22715738 0.00 0.00 Flush_Buffer
7 7.64 2.21 0.22 666834 0.00 0.00

form_component_prediction
8 4.86 2.35 0.14 45964800 0.00 0.00 putbyte
9 3.47 2.45 0.10 1197 0.08 0.20 store_yuv1

10 3.13 2.54 0.09 conv420to422
11 2.43 2.61 0.07 11020727 0.00 0.00 Get_Bits
12 2.43 2.68 0.07 718200 0.00 0.00 Clear_Block
13 2.08 2.74 0.06 22845348 0.00 0.00 Show_Bits
14 1.39 2.78 0.04 222278 0.00 0.00 form_prediction
15 1.04 2.81 0.03 51366 0.00 0.00 Decode_MPEG2_Intra_Block
16 0.69 2.83 0.02 203584 0.00 0.00 Get_motion_code
17 0.69 2.85 0.02 4236 0.00 0.00 Fill_Buffer
18 0.69 2.87 0.02 Decode_MPEG1_Intra_Block
19 0.35 2.88 0.01 445 0.02 0.02 extension_and_user_data
20 0.00 2.88 0.00 312616 0.00 0.00 Get_Bits1
21 0.00 2.88 0.00 203584 0.00 0.00 decode_motion_vector
22 0.00 2.88 0.00 119645 0.00 0.00

Get_macroblock_address_increment
23 0.00 2.88 0.00 119645 0.00 0.00 Get_macroblock_type
24 0.00 2.88 0.00 119645 0.00 0.00 macroblock_modes
25 0.00 2.88 0.00 111139 0.00 0.00 form_predictions
26 0.00 2.88 0.00 111030 0.00 0.00 Get_coded_block_pattern
27 0.00 2.88 0.00 101792 0.00 0.00 motion_vector
28 0.00 2.88 0.00 101792 0.00 0.00 motion_vectors
29 0.00 2.88 0.00 34244 0.00 0.00 Get_Luma_DC_dct_diff
30 0.00 2.88 0.00 17122 0.00 0.00 Get_Chroma_DC_dct_diff

130

F.2. high_25fps_320x240

31 0.00 2.88 0.00 7300 0.00 0.00 next_start_code
32 0.00 2.88 0.00 6854 0.00 0.00 Flush_Buffer32
33 0.00 2.88 0.00 5985 0.00 0.00 slice_header
34 0.00 2.88 0.00 447 0.00 0.00 Get_Bits32
35 0.00 2.88 0.00 401 0.00 0.03 Get_Hdr
36 0.00 2.88 0.00 401 0.00 0.03 Headers
37 0.00 2.88 0.00 399 0.00 0.60 Write_Frame
38 0.00 2.88 0.00 399 0.00 0.00 extra_bit_information
39 0.00 2.88 0.00 399 0.00 0.60 store_one
40 0.00 2.88 0.00 69 0.00 0.00 marker_bit
41 0.00 2.88 0.00 3 0.00 0.00 Initialize_Buffer
42 0.00 2.88 0.00 1 0.00 0.00 Initialize_Fast_IDCT
43 0.00 2.88 0.00 1 0.00 0.60

Output_Last_Frame_of_Sequence

Block Description value
VLD/IQ Sum instruction counts 1.79033e9

PC execution time 0.57s
PC CPU cycles 1.596e9

Ratio 0.891
IDCT/MP Sum instruction counts 1.37487e10

PC execution time 1.2s
PC CPU cycles 3.36e9

Ratio 0.244

Table F.2: Summary of profiling calculations for high_25fps_320x240

131

Appendix F. Profiling two MPEG video files

132

Appendix G

CD-rom contents

133

Appendix G. CD-rom contents

134

Appendix H

Case Study plots

H.1 Variability in the MPEG video files

135

Appendix H. Case Study plots

F
igure

H
.1:

T
he

variability
in

the
A
P
E

1
stream

:
flw

r_
080.m

2v

136

H.1. Variability in the MPEG video files

F
ig

ur
e

H
.2

:
T
he

va
ri
ab
ili
ty

in
th
e
A
P
E

2
st
re
am

:
hi
gh
_
25
fp
s_

32
0x
48
0.
m
2v

137

Appendix H. Case Study plots

H.2 Case study 1

Figure H.3: Buffer backlog for TC1.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.4: Idle response times for TC1.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

138

H.2. Case study 1

Figure H.5: Buffer backlog for TC1.0 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.6: Idle response times for TC1.0 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

139

Appendix H. Case Study plots

Figure H.7: Buffer backlog for TC1.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.8: Idle response times for TC1.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

140

H.2. Case study 1

Figure H.9: Buffer backlog for TC1.1 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.10: Idle response times for TC1.1 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

141

Appendix H. Case Study plots

Figure H.11: Buffer backlog for TC1.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.12: Idle response times for TC1.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

142

H.2. Case study 1

Figure H.13: Buffer backlog for TC1.2 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.14: Idle response times for TC1.2 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

143

Appendix H. Case Study plots

Figure H.15: Buffer backlog for TC1.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.16: Idle response times for TC1.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

144

H.2. Case study 1

Figure H.17: Buffer backlog for TC1.3 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.18: Idle response times for TC1.3 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

145

Appendix H. Case Study plots

H.3 Case study 2

Figure H.19: Buffer backlog for TC2.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.20: Idle response times for TC2.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

146

H.3. Case study 2

Figure H.21: Buffer backlog for TC2.0 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.22: Idle response times for TC2.0 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

147

Appendix H. Case Study plots

Figure H.23: Buffer backlog for TC2.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.24: Idle response times for TC2.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

148

H.3. Case study 2

Figure H.25: Buffer backlog for TC2.1 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.26: Idle response times for TC2.1 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

149

Appendix H. Case Study plots

Figure H.27: Buffer backlog for TC2.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.28: Idle response times for TC2.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

150

H.3. Case study 2

Figure H.29: Buffer backlog for TC2.2 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.30: Idle response times for TC2.2 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

151

Appendix H. Case Study plots

Figure H.31: Buffer backlog for TC2.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.32: Idle response times for TC2.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

152

H.3. Case study 2

Figure H.33: Buffer backlog for TC2.3 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.34: Idle response times for TC2.3 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

153

Appendix H. Case Study plots

H.4 Case study 3

Figure H.35: Buffer backlog for TC3.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.36: Idle response times for TC3.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

154

H.4. Case study 3

Figure H.37: Buffer backlog for TC3.0 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.38: Idle response times for TC3.0 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

155

Appendix H. Case Study plots

Figure H.39: Buffer backlog for TC3.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.40: Idle response times for TC3.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

156

H.4. Case study 3

Figure H.41: Buffer backlog for TC3.1 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.42: Idle response times for TC3.1 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

157

Appendix H. Case Study plots

Figure H.43: Buffer backlog for TC3.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.44: Idle response times for TC3.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

158

H.4. Case study 3

Figure H.45: Buffer backlog for TC3.2 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.46: Idle response times for TC3.2 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

159

Appendix H. Case Study plots

Figure H.47: Buffer backlog for TC3.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.48: Idle response times for TC3.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

160

H.4. Case study 3

Figure H.49: Buffer backlog for TC3.3 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.50: Idle response times for TC3.3 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

161

Appendix H. Case Study plots

H.5 Case study 4

Figure H.51: Buffer backlog for TC4.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.52: Idle response times for TC4.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

162

H.5. Case study 4

Figure H.53: Buffer backlog for TC4.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.54: Idle response times for TC4.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

163

Appendix H. Case Study plots

Figure H.55: Buffer backlog for TC4.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.56: Idle response times for TC4.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

164

H.5. Case study 4

Figure H.57: Buffer backlog for TC4.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.58: Idle response times for TC4.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

165

Appendix H. Case Study plots

Figure H.59: Buffer backlog for TC4.4 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.60: Idle response times for TC4.4 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

166

H.6. Case study 5

H.6 Case study 5

Figure H.61: Buffer backlog for TC5.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.62: Idle response times for TC5.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

167

Appendix H. Case Study plots

Figure H.63: Buffer backlog for TC5.0 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.64: Idle response times for TC5.0 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

168

H.6. Case study 5

Figure H.65: Buffer backlog for TC5.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.66: Idle response times for TC5.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

169

Appendix H. Case Study plots

Figure H.67: Buffer backlog for TC5.1 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.68: Idle response times for TC5.1 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

170

H.6. Case study 5

Figure H.69: Buffer backlog for TC5.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.70: Idle response times for TC5.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

171

Appendix H. Case Study plots

Figure H.71: Buffer backlog for TC5.2 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.72: Idle response times for TC5.2 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

172

H.6. Case study 5

Figure H.73: Buffer backlog for TC5.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.74: Idle response times for TC5.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

173

Appendix H. Case Study plots

Figure H.75: Buffer backlog for TC5.3 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.76: Idle response times for TC5.3 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

174

H.7. Case study 6

H.7 Case study 6

Figure H.77: Buffer backlog for TC6.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.78: Idle response times for TC6.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

175

Appendix H. Case Study plots

Figure H.79: Buffer backlog for TC6.0 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.80: Idle response times for TC6.0 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

176

H.7. Case study 6

Figure H.81: Buffer backlog for TC6.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.82: Idle response times for TC6.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

177

Appendix H. Case Study plots

Figure H.83: Buffer backlog for TC6.1 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.84: Idle response times for TC6.1 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

178

H.7. Case study 6

Figure H.85: Buffer backlog for TC6.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.86: Idle response times for TC6.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

179

Appendix H. Case Study plots

Figure H.87: Buffer backlog for TC6.2 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.88: Idle response times for TC6.2 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

180

H.7. Case study 6

Figure H.89: Buffer backlog for TC6.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.90: Idle response times for TC6.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

181

Appendix H. Case Study plots

Figure H.91: Buffer backlog for TC6.3 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.92: Idle response times for TC6.3 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

182

H.8. Case study 7

H.8 Case study 7

Figure H.93: Buffer backlog for TC7.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.94: Idle response times for TC7.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

183

Appendix H. Case Study plots

Figure H.95: Buffer backlog for TC7.0 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.96: Idle response times for TC7.0 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

184

H.8. Case study 7

Figure H.97: Buffer backlog for TC7.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.98: Idle response times for TC7.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

185

Appendix H. Case Study plots

Figure H.99: Buffer backlog for TC7.1 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.100: Idle response times for TC7.1 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

186

H.8. Case study 7

Figure H.101: Buffer backlog for TC7.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.102: Idle response times for TC7.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

187

Appendix H. Case Study plots

Figure H.103: Buffer backlog for TC7.2 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.104: Idle response times for TC7.2 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

188

H.8. Case study 7

Figure H.105: Buffer backlog for TC7.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.106: Idle response times for TC7.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

189

Appendix H. Case Study plots

Figure H.107: Buffer backlog for TC7.3 with the fast processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.108: Idle response times for TC7.3 with the fast processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

190

H.9. Case study 8

H.9 Case study 8

Figure H.109: Buffer backlog for TC8.0 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.110: Idle response times for TC8.0 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

191

Appendix H. Case Study plots

Figure H.111: Buffer backlog for TC8.1 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.112: Idle response times for TC8.1 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

192

H.9. Case study 8

Figure H.113: Buffer backlog for TC8.2 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.114: Idle response times for TC8.2 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

193

Appendix H. Case Study plots

Figure H.115: Buffer backlog for TC8.3 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.116: Idle response times for TC8.3 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

194

H.9. Case study 8

Figure H.117: Buffer backlog for TC8.4 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.118: Idle response times for TC8.4 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

195

Appendix H. Case Study plots

Figure H.119: Buffer backlog for TC8.5 with the slow processing elements. Time is
plotted in ps along the 1. axis, and the number of macro blocks in the buffer is plotted
along the 2. axis.

Figure H.120: Idle response times for TC8.5 with the slow processing elements. The
time in ps is plotted along the 1. axis, and the idle time in ps is plotted along the 2.
axis.

196

H.10. APE3 histogram

H.10 APE3 histogram

Figure H.121: Histogram of the processor cycles required for the APE3 stream (GUI).
Most of the below task request require below 20.000 cycles, but some require up to
40.000.000 cycles.

197

	Abstract
	Resumé
	Preface
	Abbreviations
	Introduction
	Variability in Multimedia
	Motivation
	Related work
	My work throughout the thesis
	Structure of the thesis

	Multimedia
	Types of Multimedia
	MPEG
	MP3

	Metrics
	Variability in multimedia
	Modelling the variability

	Distributed Multimedia
	Scheduling
	Fixed priority scheduling
	Earliest Deadline First
	Constant bandwidth server scheduling
	Linux scheduler
	Hypothesis

	Simulators
	Levels of Abstraction
	Design-Level Simulator
	Existing Simulators
	SimpleScalar
	Simics
	PTLsim
	SystemC
	Pesimdes
	ARTS
	Summary

	Design of the Simulator
	What needs to be simulated
	Requirements
	PESIMDES
	Structure of the simulator
	Scheduling
	Fixed priority scheduling
	Earliest Deadline First scheduling
	Constant bandwidth server scheduling
	Linux scheduler

	Input and output

	Implementation of the Simulator
	Communication
	Scheduling
	Fixed-Priority
	Earliest Deadline First
	Constant Bandwidth Server
	Linux O(1)

	Output devices
	Consumer
	Output display

	Extending DiMAS

	Generating traces for the simulator
	Resulting trace files

	Case studies
	Evaluation criteria
	Reading this chapter
	General set-up
	Two processing elements
	Case study 1 - Periodic input
	Test bench
	TC 1.0 - FP
	TC 1.1 - EDF
	TC 1.2 - EDF+CBS
	TC 1.3 - Linux
	Summary

	Case study 2 - GUI task
	Test bench
	TC 2.0 - FP
	TC 2.1 - EDF
	TC 2.2 - EDF+CBS
	TC 2.3 - Linux
	Summary

	Case study 3 - Input with jitter
	Test bench
	TC 3.0 - FP
	TC 3.1 - EDF
	TC 3.2 - EDF+CBS
	TC 3.3 - Linux
	Summary

	Case study 4 - Varying CBS parameters
	TC4.0
	TC4.1
	TC4.2
	TC4.3
	TC4.4
	Summary

	One processing element
	Case study 5 - Periodic input
	Test bench
	TC5.0 - FP
	TC5.1 - EDF
	TC5.2 - EDF+CBS
	TC5.3 - Linux
	Summary

	Case study 6 - GUI task
	Test bench
	TC6.0 - FP
	TC6.1 - EDF
	TC6.2 - EDF+CBS
	TC6.3 - Linux
	Summary

	Case study 7 - Input with jitter
	TC7.0 - FP
	TC7.1 - EDF
	TC7.2 - EDF+CBS
	TC7.3 - Linux
	Summary

	Case study 8 - Varying CBS parameters
	TC8.0
	TC8.1
	TC8.2
	TC8.3
	TC8.4
	TC8.5
	Summary

	Conclusion

	Conclusion
	Future work

	Bibliography
	Developed utilities
	BreakDiff
	mpeg2stat
	VCD Parser

	Input generator class diagram
	Users guide
	Multimedia data files
	MPEG-2 files

	Commands for generating traces
	Profiling two MPEG video files
	flwr_080
	high_25fps_320x240

	CD-rom contents
	Case Study plots
	Variability in the MPEG video files
	Case study 1
	Case study 2
	Case study 3
	Case study 4
	Case study 5
	Case study 6
	Case study 7
	Case study 8
	APE3 histogram

